Section Four

Money
Management

The importance of money management and bet siz-
ing has been stressed increasingly in recent years and
rightly so. For even if the player has discovered a
favorable betting situation, how he wagers determines
his success or failure. Ultimately, it is the “bottom line”
on which a gambler's performance is judged. It is fine,
of course, to describe the favorable situation to a friend
or business associate, but the next question is likely
to be “How much money are you making from this
situation?”

The problem for the gambler is that much of the ad-
vice on money management is conflicting or confus-
ing, or simply based on false premises. There are hun-
dreds of schemes designed to overcome the house
edge in roulette and craps based soiely on manipulating
the size of one’s bets. As will be seen, all such attempts
are futile.

Even assuming the player has discovered a favorable
game (i.e., one offering a positive expectation), the ques-
tion naturally arises: How does one best use a limited
amount of capital to exploit this positive expectation?
Wager too boldly and the player risks losing his entire
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bankroll, even though he or she may have made only
tavorable bets. This is commonly known as gambler’s
ruin. On the other hand, betting too conservatively the
player severely limits his opportunity to make a good
return on his capital.

Fortunately for the player, there exists a
mathematical theory for committing resources in
favorable games. This will be discussed in Chapter 9.
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Chapter 8

Mathematical Systems

Before looking at the optimal strategy for exploiting a positive
expectancy situation, it may be worthwhile to evaluate what I
refer to as mathematical systems. Although here I use roulette as
an example, the principles apply equally to craps and the Wheel

of Fortune. .
By a “mathematical system™ I mean a system where the player

decides which bet to make using only the following information:
(1) arecord of what numbers have come up on some number of
past spins, and
(2) a record of the bets he has made, if any, on those spins.
We assume here that when the player bets, for him all numbers
are equally likely to come up on each spin of the wheel. This
means not using biased wheels or physical prediction method.
Roulette has long been the prototype of unbeatable gambling
games. It is normally regarded as a repeated independent trials
process which generates at each trial precisely one from a set of
random numbers. Players may wager on particular subsets of
random numbers (e.g., the first dozen, even, an individual
number, etc.), winning if the number which comes up is a number
of the chosen subset. A player may wager on several subsets
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simultaneously and each bet is settled without references to the
others. To fix the discussion, let’s consider the standard
American wheel. This has thirty-eight numbers, namely 0, 00, 1,
2,...36.

The mathematician’s assumption, that each of these numbers
is equally likely beforehand to come up on any spin of the ball
and wheel, seems plausible. The wheels are carefully machined
and balanced by the manufacturer. They are checked from time
to time by the casinos. When they show signs of wear they may be
thoroughly reconditioned. Even if the wheel has irregularities
which make some numbers more favored than others, if the
player does not know this and his system is not designed to exploit
this, then mathematical reasoning—based on the assumption that
all numbers are equally likely to come up—gives correct conclu-
sions about that player’s system.

The Doubling-up System

One more assumption must be made to properly evaluate
mathematical systems. We must also assume there is a smallest
allowable house (minimum) bet (such as $1) and a greatest
allowable house (maximum) bet (such as $1000). Casinos need to
fix 2 maximum bet in order to stop the simple mathematical
system of “‘doubling up.” To see why, imagine we’ve found a
casino with no maximum. We bet $1000, because Red pays even
money or 1 for 1. If we lose, we double and bet $2000 on the sec-
ond turn. If that wins, we net $1000 on the two turns. If the sec-
ond bet loses, we double again and bet $4000 on the third tum.
Having lost $3000 on the first two turns, a win of $4000 on the
third turn nets $1000 on the cycle of three turns. We continue
doubling our bet after each loss. Finally, when we win, we havea
net gain of $1000. We put this $1000 safely aside and start a new
cycle of doubling until we win with a bet of $1000 on the Red.
Each completed cycle wins another $1000net. Table 8-1 illustrates
this cycle.

The doubling-up system in Table 8-1 with no casino limit on
bets is being discussed 70t because anyone would ever be allowed
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Table 8-1
total profit chance cycle ends on or
if cycle ends before thig turn
furn amount bet on this turn exact decimal approximation
1§ 1,000 $1,000 1-(20/38) 0.4737
2§ 2,000 $1,000 1-(20/38F 0.7230
3§ 4,000 . 1-(20/38P 0.8542
4§ 2,000 . 1-(z0/38 0.9233
5§ 16,000 . 1-{z0/38 0.959%
& § 32,000 . 1-{20/38f 0.9787
7§ 64,000 " 1-tz0/387 0.9888
8 5 128,000 " 1-(20/38f 0.9941
9§ 256,000 “ 1-20/38F 0.9968
10§ 512,000 " 1-{z0/380 0.9984
11 51,024,000 - 1-{20/3811 0.9991
31 $1000x 20 or " 1-{20/385! 0.999,999,997,7
about a trillion
36 $1000x 2% or " 1-(z0/387% 0.999,999,999,9
about 34 trillion
100 about $6x 1032 . 1-(20/38)%°
n $1000x 2" 51,000 1-(20/38)"

to do it, but to illustrate ideas we will be using. To see how
ridiculous the system would be, note that if the first ten turns of a
cycle have lost, on the eleventh turn the player bets 1,024 times his
initial bet. His initial bet was $1,000, so he bets $1,024,000. Of
course the chance is small that this will happen. The last column
shows a chance of 0.9984 that the cycle ends on or before the tenth
turn, hence that the eleventh bet is never made. Thus, the chance
of reaching the eleventh turnis only 1 —0.9984 =0.0016 0r 0.16%
or about one chance in 613. But if the doubling-up system is used
long enough, it will happen.
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With 30 losses in a row, the player is supposed to bet about
one trillion dollars on the thirty-first turn. This is about the net
worth of the New York Stock Exchange. On turn 36, the bet is
about $34 trillion. This exceeds the net worth of the world! (The
net worth of the U.S.A. is about 6 trillion current dollars. I'd guess
the net worth of the world to be about $30 trillion.) The player
should arrange from the start to have unlimited credit, reasonably
pointing out that since he must eventually win he is sure to pay off!

Real casinos don’t go for this. They have house limits (which
they may increase sometimes under special circumstances) and
credit limits. So this *‘sure-fire winning system’ is never used. But
players for centuries have used modified doubling-up systems in
actual casino play. An illustration is given in Table 8-2. Here the
player starts by betting $1 on Red. He keeps doubling his bet until
he wins. Then he starts the cycle over with a $1 bet on Red. Each
cycle produces a $1 profit unless—and here is the catch—he loses
ten times in a row and then wants to bet $1024 on the eleventh turn
of the cycle. The house limit prevents that and prevents further
doubling if the player loses on his eleventh turn.

