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A COMPARATIVE STUDY

OF ALTERNATIVE EXTREME-
VALUE VOLATILITY

ESTIMATORS

TURAN G. BALI*
DAVID WEINBAUM

Recent advances in econometric methodology and newly available
sources of data are used to examine empirically the performance of
the various extreme-value volatility estimators that have been proposed
over the past two decades. Overwhelming support is found for the use of
extreme-value estimators when computing daily volatility measures across
all assets: Daily extreme-value volatility estimators are both less biased and
substantially more efficient than the traditional close-to-close estimator.
In the case of weekly and monthly measures, the results still suggest that
extreme-value estimators are appropriate, but the evidence is more mixed.
© 2005 Wiley Periodicals, Inc. Jrl Fut Mark 25:873–892, 2005



 

 

 

 
 

FFOORR  SSAALLEE  &&  EEXXCCHHAANNGGEE  
  

  
  

wwwwww..ttrraaddiinngg--ssooffttwwaarree--ccoolllleeccttiioonn..ccoomm  
 

 
 
 
 

SSuubbssccrriibbee  ffoorr  FFRREEEE  ddoowwnnllooaadd  55000000++  ttrraaddiinngg  bbooookkss..  
 
 
 

 
 
 

MMiirrrroorrss::  
  

wwwwww..ffoorreexx--wwaarreezz..ccoomm   

wwwwww..ttrraaddeerrss--ssooffttwwaarree..ccoomm 

 
 

CCoonnttaaccttss  
  

aannddrreeyybbbbrrvv@@ggmmaaiill..ccoomm  
aannddrreeyybbbbrrvv@@hhoottmmaaiill..ccoomm    

aannddrreeyybbbbrrvv@@yyaannddeexx..rruu    
SSkkyyppee::  aannddrreeyybbbbrrvv  

IICCQQ::  7700996666443333  
 

  

http://www.trading-software-collection.com/
mailto:andreybbrv@ya.ru?subject=Subscribe
http://www.forex-warez.com/
http://www.traders-software.com/
mailto:andreybbrv@gmail.com
mailto:andreybbrv@hotmail.com
mailto:andreybbrv@yandex.ru


874 Bali and Weinbaum

1For a recent application of extreme-value volatility estimators in the context of an event study, see,
for example, Brown and Hartzell (2001).
2The various extreme-value volatility estimators are presented in the next section. There are also
other extreme-value approaches to estimating volatility. For example, the EVT approach introduced
by Bali (2003) and Bali and Neftci (2003) is based on the maximum-likelihood parameter estima-
tion of the generalized Pareto and generalized extreme-value distributions.

INTRODUCTION

Asset return volatility is important in the theory and practice of financial
economics. Accurate measures and good forecasts of volatility are there-
fore critical. This article compares the performance of various methods
of estimating volatility from daily data (opening, closing, high, and low
prices). The analysis focuses on measuring volatility as opposed to fore-
casting it, so the work is relevant for applications in which an efficient
volatility estimate (e.g., event studies) rather than an efficient volatility
forecast (e.g., risk management) is called for.1

The traditional volatility estimator is the sample standard deviation
of close-to-close returns computed over the relevant horizon. An alterna-
tive approach is to use the information contained in the highest and
lowest prices observed during the trading day. A number of these
so-called extreme-value volatility estimators have been proposed over the
past two decades, their main advantage over the traditional estimator
being that they are, at least in theory, significantly more efficient: It can
be shown that their sampling variance is 5 to 14 times lower than that of
the traditional estimator.2

Some caution must be exercised when employing these estimators.
First, all extreme-value volatility estimators are derived under the
assumption that the price of the asset follows geometric Brownian
motion. Violations of this assumption will not only affect the efficiency
gains that these estimators afford in theory, but may also cause them to
be biased; the direction of the bias will depend on the empirical distribu-
tion of the price of the asset. Second, microstructure effects may also
contribute to a bias in these estimators. Because prices are not observed
continuously, the reported high and low prices may not be the true high
and low prices. Thus discrete trading may impart a downward bias in
these estimators. If transaction prices (as opposed to quotes) are used,
then there is an offsetting tendency for a positive bias in extreme-value
volatility estimators due to the bid–ask spread: the daily high is most
likely to occur at the ask, and the low will usually be at the bid.

These observations have spurred interest in testing the performance
of extreme-value volatility estimators. The major difficulty that the
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literature has had to deal with in this respect is that volatility is not
directly observable. Researchers have addressed this in two ways. One
strand of the literature uses simulations and theoretical arguments. For
example, Marsh and Rosenfeld (1986) and Cho and Frees (1988) pro-
pose theoretical models to analyze the impact of discrete trading on the
estimation of volatility. Marsh and Rosenfeld (1986) find that discrete
trading does not bias the traditional estimator (although it reduces its
efficiency), and that it biases extreme-value estimators downward and
causes them to become less efficient. Cho and Frees (1988) find that dis-
crete trading causes the traditional estimator to be upward biased.
Garman and Klass (1980) recognize that their extreme-value estimator is
biased downward in the presence of discrete trading, and show that the
traditional estimator is upward biased in this context, but only slightly so.
In simulated data, Rogers, Satchell, and Yoon (1994) find that the ques-
tion of which estimator to use depends on the distributional assumption
that one makes about returns. A second strand of the literature uses
actual daily securities data and relies on additional assumptions to get
around the problem that, in such data, volatility is not precisely measur-
able. In this vein, Beckers (1983) and Wiggins (1991) study the per-
formance of the Parkinson (1980) extreme-value volatility estimator
using the traditional estimator as a benchmark. Their overall conclusion
is that extreme-value estimators are “better” in a sense elaborated upon
in these articles.

