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Preface

This hook is a concise guide for applied researchers in economics and finance to hﬂl
basic econometrics and use Stata with examples using typical datssets analyzed in
economics. Readers should be familiar with applied statistics at the level of & simple
linear regression (ordinary least squares, or OLS) model and its algebraic representation,
equivalent to the level of an undergraduate statistics/econometrics course sequence.!
The book also wses some multivariate caleulus (partial derivatives) and linear algebra.

I presumne that the reader is familiar with Stata’s windowed interface and with the
basics of dara input, data t mn_mt'urmdtim: and descriptive statistics. Readers should
consult the appropriate Gerring Started with Stata manual if review is needad. Mean-
while. readers already comfortable interacting with Stata should feel free to skip to
chapter 4, where the discussion of econometrics begins in earnest.

In any research project, a great deal of the effort is involved with the preparation
of the data specified as part of an econometric model. 'While the primary focus of the
book is placed upon applied econometric practice, we must consider the considerabia
challenges that many researchers face in moving from their original ‘data:sourees to
the form nesded in an econometric model—or even that needed to provide appropriate
tabulations and graphs for the project. Accordingly, Chapter 2 focuses on the details
of data management and several tools available in Stata to ensure that the appropriate
transformations are accomplished accurately and efficiently. If you are familiar ‘lilﬂ:l
these aspects of Stata usage, you should feel free to skim this material, perhaps
10 it to refresh your understanding of Stata usage. Likewise, Chapter 3 is dawmdq;
discussion of the organization of economic and financial data, and the Stata commands
needed to rearganize data among the several forms of organization {mm
s=ries, pooled, panel /longitudinal, etc.) If you are eager to begin with the eo
of linear regression, skim this chapter. noting its content {’urﬁnmem




1

wor varinbles or dummy variables in the linear po
_ Hmﬁﬂﬁﬂwmﬂ qualitative factors, models with i
structural change.
wm economics violate the zero-conditional-mean as
they simultaneously determine the risponse variable and
of measurement ervor in the tegressors. No matter
_1@3&&--3@&[&{-6 unbiased and consistent estimates, s
—variables (IV) techniques instead. Chapter 8 presents the
alized method-of-moments connterpart along with tests for
1e need for IV technigues.
ppﬁmmudgls Lo panelor longitudinal data that have both crogs-sections

! A i S 3 x
mﬁmd{m-m Extensions of the regression model allow you Lo take ad-
vantage of the rich information in panel data, accounting for the heterogencity in both
panel unit and time dimensions.

F waﬂt applications model categorical and limited dependent variables
S u“mﬂlldi as ﬂ-ﬂun:haﬁ _iiB_l’.‘.IHiDI‘t. or-a constrained response such as the
wmwm‘* combines the decision whether to purchase with the decision of
how much to spend, mdiﬂanaj an purchasing. Because linear regression technigues
EM I.IDI. appropriate I‘_:"T maodeling these outcomes, chapter 10 presents several
limited-dependent-variable estimators available in Stata.
. mﬂﬂﬁdmﬁﬁh‘dmtqum fior importing external data into Stata and explain
mﬂmmﬁ* Although you can uge gﬁna without dr.n'l::g any inwgfhf"':’"‘ﬁ‘
: | in Stata can help you save a lot of time and effort. You should

€ reproducible results by using do-files that you can document,

W]b Stata’s guidelines will make your do-files shorter and




Notation and typography

| designed this book for you 1o learn by doing, so 1 expect you to rend this book while:
_sitting at a computer so that you can try the commands in the book to replicate my
results. You can then generalize the commands o suit your own newdds.

Generally, [ use the typewriter font command 1o refer to Stats commands, synta,

and varfables. A Sdot™ prompt followed by a command indicates that you can typa
what is displayed after the dot {in context) to replicate the results in the book.

I Follow some conventions in my mathematical notation to clarify what T mean:

o Matrices are bold, capital letters, such as X.

o Virtars are bold, lowercnse lotters, such as X.

o Scalars nre lowercase letters in standard font, Such as .

« Ditn voctors (x;) are 1 x ki think of them as being rows from the dita matriz.

s Cosfficient veetors () are & x 1 column vectors.

The ubiquitous use of N instead of n to denote the sample size forced me to make an
exception to convention and let N be the sample size. Similarly, T denotes the number
of Kinpseries obsorvations, M is the number of clusters, and L s the maximum lag
length. I also follow the universal convention that the Ljung-Box statistic is denoted
by @ and similarly denote the difference-in-Sargan test by C.

To simplify the notation, | do not use different fonts to distingnish random variables
from their realizations, When one models the dependent variable y, y is the random
variable. Observations on are realizations of this random variable, and | refer to the
ith observations on y os y and all the observations as y. Similarly, regressors X are
random variables in the population, and 1 denote the ith observation on this veetor of

tandom varinbles as x,, which is the ith row of the data matrix X,




1 Introduction

This book Tocuses on: the ety meeded o earry ol !!.p]'!lf!!'ﬂ tvmn_.rmmtri:: rma:rqh _in
sennomics and finanee, These include both the theorotical I'numlnl.!_u:um of econometrics
{ a solid understanding of how to use those eoonoiefrie MHﬂH-IIL the l"l."ﬁﬁ'm‘(‘h pri-
e That understanding s motivated in this book through an integration of theory
with practice, using Stata on research datasots to illustrate how those t!afa may be
arganized, transformed, and vsed in empirical estimation. My experiénot in “N'Jrkh'_l?;
wi:h students of econometrics and doctoral candidates wstng ecomometric tols in l-?IL’iT
recoprell lias beon that you lenen to wse econometrics only l]_‘|' lrJ'm'n,g eeonometrics with
ponlistic datasets.  Thankfully, o growing mumber of introductory ceonamelries Lext-
books' follow this approach and focus on the theoretical aspects that are likely to baie
pnconntered in empirical work, This book is meant to complement, those textbooks and
provide hands-on experience with a broad set of econometric toe s using Stat.

pul

The rest of this chapler presents my “top 117 L8t of 'Stata’s distinotive eatures:
aspects of Stata’s design and capabilities that make the program an excellent tool for
ipplied economet ri résearch. Sections 1.2 and 1.3 provide essentinl information lor
those who want to execute the examples used in the text. Many of those examples
e pserowritten Statn copymands that mnst beinstalled in your copy of Statal A
convenienee progroo diseribed in that section, itmeus, will make doing so a painless
FIT

1.1 An overview of Stata's distinctive features

Stata is a powerful tool for researchers in applied economics, Stata can help you annlyae
tesenrcls easily and efficiently— o matter what kind of data you are working with-—
whetlior time-series, paniel, or cross-sectional data, Stita gives you the tools you need
b organize and manage your data and then to obtain and mtldj'?.é'#mtfﬂi:ﬁﬂ--tiﬂmtﬁ, o

For many users, Stata is o stutisticnl pnekage with menus that allow users to rend
thata, generate new varinhlos, commprite statistienl analyses, and deaw graphs. To oth T
Stata is 0 commuand line-driven puckage, commonly executed from o do-file of stor
tommnands that will perform all the steps above without intervention. Some
Stata to be s programming language for developing ado-files that define pi ;
Stata ﬂﬁwmlda-thut extend Stata by adding data-management, §

a




‘to be able to write do-files that can be el
will save you time by teaching you to generyg,
dles that you can rerun with one command. '

e features, which I discuss in more detail latey:

learn Stata commands, even if you do not know the syntax,
ﬁ:nhnmtmmjufﬁdﬁl command, and when you execute a eommang
; ,'I‘.lm H@ﬁw’ window displays the command syntax, just as if you had typed
: f.h @h'_'jm-cﬁhiiﬂhmit_-ﬂ command without elosing the dialog, vou will often wig
te several commands in succession (for instance, generating a new variable

; i .t!:uﬁit'smmmﬂnisjng:im values). Even if you are using Stata dialogs, you can reisse,
- ‘modify, and resubmit commands by using the Review and Command windows. You can
. =avn thie contents of the Review window to-a file or copy them into the Do-file Editor
‘window so that you can modify and resubmit them. To use these options, control-click
or right-click on the Review window.

You can use Stata’s Do-file Editor to save time developing vour analysis.
“Dnee yon are familiar with commen eommands, you will find it easier to place themin
-a do-file and execute that file rather than entering them interactively (using dialogsor

the Comnumd window). Using your mouse, you can seléct any subset of the commands
appearing in the Do-file Editor and execute only those commands. That ability makes
Wﬁ:ﬁ:ﬁ;ﬁﬂm%ﬁﬂ Wm_mﬂﬂdﬁ will perform the desired analysis. If your diefi
b
being done, by whom, on what date, Ett:.},y S i

equire you to refer to thes }
if you avoid doing so. When you mie

i N . i
ue—for instance, when you are Eﬂim“"‘%ﬁ'
e Stata’s time-series pperators, such & 57
ce,

effort. One of Stata's most vl
abions, estimation, Of 00
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2 B for mioeo details. Using these comimands can help you prodiet &0
; mwﬂaﬂémﬁhﬂ than lssuing b separate mmm‘mﬂ for it n
modify your file later if you need a different list of variables; see chapter 2.

Stata’ - ming. Statu lets you define
Gtata’s by-groups reduce the need for programining. Stal Yol detig
Wmﬁum ont ar more eatezorical (integer valued ) variables, 50 you ennt do sophis-
ticaterd data transformations with short, simple commands; see chapter 2.

Stata has many statistical features that make it |1_nlqu&]:|.r pfmﬁrﬁﬂ. Etaﬂ;
pan calenlate robust and cluster-robust estimates of the ‘-I'EEI‘IBIIEF--L'W-N‘IIIHGE malTix of
the estimator for nearly all the estimation commands.® The afx mmmfuul efi!_]:mntes
marginal effeots after estimation. test, tastnl, lincom, tnd nlcom provide Wald tests
ﬂf'ﬂmw and nonlinear restrictions and confidence intervals for linear and noolinesrs
functions of the estimated parameters;

You can avoid problems by keeping Stata up te date. [T youhave an Internet
connection, Stata's [it] update facility perfodically updates Stata’s executable and ado-
files, feee of charge. Most apdates contain bug fxes and cnhancements te existing
commands (and sometimes brand-new commands), To find available opdates, wse the
command update query and follow its recommendations. Many problems identified by
Stata users have already been sddressed by updates, 5o you should always update your
Stata execitable and ado-fles hefore rapx qri:“{ ANy apparent ereor in the ProEram. B
sure to update your copy of Stata when you reinstall the program on 2 new camputer or
el - disk sinee the installation O contning the origimal codo (e version 9.0 without
updates versis version 4.2 with updates; which is availableat this writing),

Stata Is infinitely extensible. You can creste your own commands that. are ins
distinguishable from official Stata commands. You can add & new command to Stata,
whether you or somesn else developed I, by writing an ado-file and help file. Any prop-
erly constructed ado-files on the adopath will define new sommands with thaose names,
# Stata’s capabilities are open ended (see [P] sysdir). Since most Stata commands
ar written in the do-file language, they are available for viewing and modification, amed
thay demonstrate good pro Eramming practice.

Stata’s user community provides a wealth of useful additions to Stata.
StataCorp'’s development strategy gives users the same development. tools used by the
Fmpany’s own professional programmers. This practice has eneouraged a vibrant user
community of Stata developers who freely share their contributions. Although any

developers may set up their own net from sites, most user-written PrOgrams are
Available from the Statistical Software Components (S5¢) archive that | maintain at
Boston College, which vou can access by using Statw's ssc command; see [R] sse.
Mt s weh browser to seareh the SSC archive, but you should use the ssc




ows. Macintosh, Lm,,,,:_ﬁ“

t plattorm specific (with thew
do-file that runs on one Platformy yiy
gh memory). This compatibility "““h
forms: that is, all Stata ,dta fles by
achine running the same version of Stayy, -

§ M mn,nhurwd a data file stored on a web server with
i o i.ﬂ . ﬂrpjﬂ.tfﬂ['m.
empirical research is serious business, you need gly
Siamﬁ&ﬂs-dimmns to learn that many users greitly 'E"U.‘rﬂ'l-
‘participating in the Stata user community. Although learning o s
| effectively—like learning to speak a foreign language—is hard work, learning o
B;h&-mmmgemmﬁand statistical analysis problems is rewarding. Who knows?
e Wrwrmﬂw.guasmny turn to you, asking for help with Stata,

1.2 Installing the necessary software

"Ihmbnuk uses Stata to illustrate many aspects of applied cconometric research, As
‘mentioned, Stata’s capabilities are not limited to the commands of official Stata dooe
mmbed,in the manuals and in online help but include a wealth af commands documented
in l;haSm.n Journal, Stata Technical Bulletin, and the 550 archive.! Those commands
!N:H,I ok be available in your copy of Stata wnless vou have installed them. Beeas
t]fﬂ“hmk mmﬂl Df thﬁm '-I-EEF'WTit[.EH Uﬂnlll‘ﬂlldﬁ (R “I-“."'rl'i'l.rl' 1]|_|. f1|_“ st (Iril:ﬂ"]"-"
H.m]ublﬁiﬂ thﬁsm“‘ user, | have provided a utility commancd, itmeus, that will insal
all the tnofficial commands used in the book’s examples. To install that command, ¥4
‘must be connected to the Internet and type

ssc install itmeus

| ﬁ‘h[dl‘,ﬁ,ﬂm rieve the command from thie 5507 archive. When the ssc pommd S0

coftt
and

han commands will be installed in your
e the next scction to obtain the do-fles
may then be executed.




versions of the user-written commands that you install h‘ltfw
The official Stata commuand adoupdate, which yon miy ghll
will eheck to see whether newer vorsiong of 1‘1“‘5{3 nser-written Ljnlﬂéﬂ-ﬂnﬁ]}“_-. ; l" i
Just s the commuand update query will rltat!‘:rnune whiatler :'r"li"-lhr :l "“;'g:m_:._ it
official ado-files are up to date, adoupdate will perform the samne chiee usey

commands installed in your copy of Stata.

Miwer:
svailnble.

.__

1.3 |Installing the support materials

Except for some small expository datasets, all the dita | use in this book are i'mi:ly_n_.'._ru_ﬂ- 3
ablie for vou to download from the Stata Press welr site, |II.Lp:,"fwww.ﬂt-nm-llr_i‘ﬁs-m?ﬂ_l-
In fact, when [ introduce new datasets, T merely load them into Stata the same way

thiit von would. For exnmple,

. wme htrp://vwy.stata-pross.coafdatafizeus/tablef T-1.dta, claar

Try at.

To download the datasets and do-fles for this book, type

. pet from htep:/fuvw atata=prass . con/data/imouns
v et describe imeus

. net get imsus-dta

. Det gat imeus-do :

The materials will be downloaded to your enreent working directory. 1 suggest that yon
create a new directory and copy the materials there:




2 Working with economic and
financial data in Stata

cvolves several data-management tasks, such as data input, i
which are erueial for drawing valid conclusions from

statistical annlysis of the dnta, These tasks often take more time than the statistical

analvses themsel ves, 20 learning o Lge Stata efficiently can help you perform these tasks

and produce a well-doenmented Stata dataset supporiing your research project.

