$>$

 This edition contains material from Van Tharp's not yet published, Definitive Guide to Position Sizing and Expectancy. This issue features the first 3 of 17 chapters of this new work. The Van Tharp Institute expects to publish the Definitive Guide to Position Sizing and Expectancy fourth quarter 2006.
Understanding Expectancy \&

The Golden Rules of Trading

By

Van K. Tharp, Ph.D.

Introduction to Expectancy: One of the key fundamentals that every trader/investor must know is "how do you evaluate the effectiveness of your trading methodology." Part One of this book does just that with a thorough evaluation of the topic of expectancy.

In Chapter 1, we explore the Golden Rules of Trading - some core trading fundamentals that you must follow if you are to survive and prosper in today's market. Then, in Chapter 2, we move on to understanding risk and how to properly think about all of your trades in terms of risk-to-reward ratios (or R-multiples as we call them). Both these chapters are critical to understand if you want to survive long-term trading the markets.

In Chapter 3, we get into core ways to monitor how good your system is. It not just expectancy or the average risk-reward ratio in your trading. It's not expectancy times opportunity, although that gets you a little closer. You also
have to consider the variability of your system, because if you have a low-variability system, especially when it comes to losses, you can typically make much better returns out of the same expectancy.

The Golden Rules of Trading

I bought my first stock when I was 16 years old - over forty years ago. And, considering the knowledge I had about investing at the time, I really did a fairly good job of doing research on the stock. Here's what I did. First, read an article in Fortune Magazine on the top growth stocks for that year - I believe it was 1962. The stock I picked was a small mobile home manufacturer, which had the highest growth over the last year in its earnings per share of any stock listed in that article. With that I thought I had done my homework - and it was probably more homework than the average person does before they buy their first stock.

Market Mastery

Publisher/Editor
Van K. Tharp, Ph.D.
Production Director
Cathy W. Hasty
Editorial Advisory Board D.R. Barton Jr.

This publication is intended to be instructional and should not be construed as a recommendation to buy or sell any futures contracts, options, or stocks. Trading is extremely risky and may result in substantial losses. The information offered is gathered from sources believed to be reliable as well as from experiences of the editors. The publishers and editors assume no responsibility for errors or omissions or any losses resulting from the use of the information contained in this publication.

HYPOTHETICAL OR SIMULATED PERFORmANCE RESULTS HAVE CERTAIN INHERENT LIMITATIONS. UNLIKE AN ACTUAL PERFORMANCE RECORD, SIMULATED RESULTS DO NOT REPRESENT ACTUAL TRADING. ALSO, SINCE THE TRADES HAVE NOT ACTUALLY BEEN EXECUTED, THE RESULTS MAY HAVE UNDER-OROVER COMPENSATED FOR THE IMPACT, IF ANY, OF CERTAIN MARKET
FORCES SUCH AS LACK OF LIQUIDITY. SIMULATED TRADING PROGRAMS IN GENERAL ARE ALSO SUBJECT TO THE FACT THAT THEY ARE DESIGNED WITH THE BENEFIT OF HINDSIGHT. NO REPRESENTATION IS BEING MADE THAT ANY ACCOUNT WILL OR IS LIKELY TO ACHIEVE PROFITS OR LOSSES SIMILAR TO THOSE SHOWN.

Market Mastery is published by International Institute of Trading Mastery, Inc., 102-A Commonwealth Court, Cary, NC 27511, Telephone (919) 466-0043; Fax (919) 466-0408; web site www.iitm.com © 2005 by IITM, Inc. All rights reserved. Reproduction in whole or in part without express permission is prohibited.

Anyway, the stock was selling for $\$ 8$ per share. I bought 100 shares with the $\$ 800$ I'd saved up - which was a lot of money in those days. And what happened? First, within a year or so, the stock went as high as $\$ 20$ per share. In fact, I don't think I lost any money initially - the stock just did a steady climb. I was deliciously happy and I'd more than doubled my money. However, then it started to go down. And eventually it went below my $\$ 8$ purchase price.

Now that I was in the hole on my purchase, what did I do? Did I reevaluate the stock fundamentals? No, I didn't. Did I look to see if there was a better stock, based upon my initial screening criteria - and remember several years had now passed? No, I didn't.
Instead, I just assumed that the same criteria held and the stock was an even better buy now that it was valued at less than I paid for it. When it hit $\$ 4$ per share, it must have been twice as good as it was when I originally bought the stock at $\$ 8$, so I bought another hundred shares. And when it hit $\$ 2$ per share, it seemed like it was an even better buy, so I bought another hundred shares. I now had $\$ 1400$ invested in this stock and I owned 300 shares. What do you think happened? It went to zero. Within another year or so the company went bankrupt. My \$1,400 went to zero. I have no idea where those shares are - I wish I did because I'd frame them. But that stock is now totally worthless. And when I ask people at my workshops, "how many of you have stock that is now worthless," at least half of the people in the workshop are usually willing to raise their hands. That says something to me. A lot of stock ends up going bankrupt!
So what was my mistake? Actually, there were many. But most people
would say that I picked the wrong stock. Just think about it. In the early 1960s, I invested $\$ 1400$ in the stock market. If I had put that $\$ 1400$ in Microsoft when it was founded in 1975, that investment would be worth millions. If I had put that $\$ 1400$ in Intel when it was founded in 1968 or even when it went public in 1978, that investment would be worth millions. Even an investment in the original Dow Jones Industrial stock, General Electric, in 1968 would be worth a small fortune today. I could have put $\$ 1400$ into Berkshire Hathaway when it was founded in 1964 and today have over $\$ 5$ million from that one investment. So it would seem that my mistake was that I invested in the wrong stock.

That argument is totally fallacious. For every stock I mentioned that would have made me millions, there are thousands of companies that, just like the one I invested in, no longer exist. So the first argument is that my chances of finding one of those great companies that would have made me millions were very, very small. If your criteria is picking the right stock, no matter how good your criteria are, you are still more likely to pick a stock that will eventually go bankrupt than you are of finding one that will make you a fortune.
Second, let's look at the stock I bought. It went from $\$ 8$ to $\$ 20$ that's a 150% gain - in about a year. That doesn't sound like I bought the wrong stock. So what were my problems? There were many.