This work differs from previous research in this area along three
dimensions. First, a new approach is used to address the fact that volatil-
ity is not observable: Recent advances in econometric methodology and
richer sources of data are used. In a recent series of articles, Andersen
and Bollerslev (1998), Andersen, Bollerslev, Diebold, and Labys (2001,
in press), Andreou and Ghysels (2002), and Barndorff-Nielsen and
Shephard (2002) suggest the sum of squared high-frequency intraday
returns as a precise measure of volatility. Following these researchers,
high-frequency data are used on very liquid and actively traded assets to
construct realized-volatility measures. Volatility is thus treated as observed
(rather than latent), and the various estimators are compared directly,
with actual securities data and without making distributional assump-
tions about asset returns. Second, this analysis recognizes explicitly that
the traditional close-to-close estimator may be biased (even in the
absence of microstructure effects). This is in contrast to Beckers (1983)
and Wiggins (1991), who assume that the traditional estimator is
unbiased and estimate the empirical bias in Parkinson’s extreme-value
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estimator relative to the traditional estimator. Third, a horse race is run
among all the extreme-value estimators that have appeared in the past
two decades, whereas previous research has only studied a subset of
these.

One might wonder why one would be at all interested in extreme-
value volatility estimators when high-frequency realized volatility esti-
mators are available. This is because there are important situations in
which intraday data are unavailable or unreliable (e.g., because of thin
trading). Although accurate measures of realized volatility require high
frequency, 5-minute returns, Engle and Patton (in press) use TAQ data
to group NYSE stocks into trading frequency deciles. They find that the
median intertrade time in the first decile is over 90 minutes, in the
second decile it is 27 minutes, and in the fourth decile it is 9 minutes.
The median intertrade time does not drop below 5 minutes until the
sixth decile. This thin trading problem is avoided here altogether by
focusing on S&P 500 futures contracts that are very actively traded,
and the analysis is augmented with currency data as a robustness
check.

The rest of this article is organized as follows. The next section
describes the various extreme-value volatility estimators and shows why
it is generally erroneous to think of the traditional estimator as unbiased.
It also discusses the construction of the realized-volatility measures,
which are central to this work. The data and the empirical results are
presented next, followed by a conclusion.

VOLATILITY ESTIMATION

The various volatility estimators that have appeared in the literature are
now introduced, and some of their properties discussed.

Extreme-Value Volatility Estimators

All extreme-value volatility estimators are derived under the assumption
that St, the price of the asset at time t, follows geometric Brownian
motion, that is, that it satisfies the following stochastic differential
equation:

(1)

where m and s � 0 are constants, and Wt is a standard Brownian
motion. The following notation will be needed. Let Ot, Ct, Ht, and Lt

dSt � mSt  dt � sSt  dWt
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3By driftless, it is meant that the logarithmic price process is driftless; that is, . This is
because the solution to (1) is given by St � S0 exp 5(m � 1

2  s2)t � sWt6.
m � s2�2

denote, respectively, the opening, closing, high, and low prices on day t,
and n the number of days in the sample. To maintain consistency with
the theoretical literature on extreme-value estimators, the presentation
that follows is in terms of variances, not volatilities. In the empirical
section, however, annualized volatilities are used, as the scale of these is
more readily interpretable.

The traditional, or close-to-close, estimator of variance for a
driftless3 security is given by

(2)

A mean-adjusted variant of this estimator is given by the sample standard
deviation,

(3)

Parkinson (1980) introduces the following extreme-value estimator for a
driftless security:

(4)

The efficiency of an (unbiased) estimator relative to the traditional
estimator is defined in the usual manner by the ratio

. It can be shown that if the stock price follows
Equation (1) with , and if trading is continuous and continuously
monitored, then the Parkinson (1980) estimator is about five times
more efficient than the traditional estimator (i.e., its sampling variance is
about five times lower).

