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Equations of Elasticity

B.1 STRAIN-DISPLACEMENT RELATIONS
In general, the concept of normal strain is introduced and defined in the context
of a uniaxial tension test. The elongated length L of a portion of the test specimen
having original length L 0 (the gauge length) is measured and the corresponding
normal strain defined as

ε = L − L 0

L 0
= �L

L 0
(B.1)

which is simply interpreted as “change in length per unit original length” and is
observed to be a dimensionless quantity. Similarly, the idea of shear strain is often
introduced in terms of a simple torsion test of a bar having a circular cross sec-
tion. In each case, the test geometry and applied loads are designed to produce a
simple, uniform state of strain dominated by one major component.

In real structures subjected to routine operating loads, strain is not generally
uniform nor limited to a single component. Instead, strain varies throughout the
geometry and can be composed of up to six independent components, including
both normal and shearing strains. Therefore, we are led to examine the appropri-
ate definitions of strain at a point. For the general case, we denote u = u(x , y, z),
v = v(x , y, z), and w = w(x , y, z) as the displacements in the x, y, and z coordi-
nate directions, respectively. (The displacements may also vary with time; for
now, we consider only the static case.) Figure B.1(a) depicts an infinitesimal el-
ement having undeformed edge lengths dx , dy , dz located at an arbitrary point
(x, y, z) in a solid body. For simplicity, we first assume that this element is loaded
in tension in the x direction only and examine the resulting deformation as shown
(greatly exaggerated) in Figure B.1(b). Displacement of point P is u while that of
point Q is u + (∂u/∂ x ) dx such that the deformed length in the x direction is
given by

dx ′ = dx + u Q − u P = dx + u + ∂u

∂x
dx − u = dx + ∂u

∂x
dx (B.2)
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Figure B.1
(a) A differential element in uniaxial stress; (b) resulting axial
deformation; (c) differential element subjected to shear;
(d) angular changes used to define shear strain.

The normal strain in the x direction at the point depicted is then

εx = dx ′ − dx

dx
= ∂u

∂x
(B.3)

Similar consideration of changes of length in the y and z directions yields the
general definitions of the associated normal strain components as

εy = ∂v

∂y
and εz = ∂w

∂ z
(B.4)

To examine shearing of the infinitesimal solid, we next consider the situation
shown in Figure B.1(c), in which applied surface tractions result in shear of the
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element, as depicted in Figure B.1(d). Unlike normal strain, the effects of shear-
ing are seen to be distortions of the original rectangular shape of the solid. Such
distortion is quantified by angular changes, and we consequently define shear
strain as a “change in the angle of an angle that was originally a right angle.” On
first reading, this may sound redundant but it is not. Consider the definition in the
context of Figure B.1(c) and B.1(d); angle A BC was a right angle in the unde-
formed state but has been distorted to A′ BC ′ by shearing. The change of the
angle is composed of two parts, denoted � and �, given by the slopes of B A′ and
BC ′, respectively as ∂v/∂ x and ∂u/∂ y. Thus, the shear strain is

�xy = ∂u

∂y
+ ∂v

∂x
(B.5)

where the double subscript is used to indicate the plane in which the angular
change occurs. Similar consideration of distortion in xz and yz planes results in

�xz = ∂u

∂ z
+ ∂w

∂x
and �yz = ∂v

∂ z
+ ∂w

∂y
(B.6)

as the shear strain components, respectively.
Equations B.3–B.6 provide the basic definitions of the six possible indepen-

dent strain components in three-dimensional deformation. It must be emphasized
that these strain-displacement relations are valid only for small deformations.
Additional terms must be included if large deformations occur as a result of
geometry or material characteristics. As continually is the case as we proceed, it
is convenient to express the strain-displacement relations in matrix form. To
accomplish this task, we define the displacement vector as

{�} =





u(x , y, z)
v(x , y, z)
w(x , y, z)





(B.7)

(noting that this vector describes a continuous displacement field) and the strain
vector as

{ε} =






εx

εy

εz

�xy

�xz

�yz






(B.8)

The strain-displacement relations are then expressed in the compact form

{ε} = [L ]{�} (B.9)
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where [L] is the derivative operator matrix given by

[L] =





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
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















∂

∂x
0 0

0
∂

∂y
0

0 0
∂

∂z
∂

∂y

∂

∂x
0

∂

∂z
0

∂

∂x

0
∂

∂z

∂

∂y







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
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


(B.10)

B.2 STRESS-STRAIN RELATIONS
The equations between stress and strain applicable to a particular material are
known as the constitutive equations for that material. In the most general type of
material possible, it is shown in advanced work in continuum mechanics that the
constitutive equations can contain up to 81 independent material constants. How-
ever, for a homogeneous, isotropic, linearly elastic material, it is readily shown
that only two independent material constants are required to completely specify
the relations. These two constants should be quite familiar from elementary
strength of materials theory as the modulus of elasticity (Young’s modulus) and
Poisson’s ratio. Again referring to the simple uniaxial tension test, the modulus of
elasticity is defined as the slope of the stress-strain curve in the elastic region or

E = �x

εx
(B.10)

where it is assumed that the axis of loading corresponds to the x axis. As strain is
dimensionless, the modulus of elasticity has the units of stress usually expressed
in lb/in.2 or megapascal (MPa). 