Econamic resparel always
validation, and transformation,

The first section of this chapter discnsses the basics of working with data in Staca.
Section 2 discusses cominion data transformat sons. The third section discusses the types
rrias-sectional, time-series; pooled

Soetion 4 diseusses using do-files

of data commonly used in microeconomic analysis:
wed data-validation tasks:

prove-soction timesseries, and panel {lomgitudinal) data.
ta reate reproducible research and periorin AULamE

2.1 The basics

To effectively manage data with Stata, you will need to
basic foatures A small Stava dataset will illustrate,

understand some of Stata’s

2.1.1 The use command

Open an existing Stata data (. dta) file with the use eommand. Ynucanapmiﬁjusﬂh@
name of the dataset, such as use census2c, or give the complete path mﬂm,m -

such as

. use " /Usersfbaus/doc/SFAME/stbook.5725/dot /censuadc . dta’

depending on your aperating system. With the use command, you
Son' s web server; such as. ko
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Variables to Stata. Stata recomit S

o full range of variable type
ues. They are often very small W"“"
values restricted to a singhe




ﬂl": '—n'w j

are available for decimal values: float and double B p
;Tm digits of precision; double variables huve 15 digits of
yarinbles nre stored as floats, unles you specily atherwise. For more Getuils,

types. .
Seeiny varinbles may optionally be declarsd a6 having a specific length, i
10 stro44 chamcters. [ you store a string longer than the specified h.ie:ﬂh
mutomatically increases the stoeage size of the variable to accommodate § ﬁﬂm.m

o m maxcimitm of 244 chnracters.

Typing the describe command displays the contents of u dataset, including the

dats type of each wrlalle For example,
dazcribe
coptains dats froa censuslc.dta

1080 Consus data for NE aod BC

she 21
states
3 9 Jomn 2008 14:B0
134 (985.9% of zsmory {oee)
torage displey salue
rariatle nass  CYpe format labal varizble lebel
strid E- 13s Srate
ByLa -0g cAaRTER Ceansus Cegion
d 1£ 1280 Populeticn, 000
L 1980 Urbas populstion, “000
¥ Hedinn age. Yoars
£ Marrisgms, "000
1f Divorces, "DOD

Stasa indicates thut the dataset comzins 21 observations (obs) and T vanables
(warsg). The varable state is a stri3, so no stale names in the Jataser En:ﬂﬂ H
chinracters. Pop. popurh, and di':r HEe ‘i‘ui‘ﬁ'i as doubles, nﬂt as mtm bm )




. T i
‘T.-'i.- L .-“'d r-plm. “hu .L .

- ATO Crealis o o Virinkly o ;!_.
J existing variable, wy utfike

v variable in our datisel that g iy

urhisn areas i 1980, We newd gy
tomatically apply it to every obaeri
warding to the mles of algehra, For Whie.
bl" £orn for o given state, the resill ftr "-'
e generate the fraction, urbanized e,

m“ Btd. Dev. Min

JBEBTBO1 . 1600BGZ 3377419

f the United Statos 5 GG TY urhanbeed, with

A _nlmady'mhu-d, Bt we wanited i
4 SN wie w““l” Lk r-ljpi.':gr:u;

?td' Doy, Min Hax

15.00843 a3, 77319 E9.00640

" it :!"!-ﬁdﬂ—--nli 21 abservations

A8 & simple, succinot set of t'-‘-r’;li“'#
m u!'"'n”.'f several ways Lo et HIE di
‘:'_i'_it_ll' bhe simplest and learest



by the second varinkle, and 50 o, After the sort |

liiso pbseryations oty ot e e el

it 3 ‘-t Lw
ot will be marked as sorted by those varinbles,

i reler.
you want to b the new sorl o . ,
You ¢ng nse the gsert command (see (D] geort) to surtl ::!E:n T‘mﬁw h;

i . such a8 when you have quiz scores or panients biond gt
i%!'w:m‘!lmgJ';m:‘dm-f.-,] nr!1‘n.-~~::1::1rfil-u.x thie varinble indicates a destending-arder sort on that vard
s hersas order sort, For instanee, to sort the

i indicates T T
le, wherens o plus s1gn (+) indicatos an deeend :
':::1.:[5 b region and, wit hin region, by population from largest to smallest, type

. ESOTE Tegicn —pop
. lismt regios mtate pop. suypby (cegion)

ragion state FOF
1. | we New York 1TE68.1
2. | ‘BB Penmaylvania 11863, 9
5 KE Yav Jarsey T364.8
4. | KE Mannachuusotta 5TAT.O ||
B HE Copnecticut 31478
fi. RE Matne 1124.7
T. | KE Rhode Inland wT.2
g HE Niw Hnspshire 920,18
a8, XE Yarzont Bliib
10. | ‘N Cnexl Ilinpis 11425.5
11 N Carrl Ohio 10T8T. &
12, | ¥ Gotxl Michigan 9362.1
13. | N Cnexl Indiana 6430.2
14. N Caesl Higgoiird 4916.7
15, | W Chtrl Wiscomsin 4705.8
16, | K. Cotrl Mimnosota 4O7TE.0
17. | ¥ Cotrl  Jowa 2013.8
18. | N Cotrl Koneas 2E63.T
14 N Catrl Nebraskn 1568, .8
‘20, | M eotrl S, Dakota 600.8
21, | N-Cntrl M. Dakota 85T

if exp and in range

operate on all observations in memary by default
PULT epand in range clanses, which restrict the co

the cc




s largest states, but the latter

ding ﬂtder. El ce the sort command performs ol
_la!'gl‘.’:ﬁl'. states in decreasing order, type

ous that meet, some logieal condition; i ¢ c‘t‘
. finedd %50

T ma&'ﬂ "r'H.rI-Fll)lr' medagﬂl it




g Using iFoxp swith indicator viariables

. Meporate pedagnl = medage Lf pop ¥ 6000
{13 misning valuon penarated)

. Hert mrakde
_ 1isn mtate region pap medagel, napl0)

ELATH ragion pop
1 Connscticut ME 2107 .6
2. Illfinoin M Ontrl 11424.5
a, Indians N Catrl Bugd. 2
4, | Iova N Cotrl 29138
5 Ennsan H Catxl Qa8 T
i Ha i NE 1124.7
T Hapmachunetts ME ETaT.0
. | Michigan H ontrl ez, 1
@, Mipnosota M Catrl 40760
1. | Mimpouri N Catrl 4016.7
11. | N. Dakota N Cntrl 662.7T
o Habrasks H Entrl 16568%.8
13. | How Hampahize NE 420,868
14 How Jorsay ¥E TA84 .8 2.2
15. | Hew York NE 176681 3.8
16 Ohio N Cotrl 1Q7eT. 6 29,0
17 Papnsylvanis KE 11883, 0 331
16, Ahoda Taland HE 47 .2
19, | 8. Dakotas N Cntrl 6008
&, | Vermont NE Bi1.6
a1s I Wigconmin N Cotrl AT, 8 -

medagel is defined for the states that meet this condition and set to missing for all
ather states (the vildue . is Stata’s missing-valug indicator). When you nse on 1f erp
clanse with generate, observations not meeling the logical condition are set to missing.

To ealeulate sunimary statistics for medage for the larger states; we could either
summarize the new variable, medagel, or apply an if erp to thee origingl variable:

« wimmarize madpgel
AErAihie Oba Mean  Std. Dav. Min e

Whsines B .66 1.3688 Ty
. sumsarize medage if pop > 5000




31076 i 0

11426.5 0 i

5490, 2 o !

2013.8 1 0

9383.7 1 0

1124.7 1 ]

y BTAT.0 0 1

P 9262.1 0 1

: 4076.0 1 o

[ aBou 4916.7 1 0

M. Dakota B62.7 1 ]

Nobraska 1665.8 1 o

; Hew Hampahire 920.6 1 a

14, | Mew Jarsey 7364.8 0 !

15, | New York 17558. 1 0 1

. | Obis 10797 .6 0 N

AT, | Ponnaylvania  11863.% o 1

. . | Rhode Tnland 947 .2 1 o

18. | 8. Dakota 690.8 I o

30, | Versont 511.5 1 o
1. | Viscomsin 4705.8 1 0 |

' ml W16 se both generate and replace to define both the 0 and 1“‘“;

; e m = 1 4f pop <= 5000 would set the variable smallpef
“;:'::;_h all observations that did not meet the if pgap. USiNg @ B

MF“-B"EPGP that are missing ([U] 12-3:2 -

I largepop und 0 in the variable smﬁlf-rf i
od s the largest positive number =g

statement to the generate s

Sing vide:



r&m .'ﬂmyonmﬂr:hui:tm?hth'- [
s Tph mth&,,i.f wmﬁdeﬂwﬂpnhﬂﬂmqm t-g,.,
ﬂdmﬁnnmufﬂtn largepop for missing values of pop
erp qualifier will cause any missing values of pop to be corregtly

91.8 Using if exp versus by varlist: with statistical commands

You can also use the if erp qualifier to perform a statistical analysis on'a suhmhuf’h@
dnta. You can summarize the data for each region, where NE is eoded as region 1 and

§ Cntrl is coded as region 2, by using-an if exp:

. sussarize medoge mary dive if region==1

Varisble I Oha Hann Std. Dev, Min Hax
mednge | g 31.23333  1.023474 29.4 32.2
marr | 9 &4,47822 47567V 5.226  144.518
divre | a 15, 30433 16, 57721 2.623 61.872

. sussarize modage marr dive if region==2

Variable | Oba Hean Std. Dev. Min Hox
sednge | 12 20,525  .700BL13 28.3 30.9
marr 12 47,43642  36.29588 6.094  109.823
divr | 12 24.33563 10.684 2.142 58,809

If vour dats have discrete categories, you can use Stata's by varlist : prefix instea
of the 31 exp gualifier.

If yon use by varlist: with one or more categorical varinbles, the o
peated automatically for each value of the by varlist:. no matter how n
expressed by the by varlist:. However, by varlist: can execute only.

To illustrate how to use by warlist:, let's generate the same su
the two censns regions:



Hax

42.2
144.518
61.572

——

7008113
6. EHEEE
19.684

_'lt!l':t[léb].r varhist: prefix. The statistics indicate
than those in North Central states, although the

mand, Lelling Stata that we want 10 m?.-
don. Op the nl-lu_:r Imm'l. the




divr
-» region = NE, popeize = 2 -
Variable Oba Mian Std, Dov- Hin Max.
4 31.85 4509245 a2 32.2
W:E: 4 85,0645 44.81073 46.273 134,618
divr § 3564075 18.89619 17.873 61.872
-» region = N Catrl, popsize = 1
Variable Obs Mean Btd. Daw. Min Max
pedage B 29 5625 LTIGEEEE 8.3 3.9
BATT B 6. 85387 16. 96087 6.084 54,625
divr B 12.14637 8. 448778 2.1a82 27 .585
-» rogion = N Cntrl, popsize =2
Variable Oba Hean 2td. Dav. ¥in M
sedags 4 28.45 5446711 28.8 8.9
EATT i 88,8015 2354513 57,853 109,823
divr 4 48.71475 B.021091 40.006 58, 809

The voungest population is found in large Neorth Central states. Remember that )
large states have popsize = 2. We will see below how to better present the results. ;

2.1.9 |Labels and notes

Statn mikes it casy to provide labels for the dataset, for each variable, and
value of a categorical variable, which will help readers unclerstand the data.
the dataset, nse the label command:

- labal dats "1880°US Census data with population 'sive indicators"
«d I

The npw label overwrites any previons dataset kbel.
Say that we want. to define labels for the urbanized,

------ Searer ol
L

PR, L A

—




 States with <= 5 million P,
1880

Statea with > 5 million pap,
_ 1980

Population size code

Population in urban arsas, §

~ storsge display  value
‘varisble nase -ﬂfpl forant 1abal variable label

Wﬁﬂ '5313! i-Biog canreg Census region

mﬁ‘m isa ‘?It'i' [lﬂl‘ﬁﬁﬂr] variable with the variable label Census ragion and the
value meﬁnﬂkﬂuﬁhmsmmm packages, Stata’s value labels are not specii
lﬁ'iw ieular variable. Once you define a label, you can assign it to any numbr
' Mﬁhﬁ? the same eoding scheme. Let’s examine the cenreg value lahel




.II-;

. Toview

‘the mean for aich of the values of popsize, type

. by papsize; sort: pumsarize medago

= popeize = = 5 nll-lién

Yarinble Obe Mean Std. Dev. Min Hax
apdage 13 3001538  1.071483 28.3.
=3 popaize = > 5 million
Veriable Ok Hean . Dav. Kin Hax
sadage 8 30.85 1.363818 28.8 2.2

The smaller states have slightly younger populations.
Voii can use the notes command to add notes to a dataset and individual variables

(think of sticky notes, real or electronic):

potes: Subset

. notes popaize:

. notas popslze:

notes =adagel

of Census deta, prepared on TS for Chapter z
median age for large states only

variable saphrating states by population size
valns label pepsize defined for this variable

. demcribe
Containd data from cenauslc.dta
obi: 21 1580 U5 Census dacta with
population gize imdicators
WIS : 12 9 Jun 2006 14:50
size: 1,554 (89,8 of momory free) (_dta has motes)
storage display value

varisble nape type format Label variable label

state stri3 1-13s State

Tegion byte  K-B.0g CEITER Cangus region

' xﬁi- E.H 1980 Population, ‘HWQ'

double %8.1f 1980 Urban atien, '000
float }9.2f e
doubla %B. 1t

Muhll!&'l:l




naTes nr a wildenrid {*} stch as upcp in tlu- luri.u:
__'E in “pop”. In the census2e dataset, spop will e

&}i@ﬂmnmw ﬂﬂ: m__ﬁ.hﬂPEMiuttﬁd list, such as catl-catd, which referstos
' h:lﬂh& Mt hurm-m mt‘l and cut‘l ine Inhtw in 1|h S "-'!'l"r a5 1n thr

L i Yo ean use the drop command witha rl.hli;r:
sand want 1o keep only some of them, use the keep comi
e list specifying which variables you want to keep, drop and keep follow 1%



-

N S e 7 1218
4 now variable equivalent Lo the old vi
is to use rename, Using the syntas:

2112 rename and renvars
on conld generito

i o virinble, ¥ :
ol bt o cleance =OINEIOn

and drop the old yurinhle,

ranase. old.orname ek pTTa e

voil cin renamnd i varinble. To change several variables’ prefixes (¢, 2

incomedl Lo {4¢80, incBl}, nsw renpfix

. repplix lpcomi 1n0E
fixe of the original variables. For & more seneral solution

where {ncome is the COMea pre am
anmand ol Cox nnd Weesic {2005,

toy repmming varinhiles, soe the renvars

2.1.13 The save command

To save a dataset for later use, ust tlie save filerami command, We could save the
st to i different file with save census2d. o save it with the original
which like the replace command must b
you cannot pestore the eontents of the

census2c dila
naine, we would oes thi replace option,

spelld out.  However, it you save, replace,
original dataset. Saving toanew hlename is eonerally o Better idea.