Under the assumptions of Parkinson (1980), Garman and Klass
(1980) construct a minimum variance unbiased estimator that simulta-
neously uses the opening, closing, high, and low prices:
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ŝ2

ŝp
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4For a variance estimator over more than 1 day, simply take the arithmetic average of the ’s over
the interval of interest.
5This analysis ignores two extreme-value volatility estimators. Ball and Torous (1984) derive a
maximum-likelihood estimator (which is asymptotically efficient) for the case , but their
estimator has no closed-form solution. Kunitomo (1992) derives an extreme-value estimator that is
about twice as efficient as Parkinson’s estimator, but the Kunitomo estimator is based on the range
of a Brownian bridge constructed from the price process, which implies that it cannot be computed
from daily data.

m � s2�2

ŝARS
2

This estimator is theoretically 7.4 times more efficient than the tradi-
tional estimator, but still maintains the assumption that 
Rogers and Satchell (1991) relax this assumption and propose the
following estimator:

(6)

which has the desirable property that it is independent of the drift 
Because is a member of the unbiased quadratic class of Garman and
Klass (1980), will outperform it if , but will go astray if this
is not the case. Rogers and Satchell (1991) also propose an adjustment
that is designed to take into account the fact that one may not be able to
continuously monitor the stock price. Their adjusted estimator is the
positive root of the following quadratic equation:

(7)

where Nobs denotes the number of observations of the price during the
trading day.4 They propose a similar adjustment to the Garman and Klass
(1980) estimator; the adjusted estimator is the positive root of the
following equation:

(8)

Finally, Yang and Zhang (2000) propose a minimum-variance unbiased
estimator that is independent of the drift m of the asset price process.5

� 0.019 ln aCt
Ot
b ln aHtLt

Ot
2 b � 0.383 aln 

Ct
Ot
b2

� 0.038 c ln aHt
Ot
b ln aLt

Ot
b �

0.2058
Nobs  ŝAGK
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Their practical estimator is given by

(9)

where and k �

Except for the Yang and Zhang (2000) estimator, , extreme-
value estimators do not incorporate an estimate of overnight (i.e., closed
market) variance: They ignore the fact that Ot, the opening price on day t,
is in general different from Ct�1, the previous closing price. Inspection of
Equation (9) reveals that is simply the sum of the estimated
overnight variance [the first term on the right-hand side of Equation (9)]
and the estimated open market variance (which is a weighted average of
the open-market return sample variance and the Rogers & Satchell,
1991, drift-independent estimator, where the weights are chosen so as to
minimize the variance of the estimator). The resulting estimator there-
fore explicitly incorporates a term for closed-market variance; similar
adjustments could be made to the other variance estimators; see Garman
and Klass (1980) for details. In this article overnight variances are not
estimated, because obviously high-frequency data do not allow the mea-
surement of closed-market realized variance. Most of the empirical work
centers on the foreign exchange market; this market is open 24 hours per
day and is therefore unaffected by this problem. With equity data, open-
market analogues of (2), (3) and (9) are used, for example, open-market
sample variance

(10)

is used in lieu of (3). This is not expected to have a significant impact on
the results: Any additional term for overnight variance would be the
same for the various extreme-value estimators and the benchmark
derived from high-frequency data, leaving the difference between these
two quantities unaffected.6
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ŝ2
YZ

0.34�[1.34 � (n � 1)�(n � 1)].
c � (1�n)  gn

t�1 ln(Ct�Ot),o � (1�n)  gn
t�1 ln(Ot�Ct�1),

� (1 � k)ŝRS
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6Strictly speaking, this is only true for variances. Because the empirical work centers on volatilities,
a small bias would arise because of a Jensen term.
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The Biasedness of the Traditional Estimator

Although it is well known that extreme-value estimators are derived
under strong distributional assumptions and may thus be biased, the
assumption is often made in the literature that the traditional estimator
provides unbiased estimates of volatility regardless of the data-generating
process. That this is not true in general, quite aside from any microstruc-
ture effects, is the focus of this section. For ease of exposition, assume
that the asset price process is a diffusion,

(11)

where and are adapted and bounded processes. Then the logarith-
mic asset price process is given by

(12)

It then follows that so squared infin-
itesimal returns provide unbiased variance estimates. Consider now the
t-period continuously compounded return :

(13)

Standard arguments yield as the quadratic variation. This
expression defines the so-called integrated volatility, which is central to
option pricing theory under stochastic volatility, and is the subject of
much recent empirical and theoretical work, for example, Andersen,
Bollerslev, Diebold, and Ebens (2001), Andersen, Bollerslev, Diebold,
and Labys (2001, in press), Andreou and Ghysels (2002), and Barndorff-
Nielsen and Shephard (2002). Clearly, in general,
The equality would obtain, for example, if were non-
stochastic. In general, the relation between and
depends upon the data-generating process. Consider a specific example
in which volatility is actually constant: Assume that returns are pre-
dictable and log prices follow the trending Ornstein-Uhlenbeck process:

(14)

where , and are positive constants. Log prices are the sum of a zero-
mean stationary autoregressive Gaussian process and a deterministic
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linear trend. This process has been studied by Lo and Wang (1995) in the
context of option pricing. It can be shown that

(15)

or, equivalently,

(16)

which implies that under the trending Ornstein-Uhlenbeck specifica-
tion, the sample variance of continuously compounded returns is not an
unbiased estimator of Note, however, that the adjustment factor on
the right-hand side of (16) vanishes in the continuous-time limit:

(17)

which is consistent with the heuristic discussion of the unbiasedness of
the sample variance estimator for infinitesimal returns. In other words,
sample variance is unbiased in the limit, as sampling frequency increases
without bound; however, in general, sample variance need not be an
unbiased estimator of (instantaneous) variance 