- I didn't establish any initial risk parameters to say, "I'm wrong about this stock if it drops to this point." If you don't know how to do that, then a 25% drop is usually sufficient to say that something is wrong. Thus, my initial stop loss should have been
about $\$ 2$ per share so that I would get out if the stock dropped to $\$ 6$ per share.
- Second, I had no way to take profits. I could have said, "if this stock doubles, I'll get out." I could have established a 25% trailing stop. That means that whenever the stock makes a new high, a 25% drop from that point becomes my exit. Table 1 shows my stock at various points and how a 25% trailing stop would have worked. Notice that as the price gets higher, my trailing stop gets higher. And as the price goes down, my stop doesn't change. Thus, when the price goes to $\$ 20$ and then back down to $\$ 15$, I'm out. I have a profit of $\$ 7$ per share. Since my initial investment was $\$ 8$, I have a profit of 87.5%. However, since my initial risk was only $\$ 2$, my $\$ 7$ profit is actually 3.5 times my initial risk. I like to call this a 3.5 R profit - where R stands for my initial risk.
- Third, I had no understanding of position sizing. What that really means is that I risked too much. I had $\$ 800$ and I risked all of it on one stock. Now, if I had kept a 25% trailing stop, I would have only risked 25% of it or $\$ 200$ on that stock. But as you'll learn later in this guide, risking 25% on one stock is still way too high. (Incidentally, today's solution to the problem would have been to buy 10 shares - then my risk would have only been 2.5% of my $\$ 800$. However, that wasn't an option in 1962, when it cost you $\$ 65$ to buy the 100 shares and $\$ 65$ to sell it. And if you wanted to buy 10 shares - it might have cost more than $\$ 65$ because there would have been an extra cost to buy an odd lot.)
- Fourth, I added to a losing position. You should never add to a losing position, but that's what I did.

Table 1: A 25\% Trailing Stop	
Stock Price	Trailing Stop
$\$ 8$	$\$ 6$
$\$ 10$	$\$ 7.50$
$\$ 12$	$\$ 9$
$\$ 14$	$\$ 10.50$
$\$ 16$	$\$ 12$
$\$ 18$	$\$ 13.50$
$\$ 20$	$\$ 15$
$\$ 18$	$\$ 15$
$\$ 16$	$\$ 15$
$\$ 14$	Out at $\$ 15$

- Fifth, I had no plan, no rules and no discipline.

Those are all huge mistakes and I didn't understand any of them at the time. But you will understand them when you've finished this book. And understanding them is the key to making sure that you don't make the same mistakes.

As a result, of my many years of study of the best traders and investors in the world, I believe that there are certain "Golden Rules of Trading" that you must follow. I've listed the ten most important below and these rules form the foundation of everything else that follows in this book.

The Golden Rules of Trading:

1. Never open a position in the market without knowing your initial risk - that point at which you will get out of the position to preserve your capital. This point is your initial stop loss and it establishes your initial risk (which we'll call R for short). In my first investment if I had said, "Get out if the stock drops to $\$ 6$ per share," I would have been following the first rule. My initial risk, or R, would have been $\$ 2$ per share.
2. Next, you must define your profit and loss in your trades as some multiple of your initial risk.

We call these R-multiples. If your risk is $\$ 100$ and you make $\$ 200$, you have a 2 R gain. If your risk is $\$ 100$ and you lose $\$ 150$, then you have a 1.5 R loss. It's a pretty simple concept. In other words, you must start thinking in terms of risk and reward. In my first investment, had I followed the 25% trailing stop rule, I would have had a profit of 3.5 R or a profit that was 350% times bigger than my initial risk.
3. Make sure you limit your losses to $1 \mathbf{R}$ or less. If you set an initial stop level and then change your mind when it goes down (i.e., because you don't want to take a loss), then you are in real trouble. This is what produces 5R losses or more and those can turn a great system into a losing system very easily.
4. Make sure that your profits, on the average are bigger than 1R. Let's say you have one 10R profit and nine 1 R losses. If you add those up you have 10R in profit and 9 R in losses, so you have a total gain of $1 R$. Thus, even though you lost money on 90% of your trades, you still made money overall because your average gain was huge. That's the power of having an average gain that is much bigger than 1R.
What's typically known as the golden rule of trading is a summary of these first four rules. It simply states: Cut your losses short and let your profits run. What we're talking about here is simply doing your best to make sure your losses are 1 R or less and that your profits are much bigger (if possible) than 1R. Incidentally, the Nobel Prize for economics in 2002 was awarded to two psychologists, Daniel Kahneman and Amos Tversky, for their discovery of Prospect Theory. While the topic sounds a bit complex, what Kahneman and Tversky actually proved, in my opinion, is that people have a natural bias to cut profits short and let their losses
run - which is the opposite of the Golden Rule.
5. The next fundamental is to understand your trading system in terms of the mean (what's the average R) and the standard deviation (how much variability is there in the results) of your R-multiples. Your system, when you trade it, will generate a number of trades. The results of those trades can be expressed as a multiple of your initial risk, or a set of R-multiples. You should know the characteristics of that distribution for any system that you plan to trade. And most people never know this.
Now if you spend some time and calculate the mean and standard deviation of your R-multiples, you'll know a lot about your system. The mean R-multiple is what we've been calling the Expectancy of your system. In other words, expectancy just tells you what to expect from your system in terms of R over many trades. If your expectancy is 0.33 R , then you know that after 20 trades, then you'll probably be up by about $6 R$ to $7 R$. And that's valuable information to know.
The standard deviation of R just tells you how variable your system is. That's also a good thing to know. It tells you how much your results are likely to vary after any given sample of 20 trades.
Let's say your expectancy is 0.33 R , but your standard deviation is 3 R . What this means is that even though your average gain after 20 trades would total about 6.6 R , you only have about a 65% chance of being profitable after 20 trades because of the huge variability. Part one of this book is all about expectancy, and understanding the mean and standard deviation of your R-multiple distribution is very important to
telling you how to trade the system you adopt.
6. The next golden rule is that you must have some core objectives for your trading. Those objectives must be stated in terms of what you'd like to make as a goal for your trading and what you would call ruin for your system - the point at which you'd stop trading. When you have those two things, then you have a chance to meet your objectives and you can also calculate the optimum position sizing to meet your objectives. We'll be covering this topic in part three of this book.
7. Of course, this now leads to the next golden rule, which is that in order to meet your objectives, you must practice proper position sizing. Ed Seykota once said that the most important question you could ever ask yourself as a trader is "how much" should I invest once I know the expectancy of my system. Position sizing will be covered extensively in part two of this book. And some of the key rules involving position sizing might include:

- Invest a percentage of your equity so that you invest more as you win and less as you lose.
- You might start out with a percentage of your equity that has a very low probability of reaching your ruin point and then switch to another percentage of your equity when you have enough money to make sure that you don't reach that level. You could do this through a market's money model or a fixed ratio model. Both will be discussed extensively in this book.