Notice from Table 8-2 that if the player wins after nine or fewer
losses, he wins $1 and successfully completes the cycle. But if
he loses ten times in a row, he can bet only $1000 on the eleventh
turn. If he then wins, he loses “only” $23 on this cycle. But if
he loses on the eleventh turn, he loses $2023 on the cycle, for
a major disaster. Of course, the chance of ever reaching the
eleventh turn of a cycle is as we saw before, only about one chance
in 613.

Is this system any good, or do the chances of loss on the
eleventh turn ruin it?

We are going to find out that the “house percentage advan-
tage”” on Red is not changed in the slightest by the doubling-up
system. In fact, the disaster of the eleventh turn is exact compen-
sation to the casino for the high chance the player has of winning
$1 per cycle. We will show this by a computation. But what is
perhaps truly amazing is that this is also true for all mathematical
systems, no matter how complex, including all those that can ever
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Table 8-2
total § net profit if chance of this result
amount losses cycle ends, decimal
turn # bet before bet this turn exact approximation
1 1 0 1 18/38 0.4737
2 2 1 1 298 x 198 0.2483
3 4 3 1 el 0.1312
4 8 7 1 (wPk188 0.0691
] 15 15 1 /8 1848 0.0363
6 32 1 1 (@8 x 18 0.0191
7 64 63 1 @b o.010t
8 128 127 1 @ xiem  0.0053
9 256 255 1 8P 198 0.002789
10 512 511 1 (/8 x 198 0.001468
11 1000 1023 -23 (M)mx 188 0.000773
or -2023 (v 0.000858
total = 1

be discovered. Since there are an infinite number of such systems,
we cannot prove this by computation (an infinite amount of time
would be needed to do the required infinite number of computa-
tions). Instead, 1 will indicate how the mathematician, by logic
(like the logic of, say, plane geometry with its axioms, theorems
and proofs) can show that none of this infinite number of systems
is any good.

Alot of what I’m saying is easier than it sounds. For instance,
to see that there are an infinite number of systems for roulette, all,
I'have to dois give you any endless list of systems. Hereis one such
list (always bet on Red); System 1. Bet $1 on Red if Red came up
one turn ago; if it didn’t come up one turn ago, bet $2. System 2.
Always bet $1 on Red if it came up two turns ago; if it did not
come up two turns ago, bet $2. And so on for systems 3, 4,. . .etc.
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I didn’t say my list of systems would be interesting, only that it
would be endless!

The doubling-up system can be good for some fun even if it
doesn’t alter the house edge. Suppose you’re in Las Vegas with
your spouse or your date. It’s almost dinner time and you say
casually, “Dinner for two will run us about thirty dollars. Why
don’t we eat for free? Ill just pick up $30 at this roulette wheel.
It"!l only take a few minutes.” If you have $2100 in your pocket
and the house limits are from $1 to $1000 on Red, you can use the
doubling-up system. You need to complete 30 cycles without ever
having a string of eleven losses. You will win $1 per cycle, for a
total of $30, and be off to dinner.

How safe is this scheme? What are your chances? Table 8-1
says that the chance a cyclelasts 10turns or less, and therefore you
win $1, is 0.9984. The chance that you do this 30 times in arow
turns out to be 0.9984* or 0.9522, so the chance you will succeed
is over 95%. If you set your sights lower, say $20 or $10, then the
chances of success go up to 96.79% and 98.38%, respectively.
But be wamned: if you fail, you can lose as much as $2023.

An important factor in determining the risk of failure is the ratio
of the house maximum bet on Red to the minimum bet. To
illustrate, suppose instead of $1 to $1000 for a ratio of 1000, the
betting limits were $2 to $500, for a ratio of 500/2 =250. Thenif
we start a cycle with a $2 bet, we hit the house limit on the ninth
spin, after eight losses. (To see this, use Table 8-2 and double all
the numbers in the second, third and fourth columns, because we
start with a$2 bet rather than a $1 bet, as before.) Now the chance
the cycle ends in eight turns or less is (from the last column of
Table 8-1)0.9941. Thus to win $30 you need to complete 15cycles,
the chance of which is 0.9941"* or 0.9152. If you try this in a
roulette game with better odds, say single-zero European style,
the chance of success increases.

The doubling-up system is one of a class of systems that are
sometimes called martingales. The origin of the term is given in
the American Heritage Dictionary, New College Edition, which is
the most informative definition I have seen on this. The word
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evolved from a similarly named village of Martigues in the Pro-
vence‘distﬁct of southern France, whose residents were viewed as
pgcuhar and were roundly ridiculed with Gallic expertise. Their
blza.rrfe behavior included such things as gambling with the
doubling-up system and lacing up their pants from behind. To use
tpe doubling-up system became known as gambling *‘al la mar-
tigalo” (femn), “‘in the Martigues manner,” i.e., ‘“in a ridiculous
manner,”’

There are many other popular *‘mathematical’” systems.
“Tripling up,’’ where the player bets 1,3,9,27, etc. until he wins,
then repeats, is like doubling up, but it wins faster and runs into
trouble (in the form of the house limit) faster.

If you want to know more about “mathematical systems,”
consider these books:

The book Casino Gambling, Why You Win, Why You Lose,
by R_usse!l T. Barnhart (Brandywine, N.Y., 1978, $12.95). Barn-
hart is a skilled magician and a longtime student of gambling. He
has gambled extensively all over the world so he knows both the
theory and practice of his subject. The book has 50,000 spins from
an actual wheel and an elaborate discussion of mathematical or
“staking’’ systems.

_Allan Wilson’s classic Casino Gambler’s Guide has con-
siderable material on systems and their fallacies. His treatment of
biased roulette wheels may be the best ever written.

Richard Epstein’s engaging treatise, The Theory of Gambling
and Statistical Logic, Revised, (Academic Press, 1977) is a land-
mark in the subject. Much of it requires a university-level
mathematics background. However, it is the best single reference
work in print on the general subject of games and gambling, and
even the general reader can glean much from browsing throughit.

Now I'll explain why mathematical systems like the doubling-
up system, cannot reduce the casino percentage.

The Problem with Doubling Up

) One.rc:ason I chose roulette to illustrate mathematical systems
is that it is easy to understand the odds and probabilities.