Measuring Realized Volatility

This approach to comparing the performance of the various volatility
estimators requires that precise volatility measures be constructed. To
this end, high-frequency data on very liquid and actively traded assets
are used to construct measures of realized volatility as in, for example,
Andersen, Bollerslev, Diebold, and Ebens (2001), Andersen, Bollerslev,
Diebold, and Labys (2001, in press), and Barndorff-Nielsen and
Shephard (2002). They show that under the assumption that the
logarithmic asset price process is a special semimartingale, the sum
of squares of discretely sampled continuously compounded returns
computed from equally spaced observations converges uniformly in
probability to the quadratic variation of the process (which is inter-
pretable as realized cumulative instantaneous variability), as the sam-
pling frequency increases without bound. The generality of the special
semimartingale assumption is worth emphasizing; it assumes little more
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7These are prices recorded by exchange personnel who observe the pit and post the most recent
transaction price. The observers record every change in price, but not successive trades at the same
price.

than absence of arbitrage opportunities. It does not require that the
process be Markov, nor does it rule out jumps; for example, it encom-
passes Merton’s (1976) jump diffusion model as well as pure diffusion
models that are central to much stochastic volatility option pricing
theory. For example, if the asset price process is a diffusion as in (11),
then the sum of squares of discretely sampled returns over the time
interval [t1, t2] converges in probability to as the sampling
frequency increases without bound. In short, with high-frequency data,
it is theoretically possible to construct volatility measures that are model-
and error-free, the argument being essentially that observation of the full
(i.e., continuous) sample path allows one to infer the true volatility
process from the quadratic variation. Of course, in practice, the full sam-
ple path is not observable (one only has a discrete sequence of prices
recorded at closely spaced times); nor is it desirable to sample the data at
the highest available frequency, which would introduce a number of
microstructure biases. As is standard in this literature, a 5-minute sam-
pling interval is used as an appropriate trade-off between microstructure
effects and measurement error.

EMPIRICAL RESULTS

Data

Four sets of high-frequency data are used: a stock market index futures
contract and three currencies. All are very liquid and actively traded
instruments. The S&P 500 index futures series consists of time-stamped
transactions data from the CME;7 the sample period is January 1989–
December 2003. The exchange rates considered are the deutsche mark/
U.S. dollar, Japanese yen/U.S. dollar, and U.S. dollar/British pound spot
exchange rates. These are among the most actively traded and quoted
currencies. The data were obtained from Olsen and Associates, Zurich,
and cover the period December 1986–August 2003. The data are
derived from all the bid–ask interbank quotes (not transaction prices)
that have appeared on the Reuters screen over the sample period. Prices
are obtained by averaging the log bid and log ask. (See Andersen,
Bollerslev, Diebold, & Labys, 2001, for a complete description of the
data set.)

�t1

t2 s2
s   ds
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TABLE I

Descriptive Statistics for Realized Volatility

Mean Standard deviation Skewness Kurtosis

Panel A: Equity index futures

S&P 500 Futures 11.8964 5.8494 2.7163 13.8731

Panel B: Exchange rates 

DM�US 10.7954 3.9798 1.7947 5.5134
JY�US 11.6321 4.8653 3.3108 32.0812
BP�US 9.9254 3.4572 1.8966 7.0987

Note. Entries are sample moments computed for daily realized volatility for the S&P 500 index futures contract
and spot exchange rates on the Deutsche mark, the Japanese yen, and the British pound. The sample periods
are from January 3, 1989 to December 30, 2003 for the S&P 500 futures contract, and from December 3, 1986
to August 30, 2003 for the exchange rates. Skewness is the estimate of the skewness measure ,
and kurtosis is the estimate of the kurtosis measure . Both are zero for normal random
variables.

g2 � m4�m2
2 � 3

g1 � m3�m2
3�2

Table I provides summary statistics for the unconditional distribu-
tion of the realized daily volatility series computed for these data. The
mean volatility of the S&P 500 index futures contract is 11.90%. Average
volatilities for the currencies range from 9.93% for the British pound to
11.63 percent for the Japanese yen. The standard deviations reported in
the second column show that realized volatility exhibits significant time
series variation. The third and fourth columns indicate that realized
volatility is extremely right-skewed and leptokurtic, which is consistent
with previous research.

Comparison Criteria

In order to analyze the empirical performance of the various estimators
presented in the previous section, one must define finite sample criteria
upon which meaningful comparisons may be based. Although unbiased-
ness is a desirable attribute, it is rarely used by itself as an estimation
criterion. Estimators are often compared on the basis of their mean-
squared error. Let denote the volatility realized during period t, the
mean-squared error of an estimator is

(18) � (E[ŝt � st])2 � Var[ŝt � st]

MSE(ŝt) � E[(ŝt � st)
2] 

ŝt

st
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thus the mean-squared error equals the square of the bias (mean differ-
ence between the estimator and the parameter) plus the variance of the
difference (between the estimator and the parameter). In a decision-
theoretic setting, minimizing the mean-square error is equivalent to
minimizing the expected loss associated with a loss function that is pro-
portional to the square of the difference between the estimate and the
true parameter. It should be noted that the quantities in Equation (18)
are based on squares of variance estimators, so the fourth moments of
the data are involved. To check that the presence of outliers is not driv-
ing the results, the mean absolute difference between the estimator and
the true parameter is also considered:

(19)

Finally, to give some sense of the magnitude of the bias associated with a
given volatility estimator, the relative bias is also reported:

(20)

Results

Table II reports sample estimates of the comparison criteria defined
above, along with standard errors in parentheses. These and other statis-
tics (such as estimates of the covariance matrix of the criteria) were
obtained with the use of standard bootstrap techniques; for example, see
Efron and Tibshirani (1986).