8. Another key golden rule is to simulate your system to determine exactly what percentage you can risk. I'm now using a software that I had personally developed for me that allows me to do this directly. You can request a report from us and
have it done for you as well, with our specific recommendations. For example, how did I know that with a system with an expectancy of 0.33 and a standard deviation of 3 R that I'd only be profitable after 20 trades about 65% of the time? I know the answer because I simulated the system. Again, this topic is discussed extensively in this book.
9. The ninth golden rule is to know the big picture (what factors are influencing the market); have a way to measure these factors; and have a business plan that helps you capitalize on these factors. You then need three or four systems that meet rules 1 through 8 above.
10. Lastly, in my opinion, Golden Rule 10 is to follow the ten tasks of trading and to master yourself. This rule is the key that makes everything else work. We'll be discussing rules nine and ten in part four of this book.

Risk (R) and R-multiples

By
Van K. Tharp

So let's look at the first golden rule in much more detail to be sure that you understand it. That rule, if you remember it, is to always have an exit point when you enter a position. The purpose of that exit point is to help you preserve your trading/investing capital. And that exit point defines your initial risk in a trade.

Most people define the risk in a trade by its potential volatility - how much can you expect your account (or that position) to fluctuate. However, that's not the definition of risk that we'll use here. Here risk is defined as how much you'll lose per unit of your investment (i.e., share of stock or number of futures contracts) if you are wrong about the position. I call this initial Risk (R) for short.

Let's look at some examples:

Example 1:

Let's say you buy a stock at $\$ 50$ and decide to sell it if it drops to $\$ 40$. What's your initial risk?

The initial risk is $\$ 10$ per share. So in this case, 1 R is equal to $\$ 10$.

Example 2:

Let's say that you buy the same stock at $\$ 50$, but decide that you are wrong about the trade if it drops to $\$ 48$. At $\$ 48$ you'll get out. What's your initial risk?
In the second example, your initial risk is $\$ 2$ per share, so 1 R is equal to $\$ 2$.

Example 3:

Let's say that you buy a stock for $\$ 24$ and you decide to keep a 25% trailing stop. That means you'll sell if it drops 25% from the entry price or from a subsequent higher closing price the stock makes. What's your initial risk? What's 1 R for you?
In the third example, you'd sell the stock if it drops 25% to $\$ 18$. Thus, your initial risk is $\$ 6 /$ share and 1 R is $\$ 6$ for you.

Example 4:

Let's say you have a soybean contract at $\$ 5.20$ per bushel. You decide to sell if it drops 10 cents. What's your initial risk per contract, given that one contract is 5,000 bushels? What's 1 R for you?

In this case, you must multiply 5,000 by your loss per bushel of 10 cents. Your initial loss is $\$ 500$, so 1 R is $\$ 500$ per contract.

Example 5:

Let's say that you want to do a foreign exchange trade, buying the dollar against the euro. Let's say that one hundred dollars is equal to 77 euros. The minimum unit you must invest is $\$ 10,000$. You are going to sell if your investment drops down by $\$ 1000$. What's your risk? What's 1R for you.
I made this example sound complex, but it isn't. If your minimum investment is $\$ 10,000$ and you'd sell if it dropped $\$ 1000$ to $\$ 9000$, then your initial risk is $\$ 1000$, and 1 R is $\$ 1000$.

Are you beginning to understand? R represents your initial risk per unit. It's not your total risk in the position because you might have multiple units - it's simply the initial risk per share of stock or per futures contract or per minimum investment unit.

Understanding R-multiples:

The next key point for you to understand is that all of your profits and losses should be related to your initial risk. You want your losses to be 1 R or less. That means if you say you'll get out of a stock when it drops $\$ 50$ to $\$ 40$ then you actually do get out when it drops to $\$ 40$. If you get out when it drops to $\$ 30$, then your loss is much bigger than 1 R. It's twice what you were planning to lose or a 2R loss. And you want to avoid that possibility at all costs.

You want your profits to ideally be much bigger than 1R. For example, you buy a stock at $\$ 8$ and plan to get out if it drops to $\$ 6$, so that your initial $1 R$ loss is $\$ 2$ per share. You now make a profit of $\$ 20$ per share. Since this is 10 times what you were planning to risk we call it a 10R profit.

Let's look at some more examples to make sure that you understand. Here the answers will be given at the end of the exercises.

1. You buy a stock at $\$ 40$ and plan to exit if it drops to $\$ 38$. However, the stock goes to $\$ 37$ and then gaps down five points at the open the next day. You get out as soon as you can at $\$ 31$.