Vou can sive Staticdata to a text file by using the outsheet command. Despite its
i, this conmand does not write a spreadsheet file. Tt writes an ASCH text file that
can be read by a spreadsheet, or any program that can reacd tab-delimited or comma-
delimited files. Unless yon need to transfer the data to anot her stutistical package, Yo
shoulil just save the data. IF you save o file in 2 [ormat other than Stata’s binary,
format {a .dta file), you may lose some information from your dutaset, ineluding labels,
notes, value labels, and formats.  1F you ueed to move the data to another package,
:tum"l{lirnr using Stat/Transfer (see appendix A), a third-party application available from
Statallorp.

. The use commund reads files into Statn much faster than any of Stata’s data
Mr_mn_lmtls {Lyahnat. infile, infix) sinee it does not have to convert text to
format. Ones vou bring the data file into Stata, save it as a .dta file and wo
that file henceforth. ~ 1

ey




jata are Tun tngether* as mﬂ? i '
.M'E in adjacent Lﬂ|lmm3

it (o use Et.a.l;,r"nausfer o trmlale the ﬂlh
nore information about data input,

s apemhca]]v the cond () and recode() fupe
‘hetween string and numeric forms, and date
__e useful functions for generate and disouses
gan. The last two subsections describe by-groups

rue and zp Wi

: v (the net martiage rat]
could define netmarr2x as having values 1 and 280
the variable in tabstat:




d continrons varfnhles

229 Recoding discrote #l

22,2 Recoding discrete and continu
ariable based

ous variables

Statn to cTeute b Hew ¥ on the coding of nn existing discrete:
seatements such s

You can e W ¥
lel write many siml

variable. You cou

cg navcods = 5 if oldzoda == 2

de = 8 1f oldcodo == 3
a = 12 if oldecods == & | sidcoda == 6 | oldcode == T

Lar pransformation

. Toplal
. replace Dawoo
replace novcad

erator. But performing transformations this

artical bar (| ) isStatns “ar” o
ruet these statements will probably

whert the v
pasting Lo const

way 15 inefficiont, and copying and

lend to tyDINE CITOrs

- §
Using Stata's recode command wsually produces more efficient and readable code.

For instance,

uiiie Bldeads (2 =X (3= H) {B/T = 13, generate inevcode)

atowie trarsfurmation. The equal sign is an dssignment OpeTatoT [old-
Uinlike i the line-ty-line approach above using replace, you
1o an entire parlist. This approdch is handy when a questionnaive-
< several similar questions with' the same coding; you can use the
lo name stub. You ean account for missing-dala
codes, map all unspecified values (0 one-oulcome, ancl specify value Jabels for the vilues
of the new vargbles Infect, you can ust racode, modifving the existing varinbles
pathér than creating new ones; ot you shiould avoid domg, this in case Any further

modifications to- the mapping arisc,

will perform
value(s) — pewvaliue)
et apply recode
hasisd dataser contain

prafix{) option to define the variab

You can tise generate and Statn’s recode() function (nof to he confused with the
recode command discussed above) to map a continuous-variable to a new categorical

variable.
Togenerate a histoieam of states’ median age in whole years,! you can use recode()
1o define brackets for nedage as ' v

. generuts’ sadagebrack = Tecodeimedmge 28, 39.30,81,32,33)
. tabulate sedagebrnck

mcapalenik Freq.  Parcunt Cun.
28 3 14.38
-l 8 368.10
i 1 19,08
Sighic = _. _.-I ¥ a ":_ -m
W,




r 1imits of modian age)
Modian Age)
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Figure 2.1;

i
~=Logram of values frop, the recods () fiinci

S unequally spaced
iy J.'a. Emdallfmmn SR I-.”“l :I ijrl“'Hl'l |'r|n:J]:r|rJrIr.-. Vbl o
vithie of the vari, i Heaually spaced intervals between o minimum and ms
Pl'nat'lmming functions.

Al U=

. 1 peatl®

ml ':- I'd In1 lb. B 1-4! ."][JI”‘l' I
12,2 SRR Shem in that order, so thof .. (the.
ﬂ"ﬂrml WE values) js the snidleit J'III

. teke all possibe mibssing values.”



2014 Hundling missing data
1 - o J | -:. ¥ 'l.l. ' . B ?

default; State omits missing obeervations from any computation. ¥

or i‘I:}']:ilnnn-. ‘missing valuies nre propagated: ony funtion of missing data p
irige clata Univarfate statistical compulations {such qa-maxiwu.ppm“_ LT
snsider only nonmissing shisorvations.: For miu

standard deviation) B QDY S e
commands, Stata generally practices casewise deletion by dropping from the

ahservations in which any variable is missing.

Several Stata commands handle missing data in nonstandard ways. For instance,
althionzh correlate varlistuses casewize deletion Lo exclude any Gﬁﬁﬂmﬁm Mﬁmhl‘
missin:g; enlues in any. variables of the parlistin computing the vorrelation rglqlg.r_g}:,jhﬁ
alternative command pweorr computes pairwise parralations using all &ﬂﬁl@’_ﬂ'iﬁ_- dm
for each pair of variables. The missing(ﬂ.r:!,....m} funetion [see [H] funﬂiunﬁ’}
returne 1 il oy argument is missing and 0 otherwise; that is; it provides the wser
ith & casewise deletion indicator. The egen rowwise functions (rosmax (), rowmean(),
roumin(), rowsd(}, rowtotal()) each ignore missing values (see section 2.2.7). Far
exmmiple. rovmean(xl,x2,%3) computes the-mearn of three, two, or ong of the variables,
refurning missing only if all three variahles’ values are missing for that abservation.
The egen functions rouncnmiss() and rowmiss() return, respect jvely, the number of

nonmissing and missing elements in thein yarlists:

mudecode and mvencode

Other statistical packages, spreadsheets, or databases may treal missing data differently
from liow Stata docs, Likewise, if the data-are 10 be used in another program that
does not use the . nofation for missing=dntoa codes; you msy need to uge an alternate
representation of Stata’s missing data by using the mvdecode and mvencode communds
(see [1)] myvencode). mvdecode allows vou to recode numeric values to missing, such
as when missing data have been represented as —99, —999, 0.001, and so on, You can
wse all of Stata'’s 27 numerie missing-data codes, so you could map —9 to .a, —99'to
b, and so on. The mvencode command provides the inverse fuixchipn,_.nﬂﬁﬁijg:ymi@!f-

change Statw’s missing values to numeric form. Like nvdecode, mvencode can map each
of the 27 pninerie missing data codes to a different numeric value. i

To transfer missing data values between packages, you may want bo
(see appendix A). Because this third-party application (distributed by
also transfor variable and value labels between major statistical ki
subsets of files’ contents (e, only selected o re iR
formiat) using St/ Transfor is well worth the cos
or export, datasets, bk

S -'_,__I..



 use the real() ﬁmﬂﬁﬂﬂ—&gw generate fj;
gz values for any observations that canng g
command can transform variables in place (it
ne a new variable is saler—and may be pej
ﬁm@}‘mnnn to an entire set of variables with o
string content, and you need a numeric equivaley,

a ncode to
;wuuhnl: f}aan mlmlmﬁed nH H. Blii‘ln,g 'In'l’l..'l.'ldhh*} E:lt‘: anse e-n:_ﬂdE 1.1.1|| attempt
» o value label for each distinct value of the variable,

7 “mlght;mu II&BQ'.i toencode a variable? Consider the region identifier ing
dlﬁalzeb’u 1.5, Census dataset, census2a:

- B htpt.ﬁm ltl‘bl'pm com/daza/imeus/censusla
M from http://uwe.stata-press. con/data/r3/ consus?. dua’

d.gﬁ:ﬂ.h ragion

ey i OEeRS display  value

rii'hﬁ.tﬂl& “I}p'l format label variable labal

region ‘str?  Y9s 3

- mum:wu
: Freg.  Percant Bon

I% & string variable with a maximum engl!
able in 3 tabulate command to campute B :
Or (using tabulate’s generate () option I
H‘m b“l you cannot use it in stit hdr:

the re ¢ values of region for display
MHId use the encode command: 8857
cenreg (Census region)
on the values af r'ﬁ-"’"‘




2.25 Handling dates

. oo rogion, ganazsce(cuneag)
. dagerila CONTSE
atorage display ‘walum

wvarinblo name  t¥pe format lakel yariablo label
CERreE long W8.08 Canrog
. BURSALIZe COnreg :
Variable I Obe Moan std. Dev. Hin Hax
cenreg | 50 2.6 1.124859 1

The new variable takes on values 1, 2,3, or 4, The tabulate cenreg command
generates the same display as tabulate region. However, you can now o umﬁﬁ‘i_::ﬂ
analyses by using cenreg, such as in n summarize command or o define a grouping
variable (see section 3,2) for the tsset o

Some string variables may have numerie content, but should be stored as strings. For
example the U8, 2IP code, or postal code, is o fve-cligit integer that may begin with a
leading zero. If you need to mat ch household data to, say, Census data, you will want
(o retain thioss leading zeros; and you could encode a ZIP code variable (assuming that
{hare are not too many of them to create value labels; spe help limita).

Youmay nlso need to generete thest ring 4*l1|1ix'u]1-r|l of & numerie variable. Sometimes:
it is pasier to parse the contents of string variables andl extract significant substrings.
You can apply such transformations to integer numeric variahbles through integer division
and remainders. but these methods are generally cumbersome and error prone. You can
also convert mimeric values to string to get around the lmits of exact rﬂurlﬂiﬁﬂtaﬁtﬂiiﬁ.ﬁ:
mmerle values such as integers with many digits; see Clox (2002h).

We have discussed three methods for string-to-mumeric conversion. For each methud.'l,*
the inverse function is available. string() lets you use a numeric display format (see
[D] format), such as o variable with leading zeros used in some ip-number schemes,
tostring prevents you from losing information while converting mi‘a’b]w-'md".@qﬁ;‘:ﬁ
used with a specific display format. Like destring, tostring can modily variables
specified in a varlist.




5, 27jul2008, EDDE-IJT-H
.‘mﬂm an integer date 3
o name of & string variable contai
J_m_ specifying the order of the nrgumm |
Wuafi!igﬁ refers to the thin day of
sant style. You can also use an Optiou
years, It is best, though, to generate fonr-digy
mjn Stata. If you are exporting data ff""l Exveel

N 'mmmdm‘mﬂmﬂc with mdy () or date(}, use the forma
Mm forcisplay. format varname jtd displays the variable
.mm e, 37 7ul2005; see see (U] 12.5.3 Date formats for othe
- You can also display only part of lim date, e.g., 27 July or July 2008
ﬂwﬂsphynrsummnnﬂm never changes their content, so vou cannot s
i h'-"d To' group. nhmmm h'-’ month or vear. The observations’ valuod remams
W mim {W {!ute}

ﬁ.#mpﬁmim—-ﬁw example; by month— vou can use one of Stata’s mag
wtmgmt-hadmly variable transdate, you can use generate ﬂ-}"
| Il'mdﬁhlt' l'ﬂrm nppl-. i Inm. it: format mmyy A

Emt.a‘n
8 mm}’ l'l:rmwr The defanlt format will produce 2005a7 for 1B

; h‘““mrlb’ Eth quarterly '#,'.tq monthly Atm, and ,|_:|ri
* Spport hum“mi'dﬂll'- datn. You can use any ol severt

¢ year, quarter, mumh week, dy, day of wek
mh}" *“-lml.llc-r st ol lunctions, such as E'?fd{]

elapsed units of time.

ﬁl_-!gt.‘h':‘ 200B0727, vou can vither extract the '.m‘
Df‘“ﬂltﬁ O
- tﬂgl:'u“tr

avablable from 886
Wl
dates, such as VY YYWH, whet

-W dates, or elapsed months, A%
o e standard aritluetic to §40°
._DWI'ET. Stata does not support
4 patient receives g dose of """d
2.2.7 have been developed 075

nﬂl



s 1 useful mm'pn:ﬂ::m;ﬂdiia“ functions (see [T
amaing functions), many of which require BOCRIRREL
of hinning observations by their values relative 1o breakpoints Gefin
S eda(), you might want to bin the duta into equally Bt ERCHCL
quintiles; or deciles. The group(#) function provides this mp&hthw&mﬁpg 1
of approsimately ecquial size, with the result variable taking on values 1, 2, ...

groups’ memberships e defined by the current sort order of the dataset (whi

conld modify by issuing a sort comimand ).

You could replace several replace statements with ona call to the i*nlta:l:-fi or
inrange () function. The former lets you specify & variable and a list of values; it
retiarns | for each observation if the variable matches one of the elements of the list and
Dethirwise. You canuse the function with either mumeric or string varinbles. For string
variables: yon can specily up to 10 string values in the lisk. The inrange() fumction
lats you specify u variable and an sterval on the real line and returns 1 or 0to indicate
whether the variable’s values fall within the interval (which may be open; i.e., one limit
muy be £o0).