§1.2
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One correct version of the so-called *‘law of averages™” says that
in a ““long” series of bets, you will fend to gain or lose ““‘about”
the total expectation of those bets. This means that a series of
“bad’’ bets is also “bad,”” and that systems don’t help.

Applying these ideas to the doubling-up system, let’s calculate
the player’s expectation for one cycle. Think of a complete cycle
as a single (complicated-looking) bet. Now refer to Table8-2. The
fifth column gives the probability that the cycle ends on turn #1,
#2, etc. and the fourth column gives the gain or loss for each of
these cases. Multiply each entry in the fourth column by the cor-
responding entry in the fifth column. Then add the results:

$1 x18/38 +$1 x20/38 x18/38+ ... +$1 x(20/38)* x 18/
38 —$23 X (20/38)"° X 18/38 —$23 % (20/38)'° x 18/38 —$2023 X
(20/38)"' which simplifies to 1 —24 X (20/38)'° —2000 X (20/38)"
=1-0.0391... —1.7168. .. = —$.7560266578. . . . . Thus, the
expected loss to the bettor is about —3$.76 per cycle.

Now let’s calculate the expected {or “average’’) amount bet on
one cycle. Referring again to Table 8-2, we see that if the cycle
ends on turn #1, the total of all bets is $1, if it ends on turn #2, the
total of all bets is $1+8$2, if it ends on turn #3, the total is
$1 4+ $2 +$4, etc. If the cycle ends on turn #11, the total amount
bet is $2,023. (To get these totals as of the end of any turn, add
columns two and three.) Then multiply these total amounts bet by
the chances in column five to get $1X18/38+52 X (20/38) X
(18/38) +$4 X (20/38)* X (18/38) + ... +§512 X (20/38)° X
(18/38)+%$2023 x(20/38)"° x(18/38)
+$2023 X (20/38)" which simplifies to $2 X (18/38) x((40/38)"°
— 1)/(40/38 — 1) +$2024 x (20/38)"* —$§1 =$14.3645065. If we
divide the expected loss by the average bet per cycle we get
—$.756... +$14.36...1/19 exactly or —5.26%.

These calculations are tedious, and for each system the details
are different, so they have to be done again. And there are an
infinite number of gambling systems, so calculations can never
check them all out anyhow. Clearly this is not the way to under-
stand gambling systems. The correct way is to develop a general
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mathematical theory to cover gambling systems. That has been
done_ and here’s how it works. First we define the action in a
specified set of bets to be the total of all bets made. From what we
have said, your expected (gain or) loss is your action (i.e., the total
of all your bets) times the house edge. For example, if you bet $10
per hand at blackjack and play for 10hours, betting 100 hands per
hour, you have made a thousand $10 bets, which is $10,000 worth
of “‘action.”” If you are a poor blackjack player and the casino has
a 3% edge over you, your expected loss is $10,000 X 3% =3$300.
Your actual loss may be somewhat more or somewhat less.

If Nevada casino blackjack grosses a total of $400 million per
year and the average casino edge over the player is 2% of the
initial wager, then we can determine the total action (A) per year:
02A =3%400,000,000 so A =$20 billion. Thus from these figures
we would estimate $20 billion worth of bets are made per year at
Nevada blackjack. The 2% figure might be substantially off. We
could get a fairly accurate idea of the true figure by making a
careful statistical sampling survey. If, instead, the figure is 4%,
then A =$10 billion. With 1%, A =3$40 billion per year.

Guidelines for Evaluating Systems

The general principles we have discussed apply to almost all
gambling games, and when they apply, they guarantee that
systems cannot give the player an advantage.

To help you reject systems, here are conditions which
guarantee that a system is worthless:

L. Each individual bet in the game has negative expectation.
(This makes any series of bets have negative expectation.)}

I!. There is a maximum limit to the size of any possible game.
(Thls rules out systems like the no-limit doubling up system
discussed.)

III. The results of any one play of the game do not *“‘influence’
the results of any other play of the game. (Thus, in roulette, we
assume that the chances are equally likely for all of the numbers
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on each and every future spin, regardless of the results of past
spins.

’ IV.) There is a minimum allowed size for any bet. (This is
necessary for the technical steps in the mathematical proof. Most
people would take for granted that there is such a minimum,
namely some multiple of the smallest monetary unit. In the
U.S.A., the minimum allowed bet is some multiple of one cent. In
West Germany, it may be some multiple of the pfenning, and so
forth.)

Under these conditions, it is a mathematical fact that every
possible gambling systern is worthless in the following ways:

(1) Any series of bets has negative expectation.

(2) This expectation is the (negative) sum of the expectations
of the individual bets.

(3) If the player continues to bet, his total loss divided by his
total action will tend to get closer and closer to his expected
loss divided by his total action.

(4) If the player continues to bet it is almost certain that he
will:

(a) be a loser;
(b) eventually stay a loser forever, and so never again
break even;
(c) eventually lose his entire bankroll, no matter how large
it was.

To give you an idea of how valuable this result is for spotting
worthless systems, here are some examples of systems which can-
not possibly give the player an advantage:

1. All the roulette systems I have ever heard of, except the
following two types. (a) Biased wheels, in which condition (I) may
be violated; the numbers are no longer equally likely, so bets on
some numbers may have positive expectation. (b) Physical
prediction methods, in which the position and velocity of ball and
rotor are used to predict the outcome.

2. All craps systems I have ever heard of, except possibly those
using either crooked dice or physical “‘control’’ of dice.

(Note: While at the Fifth Annual Gambling Conference at Lake
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Tahoe, I saw a dice cheat control the dice, at a private showing.
I then saw him win at a casino. I heard he did this regularly. His
badly mutilated body was found in the Las Vegas area a year later.

3. Any systems for playing keno, slots and chuck-a-luck.

As a further illustration, consider the book Gambling Systems
That WIN, published by Gambling Times, 1978, paperback, $2.
Of the fourteen systems given there, our result applies at once to
eight. (The other six are one blackjack system, four racing
systems, and a basketball system.)

(In the case of sports bets, it is generally difficult to determine
whether condition I is satisfied. In the case of blackjack, condition
I fails if the player counts cards, and there are, in fact, some win-
ning systems, as most of you know.)

This leaves eight systems in WIN: four craps systems, one bac-
carat system, two roulette systems, and a keno system.

Conditions I through IV hold for all eight systems so none of
them are winning systems. Nor do any of them reduce the house
edgein the slightest. However, they may be entertaining. Also, in
games like keno, craps, and roulette, where the expectation may
vary from one game to another or from one type of bet to
another, some ways to bet are ‘“‘smarter”’ (translation—less
dumb; more accurate translation—less negative expectation but
still losing) than others.