Your $\$ 9$ per share loss is what multiple of your initial risk?
2. You buy a stock at $\$ 40$ and plan to exit if it drops 10% to $\$ 36$. You eventually sell when the stock rises to $\$ 80$ per share. What's your profit as an R-multiple?
3. You buy a stock at $\$ 40$ with a planned exit at $\$ 36$. You sell it at $\$ 45$, what's your profit as an R-multiple?
4. You buy a stock at $\$ 60$ and plan to get out if it drops to $\$ 55$. However, when it goes that low, you don't sell. Instead, you just stop looking at it and hope it will go back up. It doesn't. It becomes part of the headline business news involving corporate scandal and eventually the stock becomes worthless. What's your loss as an R-multiple?
5. You buy a stock at $\$ 50$ and plan to sell it if it drops to $\$ 49$. However, the stock takes off and jumps $\$ 20$ in three weeks where you sell it. What is your profit as an R-multiple?
6. You buy a stock at $\$ 50$ with a 25% trailing stop. The stock goes as high as $\$ 64$ and then drops 25% where you get out at $\$ 48$. What is your loss as an R-multiple?
7. You buy a stock option at $\$ 3$. You determine that if the option drops by 50%, you'll get out. However, you get lucky and the underlying stock goes up $\$ 10$ and your option goes up in value to $\$ 12$ where you sell. What is your profit as an R-multiple?
8. You buy a stock option for $\$ 4.50$. You decide that you'll sell the option if it drops to $\$ 3$ or less. However, the stock gaps down overnight and you find yourself
with an option that's only worth $\$ 1.5$. You decide to hang on, hoping the stock will come back. It doesn't. Instead, the option expires worthless. What's your loss as an R-multiple?
9. You buy a futures contract for corn at $\$ 3$ per bushel. You decide that you'll sell if wheat drops to $\$ 2.90$ per bushel. Instead, wheat goes up to $\$ 4.50$ per bushel. What is your profit as multiple of your initial risk?
10. You decide to buy a $\$ 40$ stock when it breaks out of a trading range at $\$ 40.35$. You decide that you'll sell it if it moves back into the trading range at $\$ 40$ and you also keep a 10% trailing stop on it as it become profitable. The stock moves to $\$ 57.20$ and then you get stopped out at $\$ 51.48$. What's your profit as an R-multiple?
Answers: Be sure you understand these answers before moving ahead in this workbook. In each case, I indicate what a $1 R$ loss is. I then divide the profit or loss by $1 R$ to determine the R-multiple. It's that simple.

1. A 1 R loss is $\$ 2$. Your loss per share is $\$ 9$, so you have a $4.5 R$ loss.
2. A 1 R loss is $\$ 4$. Your profit per share is $\$ 40$, so you have a 10 R profit.
3. A 1 R loss is $\$ 4$. You profit per share is $\$ 5$, so you have a 1.2 R profit.
4. A 1 R loss is $\$ 5$. Your loss per share is $\$ 60$, so you have a 12 R loss. Hopefully, you can understand why you never want to let this happen.
5. A 1 R loss is $\$ 1$. You profit per share is $\$ 20$, so you have a 20R profit. And hopefully, you understand why you want this to
happen all the time.
6. A 1 R loss is $\$ 12.50$. Your loss per share is $\$ 2$, so you have a 0.16 R loss. This is the sort of loss you want. Some people might argue that you allowed a profit to turn into a loss. However, the key is, your followed your rules.
7. A 1 R loss is $\$ 1.50$ or half the value of the option. Your profit is $\$ 9$ which is a 6 R profit.
8. A 1 R loss is $\$ 1.50$. Your total loss is $\$ 4.50$, so you have a 3 R loss.
9. A 1 R loss is 10 cents. Your total profit is $\$ 1.50$, so you have a 15R gain.
10. Your initial risk is a 1 R loss of 35 cents. Your profit is $\$ 11.13$ (i.e., $\$ 51.48$ less your cost of $\$ 40.35=\$ 11.13$). If you divide $\$ 11.13$ by 35 cents, you get a profit of 31.8 R . Again, this is the kind of profit you want.

Using the total risk to keep track of your R-multiples.

It can get quite complex to keep track of the risk per unit and the profit or loss per unit. In addition, there are also transaction costs involved which won't get figured into your profit or loss per share. As a result, an easier way to determine the R multiple distribution of your trades is using the total initial risk and the total profit or loss (after costs) to determine your R-multiples.

Let's say that you have a $\$ 100,000$ account and you want to keep your total risk per position to about 1% of your account value or $\$ 1,000$. Here's what a sample of trades might look like.

1. You buy a stock at $\$ 40$ and plan to exit if it drops to $\$ 38$. You buy 500 shares which at a risk

Transaction	Total Risk	Profit or (Loss) Including costs	R-multiple
400 CSCO at \$23	\$1000	\$2,317	
80 IBM at \$80	\$1000	(\$813)	
300 VLO at \$50	\$1000	\$3,413	
400 HRB at \$51	\$1000	(\$1,531)	
500 IRF at \$13	\$1000	\$3,890	
400 ISIL at \$16	\$1000	(\$776)	
600 LSI at \$5.35	\$1000	\$4561	
500 MYL at \$17.50	\$500	(\$567)	
400 ORI at \$31	\$800	(\$2314)	
300 SRA at $\$ 40.77$	\$600	\$1,571	
	Total	\$9,571	

of $\$ 2$ per share gives you a total risk of $\$ 1000$. However, the stock goes to $\$ 37$ and then gaps down five points at the open the next day. You get out as soon as you can at $\$ 31$. Your total loss is $\$ 9$ per share times 500 shares or $\$ 4,500$. You also had transaction cost of $\$ 24$, making your actual total loss \$4,524.

Notice how this is quite similar to the initial example. Your initial total risk is $\$ 1000$. Your total loss was $\$ 4500$, so you had a 4.5 R loss. Wasn't this the same answer you got for the first example above? It should have been. However, your actual total loss, including transaction costs was $\$ 4524$. Thus, your actual R-multiple loss was 4.524 R . Notice how the only difference between using total risk and risk per share is that with total risk you can include your costs in the R-multiple which makes it a little more accurate.

Let's do one more example.
2. You buy a stock at $\$ 40$ and plan to exit if it drops 10% to $\$ 36$. Since you want to keep your total risk to $\$ 1000$, you only buy 250 shares. Notice
that 250 shares time $\$ 4$ risk per share equals $\$ 1000$ in total risk. Now, you eventually sell when the stock rises to $\$ 80$ per share. Your total profit for your 250 shares is what? If your transaction cost are $\$ 35$, then what's your profit as an R-multiple?
This problem is again like the second example above, only now we are using total risk. Your total risk is $\$ 1000$, so you can call 1 R a thousand dollars. Your 250 shares of stock cost $\$ 10,000$ and you are selling it for $\$ 20,000$ less your transaction costs in and out of $\$ 35$. Thus, your profit is $\$ 10,000$ less $\$ 35$ or $\$ 9,965$. Since your initial risk is $\$ 1,000$, your profit as an R-multiple is 9.965 R . In the per share example, we got 10 R - the only difference being the transaction costs.

Table 2-1 shows the typical monthly transactions of a trader. You see the stock, the initial risk, and the profit or loss (including transaction costs). Your job is to fill in the R-multiple. Notice that this trader didn't hold his total risk constant at $\$ 1,000$, so you'll have to take that into account.

I'll make it easy on you. All you
have to do is divided the total profit or loss (including transaction costs) by the initial risk to get the R-multiple for that column. Do it now.