Sume data transformations inyvelve integer divigion, that is, truncating the remain-
der. For instance, four-digit siC (industry) codes 3211 9299 divided by 100 must all
vield 32. You can do this transformation with the int() funcrion {defined in Iialp
gath functions). A commen task involves extracting one or Imore digits from an in-
teger code; for instance, the tens and units digits of the codes above can be defined

a
. /gon digit34 = 5IC = int (SIC/100) =100
ar
. gon mod34 = mod(8IC,100)

where the second construct uses the modulo (mod()) functi suld extract the
tens digit-alone by using " ) functiiis XoRARISC SRR

, gen digit3 = int((SIC - int(STC/100)+100)/10)




it feillions) and should be stored using a double data type singey :
retain ouly about seven digits of precision (per epsfloat())se

Ohie exceedingly usefil funetion for geperate is the sum() function. which provids
.mm]ingmm t.]ug specified observations. This function is useful with time-sides
data in converting o fow variuble into a stock variable. If vou have an initial capifa
stock value and 4 net investiment series, the sum() of investment plus the initial capitd
stock defines the capital stock at each point in time.

| Itrmmémﬁln?tmﬁmﬁhhh i-“ Tate or rﬂpla.:a are |'i]Hi"l o e L ]iﬁh‘l“ﬂ

onded list of rimmpalf Tunctions), Stata’s Bgan command provides o o

I"! ﬁthl"!.l' 8o and -hip ﬁl{:” 1Lw"lﬂlllll.ﬁ You can extend Stata’s commanc set by placing
o on the adopath, ¥ou ean involke egen functions that it

1
| defined by ado-files wi the adopat
| | fin h'.'!'m o= with -ﬂlu “bstﬂﬂ.l"g 1'i'll'l'l'.]-'l -E. stored on the adopath. Maiy =Iflhﬂ#
| ctions Pmﬂfﬂ-lﬁnmlﬂlatal_wéeln] opath. Many of thee
1 o hwhﬂﬂ.ﬂﬂm:: £en r“n‘ﬁ.'-ﬂﬂ‘nﬂ that Spen: s h&lp egen|, but vour Capy ik Stand
from t]m-ﬂsc.ﬁtdliw.t[n;:m} B ¥ou have Written or that Sl Bnve ool

ey gjielal Stats, funciime ther Stata user's net site, This section disUSE
.....-“ I 'H-I'Hi. i 3 =ite, jis - section di
Semnity, several useful additions developed by the Stata =T

varlist: (se hg?narate’ there are several lifferinos

s ¢ documentation to determine wheht

Wil:ﬁ‘: -0 and W l‘""":l'—'li"il'}' with egen. .

o sonbyable egen function shol

Wlhpqr.m variable as the egen rissult
OVEr groups,




rowwise functions can work with missing values. The

All 50 states, although several were not part. of the Unit :

compute the mumber of nonmissing elements in the rowwise. with rownol
v value. Other official rowwise functions

with rowmisa() as the complementar : ! :
rowmax(). rowmin(), rowtotal(), and rowsd() (row standard devia ion). i

Official egen also provides statistical funetions for computing a statistic lor SPECIiEe
ahservations af a variable and placing that constant value in vach aﬁamﬂﬁﬂuﬂi'thi
new variable. Since these functions cenerally let you use by varlist:, you can use them
to compute statistics for each by-group of the dats, as discussed in section 2.2.8. Using:
by varlist: makes it easier to compute statistics for each household for individual-level
dath or cach industry for firm-level data. The count (), mean(), min(), max(), and
rotal() functions are especially useful,”

Other functions in this statistical category include igr () (interquartile range),
wart () (kurtasis), mad() (median absolute deviation), mdev() (mean absolute devia-
tion), median(), moda(), pe() (percent or proportion of total), petilal), pln) (nth
ercentile), rank(), sd() (standard doviation), skewl() {skewness), and nt'iili_}fl (Heasn}

P

egen functions from the user community

The most comprebensive collection of additional egen functions is Nicholas. J. Cox’s
egenmore package, available with the sse command.’” The egenmore package contains
reutines by Cox and others (including me). Some of these routines extend the ﬂm&:
tionality of official egen routines, wherens others provide capabilities lax,.'klug -iﬁ:ﬁﬁﬁﬁ!?
Stata. Many of the routines require Stata version 8 or later. i

For example, extensions have been made to improve the way Stata handles
Stata’s date variables are stored internally as floating-point values. For :
measuring days (rather than weeks, months, quarters, half-years, ¢
ger part records the number of days elapsed since an arbitrary
1960, Although you could use the decimal part of a date
ion of a day (e.g. 025 a8 6:00 am.), Stata dots not su
arithmetic. The egenmore package contains functis

st for speciied




display

il E'tﬂl-ﬂ. dﬂ-tﬁﬁ, E}Cpmssed A% u'l%
date variables corresponding 1o the fiy
They can be used to generate the offset fiy
‘e third month from now). If you use t
}nunweekﬂnd day of the month (althoyg
}. You can -also use the functions bomd() an
month in which their date-variable argunes
by calendar month.

i ot

Mmg@gﬁd_ﬁgén‘ﬁ-mﬂaticm capabilities. The corr() fune
[t@t.innnlla' covariances) between two variables; gmeant() anl 2

_ and harmonic means; Tdint () computes random integes
i uﬁﬁl].’ﬂl\dﬂﬂtﬂﬁﬂﬁﬂﬂ, EEEIB&T-IU computes the standard error of the

k var() computes ﬂxemnam:a The filter() function generalizes egens
J  which can Wﬁlﬁfﬂnﬂb’ two-sided moving averages of an odd rumber of
'?hﬁﬁ«ﬂnmﬁm ar () can apply any linear filter to data that vou have declarsd
L > _ teset, including panel data, for which thie filter isap
tﬂ-‘ﬁtlun 3.4.1). You can use the companion functic
mﬁ-ﬂh'weighted moving average to time-series data.

F

tErunﬂm “}du‘ie rall(); rany(], and reount () These
{an of blmhum '_Wah.‘atﬁ & specified condition and i]ldi['.ﬂi'i'
Al bt 5 satisfy the condition or how many variables sati

for each observation in which all three yariabl®

X .:an_ﬂiﬁ& with & value of 1 where an¥ *

' s and countpos () indicating the it
Positive. You eould use countpos 10 g

and exhaustive, since it should returm

as well). The @ symbol is o placel

3 omtiﬂﬂ. Yﬂu Cal “_Eso ﬂpp.l:ﬁl tl

18 t record(} function (the L

futiction to compite U Cg
nplayee or the Jowest £

a
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41883, 14
4T05.8 4ECHE. 9
4076.0 50674.87
2013.8 53588.68
2363.7 55EB5Z.38
1EEG.8  57522.18

690.8 b5B212.85

652.7  BREES.ET

e e ot g 5 e

%ﬁ@_ﬂffﬁ' T =

O Tegion, stored as n new vorietE
bwant to compute stabes: S8



17ESB 1  BARD.ATE
11863.6 S450.476
T364.8 5‘!5_9'1:‘7_'#._
5737.0  54E3.4T8.
Connecticut 3107.6 5858.478
Haine 1124.7 GABE.4T6
Rhode Inland 947.2 54B0.AYE
Hev Hampohire g20.8 5469.476
Yarzont £11.5 B4B9.4TE

e § _ %

Cntrl I1linois 11426.5 4908, 473
Carrl Ohio 107976  4905.473
catrl  Michiganm g362.1  AB05.473
Cntrl Indiann 5480.2  4805.473
Catrl Misaouri A916.7 4805.473
Cotrl Wigconsin 4TOE.B  A4905.4T73
Carrl Minnasota 4076.0  4005.473
Catrl Towa 25138  4006.473
Catrl  Kansas 2563.7 4906.473
Catrl Nebraska 15608 4AB05.473
Cotrl 5. Dakgta 620.8  4905.473
i Catrl M. Dakota AR32.T  AS06.4T3

EEEEEEEES

We could do this same calculation over a by warist: with more than one Wlﬂhtﬁ'

by region popnize, mort: agen peanpop® = menn (poapl
1ist regicn popsize state pop meanpopd, sepby (region)

F reglon popaLza stata

B =illicn fhoeda Taland
& million Hew Hampohire
6 million Vermont

5 million Conmecticut

E million HMpina

6 million New York

6 million Neu Jersey

&5 million Hagsachusetts
& million Fenneylvania




e ting variables with sgy Stapy

dataset will consume much of Sy
n]“-["f I:_l' 2 subﬁwunnt trmss&rmmiiq
" from average size, and will T i
at the earliest OPPOFTUNItY. Or couily

hich transforms a variable into deviation fg

ps:

e iy Wian built-in functions or special-purpose e

0y fﬁﬁﬁmﬁ:m- gmefal& conatant values for each element ofy

urwerﬂgﬁ industry output, but egen is an el

is especially tailored to perform that very functie
atistic for each by-group.

uqingmm;m macres can help you work much more efficiently. In Stata, a loe
mw'ﬂ'mm'ﬂm hold one object—such as a number or varial e name—ars
- set of ohjects. A local macro may contain any combination of alphanumeric charsctes
mﬂmh:ﬂdmthan&,mu characters in all versions of Stata. A Stata macrois reall
an alias that has both a name and & value. You can return a macro’s value at any fimt

by dereferencing its name:

i Apcak; country U5 UK DE _FR
« local ctycode 111 112 136 134

ad‘ﬂ“ﬁ g’mm i‘_a_l“f'al {see [P] macro). A loeal 1rrla1t'l‘-"l_‘t
=Hile and cedses to exist when that do-file termi™
e macro—gs country—and then defines 15 “:

eodes. "The next local statement dot® ¥




W Rl

In discussing recode in

iables: forvalues and foreach 1

o n soction 2.2.2, we stressed the importance of using one co
ather than several similar commands to change the values stored in & yariable.

if your dataset contains several variables with similar contents; you wo
over those variables than write a line to handle each one. Thnm powe
constructs available in Stata are forvalues and foreach; see section B.3,

Say that we have a set of variables, gdpl, gdp2, gdpd. and gdp4, mmmggm&t
domestic product (GDP) values for four countries, Using [P] forvalues, we can take
advantage of the similarity of their names to perform [D] generate and [&] summarize

glatements:

, forvaluen 4 = 1/4 {

2 gensrate doubile ingdp'it = legigdp'i®}
A su=sarize logdp'i’
4.}
Variablae Oba Hopn Std. Dev, Min Hax
1ngdpl 400 T.a31661 ,50481 5.784211 'B.768936
Variahble Oba Mean Std. Dov. Hin Hax
1ngdp2 400 T.942132 5424703 4.BP20GI B.TEDIGE
Yariable | Obs Maan Std. Dev. Min Max
ingdp3 I 400 T.987005 LB37941 6.337221 CB.TE6BRD
Variable i Obs Mean Std. Dav. Min Max
lngepd ! 400 T.BBETTA JEGRIBZ1 5oREEHA83 -B.TINITI

In the forvalues command, we define the local macro 1 as the loop index. Following

| an equal sign is the range of values that 1 will take on as a numlist, such as 1/4, as

| here, or 10(56)50, indicating 10 to 50 in steps of 5. The body of the lpop mmqpa
or more statements to be executed for each value in the list, Each time through the
loop, the local macro contains the subsequent value in the list. ' e

This example shows an important use of forvalues: if you loop over vari
names that have an integer component, you do not need a separ
variable. The integer component need not be & suffix; we

== =1




6.227221
Min

5.665083

! @Pﬁumr@-&atcd with the local macro taking on e

wgw also [Jl.ll.CE the values in a local macro and e
eommand. In this syntax, we do not dereferene

in t-hlz U\am;rlt- above.
ﬂ-ﬂd fﬂrﬂaﬂl &3] ]mr[-

o 'E
ace to ac f‘ul’.l“.'lh-ﬂi |:'-1Jii- in one ‘vli'l"ﬂ it

fail B’th for replace to function the first L
have be e




2.2.11 Scalars and matrices

Statn nlso lets you use scalars and matrices with anulysis communds. S i
macros, can hold both numerie and string values, but a numeric scalar ggn i
ane numeric value™ Most analysis commumands return one or muw
sealars. For instance, describe returns the sealars £(N) and r(k),
the mumber of observations and variables in the dataset. A scalnr is also mﬁnh-ﬁ'ﬁ#

numerte resnlt—suel as the mean of o variable—than for storing:

nseful for storing one
tiat value in a Stata variable containing maxobs capies of the same mumber. A sealar

may be referred to in any subsequent Stata command by its name:

. mealar root? = mgre(2.0)
. generate double reotGDP = gdperoot

Unldike & macro, o scalar’s name gives i value, 5ot does not have to bedereferenced; l
wop section B2 for more informntion aboul scalars:

Siuta's estimation commands create both scalars and Stata matrices: in partieular,
the matrix e(b}, containing the set of estimated parameters, and the matrix alVl,

{ u|hu=|:1tm the estimated variance-covariance matrix of the estimates (VOE). You canuse.
ata's matrix commands to modify mutrices and use their contents in later coramands;

spe soction B4 for more information about Stata’s matrices.

22.12 Command syntax and return values

Srata’s analvsis commands follow a regular symbas:

emdpame vardist | 4f | irrr! s aptions)|

A e disenssed in section 2,16, most Shata .I:]IJL\ sis L‘{IIIIH'I.!]-“[I:! let you SFE"-"IEH if Erp m
wses, Many analysis commands have options that modity their behaviar,

in range Clu

Stata analysis commands can be either e-class commands (estimation commands]
or r-cliss commands (all other analysis commands). The command's class determines
whether its saved results are returned in () or e(). The r-class cominands return ﬂlm
lements in £(); which von can view by typing return 1ist. sing the cm.dﬂh-,}ll

we summarize the pop variable:

. wan htep:/ wwv.statn-pross. .com/dntn/iness /cansuslc, clear
{1880 Census data for HE and NG states)

, BusmATize pop
Variable l Oba- Moan  Svd. Dev.

pop | 21 5142.803  4676.152

12 The leagth of » string scalar



gaved results for summarize, which include s
the output, such as r(suz), r{Var), o
wse them in later computations, for instane

d moan is ‘r{menn)'/‘r(sd)’"
2. O0E2SA00534 /4675 . 152357015031

command, such as mean, we can disply (&




=

2212 Command syntax and return valies

(o matriz Tt ab)
afb}[1,2]
‘popurh

pap
g1 6147.9026 3820, TTEE
. matrix list s(V}

aymmetric a(V)[2,2]
_pap popurb
Pop 1040611 .9
popurb  B49907.5 TOB3G7.06

The mean command saves several items in e 0, including the mhhmatb}mﬂn%
containg

Matrix £(b) contains the means of both pop and popurb, whereas e(V) contains the
estimated VOE. ereturn 1ist also displays several scalars (such as a{H‘J‘ﬁ,ﬁﬁ;ﬁl‘:ﬁEﬁ:&
phservations), macros (such s e (varlist) of the command). mattices, nm.‘ll;he i
e(sample). Section 4.3.6 discusses how to use estimation results in more. detail.

Exercises

|. Using the cigconsump dataset, generate a list of the staredds corresponding o
Ui far western states: Washington, Oregon, California, Nevada, Utah, Idaho, and
Arizond. Use this list tokeap observations from only those states. Drop the stata
variable, and ecreate a new string variable, state, that contains the full name of
thestate, save the dataset as cigconsumph,

2, Using the cigconsumpW dataset, generate a list of the unigue wluﬁufnbahg;ﬁt
and state (with levelsof) as local macros. Use reshape to ke 8 [
datuset of the packpe, avgprs, and incpc varigbles, Using foreach, create & se
of tables for each state (labeled by the full state name) listing these three v
by year: Compute correlations of the states’ packpe variables.




3 Organizing and handling economic
data

organizaticnl sehemes for economic datn:. Fhe eross see-
ross section /time series, nnd the panel dataser. Sec-
ating and summarizing panel data. Sections G-9

- combining and transforming datasets: append

o el iBeuSses ESITE o-Ales Lo ||r."n|':|<'|- I

Cross-sectional data and identifier variables
s and finance 15 Known 88
listinet individoals at a given
vary over the units, suach
mtries. The variablos
y piven period, suchas
or of 2004, or cities’
measurements [rom
of cities might contain variables
il pop2000 containing the cities pepulations
tlinsi in time-series doti, the ohgerymtions in
A cross-sectional datasel are an © subscrpt, witheut referenee to £ (the
LRI )

In & cross-sectional dataser, the arder of the observations in the dataset 1s arbitTary.
We could sort the dataset on any of its variables to display or analyee extreme values
of that variable without changing the vesults of stutistical analyses, which implies that
e can' use Stata’s by warfist: prefix. As disenssed in section 2.1.8, using a by varlist:
prefix requives that the data be sorted on the clefined by-group. which you citn do easily
b usiing. the sort option of the by werlist: profix; that is, type by varltst, 'sort:. Fhme
saries, on the other hand, must follow a chronological order to be analyszed meaningfully.