Panel A of Table II gives the results for the S&P 500 index futures
contract, Panels B, C, and D are for the Deutsche mark/dollar exchange
rate, the yen/dollar exchange rate, and the dollar/pound exchange rate,
respectively. Volatility estimators are computed over nonoverlapping
estimation windows of 1 day, 1 week (5 trading days), and 1 month
(21 trading days). It was found to be useful to segment the results into
daily volatility estimation, and weekly and monthly volatility estimation.

Daily Volatility Estimation

Several important results emerge from the analysis. First, the traditional
estimator is significantly biased in all four data sets. In other words, con-
sistent with the discussion in the previous section, it was found that
squared returns do not provide unbiased estimates of the ex post realized
volatility. Of particular interest, across the four data sets, extreme-value

Prop. Bias � Ea ŝt � st
st

b

MAD(ŝt) � E[|ŝt�st|]



Extreme-Value Volatility Estimators 885

TABLE II

Estimated Comparison Criteria

Prop. Bias Bias Variance MSE MAD

Panel A. S&P 500 futures

1 day �0.2084 �2.2402 67.6112 72.6297 6.3945
(0.0105) (0.1405) (4.0632) (3.8411) (0.1002) 

5 days �0.0355 �0.3169 19.8905 19.9910 3.0978
(0.0111) (0.1785) (2.6185) (2.6412) (0.1305)

24 days 0.0103 0.2317 4.5532 4.6069 1.4550
(0.0098) (0.1740) (1.0380) (1.0754) (0.1288)

5 days �0.0388 �0.3285 23.2214 23.3293 3.2985
(0.0105) (0.2010) (3.3425) (3.2944) (0.1312)  

24 days 0.0155 0.2772 4.8577 4.9345 1.5605
(0.0107) (0.2015) (1.0953) (1.1521) (0.1358) 

1 day �0.1505 �1.6555 12.6511 15.3918 2.9704
(0.0055) (0.0718) (0.8045) (0.7431) (0.0454) 

5 days �0.1032 �1.1633 3.3992 4.7525 1.6505
(0.0088) (0.0622) (0.5035) (0.4931) (0.0602) 

24 days �0.0888 �1.0714 0.9521 2.1002 1.2088
(0.0045) (0.0785) (0.1545) (0.2655) (0.0885)

1 day �0.1796 �2.0115 8.7125 12.7587 2.7085
(0.0055) (0.0450) (0.4125) (0.4952) (0.0395)

5 days �0.1405 �1.6920 2.4813 5.3442 1.7997
(0.0045) (0.0611) (0.2952) (0.4315) (0.0605)

24 days �0.1295 �1.6650 1.1405 3.9128 1.6751
(0.0052) (0.0885) (0.2611) (0.5352) (0.0925)

1 day �0.1921 �2.3415 16.4885 21.9711 3.3052
(0.0031) (0.0522) (0.4685) (0.6658) (0.0432)

5 days �0.1525 �1.8302 4.2545 7.6041 2.0285
(0.0036) (0.0695) (0.3795) (0.6602) (0.0674)

24 days �0.1325 �1.7145 1.8525 4.7920 1.7810
(0.0044) (0.1202) (0.3912) (0.9052) (0.1195)

1 day �0.2545 �2.9831 16.1544 25.0534 3.5985
(0.0048) (0.0712) (1.2188) (1.4166) (0.0582)

5 days �0.1988 �2.5145 4.6495 10.9723 2.6031
(0.0049) (0.0789) (0.6188) (0.8051) (0.0714)

24 days �0.2003 �2.4540 2.2855 8.3077 2.5189
(0.0062) (0.1166) (0.4855) (0.8035) (0.1102)

1 day �0.2395 �2.7785 8.5755 16.2956 3.0995
(0.0048) (0.0645) (1.2258) (1.4964) (0.0550)

5 days �0.2042 �2.5262 3.0556 9.4373 2.5789
(0.0049) (0.0788) (0.6804) (0.9911) (0.0746)

24 days �0.1940 �2.4945 1.7045 7.9271 2.4822
(0.0058) (0.1322) (0.5521) (1.1049) (0.1132)

5 days �0.1228 �1.4922 2.6015 4.8282 1.7105
(0.0043) (0.0550) (0.3113) (0.4011) (0.0498)

24 days �0.0997 �1.3748 1.1011 2.9912 1.3852
(0.0047) (0.0911) (0.2633) (0.4135) (0.0666)
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TABLE II (Continued)