For those who are prepared to lose, but want to lose more slowly,
such systems may be of interest.

In most cases, the basic information is a list of the various bets
in the game and their expectation. Then, if you must play, choose
only bets with the least negative expectation. The “‘system’’ com-
plexities and hieroglyphics are not essential.

It may amuse you to see why condition IV is needed. Suppose,
instead, that there is 70 minimum bet and that we are playing Red
at roulette. Our first bet is $1,000. There is an 18/38 chance that
we win $1,000 and a 20/38 chance we lose $1,000. Now suppose
that the second bet is $0.90, the third bet is $0.09, the fourth bet
is $0.009, the fifth bet is $0.0009, etc. (Remember: o minimum.)
Then the total of all bets from the second on is $0.99999...=$1.00,
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The total gain or loss on these bets is between—$1.00 and +$1.00.
The total action on all bets is $1,000+$1=$1,001.

If we won the first bet, our total winnings (T) will always be be-
tween $999 and $1,001. This happens with probability 18/38.
Therefore, conclusions 4(a), 4(b}, and 4(c) fail. Also, our total
action is $1,001 so T/A is always between $999/$1,001 and
$1,001/8$1,001. But our expected gain (E) is negative so E/A is less
than 0. Therefore, if we win the first bet, T/A does not tend to get
closer and closer to E/A. Therefore, conclusion 3 also fails.

Conclusion 4(c) also deserves some comment. Actually, thereis
an insignificantly small chance the player can win the casino’s
bankroll before losing his. But even for moderate-size casino
bankrolls,this possibility is so tiny as to be negligible, no matter
how large the player’s bankroll! We will discuss this in the next
chapter. It is also discussed at some length in the 1962 edition of
my book Beat the Dealer, and in Feller’s great An Introduction
to Probability and its Applications, Vol. I, Wiley. Thus, a more

exact version of conditions I-IV would include information about
the size of the casino bankroll. Then conclusion 4 would include
information about the tiny chance that 4(a), (b), and (c) don’t
happen.

As far as I know, the most elementary mathematical proof ever
given for all this is in my textbook, Elementary Probability,
available from Robert E. Krieger Publishing Co., Inc., 645 New
York Avenue, Huntington, New York 11743. The proof is outlined
on pp. 84-85, exercises 5.12 and 5.13. It requires no calculus and
can be followed by a good high school mathematics student if he
or she works through pp. 1-85.

We now have a powerful test for showing that a system doesn’t
win. This keeps us from wasting our money and time buying or
playing losing systems. It also helps us in our search for systems
that do win, by greatly narrowing the possibilities.
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Optimal Betting
e ———————————

It is somewhat ridiculous to discuss an optimal money manage-
ment strategy when the player has a negative expectancy. As
indicated in Chapter 8, with an enforced house maximum and
minimum wager, there is no way to convert a negative expectation
into a positive expectation through money manipulation. Any
good money management plan says not to wager in such a situa-
tion. Players facing a negative expectancy should look elsewhere
for a gambling game or, at the very least, bet insignificant
amounts and write off in their mind the expected loss as
“entertainment.”

After the gambler has discovered a favorable wagering situa-
tion, he is faced with the problem of how best to apportion his
limited financial resources. There exists a rule or formula which
you can use to decide how much to bet. I will explain the rule
and tell you the benefits that are likely if you follow it.

Let’s begin with a simple illustration that I deliberately exag-
gerated to better get the idea across. Suppose you have a very rich
adversary who will let you bet any amount on heads at each toss of
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a coin and that you both know that the chance of heads is some
number p greater than Y2. If your bet pays even money, then you
have an edge. Now suppose p =0.52, 50 you tend to win 52 per-
cent of your bets and lose 48 percent. This is similar to the situa-
tion in blackjack when the ten-count ratio is about 1.5 percent.
Suppose too that your bankroll is only $200. How much should
you bet? You could play safe and just bet onecent each time, That
way, you would have virtually no chance of ever losing your $200
and being put out of the game. But your expected gain is .04 per
unit or .04 cents per bet. At 100 one cent bets an hour, you expect
to win four cents per hour. It’s hardly worth playing.

Now look at the other extreme where you bet your whole
bankroll. Your expected gain is $4 on the first bet, more than if
you bet any lesser amount. If you win, you now have $200. If you
again bet all of it on your second turn, your expected gain is $8
and is more than if you bet any lesser amount. You make your
expected gain the biggest on each turn by betting everything. But
if you lose once, you are broke and out of the game. After many
turns, say 20, you have won 20 straight tosses with probability.
L5220 = (0.000002090 and have a fortune of $104,857,600, or you
have lost once with probability 0.999997910 and have nothing. In
general, as the number of tosses increases, the probability that
you will be ruined tends to 1 or certainty. This makes the strategy
of betting everything unattractive.

Since the gambling probabilities and payoffs at each bet are the
same, it seerms reasonable to expect that the “best” strategy will
always involve betting the same fraction of your bankroll at each
turn. But what fraction should this be? The *‘answer”” is to bet p

— (1 — p)=0.52 — 0.48=0.04, or four percent of your bankroll
each time. Thus you bet $4 the first time. If you win, you have
$104, so you bet 0.04 X $104 = $4.16 on the second turn. If you
lost the first turn, you have $96, so you bet 0.04 x $96=53.84on
the second turn. You continue to bet four percent of your
bankroll at each turn. This strategy of “investing™” four percent of
your bankroll at each trial and holding the remainder in cash is
known in investment circles as the “‘optimal geometric growth
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portfolio’” or OGGP. In the 1962 edition of Beat the Dealer, 1
Fhscussed its application to blackjack at some length. There I called
it the Kelly system, after one of the mathematicians who studied
it, and I also referred to it as (optimal) fixed fraction (of your
bankroll) betting.

Why is the Kelly system good? First, the chance of ruin is
_“Smali.’ * In fact, if money were infinitely divisible (which it can be
if we use bookkeeping instead of actual coins and bills, or if we
use precious metals such a gold or silver), then any system where
you never bet everything will have zero chance of ruin because
even if you always lose, you still have something left after each
bet. The Kelly system has this feature. Of course, in actual prac-
ti.ce coins, bills or chips are generally used, and there is a minimum
size bet. Therefore, with a very unlucky series of bets, one could
eventually have so little left that he has to bet more of his bankroll
than the system calls for. For instance, if the minimum bet were
$1, then in our coin example, you must overbet once your
bankrollis below $25. If the minimum bet were one cent, then you
only have to overbet once your bankroll falls below 25 cents. If
the bad luck then continues, you could be wiped out.