Oross-sectional datasets usually have an identifier variable, such as & survey ib
assigned to ench individual or household, a frn lovel identifier (e, & QUSIE code),
industry-level identifier (eg., o two-digit Standard Industrial Classification |s1c]) code,
of a state or country identifier (eg, MA, OT, US, UK, FRA, GrER). Often there will be
more than one identifier per abservation, For instanee, a survey might contain both &




entifier available in ay ' |

m'“ H-pl.!]il'l!-'.'l eI OTIHTI ""“-*l_f'r‘-*iih, oy
e prices af the Standard and Poor's (S P a1
diy: o pure eross section. Buab we might aly haw
fipm's share price, or that share price and the Spp
Iﬁitﬂ' iB A time-serics dalaser, anel vach observati
1 ﬂlﬂl i. .I'.'l ﬁl_lll.‘ Aeries is seduene ' "‘}-”""f'i'itl.i.-'m
'_.nt:i_l, mgﬂInI interval, guch a8 &, ri. 1y Eiars Wik
mth (though not necessarily an cqual interval of clod
o It trading day of each month may be L 1 90 and 3
(given holidays), For business-claily data, such as stod
(usunlly) Tollowed by Monday, But say that you had s listd
o hiﬂh rocords the successive jobs held and woges eamid
WIWN received raises or took ponew job, Thoss data

.:. ﬂﬂlﬂ“dﬂrf bt II'Lr‘}' Are nob bimce=series onta

d m Telemtified |‘r}|' i Stata cate varinhle, which can d&
quml:ﬁ “lﬂlll.ll.[j*. weekly, daily, or goneric (undated) s
o tt?l F’.’T‘f“’“"’ thist this date 1r'-'.”'|'r1|||':' defines the time-sns
5 mji':;l;'rsmc d““-‘f wu‘iﬂl:llﬂ should have one of the date r'Jfl'll"."
i or daily) so that dites will be reported as cilendar S8

commands cannon handle gaps. or missing valies, ine
I mlml. fquarterly, monthly. or weokly series might 8
i }Tﬂ.ﬂ‘iﬂa often have Eaps for weekends and el
I:Iﬂ.ll- dﬂ.'ll'-".li for example, vou could define 8 ypral

(0} 05 the dnte _ ;

8 W‘]l-l.l taset hefore om can use Stakd# s’
SBUE even i yoyy o not need o time-series S
YO transform data so that you 60 #
ey, yin My use generate, Huﬂﬂﬂl
ey lastdatey, This funekion wlich £
v By han observation “I)IITﬁ .
Y Trom the beginning to 0 55
Y b given as 41 tind -'!""'mﬂmj

I'I'h;-u-:' _hﬂh- 1ol ol F"‘F .




433 Pooled cross-sectionnl time-series dath

3.2.1 Time-series operators

Stata provides time-series operators—L., F., D., 8, —which let you specify Tgs; leads
(forward values), differonces, and seasonal differences, respectively.  The time-series
operators make it unnecessary to create aonew vacable to use o lag, difference; or lead,
When combined with a murelist, they let you speoify ooset of these constracts in ane
expression.  Consider thoe lag operator, L., which when prepended to o variable niome
refors to the (first=) lageed value of that varable: Lox. A mamber my follow the
operator so that L. x would refer to the fourth lag of x—but more generally; o numibist
may be used o thiat LE1/4)  x refers 1o the first through fourth lags of = and LEL/4), (=
¥ =) defines a list of the first through fourth lagged values of each of the' variables %, v,
anid 2. These oxpressions may be vsed anywhere that o varlist s reguined.

Like the lag operator. the lead operator F. lets you specify future values of one or
motre variabies, The lead operator is unnecestary, sinee n lead' is & negative D, and
i expression such as Li=4/4) . x will work, labeling the negative lags 0s lends) The
difference operator, D., generates differences of any order;: The first: difference; Dixis
Aoy oar s = Ti—1. Thesecond difference; D2 . x, isnol @ = Tr—9, batt rather i"l.{-r—‘lI:}‘n that
i, A — weo) or xe— 20y 4 Trose You can also combine. the tme-series operators
so that LD.x is the lag of the first difference of = (that i, £y — 2—2) and refers o
the same expression, as does DL, %, The seasonal difference S. computes the difference
Betwoon the value in the current period and the period 1 year apgo. For quarterly detag
S.x pronerates 1 — riog. end 32 0% gonerates Iy — T =8

Im-addition to being easy to use, time-serics. operibors will ‘also never Iltlﬁl‘.‘!].!ﬁif}"
an obeermtion. You could refer tooa hl.;-.'_ﬂr.‘l] value as Ki,_'l'-l—i] or a st difference as
x[n] = x[m-1], but that construction is not only cimbersonie but also dangierons:
Consider ap annual time-series Jdataset in which the 19581 and 1982 daln are followed h'!l"
the data for 1954, 1985, ..., with the 1983 data not appearing in the dataset (1.6, not
revorded s missing values, but physically absent). The phservation-number constructs
above will misinterpret the lagged vahie of 1984 to be 1982, and the first difference for
1984 will incorrectly span the 2-year gap. The time-series operators will not make this
mistake. Since tsset has heen used to dehne year as the time-series calondar virinble,
the lngged walie or first difference for 1984 will be properly coded as missing, whether
or not the 1983 data sre stored as missing in the dataset.® Thus you should always use
time-series operators when referring to past or future values or computing differences
in a time=series datasel.

3.3 Pooled cross-sectional time-series data

Microeconomic data can also be organized into pooled cross-section time
every observation has both an i and ¢ subscript. For example, we 1
responses from 3 weeks' presidential popularity polls in which' each




to observation § ng
gw;lshcs for each m

-g,-[ihh 1 observation per year, conftaining the ye
ﬁm‘ pnpuiatmu of cities w.unplv:l im that year !

“ﬁéh&ﬁﬂl’u LhE}' cannot be used 1o trace il]-lli'-'ﬂtluh
much less useful than panel or longitudinal daty

liZation in microeconomics, macroeconomics, and financ®
;Lwiﬁwﬂﬁnmm&m&&mdsta called pane! or longitudinal data. Pas
! ma'l:mwmmnnmun the same imdividuals over several periods.” Perliaps i
.E@ .  longitudinal study of howssholds is the University of H'l' higan's Faee
,“ﬁ'q:u{um Démnﬂ;&’%éeﬂﬁm} an annual survey of (originally) 5,000 Lousehod
carried put since 1968. On the financial side, S&P compu frm-e5®
- characteristios are ane STAT databases of
h:;mﬁﬂftham iMportant sources of panel data for financial research

mmﬁﬂﬁ.ﬂﬂﬂhﬂlﬂnidu&] s observations are identified; alkre

! MERSUTCS not present in the original data. For exxuap 3
M“dt;l;i::;l::s datasey gathered from repe -'1“;3 '*“m.’
m e M aﬂmeaau:o their financial wealth ,:HIILSJI
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mu. ¥our's GDP growth of
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clservations will correspond 1o unit 1 the second T to unit-2, and so on,. However,
ceoncmic and Anancinl datn are pften oot avadlable o balanced form bocnide some
individuals drop aul al a |||.|_|'||'r:\'|'.-|r LAY

Furthermore, if we constrain analysis to o balanced panel, we create survivarship
bing. For sxample, the S&P COMPUSTAT database of LS, firms contains ) years of
anpnal Bnancinl statoment data—Dbut only for those rmes Chist have existad for the
entirg period. Theset of irms is thus nnreprosentative in omitting startups {even those
af aze 19) and firms that were taken over during that time. Although the algebra of

Inta transiormations are] ectimmbors e --ir'.|||'|||:.r'a.| with u balaneed ;}.:!.Ill']. 1 afton
eedd panel tooavoid such bisses and mitigate the loss of

Lo make 6 easy to work with any st of observations;
can he uniquely sdentified by ¢ and f. Unlike- Stata;
ges regpire. o Badanced stoicture withe 2T

natrix langu

v : SR T
vhservations on each of 6 wnits, even il some of them are wholly missing®  You' cin
use teset to indicate that the datn are panel dota. The'same command that definesa

gories calendar for o time series may specily te pane] wariable s ol

] 1 [;

b any integer variahie
it The integer vilues
w3 321, 326, 331, and
varinble, such

twelot ate abbreviation, we must encedea that varinble to dreate s poneltor

wir could use three-dimt 810 cod

] Bl QAR O Ly ol iy ape jedenbiecd By et

LT wort the ranges of panalvar and fimena

3.4.1 Operating on panel data

] sforming panel data and estimating the
wetric models that take acconnt of the nature of the data. .'\:l'l.}"
1 funetions that support & by varlist: may be dpplied to panel data

ar 45 the hv=var :':|||||'4'. e |'i|_.t| e dlati .|1|i'||.l.':-'i!-i (&1} L-Nil!l'l ||.£I|1||. Hﬁ.l:lll
ivalves penerating summary statisties Chat remove one of the dimensions of the data.
You m 5 for each year or serage e
rales over vears for each state, Yoo can compute these sets off summary statistics by
using the eallapse command, which produces a dataset of summary statistics pyer the
elianents of its By (varlist) aption. The command syntax is

VANIE Lo COIpPUEs asnermpe LAy rabes peross sts

G You con ke Sinta's enf1l conmmand 1o ganosaie suili o Stedebins from an aobolinced panell’




list of [ Cstnt) | target papagy
of the descriptive statistics vy
additions: e.g.. all 100 perem
is mean. To compute more

Wbl th

1o be created. The by (varlist) option speci
=: n for 'e;'_:!,{'.h unique value of the b:‘”["’i"ﬁﬂl
o syntax, see D] collapse.

R |

ﬁoﬁ’tth‘;ammml firm-level data for 10 U.S. firms over 2 sy
S e We first summazrize three variables over the el

| company, 1 to 10
 yoar, 1935 to 1954

Hean Std. Dev.

1081,680  1314.47
145.9683 216.8753
276.0172  301.1039

w year o e

wonn of firms’ &

Bvalue (sum) totinyYr=invast (mean) ksvock, by(year)
WRvBlue: totineYr hmpock

_ A
figure 3.1 1o illustrate that the cross-sectional s
two decades 7




Figure 3.1: Graph of panel data collapsed to time series

1 should take advantage:

o transformations on panel data, yo
ping facilities. Consider the dataset above. If the

lagged value of mvaiue iz generated with mvalue [ .n-1], you must explicitly exclude the
| first observation of each firm from the computation, Otherwise its lageed wvalue wmilﬂ;
refer to the last observation of the prior firm for firms 2, ..., 10. In contrast, you can

When performing dat
of the time-series operators’ housekee

s

. gonerate lagswalue = L.evalus N
withont considering the panel nature of the data. Each firm’s first ubaermugﬁ ]
1agmvalue will be defined as missing. '
data ave described in [xr] xt and [xT] intro.

Qeata’s commands for panel
Chapter 9 introduces some estimation.

command’s name begins with xt.
panel data in economic analysis:

3.5 Tools for manipulating panel data .

Se-man 34 hrtmduﬂaﬁ balanced and unbalanced p&nﬂl'ﬂ i
: -&mmdmemmﬁm” S



and handling o

y), and then wse tsset g
wvariable. You can use . ®
Wiggins 2000).  You need ﬁm:ﬁ’ﬁ

ple and its start date: L.

from ssc) allows you to ﬁf_,“l._m‘_._lﬁ

i fcompany)

need not end) in the same period.

data screening

ataoften apply particular conditions to screep date B

e or bwo anmal ohsoratis

L ﬁﬂlﬂl‘-thﬂn the 20 Vears avalis le for o [ A i
pseveral commands that vou ean s o estimationy

poeCtion .00,

chto describe the pattern of panel data, partioes

5 balanced or unbalanced.® This command ke

( and r{max) 29

3 unit, [f those ™

md‘ A8 diseussed earlior. vou ecould us i

Pfﬁ-_'l_l_el by filling in missing observations with i

O TEMOVE ity panel units with fewer than the mai=
- tEreate a new variable counting observations 'f‘-"
Uit variable to flag units with missing observali®

i te
but we may want to screen ot W;‘H
10, for instance, drop if obs < T

; m"""h?:minimaml number of 01 b
MIONL gaps. Some of Stata's HOE
L .ﬁ.ﬁhﬁm& .ﬂl’iﬂﬁq _n]t.llﬂl.lsh_
al the first and st




86,1 Unbalanced pancls and data screening

or “spells”, within a time deries ar within a panel of time series. A i
spell and starts a new spell following the gap. Thus obs == ‘maxobs
to & unit with o spell of ‘maxobs’. The routine is general andm I';Iia-
spells on the basis of a logical condition (for instance, the sign of a yariable i !
growth changing from positive to negative or a variible identifying the party in power
changing). We will use a simpler aspect of the routine to identify gapsin the time series
as shown by the calendar variable,

Consider the missing data in a modified version of the Stata Lﬂngft_liding,fw!_
Data Referonce Manual grunfeld dataset. The original dataset contains a balanced
panel of 20 vears of annunl data on 10 firms. In the modified version, five of those firms
lnik one or more obseryations: one firm “starts late”, one firm “enicls early”, and three

Nicholus Cox's rontine tsspell (availuble from ssc) identifies complete runs

firms" series have embedded gops;

. une hWttp:/fuwe stata-press.con/dat o/ imeuafgrunfeldiaps, cleoar

rtden
cogpany: L, 2, wa.,-10 n= 10
YAl 1985, 1898, ... 1954 T= a0
Deltaf{year) = 1; (18E4=-1935}+1 = 20
(cespanysyear unigoely identifien each obasrvation)
Distribotion of T_i: min B 5% 50N T84 a5y BaX
17 17 I8 20 20 20 20
Freq. Percent Cum Pattern
B 50.00 B0O.0D 1131111121111 11010
1 10,00 60.00 L 111111110311131111
1 10.00 70.00 G ER RN PR LR BEhRE B
1 10,00  BO.0O 1113111, 21000
1 10.00 90,00 1112111111131 181131
1 10.00 100.00 111111121113111311...
10 100, D0 IXAXREAXANAXAAARATAR

We identify these conditions by using tespell with the condition D.year == 1.
For series with gaps, that condition will fail, The tsspell routine r
variables, _spell, seq, and _end, and we are concerned with ;
the spells in each firm's time series. A firm with one unbre

arting and ending dates) will have = 1. A firn

ok



= 20 _
fies each ocbservation)
B0 751 a5

= 3

o4 111111111111
. .