Okay, Table 2-2 now shows the answers that you should have gotten from doing the exercise. We've rounded them to two decimal places. Are those the answers you got?

Notice that it wasn't that hard to calculate your R-multiples. The only problem came when the total initial risk varied and you had to divide by a different number.

Notice that in Table 2-2, I've given a total and average profit and a total and average R. In this case, they are fairly similar. The total profit is $\$ 9571$ and your total R is $9.65 R$. The relationship is similar, however, because the initial risk was pretty close to $\$ 1,000$ for all of the trades.

What if You Don't Know Your Initial Risk?

What if you don't know what your initial risk was? Perhaps your initial exit was variable and it wasn't possible to say exactly what it would be at the onset. Perhaps you didn't understand the first golden rule and you didn't have an exit.

Anyway, for some reason, you have a set of trades and you don't know what your initial risk is. Nevertheless, you'd still like to get a rough idea of your R-multiple distribution of your system. What can you do?
What I recommend is that you use your average loss to represent 1-R. Let's see how that works out in the last sample. We had five losses.

Table 2-3 shows the five losses.
Notice that we're 20% over $\$ 1,000$ using this estimation. Nevertheless, at least it gives us an idea of what 1-R might be for this system. Now let's plug in $\$ 1200$ as 1-R into Table 2-2 and see how much it changes
the results. These are shown in Table 2-4.
Notice that the only difference here is that the total and average R is smaller. Thus, it is not a bad estimate.

However, when you use total risk in determining your R-multiples, there is sort of an assumption that you are using the same factor in determining what your total risk will be (i.e., like 1% of your equity). When it varies, you are probably just as accurate to use the average loss to determine 1-R.

To learn more about expectancy, the Van Tharp Institute recommends these related educational resources:

- Position Sizing DVD Series.
- Special Report on Money Management .
- Special Report on Expectancy.
- How to Develop A Winning Trading System That Fits You Home Study Program .
- How to Develop A Winning Trading System That Fits You Three-Day Workshop .
- Trade Your Way to Financial Freedom .

		Profit or (Loss)	
Transaction	Total Risk	Including costs	R-multiple
400 CSCO at \$23	\$1000	\$2,317	2.32R
80 IBM at \$80	\$1000	(\$813)	-0.82R
300 VLO at \$50	\$1000	\$3,413	3.41R
400 HRB at \$51	\$1000	(\$1,531)	-1.53R
500 IRF at \$13	\$1000	\$3,890	3.89R
400 ISIL at \$16	\$1000	(\$776)	-0.78R
600 LSI at \$5.35	\$1000	\$4561	4.56R
500 MYL at \$17.50	\$500	(\$567)	-1.13R
400 ORI at \$31	\$800	(\$2314)	-2.89R
300 SRA at \$40.77	\$600	\$1,571	2.62R
Total	\$8,900	\$9,751	9.65R
Average	\$890.00	\$975.10	0.965R

Table 2-3: Using Average Loss to Determine 1-R	
Transaction	Profit or (Loss) Including costs
80 IBM at \$80	$(\$ 813)$
400 HRB at \$51	$\mathbf{(\$ 1 , 5 3 1)}$
400 ISIL at \$16	$(\$ 776)$
500 MYL at \$17.50	$\mathbf{(\$ 5 6 7)}$
400 ORI at \$31	$\mathbf{(\$ 2 3 1 4)}$
Total Loss	$\$ 6001$
Average Loss	$\$ 1200.20$

Table 2-4: Determining R-multiples from Average Loss

Transaction	Total Risk	Profit or (Loss) Including costs	R-multiple
400 CSCO at \$23	\$1200	\$2,317	1.93R
80 IBM at \$80	\$1200	(\$813)	(0.68R)
300 VLO at $\mathbf{\$ 5 0}$	\$1200	\$3,413	2.84R
400 HRB at \$51	\$1200	(\$1,531)	(1.28R)
500 IRF at \$13	\$1200	\$3,890	3.24R
400 ISIL at \$16	\$1200	(\$776)	(0.65R)
600 LSI at $\$ 5.35$	\$1200	\$4561	3.80R
500 MYL at \$17.50	\$1200	(\$567)	(0.47R)
400 ORI at \$31	\$1200	(\$2314)	(1.93R)
300 SRA at \$40.77	\$1200	\$1,571	1.31R
	Total	\$9,571	8.11R

Evaluating How Good Your Trading System Really Is

by Van K. Tharp

TThe basic, most-traditional way of evaluating the quality of a system is through its expectancy. And the traditional definition of expectancy is usually given by the following formula.
Expectancy $=[($ Average Profit $)$ * (Probability of Winning)] Less
[(Average Loss) * (Probability of Losing)]

However, the formula is incorrect because expectancy really gives

Table 3-1:	
Calculating Our Average Gain	

In c l u d ing

costs\end{array}\right|\)
you the average profit per dollar risked, whereas this formula simply gives you the average profit. Thus, the formula must be corrected as follows:

Expectancy $=\{[($ Average Profit $)$ * (Probability of Winning)] Less
[(Average Loss) * (Probability of Losing)] / Average Risk Amount
And the way you'd determine expectancy is to follow that formula. Let's look at how we might use the data previously given in Table 2-1 to calculate expectancy in this manner. We already know that the average loss is $\$ 1200.20$. Our system has five winners and five losers, so the probability of winning and losing are each 50%. So, all we need to calculate expectancy is to subtract the size of the average win and divide the result by the average risk.
Let's determine what that is. Table 3-1 shows the winning trades from our sample.