Estimated Comparison Criteria

Prop. Bias Bias Variance MSE MAD

Panel B. Deutsche mark/Dollar exchange rate

1 day �0.2589 �2.5922 40.7631 47.4826 5.5233
(0.0095) (0.1156) (1.4978) (1.3985) (0.0722)

5 days �0.0970 �0.9808 10.0695 11.0315 2.6113
(0.0104) (0.1285) (0.6722) (0.6988) (0.0821)

24 days �0.0605 �0.6052 2.2449 2.6112 1.3312
(0.0111) (0.1346) (0.3015) (0.3002) (0.0786)

5 days �0.0998 �1.0436 12.6214 13.7105 2.8564
(0.0095) (0.1455) (0.9180) (0.9185) (0.0923)

24 days �0.0602 �0.6001 2.5181 2.8783 1.3813
(0.0089) (0.1235) (0.3245) (0.3326) (0.0825)

1 day �0.1589 �1.5618 8.2012 10.6404 2.6281
(0.0042) (0.0435) (0.3350) (0.3104) (0.0320)

5 days �0.1141 �1.2183 2.0021 3.4865 1.5367
(0.0046) (0.0546) (0.1295) (0.1712) (0.0380)

24 days �0.0986 �1.1122 0.5102 1.7472 1.1642
(0.0061) (0.0581) (0.0633) (0.1489) (0.0521)

1 day �0.1645 �1.6422 5.5206 8.2174 2.2988
(0.0033) (0.0380) (0.2205) (0.2497) (0.0298)

5 days �0.1375 �1.3852 1.3918 3.3107 1.5222
(0.0039) (0.0462) (0.1080) (0.1749) (0.0312)

24 days �0.1255 �1.3265 0.4108 2.1705 1.3189
(0.0048) (0.0512) (0.0611) (0.1680) (0.0522)

1 day �0.1923 �1.9218 7.2435 10.9368 2.6147
(0.0038) (0.0377) (0.2153) (0.2629) (0.0268)

5 days �0.1595 �1.6285 1.8223 4.4743 1.7922
(0.0041) (0.0451) (0.1082) (0.2192) (0.0323)

24 days �0.1456 �1.5189 0.5089 2.8160 1.5237
(0.0048) (0.0521) (0.0602) (0.2289) (0.0562)

1 day �0.2257 �2.2618 7.0512 12.1669 2.7590
(0.0041) (0.0421) (0.3812) (0.4423) (0.0341)

5 days �0.1947 �2.0011 1.8187 5.8231 2.0896
(0.0049) (0.0532) (0.1587) (0.2482) (0.0432)

24 days �0.1791 �1.9256 0.5135 4.2214 1.9307
(0.0058) (0.0612) (0.0632) (0.2021) (0.0588)

1 day �0.2112 �2.0831 5.1112 9.4506 2.5103
(0.0039) (0.0439) (0.3852) (0.4785) (0.0401)

5 days �0.1785 �1.8485 1.3085 4.7255 1.9152
(0.0048) (0.0521) (0.1588) (0.2912) (0.0423)

24 days �0.1672 �1.7789 0.4098 3.5743 1.7785
(0.0057) (0.0632) (0.0756) (0.2784) (0.0632)

5 days �0.1445 �1.4601 1.4212 3.5531 1.6201
(0.0046) (0.0425) (0.1088) (0.1721) (0.0388)

24 days �0.1305 �1.3618 0.3898 2.2443 1.3693
(0.0053) (0.0535) (0.0485) (0.1632) (0.0541)
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TABLE II (Continued)

Prop. Bias Bias Variance MSE MAD

Panel C. Japanese yen/Dollar exchange rate

1 day �0.2851 �2.9909 50.1359 59.0814 5.9828
(0.0085) (0.1288) (3.0577) (2.9511) (0.0828)

5 days �0.1431 �1.5198 13.1023 15.4121 3.0737
(0.0098) (0.1431) (1.0652) (0.9985) (0.0937)

24 days �0.0955 �1.0032 2.9285 3.9349 1.6754
(0.0117) (0.1521) (0.4156) (0.3908) (0.0932)

5 days �0.1412 �1.4635 15.6895 17.8313 3.3025
(0.0105) (0.1601) (1.2741) (1.1821) (0.0925)

24 days �0.0951 �0.9921 3.1331 4.1174 1.6623
(0.0121) (0.1602) (0.4875) (0.4512) (0.0987)

1 day �0.1912 �2.0889 10.5576 14.9211 3.1222
(0.0044) (0.0502) (0.7566) (0.7025) (0.0358)

5 days �0.1545 �1.6812 3.1498 5.9762 2.0422
(0.0055) (0.0618) (0.3986) (0.3612) (0.0452)

24 days �0.1405 �1.5512 0.7225 3.1287 1.6125
(0.0065) (0.0732) (0.1085) (0.1895) (0.0611)

1 day �0.2256 �2.2518 7.6322 12.7028 2.8901
(0.0038) (0.0488) (0.5015) (0.4811) (0.0314)

5 days �0.1775 �1.8978 2.3402 5.9418 2.0912
(0.0048) (0.0556) (0.4125) (0.3741) (0.0489)