 RERXIRERXKANCXAEKAAX

o retain firms with gaps but did not want to keep. any gl
y, o years) we could use the _seq variable, which s
clude _spell in the egen command that computes i

spell within the firm’s observations:

WH:BLALA-presa.cos/data/imeus/grunfeldGaps, clear
=

vation)
75
20




'3,5.2 Other transforms of panel data
Some analyses require smoathing the data in each p_a_:!!:_h tesmo
provides the most widely used smoothers, all af which can b i’ﬁ:l _
wch panel. For example, we might want a weighted mmring_-mr_sge of t‘nur
with arithmetic weights 0.4€0.1)0.1. That construct can b viewed as o flter app
to a series in the time domain and computed with tssmooth ma )

. togmooth ma wtavg = invest, uweights{0.1(0.1)0.4 <0>)

The weights are applied to the fourth, third, second, and first lags -::';f-'intrbnt, re-
spectively, to generate the variable wtavg. The <0> is a placeholder to instruct Stata
thiat the zero-lag term should be given & weight of zero. This command can alse be used
to Impose o two-sided filter with varying weights:

tasmocth =a wiavg = invest, weights(l 4 <6> 4 1)

This command specifies that o two-sided centered moving average be computed, with I
weights 1716, 4/16, 6/16, 4/16, and 1/16. You can apply the tesmeoth ma command
to panel data because the flter is automal ically applicd separately to each time series
within the panel,

Othier analyees wse finctions of the éxtrome villues in each series) For example, the
record() egen part of Nicholas Cox's egenmore package {available from ssc) provides
one salution. For example, i

. egen maztodate = recordiwage), by(id) order(ysar}
, egen hiprice = racord(share price), by({firm) order({quote.date)

The first example identifies the highest wage to date ina worker's career, whereas
the second identifies the highest price received to date for each frm’s shares.

3.5.3 Moving-window summary statistics and correlations

When working with panel data, you often want to calculate summary
sibperiods of the time span defined by the panel calendar, For inst;

20 years' data on each of 100 firms, you may want to calealate 5-
financial ratios. You ¢an calculate these averages with the tabs
command. You need only define the &ympﬂmdsuthe
) that selector variable as the arguments to tabst




neial research. in which some AR of o
or the last 12 months or the statdard e
25501, Tha

i
moving-window results is to use Stata’s rolligg e
istical command over moving windows of any desig fi

L iew clatase il 73

» series for ench unit of  ped

é:-npu.-:arr routine (available from s I'his compirtatd

computing an optimal hedge ratio imvolves computing jist a8

g between spot and futures prices of o particular commd

T _uﬁue.-mppurts time-series oporators, it o il Lo Comjs
itions. For example;

wph'&mﬁm‘rélati{m of an investment series be computed ¥
gaed with the last period of the window (vin option eadh®
£ Like mysumm, the mveorr command operates o
Pmd:]u

i Tess com/data/ineys /grunfeld, clear

_*m_‘!?'l'.“}- ganerata(rho)
range(-1 1}) 3
reot Valuw, Moving Correlations by Firsl}

four firms investment-market valug €068




36 Combining cross-sectional sud timme-serios datasets

Invaslrnentvs Market Value: Mmﬁng Gnrr&iaﬂanaﬁyﬁlﬁm
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Figueo 3.2 Moving-window correlations

3.6 Combining cross-sectional and time-series datasets

Applied economic analysis often involves combining ditascls. You may want to pool
the data over different cross-sectional units or build o duteset with both pross-geet fonil
anid bime-geries charneteristios. In the former cnse, vou may have 200 abservations: l-h-H
reflect. probable voters’ responses 1o a telephone survey enrried out in F'lﬂla.delphin.rm
clservaitions from that sane survey wdministered in Chicago, and Eaﬂﬁbﬁﬂnmhium.m
vaters in Kansas City. In the latter case, you may have a dataset for each of the sk
New England states contuining annunl state disposable personal incame: and popy
fon 1981-2000. You may want to combine those six dotasets iJlLﬁlJlll‘.tﬂﬂ-tlHﬂ-
'lemhlﬂl:' them-—over cross sections or over the ﬂilﬁ-ﬁL‘t'l-iﬂu an i




dﬁ asets for Philadelphia. Chicago, and H&%
i wthem into one pooled dataset, we must firsy
are identical. We will use the append mﬂmu
; : different, variables to Stata, we cannot combiye g
d expect them to properly align. We can use Tenass g
mmgg mat‘rnh We will also want to be able to recover the
dataset, éven if it is not present in the individual datas

that i;h,e first 200 observations come from Philadelphia; the s
jmd 80 on, but if the dataset is ever sorted into a different order
imi:hl@.ﬁqﬂ-lﬁﬂt Thus we should insert a new variable, city, into each ditase
Im'uﬁ-'hc either a numeric variable with a value label of the city's name or st
I tﬁﬂl’ﬁ&hij&mﬁqﬂ into numeric form for use in a by wvarfist:. We can (b
use append to combine them:

e
using

W using keity

¢ yotedcities, raplace

H@nhamt string vamh]e city, containing the

jisasets iy, m&ﬂtww.:.

city name, we can use

ﬂﬁj’ ldﬂnhﬂe&r Wi could il 59"

o o " then use the citycode variable
H:set. of city-specific dummy variables with the t8
Hon; see {R] tabulate oneway. Although our pxanip! hﬂ‘f

ets can
be combined. any number of datasets could be €%

A i for each variable, the measurements for

Separate observations, Since we have m“'l’m
: nrdgp, there is no relationship among "0
3 s and respondent #1 in Kansss *
'mmpl.ltat.lnus that would be cu
v instance, vou can easily mmp"“- .

W @ Chicaga’s or whether all th




7.0 Using merge to add aggregate characteristics,

3.7.1 Using merge to add aggregate characteristics
The long-format dataset we constructed above is useful if we want to add ag .
information to individual records. For instance, imagine that the voter survey,
contain each individual's five-digit ZIP code (zipcode) along with his or har I ;
for the presidential candidates, and we want to evaluate whether the voter's income
Jevel as proxied by the average income in her ZIP code affects her voting pmﬁ_&t‘nn%
How may we append the income information to each record? We could use a sequence of
replace statements or a complicated nested cond() function. But you can easily create
4 new dataset containing ZIP codes (in the same five-digit integer form) and average
income levels. If these data are acquired from the U.S. Census, you should have records
for every Philadelphia (or Chicago, or Kansas City) 21P code or for the entire state an
which esch city is located. But you will be using this file merely as s lookup table. We
ean then sort the dataset by 2IP code and save it as incbyzip.dta. We can combine
this information with the original fle by using the following commmands:

. pae woteleities, clear

. Eart Eipcode

. merge =ipcoede ueing incbyzip, nokeep

Using merge in this way is known as a one-to-mmany mat ch-merge where the in-

come for each ZIP eode is added to each voter record in that ZIP code. The zipcode
variable is the merge key. Both the master file (voteScities.dta) and the using fite
(incbyzip.dta) must be sorted by the merge key. By default, merge creates a mew
variable, merge, which takes onan integer value of 1 if that observation was found only
in the master dataset, 2 if it was found only in the using dataset, or 3 if it was found
in both datasets. Here we expect tab merge to reveal that all values equal 8. Each
voter's ZIP code should be mapped to a known value in the using file. Although many
#1P codes in the using file may not be associated with any voter in the sample, whit.;h'
would yield a _merge of 2, we specified the nekeap option to drop the nnneeded entries
in the using file from the merged file, We could then use

. Basgert _marge == 3
. drop _merge

to verify that the match was successful. Using merge is much easier than us
and complicated do-file that uses replace. By merely mﬂdtijnnghh& sing
comrect any problems in the one-to-many merge, If we had sev ;
imi_gl;]_eszm.add.tu_ the record, such as nwrﬂge._faﬁif::m-:
‘and average proportion of home ownership, we could handle
- merge command. This technique is useful for working with i




dﬂws bl'jr “Fi-ng B GNE-Lo-gpupl
e datasets whose observations

p;eﬂbiﬂm that arises when there gre N
walues of the merge key variable(s), Mty
« more than one value of the merge key varijj
A de-file to have a different number of g g
u.n error. A eoding error in ane of the files

‘uge the duplicates commind to track down g
blems, specily gither the unigmaster or uniqusing pefis

the ZiP code data should satisfy uniqusing in s |
3 ted only once in the file. In a one-to-one match-mem :
. opulation data, you could use the unique option &} 1
and uniqusing and asserts that the merge key be uniues E
O 3 :
:

and merge, Stata lias one more command that combines datay

: often since its task is more specialized. The command cresiss

by forming sl possible pairwise combinations of the two datasels, £

e ey Usually, you will want to use merge instead of joinby 2
k1
8 The reshape command

-.L 1A e in I'ﬂ"_'g o wide format, vou may need Lo “:“rg:“mr.:,

s b e . mmnﬂﬁ]!matmh& statistics, or praphics. To solve s ¥ i

IR (m[nl l"ﬂﬁhape\'l pommand, which reproanizes 8 diﬂsﬂr
d&m files: Some statistical packages do not have 87
mtl.‘l 'u’l"l.":li_u the data to one or more external texl ks
:ii.t.hm“t‘m step is not necessary in Stata, bt
el vt ‘:ll_ma::.r D.eﬁj, to do some experimentation 1 0oy
m'“’h‘ﬂ' 15 all the more reason for using & oS

= PO & similar application for reshape:

L. od
“Ewith variables labeled 1980, ng

E - -] FDPJ.E?G\ P“:"P ici d
srvations identified by each of the v N

:.'I!ﬂ f

Pt syntenns, such os SQl
e 'p_rfmm_:.- kay for the datss

wyntams will rocognise 3



48  The reshape conmuord

. une hegp:/fveu. stata-preza. com/dara/izoun freshapaitate . cloar

1Nt

mtaksa peplaTo paplfBEn paplieo PP araa
e cT 1365841 ~B164583 4241557 S2648021 -B7 1891
] i G432207 0610538 ESE34GZ . 94TTA2E JAB11429
3 ME < BHTAOLT 5052388 B L 2THI1E4 ALETIE
& NH LB04To9 AT G401 JEA140049 1180188 9447446
5 Ri B84178 (2651405 2110077 AOTaTOR 0530642
11 I VT L10EsET S Ma5188 BHA4082 T2iEa SGTE948T

We want to reshape the dataset into long format =6 that each state’s:and vear's
population value will be recorded in one variable. ' We spoecify reshape long pop so

that the variable to be placed n the tong lormal will e derived from all variables in

agiel whoge names start with pop. Thet command works with z; ; dnta; in Stata,
fier that varies within each panel. Here the
3 5 the 403 variable; heoe the 500 option
: retained as a new variable, yeaz:

TEREs

hie i phservations of the original wide dataset have boen expanded to 24, sinee each

state had four population fgares in the original form:

(Continued on pext page)




N, and each mes !‘-'l“ enent

Fm consists of variables u;-.iwwd by J = 1,. F1E

e names or stubs of all variables tll'ﬂ are in ti“

.'i‘eam of Pﬂpulnthm d.u a; this same Tij
. our datasot might contain additiond!
PF2000 with gender breakdowns
'S varlist would then read pop PO
analogousty.

'bluu J identifier. Here the 'il
¢ Instead of state populati

Black, popHispanic, 15

to spocify that e

then encade). Variabies !




W contimie: with the long-format datset that results fr
now want the data in wide format. We then use reshape wide to specify tha
variable be spread over the values of j(year). The rows of the resulting wide-f
dataset are defined by the i{state) option: =

. ‘reashape uida pep, fl(stmta} j{year)
{mote: j = 1970 1680 1950 2000)
Data long =» wide
Numbar of obs: 24 =3 6
Humber of variables i > ]
i variable {4 valuos) yoar =»  (dropped])
xif variables:
pop  -»  poplfTO poplfEd ... pop2000

This command is the same as the reshape long in the prior example, with long
replaced by wide. The same information is required: you must specify the variables to
be widened (here named explicitly; not by stubs), the panel’s i variable, and the within-
panel identifier (j variable). In creating the wide-format data, the j variable is dropped
because its values are now spread over the columns pop1970, popl280, popis90, and
pop2000. To illustrate,

. list

state popleT0 poplSE0 popiaad pop2000 area
1, CT  .1358841  .61B4582 4241557  .2648021 LBT1E81
<48 MA  .B43770T 0610635  .B9E3467 .9477A26 4611433
3. HE ~SETE0LT .BE523808  .BR1B24T .2TES1S4 CA216T36
4. HH CBO4TO48 CBT14491 JBE14084 LL180168  LB044TSE
B RI LBBAITE (2551450 -21 10077 LAOTeT02 JOBBOEEZ
6. vT L 1086673 0445188 5544082 LT2I8G92  BTES4ET

. reshape long pop pop@M paptf, i(state) j(year)

You need to choose appropriate variable names for reshape. If our wide di
contained popi970, Pop1980, popull990, and pop d
to specify the common stub labeling the choices.
state the measures pop1970, popl970M, ‘and popl97OF.

2000census, you would 1
However, say that we have for

The command




to make radical changes to the organization of you

ans into variables and vice versa. This functionalit
‘matrix languages, but it is rarely useful in St:at.ﬂ belmus
Al Wh." nhgmnlmnts af string variables. Itfnli variables m_rh
this command may be useful. Rather than using xpose. conside
data with the byvariable() option of infile (see [D] infile (fre
1 need to transpose the data, they were probably not created sensibl

)

iatistical analyses, and graphics creation. For some users. the command line is
nuisan e, 50 they applauded Stata’s dialogs when they appeared in version 8. But ever
%@&rmmmm complete:commands in the Review window,

. g does not require you o keep-a record of the commands you issued, but most
| ;h that you be able to reproduce findings. Unless vou carefully document
ke process, you will not be able to reproduce your findings later, which
ous. With Stata, you can document your research by using a do-file:

Sta ’hmmmnné-iumaynm:«: makes it easy to document your data transformations

" & sequence of Stata commands and can be invoked by selecting

© meny; by double-clicking on its icon, or by issuing the do command
wﬁa do-file will stop if it encounters an error. You cal
the Do-file Bditor in Stata or any text editor. A do-file

.imuﬂt'mmﬁ in a do-file, as long as they follow Stald

THments can help you remember what you did in your
revision date

in & do-file is good practice.

MIWMM or thousands of Stata command®
them i & massive do-file would be crumbersome®
@ that calls a sequence of do-files to perfort
i ' cleaning, data transformatioh
ar output. Each step wil!
strategy, then it hecol

or to rebuild o 4%
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1W.ﬂf the same steps as Igﬁt E@lﬂ.":"":s, ‘i‘nrith A : ell:o
of do-fles, you noed only copy those files and apply the

No software package will foree ol to be a responsible researcher,

following good research habits easy so that you can return to a
exactly what vou did to generate the final results.