Poisson’s ratio is a measure of the well-known phenomenon that an elastic
body strained in one direction also experiences strain in mutually perpendicular
directions. In the uniaxial tension test, elongation of the test specimen in the load-
ing direction is accompanied by contraction in the plane perpendicular to the load-
ing direction. If the loading axis is x, this means that the specimen changes dimen-
sions and thus experiences strain in the y and z directions as well, even though no
external loading exists in those directions. Formally, Poisson’s ratio is defined as

	 = − unit lateral contraction

unit axial elongation
(B.11)

and we note that Poisson’s ratio is algebraically positive and the negative sign as-
sures this, since numerator and denominator always have opposite signs. Thus, in
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*The double subscript notation used for shearing stresses is explained as follows: The first subscript
defines the axial direction perpendicular to the surface on which the shearing stress acts, while the
second subscript denotes the axis parallel to the shearing stress. Thus, 
xy denotes a shearing stress
acting in the direction of the x axis on a surface perpendicular to the y axis. Via moment equilibrium, it
is readily shown that 
xy = 
yx , 
xz = 
zx , and 
yz = 
zy.

the tension test, if εx represents the strain resulting from applied load, the induced
strain components are given by εy = εz = −	εx .

The general stress-strain relations for a homogeneous, isotropic, linearly elas-
tic material subjected to a general three-dimensional deformation are as follows:

�x = E

(1 + 	)(1 − 2	)
[(1 − 	)εx + 	(εy + εz)] (B.12a)

�y = E

(1 + 	)(1 − 2	)
[(1 − 	)εy + 	(εx + εz)] (B.12b)

�z = E

(1 + 	)(1 − 2	)
[(1 − 	)εz + 	(εx + εy)] (B.12c)


xy = E

2(1 + 	)
�xy = G�xy (B.12d)


xz = E

2(1 + 	)
�xz = G�xz (B.12e)


yz = E

2(1 + 	)
�yz = G�yz (B.12f)

where we introduce the shear modulus or modulus of rigidity, defined by

G = E

2(1 + 	)
(B.13)

We may observe from the general relations that the normal components of stress
and strain are interrelated in a rather complicated fashion through the Poisson ef-
fect but are independent of shear strains. Similarly, the shear stress components*
are unaffected by normal strains. 

The stress-strain relations can easily be expressed in matrix form by defining
the material property matrix [D] as

[D] = E

(1 + 	)(1 − 2	)





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

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

1 − 	 	 	 0 0 0
	 1 − 	 	 0 0 0
	 	 1 − 	 0 0 0

0 0 0
1 − 2	

2
0 0

0 0 0 0
1 − 2	

2
0

0 0 0 0 0
1 − 2	

2
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(B.14)
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Figure B.2 A three-dimensional element in a general state of stress.

and writing

{�} =






�x

�y

�z


xy


xz


yz






= [D]{ε} = [D][L]{�} (B.15)

Here {�} denotes the 6 × 1 matrix of stress components. We do not use the term
stress vector, since, as we subsequently observe, that term has a generally ac-
cepted meaning quite different from the matrix defined here.

B.3 EQUILIBRIUM EQUATIONS
To obtain the equations of equilibrium for a deformed solid body, we examine
the general state of stress at an arbitrary point in the body via an infinitesimal dif-
ferential element, as shown in Figure B.2. All stress components are assumed to
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vary spatially, and these variations are expressed in terms of first-order Taylor
series expansions, as indicated. In addition to the stress components shown, it
is assumed that the element is subjected to a body force having axial components
Bx , By , Bz. The body force is expressed as force per unit volume and represents
the action of an external influence that affects the body as a whole. The most
common body force is that of gravitational attraction while magnetic and cen-
trifugal forces are also examples.

Applying the condition of force equilibrium in the direction of the x axis for
the element of Figure B.2 results in
(

�x + ∂�x

∂x
dx

)

dy dz − �x dy dz +
(


xy + ∂
xy

∂y
dy

)

dx dz − 
xy dx dz

+
(


xz + ∂
xz

∂ z
dz

)

dx dy − 
xz dx dy + Bx dx dy dz = 0 (B.16)

Expanding and simplifying Equation B.16 yields

∂�x

∂x
+ ∂
xy

∂y
+ ∂
xz

∂ z
+ Bx = 0 (B.17)

Similarly, applying the force equilibrium conditions in the y and z coordinate
directions yields

∂
xy

∂x
+ ∂�y

∂y
+ ∂
yz

∂ z
+ By = 0 (B.18)

∂
xz

∂x
+ ∂
yz

∂y
+ ∂�z

∂ z
+ Bz = 0 (B.19)

respectively. 

B.4 COMPATIBILITY EQUATIONS
Equations B.3–B.6 define six strain components in terms of three displacement
components. A fundamental premise of the theory of continuum mechanics is
that a continuous body remains continuous during and after deformation. There-
fore, the displacement and strain functions must be continuous and single valued.
Given a continuous displacement field u, v, w, it is straightforward to compute
continuous, single-valued strain components via the strain-displacement rela-
tions. However, the inverse case is a bit more complicated. That is, given a field
of six continuous, single-valued strain components, we have six partial differen-
tial equations to solve to obtain the displacement components. In this case, there
is no assurance that the resulting displacements will meet the requirements of
continuity and single-valuedness. To ensure that displacements are continuous
when computed in this manner, additional relations among the strain components
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have been derived, and these are known as the compatibility equations. There are
six independent compatibility equations, one of which is

∂2εx

∂y2
+ ∂2εy

∂x 2
= ∂2�xy

∂x∂y
(B.20)

The other five equations are similarly second-order relations. While not used
explicitly in this text, the compatibility equations are absolutely essential in
advanced methods in continuum mechanics and the theory of elasticity.