Thus, we know that the average gain is $\$ 3,150.4$ and that the probability of winning is 50%. Thus, the first part of the formula is $\$ 1,575.20$.
We also know that the average loss is $\$ 1,200.20$ and that the probability of losing is 50%. Thus, the second part of the formula is $\$ 600.10$.
And to determine the expectancy, we subtract $\$ 600.10$ from $\$ 1,575.20$ and we get $\$ 975.10$. The average risk is $\$ 890$ so the expectancy is $\$ 975.10 / \$ 890=\$ 1.096$. And So what does that really tell us? It tells us that we can expect to make a little over a dollar per dollar risked with this system.
But let's take a look at Table 2.2 again (from the last chapter).
Do you see, the number $\$ 975.10$ in that table? It's the average profit/loss of the system. Thus, the traditional definition of expectancy really refers to the average profit or loss of the system and, as I already said, needs to be corrected by dividing it by the average risk per trade.
However, if you look at the Rmultiple column in Table 2-2, it becomes obvious that we can also express expectancy with respect to R. In fact, another definition of expectancy is really the average R value of the system. Thus, Table 2-2 really shows that the expectancy of this system can either be expressed in terms of dollars gained per dollar risked or in terms of R.
Sometimes, when people do not know the initial risk for every trade, they use the average loss to reflect R. When we plugged that into the
formula, the best we got was an estimate of expectancy (i.e., 0.811 R) and not as accurate as when you use the actual risk for every trade, which gives you 0.965 R .
Thus, of three possible formulas for expectancy

- Average profit/average amount risked $=1.096$
- Using the average loss to equal the average risk $=0.811$

Versus

- Using the average R-multiple $=$ 0.965

Only the average R-multiple gives us any better than an approximation of expectancy.
However, when we go through this exercise, expectancy becomes quite easy to understand. The expectancy of your system is the average of the R-multiples (both positive and negative) of your system. It tells you what you can expect to achieve in terms of R , on average, over many trades.

On our system given in Table 2-2, expectancy was 0.965 R. Thus, we know that we will make nearly one times our risk on the average over many, many trades. In fact, over 10 trades we can expect to make 9.65R. Over 100 trades we could expect to make 95.5R.

This information is quite valuable because it tells us that if we were to risk 1% of our equity on every trade, we'd make an average of 0.965% per trade. Furthermore, after 100 trades, we'd probably be up 100% or more - actually more, since 1% would continue to get bigger as we continue making money. That is, when you have 100,000 , you'd be risking 1% of that or $\$ 1,000$. But when you have $\$ 110,000$, you'd be risking 1% of that or $\$ 1,100$. Thus,
your 1% risk would continue to go up as you made money.

What About Variability?

The way I've presented this information it looks very simple and straightforward. You make 0.965R, on the average, per trade. And if your total risk were 1% per trade, you'd make 0.965% per trade. After 100 trades, you'd probably be up over 100%. Well, on the average, you would be! But the average is not the total picture, what about deviations from the average?

To understand how much your system can deviate from the average, you must not only know the average R-value (i.e., expectancy), you must also know the variability of R or its standard deviation. ${ }^{1}$ This variability will tell us how far away from the mean (expectancy) most samples that you will draw are likely to be. It would be great if all samples were at the mean, but that is never the case because it would mean that there was no variability to the sample. Every R-multiple, in our sample, would have to be 0.965 R .

You can calculate the expectancy and standard deviation of the Rmultiples of your trade samples by simply using an Excel spreadsheet. Put your sample R-multiples in a column. Go to the blank cell at the end of the column, and click on the function (Fx) at the top. A box will pop up and then you need to click on statistical, which will give you another box. You can then click on AVERAGE, which will give you the expectancy and then click on STDEV and you'll get the standard deviation. That's all you need to know.

[^0]Notice in this table:

1) How easy it is to calculate the risk: This is a $\$ 50,000$ account so all trades should have approximately $\$ 250$ risk ($1 / 2 \%$ risk) or $\$ 500$ risk (1% risk). I deliberately selected some data that shows two different risk levels which you need to factor out (i.e., by dividing by R) in order to get the expectancy.
2) R-multiples can be calculated automatically and it is easy to sort them and see the R-multiple distribution.
3) The R-multiple total, the expec-
tancy, and the standard deviation can be calculated automatically at the bottom of the spreadsheet.

So What's the Downside?

And now that you know your standard deviation, you can get an estimate of the downside. If you look at the original way the trades came up in Table 2-2, you'll see that at one point we had two losses in a row. Those losses were a 1.13R loss followed by a 2.89 R loss. Thus, in our original sample we had a peak drawdown of 4.02R. But what if we

Table 3-2: How to Set Up a Spreadsheet, Calculate Expectancy and Your R-multiple Distribution

\#	Stock	Entry	Stop	Entry		R-		$\begin{gathered} \mathrm{R}- \\ \text { multiples } \end{gathered}$	Selling
Shares	Symbol	Price	Price	Risk	Gain/Loss	Multiple	\% Risk	Sorted	Price
50	BRCM	194.1250	189.13	250.00	1643.75	6.58	0.45\%	7.70	227
55	INSP	221.0000	216.00	275.00	2117.50	7.70	0.49\%	7.53	259 1/2
55	HLIT	130.0000	125.00	275.00	378.13	1.38	0.49\%	6.58	$1367 / 8$
55	TXN	$1501 / 8$	145	281.875	629.06	2.23	0.50\%	2.23	161 9/16
55	JDSU	255	250	275	2069.38	7.53	0.49\%	2.20	292 5/8
25	JDSU	281.1875	276.00	129.69	285.94	2.20	0.23\%	1.83	292 5/8
60	EMLX	179.5000	174	330.00	(360.00)	(1.09)	0.59\%	1.38	173 1/2
60	COMS	112.0000	107	300.00	(420.00)	(1.40)	0.54\%	0.26	105
80	NEON	87.8125	82.6	417.00	(355.00)	(0.85)	0.74\%	(0.10)	83 3/8
35	SDLI	447.5000	439.00	297.50	544.69	1.83	0.53\%	(0.11)	$4631 / 16$
70	EMLX	194.0625	189.00	354.38	(457.19)	(1.29)	0.63\%	(0.81)	181
70	INCY	231.6875	225.50	433.13	(48.13)	(0.11)	0.77\%	(0.85)	231
80	EMLX	$2141 / 2$	209 1/4	420	(40.00)	(0.10)	0.75\%	(1.00)	214
475	MPEG	3.2600	2.26	475.00	(484.50)	(1.02)	0.91\%	(1.00)	2.24
40	INSP	255.2500	250.00	210.00	(170.00)	(0.81)	0.40\%	(1.02)	251
80	NEWP	170 9/16	165	445	115.00	0.26	0.86\%	(1.09)	172
95	EMLX	211	206	475	(665.00)	(1.40)	0.91\%	(1.18)	204
80	EMLX	219.6875	214.00	455.00	(455.00)	(1.00)	0.88\%	(1.29)	214
80	HLIT	140.1250	135.00	410.00	(485.00)	(1.18)	0.86\%	(1.40)	134
45	JDSU	279.0000	270.00	405.00	(1440.00)	(3.56)	0.78\%	(1.40)	247
65	BRCM	244.5625	239.00	361.56	(1011.56)	(2.80)	0.71\%	(2.80)	229
75	TXN	180.9375	175.00	445.31	(445.31)	(1.00)	0.87\%	(3.56)	175
				Totals	946.75	13.096			
			Exp	ectancy =		0.448			
Standard Deviation=						3.093			