3.9.2 Data validation: assert and duplicates

Before you ean effectively manage data, you need to make sore that ﬁll’ﬂmﬁvﬁlnwﬁf"ﬁhg;
raw data make sense, Are there any apparent coding errors in the dnﬁm:vnluu‘}'-ﬂh@’gllﬂé%
any values of numeric variables properly be ciaded as some sort of missing d%m!ﬁi
discussed above? As mentioned, to construct an andit trail for your data mﬂ.‘ﬂﬂﬂ!ﬂ.ﬂﬂ-.
you can create a do-file that reads the raw data, applies several checks to ensare that
data values are appropriate, and writes the initial Stata hinary data file. This data file
shiould not be modified in later programs or interactive analysis. Each pmgtam that
s the fle and creates additional yvarinbles, subsets, Or METges af the data shonld save
the resulting miodified fle under a- new name, Each step in' the data validation and
transformation process can then bedocumented and reexeented as needed. Even if the
e dlita are provided in Stata binary format from an official souree, you should assume
that there are coding errors:

von should follow this method from the beginning of the duta-management provess.
On Statalist, nsers often say such things as, “I'did the ariginal data trmfmnm;ﬁmﬁi‘ i)
{or merges) in Excel, and now | need to ,..." Ewven if you are mone familiar with &
spreadsheet syntax than with the Stata commands needed to replicate that syn!
should use Stata so that you can document andl reproduce its operations on
Consider two research assistants starting with the same set of 12 spreacshe
instructed to construct one spreadsheet performing some complicated ¢
processes by using copy and paste, What is the probability that the two :
produce identical results? Probably less than one.

The proposed sohition: export the 12 spreadsheets to text
Stata by using a do-file that loops over the . txtor . GEY
ing the appropriate ap)
ructed. will produce a




Version of census2a for data
validation purposes
e 23 Sep 2004 15:49

:;;ﬁi-‘*‘m,wx ‘of memory free)

' Mugi “display value

type format labal variable labal
strid f14s
strT U8
floaw. 49.0g
float %9.0g
£loat; e 0g
m"' I Obs Hean  Std. Daey. Min Mas
L= TS A
e R 49 azgaTar 483627 S e
“Spdaze 50 35.32  41.28901 24.2 321
Eces 50 104.3 145 2436 40 V167

ﬂa‘ﬁth&dam types of the five variables. The first two

%.M.T"&Mem; respectively), whereas ot}

nd : 1er three are float
MW ta'be appropriate to the data,

reveal M‘u‘erﬂ et | anomalies for the numeric variahles. I‘l-“p"_
| Dnﬂsmtl'. which is clearly an error. Furthermoré.
tes! mlE:]sl. ?HB S_-mt'ﬂ‘ 1“dimtiﬂg some coding errors
d but n mmrf: u;::luns 'l recent decades should be gnﬂlfﬂ'
o is ive ang '#?fmt' dn“'fi”i{lu. A median age of 321

) 1@*)1; 504 el Likewise, the drate (death rate)
T Value of 1) times that number suggests

are string variables

tonand Visually seanning for the problen¥
e ® BEC iniberested in data-validation
Brvations. Wi use asser®



#.9.2 Data validation: assert and duplicates:

to check the validity ﬂf thest three viriablos, and-n M’ﬂfﬁﬂiﬂmmlm'@ﬁ“
observitions. 17 all checks are passed, this do-file should run without errar:

ame http: /v stata-pross. com/dataf imaun/censusit, slear
/4 ehack pop

1ist if pop < 300000 | pop * 367

nnp-r:popt.lpnpime'lpnpchnT
// ‘chack madage

Liat if medage <= 20 | modage >= 50

apeert nedage > 20k sodage < 50
/i chack drata

Tiat if drate € 10 | drate >= 104+145
agsert drate < 10 k drate < 104+1458

The first 1ist command shows that population should not be missing (€ ., as above),
that it should be at least 300,000, and that it should be less than 30 million (3.0 = 107).
By reversing the logieal conditions-in the 1ist command. we can assert thih all chses
have valid values for pop:!! Although the 1ist command nses |, Stata's “or” operator,
the assert command uses &, Stata’s “and” operator, hecause each condition must be

5 median age should be between 20 and

satisfied. Likewise, we assert that each state’
=) venrs. Finally, we assert that the death rate should be at least 10 per 100,000 and

less than fi + & from that varinble's deseriptive statistics, Lot's run the datasvalidation:
do=file:

. ume hetp://wwe. stata-pross . conldata/ {metin/cansus?b, cloar

(Vorsion of census?a for dnta validation purposes)

. list &4 pop € 300000 | pop > 3u¥

{ state region pop  medage drate
4. | Arkansas Sopth -0 30,8 L] 4
10. Gasrgin Seuth 28.7 81 .
30 o

15, Iown N Cntrl [i]

. amgart pop <. k pop > 300000 k& pop <= 307
3 contradicticns in 60 observations
assertion iz false

et FH

and of do-file

r{9)z

The do-file fails to run to completion because the first ass
values of pop. We should now correct these entries and rerun the
without érror. This little example could be expanded
each of several hundred variables, and it would exi




2 reveals that only 48 states have region defined. We can use one of
i by ibulate command: r(N), the total munber of observations
ion' that we should have 50 defined values of region fails,
where tli_ftwai'iablﬂ equals string missing (the null string) identifies
as the misclassified entries.

3t iCFreg, the ;umber of completed pregnancies. Not *”I'IJ"
%m.:ia_-.lm bound of zero and a sensible upper bound, 18
= .E[ala;'- should yield only zero values.

string variables that should take on unique valie
"’m’lm cases—in which a eombination of VW%
h‘{}r in database terminology),'” buf G




. usn htps//uve. stata-press.con/data/iseus/const
{Version of censusin for data mnmm-._gwmm

. duplicates lisc state
puplicaton in terms of ntate

oba: HEATS

16  Kansas
17  Hanmanm

amsart r{mum) == 0
aspartion ia false

L4
ond of do-file
e(9);
The reture item r(sum) is set equal to the total number of duplicate ohservations
fouriel (here, 2), 5o the identification of duplicates implies that you need to correct the
ditaaet. The duplicates command could also be applied to numeric variables.

[n summary, following sound data-managenment principles can improve the quality
af your date snalysis, You should bring the dita into Stata as early in the process as
possible; Usea well-de scumented do-fle to validste the data, ensuring that varjables that
should be compléte are complete, that unigue identifiers are such, ancl that only sensible
values are present in every variable, That do-file should run to completion without error
if all data checks are passed. Last, you should not modify the validated and, 1Fnecﬂ&|ﬁ&tj"1
carrected file in later analysis. Subsequent data transformations or INETges uhﬁﬁ]d.éraﬂﬁ
new files rather than overwriting the original contents af the validated fle. Eb’ilcvﬁng
these prineiples, although time consuming, will ultimately save a good deal of your time
and ersure that the data are reproducible and well documented, '

ercises

|, Using the cigconsunpW dutaset (in long format), merge the state
that of the Stata Data Management Reference Manual dataset, ©
the uniqusing option since this dataset i5 0 pure cross section).
averages of packpe for subsamples ﬂfmﬂwabﬂvﬁmﬁi;
median value (hint: egen, tabstat). Does smoking appear (o

2. Using the cigconsunph dataset (in long format)




4 Linear regression

“This chapter presents the most widely used tool in applied economics: the linear regres-
wion model, which relates a set of continuous variables to a eontinuous outcome.  The
pxplanatory variables in a regression model often include oneor more binary or indica-
tor varinbles: see chapter 7. Likewise, many models seek to explain a binary response
varinhle as a function of a set of factors, which linear regression does not handle well.
Chapter 10 discusses several forms of that model, including those in which the response
varinble i= limited but not binary. .

21 Introduction

This chapter discusses multiple regression in the context of a prototype econoimic re-
search project. To carry oul such & research project, we must

1, lay out a research framework—or economic model—thit lets us specify the ques-
tions of interest and defines how we will interpret the empirical results;

9 find a dataset containing empirical counterparts to the quantities specified in the
I‘i'l.'l'IEI-:IJIII:HI 1“'-3'-!*":;

3. use exploratory data analysis to familiatize ourselves with the data and identify
outliers, extreme values; and the like;

4. fit the model and use specification analysis to determine the adequacy of the
explanatory factors and their funetional form;

?‘I

conduct statistical inference (given satisfactory findings from specification analy-

sis) on the research questions posed by the model; and

6. analyze the findings from hypothesis testing and the success of the model in terms
of predictions and marginal effects. On the basis of these findings, we may have

to return to one of the earlier stages to reevaluate the dataset and its specification.

and functional form. =

- Section 2 reviews the basic regression analysis theory on which' regression
fnterval estimates are based. Section 3 introduces a protolype economic re
studying the determinants of communities' single-family housing prices i

yarious components of Stata’s results from fitting a regression model of



uuudemnumehm: model and the baseline
w the conditional mean of a response

oap] = P + Paza e+ B
1y are fixed parameters, the linear regression model predicts
- sonnlation for different values of 1. T2, ... Ty
y i populati
mean value of single-family home prices in Boston-area communi-
student-teacher ratios, is given by
:E'i;:ring | stratio] = & + s stratio
s the mean yvalue of single-family home prices and stratio is the student-
"ﬂ!ﬁﬁmhl'-imﬂl'ﬁp reflects the hypothesis that the quality of commnumities’
tiphoty capitalized into housing prices. Here the population is the set of com-
‘Iﬁh?’ﬂmmth of Massachusetts. Each town or city in Massachusetis
ally responsible for jts own school system.

Average single-family house price




Computing lfoear regression estimntes

can of price for each value of stratio is shown by the appropriate point on the line,
< theary predicts, the mean house price conditional on the student -teacher ratio is
vorsely related to that ratio, Communities with more crowded selivols are considered
s desirable. OF course, this relationship between house priceand the student-teacher
atio must be considered ceteris paribus: all other factors that might affect the pﬁm
af the house are held constant when we evaluate the effect of & measiure of nammuuit;'
seliools’ quality on the house price.

In working with economic data, we do not know the population valuesiof By, B3, .00,
!-m_ Wi work with a sample of N observations of data from that population. Using the
Snformation in this sample, we must

1. obtain good estimates of the coefficients (8, 84, ..., Bk
2 determine how mich our coefficient estitates would change if we were givin an-
ather sample from the same population;
2 decide whether there is enough evidence to rule out some values for some of the
3

oofficients (31, &, . - - o 8 ) and

| useoour estimated (i, F4,..., 0% torinterpret: the model.

To obtain estimates of the cooflicients, some azsumptions must be mada about the
rocess that genernted the data; 1 discuss those assumptions helow and deseribe what'1
Smean by pood estimates. Before performing steps 2.4, 1 check whether the data support
Blicsc assumptions by using & process known as specification analysis.
[F e have o erosssectional sample from the population, the linear regression mocdel

b cach observation in the sample has the form

=+ Bxia+Biziatot o PR R ol 1

by oach observation in the 541|;'||;.|{' Te— [k AT N, The u process i a stochastic distur=

bance, representing the net effect of sl other unobservable factors that might influence:
The variance of its distribution, @2, i an unknown population parameter to be
stimated along with the 3 parameters. We assume that N > k: to conduct statis-
ieal inference. there must be more observations in the sample than parameters to be

stimated. In practice, N must be much larger than k.

We can write the linear regression model in matrix form as

y=XB+u



i |

Cu=y-xp

i

Efulx =0 e

goro-conditional mean. This assumption is that the .
slved in the regression function are not related systematically to
This approach to the regression model lets us consider both non-
atic regressors in X without distinction, as long as they satisfy the

Ve may use the zero-conditional-mean assumption shown in (4.2) to define a method-
-monier wﬂjﬁmal:-wrufthﬂ regression function. Method-of-moments estimators are
; ﬂ;hmqmmt conditions that are assumed to hold for the population moments.
Wihert wie raplice the unobservable population moments by their sample counterparts,
W Hm*fwl‘m]blamhun.tnm of the model’s parameters. The zero-conditional-mean
it ﬁi"’mﬂm W0 aset of k moment conditions, one for each ». Tn particular, the

ro-conditionul-mean assumption implies that each regressor is uncorrelated with u!

Elxu] = 0

Elx'(y~xB)) = o (4.3}

m%;::‘mm o mu:r!]:!e into the expression and replacing the

i ed values 3 in (4.8) yields the ordinary least squares
grlﬁ— K‘xﬁ = 0

(4.4

L vnriahle, |y (4:1), X isn it tis of
[ the scalar random arisie®




423 e sampling distribution of regression estimtes

BT = - e wor of the regression prok-
Criven the solution for the vector . thi additions] paranister of the regre :
Jom o the populition arinnee of the stochnstic disturbance - mi b estimated a8 &

fimetion of the regression resitlunls
g

Y
i B BT (4.5)
N=—k N—k

selinre (N = k) nre the residual degrees of freedom of the ropgression prabler. Thipositive
aquare voot of &2 is often termed the standard error of regression, or ool mean sepuared

prror. Stata wses the latter term nnd displays & a5 Root MSE.
The methiod of moments is not the only approach for deriving the linear regression
wetimator of (4.4), which is the well-known Forrmila From which ' the OLS estimator s

durived.®

12.2 The sampling distribution of regression estimates

Tl 15 estimator A is a vector of random wariables because it is a function’ of tha
pinelom variable g, which in turn is a funetion af thestochastic disturbance o, The GLS
pstimator takes on different values for each sample of N observations drawn from the
population. Beeause we often have only one sample to work with, we may be unsure of
Hlie wsefulness of the estimates {rom that sample. The estimates are the realizations of
the random vector 3 from the sampling dist p‘hurrrm of the 015 estimator, To evaluate
thie precision of & given vector of estimates (3, we use the sampling distribution of the
regrission estimatar

To learn more abont the sampling distribution of the QLS estimntor, we must ke
further asumptions alout the distribution of the stochastic disturbance iy, In clas-
sical statistics, the w, were nssumed to be independent draws from the same normal
distribution. The modern approach to econometrics drops the normality ‘assumption
and simply assumes that the w; are independent draws from an identical distribution
{id.el.).0

Using the normality assumption, we were able to derive the exaot finite-sample
distribution of the OLS estimator. In contrast, nnder the i.d. assumption, we must s
large-sumple theory to derive the sampling distribution of the OLS estimator, Bnaicnlhf,
lacge-sample theory supposes that the sample size N becomes infinitely large. Sinee no
renl sample is infimitely large, these methods only approximate the mpﬂhgﬂﬂﬁhuﬂﬁﬂ
“.I_'_ the GLS estimator in finite samples,  With a few hundred obmvﬂiquﬂrm
the large-sample approsimation works well, so these methods work well with appli

codnomic datasets.