The second desirable property of the Kelly system is that if some-
one with a significantly different money management system bets
on the same game, your total bankroll will probably grow faster
th_an his. In fact, as the game continues indefinitely, your bankroll
will tend to exceed his by any preassigned multiple.

The third desirable property of the Kelly system is that you tend
to reach a specified level of winnings in the least average time. For
example, suppose you are a winning card counter at blackjack,
and you want to run your $400 bankroll up to $40,000. The
number of hands you’ll have to play on average to do this will,
using the Kelly system, be very close to the minimum possible us-
ing any system of money management.

To summarize, the Kelly system is relatively safe, you tend to
h_ave more profit, and you tend to get to your goal in the shortest
time.
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Blackjack Money Management

The Kelly system calls for no bet unless you have the advan-
tage. Therefore, it would tell you to avoid games such ascraps and
keno and slot machines. However, if you have the knowledge and
skill to gain an edge in blackjack, you can use the Kelly system to
optimize your rate of gain. The situation in blackjack is more
complex than the coin toss game because (1) the payoff on a one-
unit initial bet can vary widely, due to such things as dealer or
player blackjacks, insurance, doubling down, pair splitting, and
surrender, and (2) because the advantage or disadvantage to the
player varies from hand to hand.

However, we can apply the coin toss results to blackjack by
making some slight modifications. First, let’s see where the coin
toss example’s best fixed fraction of four percent came from. The
general mathematical formula for the Kelly system is this: In any
(single) favorable gambling situation or investment, bet that frac-
tion of your bankroll which maximizes E In (I + f), where Eis
the expected value and /7 is the natural logarithm (to the base
e=2.71828...). This In function is available on most hand
calculators. In the case of coin tossing, the best fraction, which I
call f*, is given for a favorable bet by f*=2p — I, where pisthe
chance of success on one toss, and f*=0if p=1/2, i.e., if the
game is either fair or to your disadvantage. Note too that f*=2p

- 11is coincidentally your expected gain per unit bet.

Now your expected gain in blackjack varies from hand to
hand. If we think of successive hands as coin tosses with a varying
p, then we should bet f*=2p — I whenever our card count shows
that the deck is favorable. When the deck is unfavorable, we
“should’’ bet zero. Uston-type team play approximates this ideal
of betting zero in unfavorable situations. You can also achieve this
sometimes by counting the deck and waiting until the deck is
favorable before placing your first bet. But it is impractical to bet
zero in unfavorable situations, so we bet as small as is discreet.
Think of these smaller, slightly unfavorable bets as a ““‘drain’’ or
“tax” which “water down’ the overall advantage of the
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favorable bets. To compensate for this reduced advantage, f*
should generally be ““slightly’” smaller than the 2p — 7 computed
above. Another effect of the small, slightly unfavorable bets is to
increase the chance of ruin a little.

The most important blackjack ‘‘correction’” to the /* com-
puted for coin tossing is due to the greater variability of payoff.
Peter Griffin calculates that the ““root mean square’’ payoff on a
one-unit blackjack bet is about 1.13. It turns out then that /*
should be corrected to about 2p — 1)/1.270or about .79 times the
advantage. Shade this to .75 because of the *“‘drain’’ of the small,
unfavorable bets and we have the farily accurate rule: For
favorable situations at blackjack, it is (Kelly) optimal to bet a per-
cent of your bankroll equal to about 3/4 percent advantage. For
instance, with a $400 bankroll and a one percent advantage, bet
3/4 of one percent of $400, or $3.

The Kelly System for Roulette

In general in roulette, the house has the edge, and the Kelly
system says, ‘‘don’t bet.”” But in my chapter on physical predic-
tion at roulette, I described a method where we (Shannon and I),
with the aid of an electronic device, had an edge of approximately
44 percent on the most favored single number. That corresponds
to a win probability of p = 0.(4, with a payoff of 35 times the bet,
and a probability of / — p =0.96 of losing the bet. It turns out
that f*=.44/35=.01257. The general formula for /* when you
win A times a favorable bet with probability p and Iose the bet
with probability 1-p, is f*=e/A where e=(A+1)p—1>0
the player’s expected gain per unit bet or his advantage. Here
A =35, p=.04, and e=0.44. In the coin toss example, A=1,
p=.52, and e=.04.

Using any fixed betting function f, the “‘growth rate” of your
fortune is G(f}=p In (I1+Af)+(1—p)infl—f). After N bets
you will have approximately exp/N  G(f)] times as much money,
where exp is the exponential function, also given on most pocket
calculators.

129



The Mathematics of Gambling

For the roulette single number example, using my hand
calculator (an HP65) gives G(f*)=0.04 In(1 + 35f*) + 0.96 In
(I — f*)=.04 In (1.44) + 0.96 In (0.98743)=.04 X 36464 +
0.96 x (—0.01265)=0.1459 — .01215=.00244. After 1,000
bets, you will have approximately expf2.44]= 11.47 times your
starting bankroll. o

Notigce the small value of /*. That’s because the very high r_1$k
of loss on each bet makes it too dangerous to bet a.large. fraction
of your bankroll. To show the advantages of diversification, sup-
pose instead that we divide our bet equally among the ﬁv_e most
favored numbers, as Shannon and I actually did in the casinos. If
one of these numbers come up, we win an amount equal to (35
—4)/5 of our amount bet, and if none come up, we lose our bet.
Thus A =31/5=6.2 The other four numbers are not quite as
favored as the best number. However, toillustrate diversiﬁcatlor_l,
suppose that the five-way bet has the same .44 advantage. This
corresponds to p=0.20. Then f*=.44/6.2= 0.07097, so you bet
about seven percent of your bankroll and G(f*)= 0.20_1:1 {1+
6.2f%) + 0.80 In (1 — f*)=0.01404. This growth rate is about
5.75 times that for the single number. After 1,000 be_ts, you would
have approximately 1.25 million times your starting bankroll.
Such is the power of diversification. .

What is the price of deviating from betting the op_t1mal Kglly
fraction f*?It turns out that for bet payoffs like blackjack, W].}I’C-h
can be approximated by coin tossing, the *‘performance loss” is
not serious over several days play. But for the roulette example,
the performance loss from moderate deviations from the Kelly
system is considerable.
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APPENDIX A,

Suppose point count systems which are ‘‘closer’” to the relative
u, values of Table 2-2 are likely to be “better.” To test this we
require a precise meaning for “better” and a precise measure of
“closeness.” We begin by basing the definition of “better” on the
notions of probabilistic dominance, and of risk, used in
mathematical finance.