Table 3-3: Five Losses in a Row				
Trade	Equity	Risk	R-Multiple	Result
1	$\$ 100,000$	$\$ 10,000$	-0.82	$-\$ 8,200$
2	$\$ 91,800$	$\$ 9,180$	-1.53	$-\$ 14,045$
3	$\$ 77,755$	$\$ 7,776$	-0.78	$-\$ 6,065$
4	$\$ 71,690$	$\$ 7,169$	-1.13	$-\$ 8,101$
5	$\$ 63,589$	$\$ 6,359$	-2.89	$-\$ 18,378$
	$\$ 45,211$	Totals	-7.15	$-\$ 54,889$

had five losses in a row - which is quite possible in a 50% system with enough trades? We could have a drawdown of 7 to 10R?
And if you risked 10% on each trade, you'd be pretty close to bankrupt by the end of the losing streak. You wouldn't be bankrupt, because each time you'd only risk 10% of your remaining equity. That might look like the sequence of trades in Table 3-3.
Most people would consider the system to be totally broken and stop trading. Yet it is something that is possible. And by the way, risking 10% is way too much risk for this system or for any system.

How Do You Evaluate A System?

When you know all three pieces of information - all three of which you should understand at this point -it's -possible for you to totally evaluate how good your system is. Those three pieces of information are:

1. The expectancy of your system as an R-multiple
2. The standard deviation of your system
3. The number of trades it generates.
Let's take a look at the R-multiple distribution of six different systems and see which one's you'd want to trade. Three systems are given in Table 3-4 and another three systems are given in Table 3-5.

You'll notice that the expectancies and standard deviations are all over the place. Each system also produces a different number of trades and each system has a different win rate. One system wins 90% of the time, while another system only wins 10% of the time. So which system would you want to trade and
why? Also notice what your criteria are for deciding which system you like the best.

Write down which system you would prefer to trade and why. Also note what your criteria were for your selection. If you had more than one criteria, list them in order of your preference.

However, make your decision about which system is best without looking at the appendix.
Method 1: Rank in Terms of Expectancy. The first way to evaluate the systems might be to rank them in terms of their expectancy. And if two systems were fairly close, you might prefer the system with the higher winning rate. If you did that, you'd probably have the following results as show in Table 3-6.
You'll notice from the first analysis, that the expectancy has a slight inverse relationship to the win rate. That's actually quite common for trading systems and it's one reason people tend to lose money. They are attracted toward systems with high win rates, which sometimes have a very low (or even negative) expectancy. Notice that our 90% system had a negative expectancy.
Expectancy alone is a very naïve way to evaluate systems. It doesn't take into account variability or potential drawdowns or the number of trades. Was your initial evaluation of the systems just based upon expectancy or worse yet, the win rate?
Method 2: Expectancy Times Number of Trades. The next way you might evaluate the systems is to multiple the expectancy by the number of trades it would give you
in a month. The net result would be how much you'd expect to be up in terms of R at the end of the month. So let's look at Table 3-7 which ranks our six systems with respect to this criterion.

Notice that this changes things a little bit. System 3-5 is still the best system. But system 3-6, with 35 trades now ranks second. And the two systems with the most trades, 3-2 and 3-3, were not helped because their expectancies were either negative or very low.
Method 3: Using Statistics to Evaluate the System. The first two methods of evaluating the six systems that we've used above, did not take into effect the variability of the systems and the potential for large drawdowns. What if we were to use some method that we take those factors into effect?

Well, we can use the following formula to do that:

System Quality = [Expectancy / Standard Deviation R] * square root of Number of Trades

This is actually equivalent to a statistical t-score which you would use to evaluate if the expectancy is significantly better than zero. And it is a great tool to determine which system is really best.
So let's look at the various systems with this in mind. These are shown in Table 3-8

Notice what has happened. System 3-2 which had the worst positive expectancy and the smallest standard deviation, has now vaulted into first place. It suddenly looks like a pretty good system, just because it has a lot of trades and very low variability. And system 3-6, which ranked fairly high in our other tests, now becomes the lowest ranking positive expectancy system. Notice that nothing can save system 3-3 with its negative expectancy.

Table 3-4: The First Three Sample Systems					
System 3-1		System 3-2		System 3-3	
	R-multiple	Number	R-multiple	Number	R-multiple
7	-1R	10	-1R	1	-10R
1	-5R	10	+1.3R	9	+1R
2	+10R				
20\% win rate		50\% win rate		90\% win rate	
25 Trades per Month		75 Trades per Month		60 Trades per Month	

Table 3-5: The First Three Sample Systems					
System 3-4		System 3-5		System 3-6	
Number	R-multiple	Number	R-multiple	Number	R-multiple
55	-1R	18	-1R	2	-10R
12	-2R	2	50R	4	-5R
3	-5R			10	-1R
5	+1R			5	+3R
4	+5R			2	+15R
3	+10R			1	+30R
3	+25R				
17.6\% win rate		10\% win rate		33\% win rate	
12 Trades per Month		15 Trades per Month		35 Trades per Month	

So by the most accurate measure system three-two is the best system and system three-five is the second best. Did you rank either of these systems as the best systems in your initial evaluation of the six systems? If not, what was your thought process that caused you to pick the others.

Rating Your System

Using the System Quality Formula, let's see if we can make some guidelines for evaluating a system. These are given in Table 3-9. You will understand how I developed these criteria later in this book.