24 days �0.1623 �1.7756 0.6185 3.7713 1.8285
(0.0061) (0.0685) (0.1478) (0.2085) (0.0589)

1 day �0.2289 �2.4712 10.1201 16.2269 3.1735
(0.0036) (0.0412) (0.4232) (0.4458) (0.0325)

5 days �0.1858 �2.0235 3.0115 7.1061 2.2561
(0.0045) (0.0547) (0.3151) (0.3312) (0.0485)

24 days �0.1669 �1.8816 0.8256 4.3660 1.9312
(0.0058) (0.0558) (0.0887) (0.2621) (0.0587)

1 day �0.2662 �2.8426 9.6611 17.7415 3.3682
(0.0044) (0.0601) (0.6502) (0.6654) (0.0421)

5 days �0.2212 �2.4685 2.7256 8.8191 2.6013
(0.0052) (0.0615) (0.5154) (0.4845) (0.0356)

24 days �0.1995 �2.2585 0.7831 5.8839 2.2939
(0.0066) (0.0754) (0.2132) (0.2615) (0.0612)

1 day �0.2485 �2.6402 6.9889 13.9596 3.0898
(0.0041) (0.0521) (0.5458) (0.6458) (0.0352)

5 days �0.2151 �2.3501 2.1002 7.6232 2.4618
(0.0051) (0.0621) (0.4125) (0.4498) (0.0526)

24 days �0.1891 �2.1925 0.5502 5.3576 2.1829
(0.0061) (0.0701) (0.1462) (0.3185) (0.0614)

5 days �0.1817 �1.9766 2.4110 6.3190 2.1658
(0.0049) (0.0521) (0.3889) (0.3654) (0.0418)

24 days �0.1512 �1.7418 0.6617 3.6956 1.7902
(0.0062) (0.0658) (0.1587) (0.2151) (0.0621)
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ŝGK

ŝp
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TABLE II (Continued)

Estimated Comparison Criteria

Prop. Bias Bias Variance MSE MAD

Panel D. British pound/Dollar exchange rate

1 day �0.2732 �2.4212 38.5684 44.4306 5.3052
(0.0095) (0.1158) (1.6360) (1.4259) (0.0454)

5 days �0.1125 �0.8998 11.3618 12.1714 2.8385
(0.0112) (0.1351) (0.8189) (0.7311) (0.0725)

24 days �0.0605 �0.4228 3.4568 3.6356 1.6018
(0.0125) (0.1625) (0.4158) (0.3612) (0.0878)

5 days �0.1315 �1.0212 13.3297 14.3725 3.0458
(0.0121) (0.1458) (0.9825) (0.8854) (0.0815)

24 days �0.0601 �0.4195 3.6582 3.8342 1.6712
(0.0167) (0.1698) (0.4221) (0.3685) (0.0825)

1 day �0.1697 �1.4201 8.2211 10.2377 2.5802
(0.0048) (0.0458) (0.3654) (0.3085) (0.0212)

5 days �0.1202 �1.0605 2.5785 3.7031 1.6459
(0.0065) (0.0631) (0.1621) (0.1658) (0.0358)

24 days �0.0996 �0.8976 0.9376 1.7433 1.1249
(0.0091) (0.0815) (0.1032) (0.1625) (0.0526)

1 day �0.1711 �1.4985 5.3256 7.5711 2.2645
(0.0039) (0.0365) (0.1984) (0.1967) (0.0211)

5 days �0.1342 �1.2369 1.5335 3.0634 1.4902
(0.0049) (0.0477) (0.0982) (0.1265) (0.0265)

24 days �0.1198 �1.1337 0.5708 1.8561 1.1881
(0.0072) (0.0623) (0.0635) (0.1658) (0.0518)

1 day �0.1921 �1.7012 6.7701 9.6642 2.4712
(0.0038) (0.0376) (0.1758) (0.1955) (0.0225)

5 days �0.1496 �1.3856 1.7002 3.6201 1.6141
(0.0049) (0.0412) (0.0912) (0.1654) (0.0395)

24 days �0.1312 �1.2754 0.5502 2.1768 1.2959
(0.0069) (0.0632) (0.0589) (0.2018) (0.0526)

1 day �0.2189 �1.9989 6.4718 10.4674 2.5912
(0.0042) (0.0358) (0.2845) (0.3236) (0.0258)

5 days �0.1905 �1.7996 1.5935 4.8320 1.9091
(0.0052) (0.0528) (0.1214) (0.1712) (0.0395)

24 days �0.1708 �1.6585 0.5155 3.2661 1.6732
(0.0068) (0.0601) (0.0615) (0.1821) (0.0578)

1 day �0.2052 �1.8612 4.8402 8.3043 2.4105
(0.0042) (0.0452) (0.2854) (0.3331) (0.0269)

5 days �0.1632 �1.5912 1.3708 3.9027 1.6989
(0.0053) (0.0332) (0.1160) (0.2110) (0.0280)

24 days �0.1601 �1.5568 0.5075 2.9311 1.5527
(0.0070) (0.0631) (0.0615) (0.2254) (0.0526)