Definition 1. Let F and G be probability distribution functions.
Then F probabilistically dominates G if F(x) < G(x) for all x.
Uf in addition F(x)) < G(x,) for at least one x, then F strictly

probabilistically dominates G. If F and G arise from random
variables X and Y, respectively, or from probability measures u
and v, respectively, then the defined terms apply to these pairs
if they hold for F and G.

That F probabilistically dominates G is equivalent to P (X = x)
=P(Y =x) for all x. If X is the player expectation from point
count system A and Y is the player expectation from system B, then

this means that the chance of finding expectations of x or more
is always at least as good as using A as it is by using B. One can
show that this means that a player following A has at least as great
an expected return as B with “the same risk level”
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However, probabilistic dominance is inadequate as a definition
of “better”” because the typical situation is that F is *spread out”
more in both directions from the mean full deck expectation
E,=0. Thus F dominates G for x > E, and G dominates F for
x < E,. In fact G is (to a good approximation) a convex con-
traction of F. More precisely, if E, and E, are the respective
means of F and G, we will find E. = E; = E, with Y-E; a con-
vex contraction (this is equivalent to the notion “less risky than”
of portfolio theory); of X - E.. Thus F is both “spread out
more” than G and transiated in the positive direction more. The
reason why E_, E_ = E, is because E, is the expectation using
the basic strategy and constant bets, equivalent to the full pack
expectation. When (advantageous) counting systems are used, the
strategy for playing hands is improved whenever the player has
seen any cards other than the ones he and the dealer use on the
first round. Since this generally happens with positive probabili-
ty, we then have E, E; > E,.

Definition 2. Point count system A is better than system B if
E. E; and also P(X=x) P(Y =x) for x=E.

Typically count systems satisfy E. = E; =z E; and X-
E.=a(YE,), a = 1 (a special case of convex contraction).
These conditions imply A is better than B.

Assume that the betting systems b(E) are numerical functions
of the expectation E. Further assume b(E)=1 if E<0 and b(E) = 1
if E>0. These are the ones generally considered. The popular
fallacious systems such as the martingales (e.g. “doubling up”),
and the La Bouchere which incorporate past results, are of no
interest here.

Theorem 3. With the preceding notation and assumptions, if
A is better than B, then for any betting system b,(E) based on
the B point count, there is a betting system b,(E) based on the
A point count such that the return R, per unit bet by A (approx-
imately) probabilistically dominates R;. Further, R, and R, have
approximately the same risk. In fact R, =R, +c, where ¢=0.
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Proof: If F and G are continuous, define b, by
b, (F-(G(E) ) )=b,(E). Then note that the first unit of each bet
has expectation E, for A and E, for B. The remainder of the bet
is non-zero only if E = E_. Then for corresponding percentiles
of the respective distributions, A places the sames bets as B. But
F(E) < G(E) if E = E_ so A has in each instance at least as
great expectation, hence has at least as great expectation overall.
Thus the total expected return to A is at least as large as for B.
Also R, = R; per unit since the bets placed have the same
distribution.

In reality F and G are not continuous; instead they are finite.
But they may be arbitrarily closely approximated by continuous
distributions so the result extends, with one qualification. If F
or G is discontinuous, extend the graphs of F and G by adding
vertical segments at the discontinuity points so that the exten-
sions F and G have inverses defined on (0,1). Then for those
E’ such that G is discontinuous at E’ or F is discontinuous at
F(G(E") ) it may be necessary to define b,(F-'(G(E’)))
“probabilistically”, so it is multiple-valued, each value occurr-
ing with specified probabilities.

To show that R, =R +c, which implies the same risk, it suf-
fices to assume that at each percentile level y for the distribu-
tions F and G we have the conditional distributions given y satis-
fying F(xly)=G(x-f(y)|y) where f(y) = 0. Since this only holds
approximately in practice, we have R,=R;+c.

Now we turn to the problem of measuring ‘‘closeness’ of a
given count to the “‘ultimate’” strategy. We shall assume that point
count strategies are of the form C=(c,,c,,...c;3) where ¢, is the
value assigned for an ace, c,,...,¢, are the point counts for
ranks 2 through 9, and ¢,,=...=c,, are the point counts for
tens, jacks, queens, and kings respectively. In practice these are
lumped together and only ten point count values are specified.
By writing C with 13 components we gain a symmetry which
yields substantially simpler proofs. Note that C and aC, a=0,
are equivalent and will be identified.
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Definition 4. If ZA E, =0 the wltimate strategy U=(u,, . . .u,)
is the one given by u,=A E, where AE, is the change in expec-
tation from removing one ith card from the complete pack. If
d=ZA E =0 then U is given by u-d/13.

In Table 2-2, we have d for one deck is 024 and d for four
decks is [017. The u, rows are calculated in Table 2-2 from
Definition 4.

It is tempting to think of U as representing to good approxima-
tion the direction of the gradient E at f =...=f,=1/13 of the
player’s expectation E(f,, . . .,f,) as a function of the fraction f,
of the cards from i=1 to 13. Then we calculate (C)=Ce
U/ICIeU/ICHIUl, i.e. the projection of C in the E direction.
The numerator is the inner or scalar product and ICll =(Zc?2)*.

Next we claim that A (C) gives the approximate ratio of the
spread of the C distribution F_ about E_to the U distribution F,
about E,. Then A (C) is the desired measure of closeness. In
particular, for approximately the same risk per unit, and the same
distribution of the bet sizes, it would follow that E(R) =
E(R)/(C). Then C, and C, are arbitrary strategies E(R_)/E (R,
= A (C))/ \ (C,) for the same risk level and distribution of bet
sizes. Thus the “power” of a strategy C is proportional to its A (C).

This conclusion is true but the argument must resolve two
obstacles:

(1) In the preceding discussion we treated C, U, VE, etc. as
though they were given in Cartesian coordinates when in fact they
are not.

(2) The probability distribution of E(f ,. . .,f, must be con-
sidered in reaching the conclusion and in general will invalidate it.