I expect that most people with systems will have scores of 1.75 or less, so don't be upset if your system's score isn't excellent. I suspect that there are very few systems that rank as high as 2.0 or better.
In addition, you probably need to be very careful with highly ranked systems. Chances are you have not yet seen your worst-case loss (although that probably applies to every system). However, for highly ranked systems, a significant loss (i.e., a 5-R psychological loss) could significantly damage your equity because you may have overestimated your position sizing.
All of these quality scores assume that you have 100 trades (i.e., N $=100) . \mathrm{N}$, in the formula, should refer to the number of trades gathered in a fixed amount of time (i.e., one year). And in order to compare your system on this standard, you must use the number of trades you make per year and use that as N in the formula. This is because there is a very critical issue of how fast you get the 100 trades.
A system that makes 100 trades in a week is going to be much better than a system that makes the same 100 trades over a three-year period. For example, a system with an expec-
tancy of 0.35 that makes 100 trades in a month will have an average gain of 35 R at the end of the month. When you compare that with another system that has an expectancy of 1.25 , but only takes three years to make 100 trades (i.e., 2.78 trades per month) will only have an average gain of 3.47 R per month. The second system might have a system
rating of 2 , compared with a system rating of 1 for the first system. However, most people would still be happier with the first system because it makes money fast.

Statistical Assumptions in Using this Material

One major difficulty in using this material to evaluate your system and

Table 3-6: Ranking the Systems by Expectancy		
System	Expectancy	Win Rate
$3-5$	4.10	10%
$3-6$	1.05	33.3%
$3-1$	0.80	20%
$3-4$	0.42	17.6%
$3-2$	0.15	50%
$3-3$	-0.10	90%

Table 3-7: Ranking the Systems by Expectancy Times Number of Trades			
System	Expectancy	Number of Trades	Expectancy* Number Trades
$3-5$	4.10 R	15	61.5 R
$3-6$	1.04 R	35	36.4 R
$3-1$	0.8 R	25	20 R
$3-2$	0.15 R	75	11.25 R
$3-4$	0.42 R	12	5.04 R
$3-3$	-0.1 R	60	-6 R

Table 3-8: Ranking the Systems by Our Statistical Formula				
System	Expectancy/Standard Dev.	Square Root N	Formula	
$3-2$	0.13	8.66	1.13	
$3-5$	0.26	3.87	1.01	
$3-1$	0.17	5	0.85	
$3-6$	0.12	5.92	0.71	
$3-4$	0.78	3.46	0.27	
$3-3$	-0.03	7.75	-0.23	

Table 3-9: Using the System Quality Formula to Rate Your System Based Upon 100 Trades Rating Of Your System	
Quality Score	Rrobably very hard to trade Less than 0.75
0.75 to 1.25	Average System
1.26 to 1.75	Good System
1.76 to 2.50	Excellent System (few exist)
Above 2.50	Superb System (may not exist)

that difficulty is the statistical assumptions we must make to assume that your R-multiple distribution is valid. In other words, does your sample of trades really reflect what will happen when you trade your system?

When you make ten trades, what you've really done is taken a sample of 10 (ten) trades from the universe of possible trades that your system might generate. And the questions you must ask yourself are 1) is this system statistically profitable and 2) how accurately does this sample of trades represent the population of trades that my system might generate.
Let's look at the two questions separately:
First, is my system statistically profitable? If you look at the formula we gave you for determining how good your system is, you'll find that it is also a formula that you can use for looking up whether or not your system will be statistically profitable.
System Quality = (Expectancy $/$ Standard Deviation)] * (square root of Number of Trades)
This formula is basically the formula for a t-score. When you use a t -score, you are asking the question is this result statistically different from the hypothesis that my system is not profitable. That is, if you have a positive expectancy, what you are asking is the question: "Is this significantly different from a zero or negative return?" And if there is a 95% probability that it is different, then you can reject the hypothesis that it has a negative or zero return on the average.
Generally, the larger the number, the more likely it is that you can reject the hypothesis. Appendix II shows some t-scores at various percentiles
that you can use to answer this question for yourself.
Incidentally, the t-score is based on the assumption that your data fit a normal bell curve. Most trading systems have fat tails - i.e., that have one or two big trades that make up most of the profits. Nevertheless, the t-score will at least give you a rough estimate of how good your system is as we have already recommended.

Second, we need to ask the question: How well do these trades from my system adequately represent the actual trades that my system will generate? This is an even more important question if you are going to use your R-multiple distribution to determine such things as how to do position sizing with your system. For example, if you think your system only has a 10% probability of a 20R drawdown, but your sample of trades doesn't adequately represent what your system could do, then you could easily have a 50R drawdown. Thus, the whole issue of "do my trades adequately represent my system?" is very important.
Generally, the larger your sample is the more likely it is to adequately represent the true population statistics. Thirty is usually considered the minimum size to begin to reflect the population. Thus, if you have 30 trades, you probably have enough trades to begin to estimate the overall performance of your system.
Unfortunately, with trading it's a bit more complicated than just having a large number of trades. You must also ask the question, what kind of market did I have when I took my sample of trades. Generally, there are six kinds of markets:

- Up volatile markets (this was the stock market in 1999)
- Up flat markets (this means that everything goes up very smoothly) - it's almost a straight line up without a lot of choppiness. You are going to have to subjectively decide what's volatile and what's not. But if you compare a lot of different markets, it's not that hard to do.
- Flat, volatile markets. The stock market was basically flat in 2004. Sometimes it was volatile and sometimes it reflected the next kind of market, flat and non-volatile.
- Flat, non-volatile markets. The first part of 2005 definitely reflected this kind of market. The major averages went nowhere and they seldom moved by much more than a percentage point in an entire week.
- Down, volatile markets. Definitely the 2000 NASDAQ market.
- Down, quiet markets. Most bear markets also have periods like this when the averages move down every week, but not radically. These can eat you to death if you are long.
While you might not trade your system in all six kinds of markets, to get an adequate idea of how your system will perform overall, you'd need a large sample of trades (ideally 100 plus, but certainly at least 30 trades) from each of these six markets.
If you don't meet these criteria, and few people ever do, then you really have no idea what to expect from your system. The best you can usually say is something like, "I have 50-100 trades from a volatile bear market (i.e., fill in the kind of market that was going on when you made the trades) and I have a pretty good idea how my system will perform under those conditions. Furthermore, I need to make sure I only trade under these conditions.
∞

[^0]: ${ }^{1}$ The standard deviation is a measure of the variability of a sample of data. It's not important for you to understand how to calculate the formula, because you can use a simple calculator or an Excel spreadsheet to determine the standard deviation. All you really need to know is that the standard deviation really gives you a measure of the variability of your sample.