5 days �0.1398 �1.2631 1.5743 3.1697 1.4985
(0.0052) (0.0480) (0.1132) (0.1487) (0.0312)

24 days �0.1192 �1.1288 0.5780 1.8522 1.1865
(0.0074) (0.0610) (0.0652) (0.1552) (0.0512)

Note. The table presents the proportional bias, bias, variance, mean squared error (MSE), and mean absolute
deviation (MAD) of various volatility estimators when volatility is estimated with the use of daily data over periods
of 1, 5, and 21 (trading) days. Numbers in parentheses are bootstrapped standard errors. The traditional volatility
estimator assuming no drift is denoted ; adjusts for a possible drift; denotes the Parkinson estimator;

denotes the Garman and Klass estimator; denotes the Rogers and Satchell estimator. and are
versions of, respectively, the Garman and Klass and Rogers and Satchell estimators that adjust for discrete trad-
ing, and denotes the Yang and Zhang estimator. The sample periods are January 3, 1989–December 30,
2003 for the S&P 500 futures contract, and December 3, 1986–August 30, 2003 for the exchange rates.
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ŝARS
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volatility estimators are almost always significantly less biased than the
traditional estimator. For example, for the Deutsche mark /dollar
exchange rate, the bias of the Garman and Klass estimator is less than
two thirds that of the traditional estimator. The only exception to this is
the bias associated with the Rogers and Satchell adjusted extreme-value
estimators, and . In all cases, these adjustments make extreme-
value estimators more biased, not less, and in the case of the S&P
futures contract, the increase in bias is sufficient to make and 
more biased than the traditional estimator.

Second, extreme-value estimators provide substantial efficiency
gains. Interestingly, these efficiency gains have empirical magnitudes
that are very close to their theoretical values. Taking again the example
of the Deutsche mark/dollar exchange rate, the estimated efficiency gain
of the Garman and Klass estimator is 7.4 (�40.7631�5.5206), which is
exactly its theoretical value.

Third, across all four data sets, all extreme-value volatility estimators
outperformed the traditional estimator. This result obtains for both com-
parison criteria (mean-squared error and mean absolute deviation).

Fourth, of practical interest, a single extreme-value estimator, that
of Garman and Klass, outperforms the others across the four data sets.

Weekly and Monthly Volatility Estimation

At the weekly and monthly frequencies, it was found that extreme-value
volatility estimators are more biased than the traditional estimator. As
the length of the estimation window increases (from a day, to a week, to
a month), the bias of the traditional estimator decreases much more
than that of the extreme-value estimators. As in the case of daily volatil-
ity estimation, extreme-value estimators were found to yield large effi-
ciency gains; again, these efficiency gains have estimated values that are
very close to their theoretical counterparts.

At the weekly frequency, it is still the case that all extreme-value
volatility estimators outperform the traditional estimator, but this does
not hold in the case of monthly volatility estimation: at the monthly
frequency, the traditional estimator is significantly less biased than the
extreme-value estimators, and it is difficult for extreme-value estimators
to make up for this high bias with smaller variance. Still, the best-
performing extreme-value estimators, namely, those of Garman and
Klass, Parkinson, and Yang and Zhang, do outperform the traditional
estimator, at both the weekly and monthly frequencies, in both a mean-
squared-error and a mean absolute deviation sense.
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CONCLUSION

This article compares the bias and efficiency of a number of extreme-
value volatility estimators that have appeared over the past two decades.
To get around the difficulty that volatility is not directly observable,
recent advances in econometric methodology and newly available data
are used. Specifically, high-frequency data on very actively traded assets
(S&P 500 futures and three currencies) are used to construct measures
of realized volatility, and then the performances of the various volatility
estimators are compared against this benchmark.

Several important results emerge from this analysis. Strong support
is found for the use of extreme-value volatility estimators when estimat-
ing daily volatilities: At the daily frequency, extreme-value estimators are
less biased than the traditional estimator and they are also significantly
more efficient. Of practical interest, the estimator of Garman and Klass
is found to be the single best-performing estimator, but in fact all
extreme-value estimators outperform the traditional estimator in a
mean-squared-error and mean absolute deviation sense.

At the weekly and monthly frequencies, the results also indicate
that extreme-value estimators are appropriate, but the evidence is more
mixed. This is because extreme-value estimators are more biased than
the traditional estimator at those frequencies, so the efficiency gains,
while large, may not be sufficient to offset the large biases. To gain intu-
ition about the sharp decrease in the bias of the traditional estimator as
the length of the estimation window increases (from a day, to a week, to
a month), recognize that in order to estimate volatility over a given
month, the traditional estimator does not merely square the monthly
return (which, in effect, is what it does at the daily frequency), but rather
divides the 1-month interval into 21 periods and sums those squared
daily returns (which goes in the direction of the continuous-record
asymptotics that realized volatility relies upon). From a practical per-
spective, although the traditional estimator performs relatively well at
the weekly and monthly frequencies, there are three extreme-value
volatility estimators (those of Garman and Klass, Parkinson, and Yang
and Zhang) that consistently perform better.
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