Note further that both U and C are linear approximations to
an in general curved “surface”. Also in the real case the domain
is a large finite subset of points of the possible (f,,...,f,), each
of positive probability. (The original discovery of winning black-
jack systems [Thorp, 1961], was motiviated by this model.) First
I introduced the E(n, . . .,n,;) “surface”, where n, is the number
of cards remaining of denomination i. Intuitive arguments “con-
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vinced” me that the E surface should have substantial deviations
from E,, the full deck expectation. The next step was to approx-
mate by “the” E(f,...,f,) “surface”, and then to “linearize”
the problem by assuming that E(f,...,f) = E, + £, Af,
where A f=f-1/13.) Thus there is the approximation of a
discrete problem by a continuous one. Nonetheless, we shall show:

Theorem 5. If the probability distribution of (f,. . .,f,) is ap-
proximately rotationally symmetric about (1,. . .,1)/13 then the
relative power of any point count system C is proportional to
(O)=C.W/IICllelUll. The powers of two count systems which ex-
ploit the count information equally (e.g. if one normalized by the
number of as yet unseen cards so does the other; if one carries
a side ace count for betting and sets the ace equal to 0 for strategy,
0 I?oc:sfthe other, etc.) are approximately proportional to their \’s.

roof.
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APPENDIX B.

Suppose (Hypothesis I) that the shoe really has four complete
decks. Then the number X of unseen ten-value cards among the
104 cards (two decks) not seen will average 32. In the general case
with U unseen cards, T tens in the whole pack, and N non-tensin
the whole pack, the average value A of Xis given by A =UT/(N

+ T). In our example, U= 104, T=64 and N =144, so we get
A=104 x 64/208=32. But there will be a fluctuation around
this number. Mathematicians use the standard deviation S to
measure this fluctuation. The formula 82 = f[UTN/T + N)*J(1 —
(U~ D/N+T- 1)

For our example, 5 = (104 X 64 x 144/2084){( ] — 103/207)
= J1.I304, so S = /11.1304 = 3.3362. To a good approxima-
tion, X is *normally distributed” with mean A = 32 and stan-
dard deviation § = 3.3362.

Now, suppose instead (Hypothesis II) that the deck has ten ten-
value cards removed. Then U= 94, T=54and N=134.1If Yisthe
number of unseen cards, we have the real A =25.6364, but we
think there are ten more ten-value cards. So assuming incorrectly
that no ten-values are gone, the number that we deduce for Y has
an average of 4 + 10=35.6364. Thereal S* for Y is 94 X 54 X
134/198 (1 — 93/197) = /9.1593, so §=3.0264.

What we want to know is whether to believe Hypothesis I
(“null hypothesis’’) or Hypothesis II. This is a classic statistics
problem. It turns out that in order for us to have a good chance to
believe the correct hypothesis, the A value for Xand ¥ need to be
at least two and preferably several Sunits apart. In this example,
they differ by only 35.6364 — 32=3.6364 which is about one §
unit. Of course, repeated countdowns of this same shoe will again
increase our ability to tell whether the shoe 1s short.
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APPENDIX C.

For this first simple discussion, let's suppose x(t)=a exp (bt)
+ ¢, where a, b, and c are constants and exp is the exponential
functlon: This is one of the simplest mathematical functions that
has the right “shape.” (Note: Mathematical readers may wish to
redo this discussion using the quadratic x(t)=ar® + bt + ¢ to
see the difference.)

I'recall that the ball velocity at the point where it fell from the
track was about 0.5 revolutions per second (r.p.s.) and that ten
revolutions earlier it was about 2 r.p.s. Using this and the choice
t= 0 when the ball leaves the track gives a=10/3, b=23/20, and
c= ~10/3. Thus, x(t) = 10(exp(3t/20) — 1)/3inr.p.s., and this
gives an angular velocity vin r.p.s. of v(t) = Yexp(3t/20). Figure
4-1 shows a graph of x(t).

APPENDIX D.

A calculation shows, for our illustrative x(#) function, that
xfT)=1/exp(3T/20) — 1) — 10/3. Thus, from T we can predict
the nurqber of revolutions until the ball leaves the track. For in-
stance, if T=1 sec., we predict the ball will leave the track in
xg(I) =_I/(_exp(3/20) — 1) —10/3=2.85 revolutions after the
switch is hit the second time. If instead 7'= /4 sec., then we predict
x(2)=9.51 revolutions.
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APPENDIX E.

Math readers: dx,(T)/dT= —(3x,(T) +10)*/60. It can be
shown that for the x(t) of this example, the error A x,T in the
prediction of x,(T) due to an error A T in measuring T, is given
by A x,(T) = —(3x,(T) + 10)°T/60 = —3 T/(20{exp(3T/20)
—1p2). For instance, if T = (0.8 sec. and A T =00I2 sec., we
have a prediction error of A x,(0.8) = 0. revs or 4.2 numbers
on the wheel. In our illustration T = 0.8 sec. means x,(T) =
4.51 revolutions to go. The time to go is (20/3)log,(3x,(t)/10 +
D) or 5.70 sec. We have somewhat less time than this to bet.

APPENDIX F

In our example, the equation for ¢(7) is t(T} =
(20/3)log (3/10)/exp (31720} — 1) ) = (20/3)log,B3x,(T)/10 + 1).
The error is approximately A t,(T) = —(AT)exp(37/20)
/(exp(3T/20) -~ 1). Thus again, if T = 08 sec. and A T = 0.012
sec., A t,(T) = —0.106 sec. With a rotor speed of .33 r.p.s.,
this causes a rotor prediction error of 0036 rev. or 1.3 pockets.
In our example then, we measured 7'too large by 0.012 sec. This
led us to believe the ball would leave the track at a point about
4.2 pockets before where it did. Therefore, we forecast impact
on the rotor 4.2 pockets early. It also led us to believe the ball
would leave the track sooner in time. Thus, we thought the rotor
wouldn’t revolve as far as it did. This made us forecast impact
another 1.3 pockets early, for a total error of 5.5 pockets early.
There are other important sources of error, so our final predic-
tions were not this good. But they were good enough.

In summary, note that an error where A T is positive, i.e., we
think T is bigger than it really is because we hit the switch early
the first time or late the second time, leads us to think the ball
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is slower than it is. That makes us think x,(7) is shorter. Thus,
we expect the ball at the rotor too soon and forecast impact on
the rotor ahead of where it tends to occur. Conversely, if T is
negative (last on the first switch or early on the second), we think
T is smaller, the ball is faster, and mistakenly forecast x,(T) and
t,(T) as too big. Then we predict impact behind where it tends
to occur.

The rotor angular velocity, followed a law close to r(t) =Aexp
(—bt). A typical value for A was 0.33 rev./sec. The ““decay” or
“slowing down’’ constant & was very small. The rotor is massive
and spins on a well-oiled bearing {on our casino wheel, it was the
pointed end of a sturdy steel shaft). In the course of a minute or
two, the slowing was hardly perceptible. (Note: Stroboscopic
“beat frequency’’ techniques, plus an accurate clock, can quickly
and easily give a very precise measurement of b and the slowing
down.)

Let’s take b=—log.(10/11)/120 or 0000794/sec., which cor-
responds to a slowing down from 0.33 rev./sec. to 0.30 rev./sec. in
two minutes. This seems like the right order of magnitude. To put
the rotor position into the tiny computer we were going to build,
we planned to hit a rotor timing switch once when the zero passed
areference mark on the wheel, and then hit the switch again when
the zero passed the reference mark a second time. Since the rotor
velocity was small and nearly constant, this was a less ““‘sensitive’’
measurement. Therefore, we planned to do it first, shortly before
the ball was spun.

How much error in the ball’s final position (pocket) comes
from rotor timing errors? Assume for simplicity that the rotor
makes one revolution in about three seconds (.33 rev./sec.) and
that we can neglect the slowing down of the rotor. Then, as in the
ball timing, we might expect a typical (root mean square) size of
about 11.2/1,000 seconds for the combined effect of the two er-
rors. If the rotor really makes one revolution in 3.000 seconds,
and we think it takes 3.0112 seconds, then in 30 seconds we think
the wheel will travel 9.9628 revolutions whereas it really travels
10.0000 revolutions. Thus, the rotor goes .0372 rev. or 1.4 pockets
farther than expected. Similarly, if we think the rotor takes 2.9888
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seconds for one revolution, then in 30 seconds the rotor goes
0375 rev. or 1.4 pockets less than we expected.

APPENDIX G.

I am using the normal approximation for the statistical discus-
sion. I think it is very nearly an accurate description of what
happens and that this approximation only slightly affects
the discussion.

APPENDIX H.

In general, there are exactly (5+1)!/5!r! home board positions
with exactly r men. There are exactly (6-+r)!/6!r!-1 home board
positions with from one to r men. Thus, since r=15 is possible
in the actual game, there are a total of 21!/6! 15! -1=54,263 dif-
ferent home board positions for one player. The symbol 1!, read
“r factorial,” means 1x2X3X...xr. Thus 1!=1, 2!=2, 3!=6, 4!
=24, etc.

140

Scholarly References

For those readers who are especially interested in the technical
work behind the material in this book and other work by Pro-
fessor Thorp, here is a list of some of his related scholarly
publications.

Game Theory

1. “A Favorable Strategy for Twenty-One,” Proceedings of the
National Academy of Sciences 47 (1961). 110-112. (MR #B846).

2. BOOK: Beat the Dealer: A Winning Strategy for the Game
of Twenty-One, Random House, New York, 1962; Vintage paper-
back also, 1966; revised edition, 1966.

3. “A Partial Analysis Of Go,” (with W. E. Walden), The
(British) Computer Journal 7.3 (1964), 203-207. (MR33 #2424),
(Z 123, 340).

4. *A Favorable Side Bet in Nevada Baccarat,” (with W. E.
Walden), Journal of the American Statistical Association 6, Part
I (1966), 313-328.

5. “Repeated Independent Trials and a Class of Dice Problems,”
(Mathematical Note), American Mathematical Monthly (August-
September 1964), 778-781. (Z 123, 364).

6. “Optimal Gambling Systems for Favorable Games,” Review
of International Institute of Statistics 37.3 (1969), 273-293. (Z 191,
497).

M1



7. “Solution of a Poker Variant,” Information Sciences 2/2
(1970), 299-301. (MR $42 #8952), (Z 205, 232).

8. “A Computer-Assisted Study of Goon M x N Boards,” (with
W. E. Walden), Lecture Notes in Operations Research and
Mathematical Systems in Theoretical Approaches to Non-
Numerical Problem Solving, Vol. 28, R. Banerji and M. D.
Mesarovic, eds., Springer-Verlag, New York, 1970, 303-343; later
revised version, Information Sciences 4:1 (1972), 1-:33 (MR45
#8684), (Z 228.68028).

9. “Non-Random Shuffling With Applications to the Game of
Faro,” Journal of the American Statistical Association, 842-847,
December 1973. Much expanded version appears in Gambling
and Society, edited by W. Eadington, Charles C. Thomas,
Springfield, Hlinois, 1975, as: Probabilities and Strategies for the
Game of Faro, pp. 531-560.

10. “The Fundamental Theorem of Card Counting With Ap-
plications to Trente et Quarante and Baccarat,” (with W. E.
Walden) International Journal of Game Theory 2 (1973), 109-119.
(Z 258.90054)

11. “Backgammon: Part I, The Optimal Strategy for the Pure
Running Game,” Proceedings of the Second Annual Conference
on Gambling, Lake Tahoe, 1975. ms. 42 + pp. See news report
on this paper in: “Beating the Game,” an article by Dietrick E.
Thomsen, Science News, Vol. 107, March, 1975.

12. “Blackjack Systems,” Proceedings of the Second Annual
Conferrence on Gambling, Lake Tahoe, 1975. ms. 15 + pp. See
news report on this paper in: “Beating the Game,” an article by
Dietrick E. Thomsen, Science News, Vol. 107, March, 1975.

Probability, Statistics
13. BOOK: Elementary Probability, Wiley, New York, 1966.

Mathematical Finance
14. BOOK: Beat the Market, (with S. Kassouf), Random House,
New York, 1967.

142

15. “Portfolioc Choice and the Kelly Criterion,” Proceedings
of the 1971 Business and Economics Section of the American
Statistical Association 1972, 215-224. To be reprinted in Invest-
ment Decision-Making, edited by J. Bicksler. Reprinted in
Stochastic Optimization Models in Finance, Academic Press,
edited by W. T. Ziemba, S. L. Brumelle, and R. G. Vickson,
1975, pp. 599-620.

16. “The Capital Growth Model: An Empirical Investigation,”
(with James Bicksler), Journal of Financial and Quantitative
Analysis, March 1973, Vol. VIII, No. 2, pp. 273-287.

General Interest
17. “A Professor Beats the Gamblers”, The Atlantic Monthly,
June, 1962. Reprinted in “The Gambler’s Bedside Book,” John
K. Hutchens, ed., Tapliniger, New York, 1977, pp. 166-177.

143