‘a8 N goes to oo, the estimates will Convergs

Rnugh]}rspeakmg, if the probability thay the

elose to the population values goes to ane as
the estimator is said to be consistent,

of an estimator describes the set of estimates produced
plied to repeated samples from the underlying population,

g distribution of an estimator to evaluate the precision of
and to statistically test whether the population parameters take

f.haqry shows that the sampling distribution of the 015 estimator is
s normal.” Specifically, when the u; are Lid. with finite variance o2, the
or A has a large-sample normal distribution with mean 7 and variance
18 the varance-covariance mairix of X in the population; The
ATANCE of the estimator, o2Q ', is also referred to as a VCE, Because it
i, we need a consistent estimator of the Ve, Although neither o2 nor Q!
L, WECAIL use consistent estimators of them Lo construct o consistent
’Uﬂq-l Given that s* consistently estimates ay and 1/N(X'X) consistently
:“m’]ﬁ}"l 88 VOB of the oLs estimator,®

.
"":u

iency of the regression estimator

of Li.d, errors, the Gauss-Markoy
he OLS estimator has the smallest sa
S = 118 best, 50 that “ordinary least squares is BLUE”, (the 4
estimator) for the parameters of the regression model. If we con-

' Mﬂﬂl&ﬁm I.i_nen: in the PArameters, we cannot find a more
. ?ﬂ:;ampw of éﬁi'm&m:y refers to the precision of the estimator. If
mmﬂmzmmim than estimator B, estimator A is said 10
! aus=Markov theotem states that oLs is relatively efficient

heorem holds, Among linear.
mpling variance, or the great-

Inntor converges te a mermial distribution. Although
e S e

100 60 Inrge-sample theory,

the VCE should be multiplied by 1/, but




4.2.4 Numerical identification of the regression estimates
As in (4.4) above, the solution to the regression problem involves o set of k o
ronditions, or equations to be jointly solved for the k parameter estimutes By, B2
When will these & parameter estimates be uniquely determined, or e ically |
tified? We must have more sample obdprvations than parameters ta be ﬁtlﬂ%
A = k. That condition is not sufficient, though. For the simple Spwo-variable” re
sion model 3 = B -+ Baeip 4 wy, Var|zg] must be greater than 0, If there is no varistion
in iy, the data do not provide sufficient information 1o determing estimates of ﬁi arid

e

[n multiple regression with many regressors, X ., must Le a matrix of il column
cank &, which implies two things. First, only one column of X ean take ona constant
vitlue, so each of the other regressors mus have a positive sample varianece. Second,
there are no exact linear dependencies among the columns of the matrix X. The as-
sumption that X is of full column rank is often stated ns *(X'X) is of full rank™ or
S(X'X) is nonsingular (or invert ible).” I the matrix of regressors X contains k linearly
prodiet matrix (X'X) will have rank k, its inverse will
exist, and the parameters &;,..., G {1.4) will be numerically identified. ' If nu-
merical identification fails, the gample does not contain enough information for 1:3_._-'ta_-
ase the regression estimator on the model as it is specified. That model may be virlicl
as a description of the data-generating process, but the particular sample may lal:k
the necessary information to generate a regressor matrix of full column rank. Then we
st either respecify the model or acquire another sample that contains the information

needed to unigquely determine the regression estimates.

independent columns, the cross-

4.3 Interpreting regression estimates

This section illustrates using regression by an éxample from a prototype res
and discusses how Stata presents regression estimates. We then discuss how
the information displayed in Stata's estimation results for further comp
your program and how to combine this information with other esti
them in & table. The last subsection considers U

)i




ek that we would expect to 1,
r house. Our research questioy

include a measure of air pollution (Inox; the log
me Emm the community to employmen
hted distance to five employment centers), and the
in local schools (stratic). From economic theory, we
j&r"bf rooms to increase the price, ceteris paribus. Each
od to decrease the median housing price in the comum
i __t.i&, those legs conveniently situated to available jobs, and
Fed schools should all have less expensive housing, given the fores

e descriptive statistics with summarize and then fit a regression equa:

;__ﬁiﬂ;j—é‘m.n:t.“.n-*pr'ua-u..nﬂfﬂgtn!in&usfhpticaﬂn, claar

o1l ‘price data for Boston-area communities)

o m- price lprice lnox ldist stratio, sspl(0)

14 Nariable | Dbs Moean Std. Dew. Min Hhx

= . price 506 22511.61  9208.856 5000 BOO0H

o

m;in 508 0.941057 403255  &.5:7103 10.5198
_.m‘-"“““- BOS  1.69%001 2014102 1.348073 2184472

i 1.188233 538801 (1223178 2.4956B2

atratio BOE  18,45528 2.16582 12.6 22

.. M:ﬁi_he other Stata estimation commands, requires ns o speciff
=l [ I : ' 5
il ved by & warlist of the explanatory variables,

i mi'li*'-'m-.mlt ToGms Btratie
it M ] 1“.

Humbar of obs

F{ 4, Bb1) = 175.88
Prob > F = |0.0000
R-ggquarad = .5840
Adj R-squared = 0.5807
Root MSE - 068

P
[95Y% Conf. Intervall

000 -1, 1890904
-. 2180365

- 7241764
048

- _p40888!

u.ﬂlﬂ

—




482 The ANOVA table: ANOVA F and Resquared

The header of the rogression output describes the overall model est
thie table presonts the point estimates; their precision, and their inteeval

1.3.2 The ANOVA table: ANOVA F and R-squared

The regression output for this model includes the analysis of variance [ANOVA) 1 ta.bhih
the upper left, where the two sources of variation are displayed as Medel and Rﬂﬂm
The S5 are the st of squares, with the Residual S8 corresponding to 't and the
total Total 58 to ¥' ¥ in (4.6) below. The next eolumn of the table reports the daf:
the degrees of freedom associated with each sum of squares. The degrées of freedom for
total 58 are (N — 1) since the total 88 have been computed by using one sample statistic,
ii. The degrees of freedom for the model are (k — 1), equal to the munber of slopes (o
explanatory variables), or one fewer than the:number of estimated coefficients due to the
constant term. The model 33 refer to the ability of the four regressors to jointly explain
a fraction of the variation of y about its mean (the total 85). The residual degrees of
freedom are (N = k), indicating that (N —&) residuals may be freely determined and still
satisfy the constraint from the first normal equation of least squares that the regression
surface passes throngh the multivariate paint of means (7, Fay -« TR

l|'— f; == .r fo -+ ']5.1:1 + I-_gl-f;,

In the presence af the constant term .'i',, the first normal equation ]!IIEPHE!: that
il = - 5,%:8, must be identically zero.'! Thisis not an assumption but is an slgebraic
implieation of the least-squares teclinigue, which guarantees that the sum of least-
sgunres residunls (and their mean) will be very close to zern. 2

The last eolumn of the ANOVA table reports the M3, the mean squares due to regres-
sion and ervor, or the 88 divided by the df. The ratio of the Model MS to Residual
MS is reported s the ANOVA F statistic; with numerator and denpminator degrees of
froedom equal to the respective df values. This: ANOVA F statistic isa test of Che noll
hvpothesis'™ that the slope coefficients in the model are jointly zero: that is, the null
model of i, = p + wy is a3 successful in deseribing y as the regression alternative: The
Prob > F is the tail probability or p-value of the F statistic. Here we can reject the
mull hypothesis at any conventional level of significance. Also the Root MSE thlz
regression of 0,265, which is in the units of the response variable y, is small
the mean of that variahile, 904,

Tlm upper-right aeel;inn of 'r.l:ue ragranﬂ output mnta.iﬂﬂﬁémal" 0l




the model, the least-squares approach seeks to explain
‘the sample variation of y about its mean (and not the
I model with which (4.1) is contrasted is y = u +
of . In estimating a regression, we want to determine

r . © ﬂmn the nneonditional expectation E'[_r,.l] = u? The null model
‘=), whereas virtually any set of regressors will explain some fraction

_ il H.l‘nund’}f, i..l_]& sample estimate of g, B* is that fraction in the unit
¢ proportion of the variation in y about 7 explained by x.

Cthe Adj R-squared? The algebra of least squares dictates thar adding a
,',lgl.t&'x will result in a regression estimate with R, > Ri. R cauncd
Han ﬂwfl'_',‘_.,_l;.j.-j to the regression equation, as Iunﬁ‘ as the observations

- Wﬂﬂﬂr are linearly independent of the previous k columns from
mﬂm 5:_['15']'-*91'-]1-_ we know that B3, (that is, R caleulated from 8
: there are N lir_leﬂrl.‘;_' independent columns of X and N ohservations
i ) must equal 10. As we add regressors to x. B2 cannot fall and is likely

. 0 Uhe margingl regressor is irrelevant econometrically.

hieve ﬁﬁmpﬂl.in_g model that cannot be expressed as nested withil
; 't;lﬂ ?_'ﬂm';ll?;_im:;hi“ the competing model? A [muril:ll-jﬁfi[""!
R 'E“.I ﬂ_ﬂ ! Aoy e Lwo “{‘E“If-‘lﬂ{!iﬁﬂr widely in their numbers
) 10 consider thoir T values, the statistic Stata labek
widers the explained variance of y, rather than the
- That is. rather thay mbrely considering 0k
hﬂifﬂ:ﬁmnt thie degrees of freedom lost in fitting
e : : . caf
Bk

B W B0 comiputationally. The o i

mat logically add information
ALEI% 15 Juiclied o prossess full colim®




« model and seales i by (N —k) rather than N-

rmlurn of B2 In which the degrees-of-freedom adjus

with more regressors for its loss of prsimony:
v RO Sy SR
R e

If an irrelevant regressor is added to o model, T cannot fll and will th‘“hl:f
rise, but 72 will rige if the benefit of that regressor {reduced variance of the residuals)
model: 1 degree of freedom.)T  Therafore;
can fall when & more elaborate model is considered, and indeed it 18 not bounded by
aorn. Algebraically, T must be less than R? since (N — 1)/(¥'— k) <1 for w =
as the “proportion of variation of y*, #s can I inthe
presence of a constant term. Nevert holess, yon can use 7 to informally compare models -
with the same response variable but differing specifications. You can also compare the
equations’ 5% valies (labeled Root MSE in Stata’s outpnt) in units of the dependent
variable to judge nonmested specifications.

I'wo other measures commonly used to eompars pormpeting regression models are
the Aknike information criterion (A1C; Akaike [1974]) and Bayesian information crite-
ron (RIC: often referred to as the Sehwarz criterion: Schwarz [1978]). These measures
alén weeount for both the goodness of At of the model and its PArSTImony. Buath mea-
sure penalizes o larger model for using additional degrees of freedom while rewarding
improvements in goodness of fit. The 510 places a higher penalty on using degrees of
reedom. You ean caleulate the A1C and BiC after o regression modlel with the estat
ic command. estat ic will display the log likelihood of the null model (that with only
a constant term), the log likelihood of the fitted model, the model degrens of f[ﬁﬂd.ﬂm*
and the A1C and BI¢ values, For the regression above, we woilld tvpe

excends the cost of inchuding it in the

matrix and cannot be mterprel ed

. @atat ic

Hodei Obs 11{aull) 11 (model) df: AIC ﬂIﬁr

5O -265.4135 -43.49614 & g_g_g',_gj_-ﬂgg.' uam o

Least-squares regression can also be considered a maximum like
of the vector B and ancillary parameter of.'* The degree to wh
improves upon the null model in explaining the variation of the.
measused by the (algebraically) larger magnitude of 11 (model) th
G B comparin o oy e (1) i bk e




a »thgdﬂ coe ey

statistics, and the associatef
r a two-tailed test on the hypo,
] pla imated confidence interval, with [y
s of Tevel. You can use the level() option on regress
to specify a particular level. After performing the ekt
ault 95% level), you can redisplay the regression results with,
.vel(90). You can change the default level (see [i] level)
ntly with set level # |, permanently |.

ts often express regressors or response variables in logarithms®
ich the r‘gi_é_ﬁqnse yariable is the log of the original series and the regressos
is termed a log-linear (or single-log) model. The rough approximation tha
= gz for reasonably small z is used to interpret the regression coefficiens
saefficients are also the semielasticities of y with respect to . measuring the
se of y in percentage terms to a unit change in ». When logarithms are usad
both the response variable and regressors, we have the double-log model. In the
‘model, the coefficients are themselves elasticities of y with respect to each w, The mos
‘celebrated example of a donble-log model is the Cobb-Douglas production functiof
J.-ﬂ:gj=:'ﬂ1"ﬁb‘?-i‘.*‘-+ which we can estimate by linear regression by taking logs of ¢, [, and k

- I other social science disciplines, linear regression results are often reported &
enhumted beta coefficients, This terminology is somewhat confusing for eoononiEE
Ei‘itﬂll- their common practice of writing the regression model in terms of 3s. The betd
wuﬁﬁm" i5 defined as dy* /dx], where the starred quantities are s-trunsformed
mﬂﬂm nda dized variables; for instance, y* = (1 — §)/5y. where § is the sample mean and
‘!I‘fﬁtmmnple standard deviation of the response variable. Thus the beta coefficient
for the jth regressor tells us how many standard deviations y would change given s
IW dﬂhﬁm change in z;. This measure is useful inhdi:«'ipiim'ﬁ where maitt
: #Eﬂﬂuanﬂﬁm are indices lacking a natural scale. We can then rank regressor by
ﬁh& : E l.'.l.'bdﬁl Df their beta coefficients because the absolute magnituce of the t"f'm
mwmnﬂ | al tnr?d- indicates the strength of the effect of that variable. For the regressitt
. : » we can merely redisplay the regression by using the beta option:

il

d ':I';_lj’é!_’qﬂ_l_l__‘.liﬁ; _ |
-ﬁm%ﬁ'@ﬁwsh el el o 0




. w an, bata

Hodal 48.3987 735 4 12.3486034
Rosidunl 35. 1834974 BOY | OVODLEE4R

Total B4, BBAAT00 505 L 1G6T4BEEAE

iprice Conf.  Std. Err. t 131
loox =.956354 - 1167418 ~8.17  0.000 = AGHATS
1dist | =.1343401  .0431002  -3.12 O.002 - ATT0841
rosma -284B271 0185303 13.74  0.000 4369626
atratio =.0E24512  ,00B85T1 =8.88 0.000 - :m'ﬁﬁi
cony 11.08387 .3181115 34.84  0.000

The output indicates that Inox has the largest beta coefficient, in absolute terms, fol-
lowed by rooms. In economic and financial applications, where most regressors liave
a natural scale, it is more common to compute marginal effects such as elasticities or

somiclasticities [see section 4.7).

4.3.5 Regression without a constant term

With Stata, you can estimate a regression equation without & constant term by using
the noconstant option, but T.do not recommend doing so. Such a model makes little
sepse if the mean of the response variable is nonzero and all regressors’ coefficients are
insignificant.*~ Estimating a constant term in a model that does not have one eauses a
small loss in the efficiency of the parameter estimates. In contrast, imeorrectly omitting
a constant term produces inconsistent estimates, The tradeoff should be clear: include
a constant term, and let the data indicate whether its estimate can be dmtmgmﬂh&ﬂ

from zero.

What if we want to estimate & homogeneous relationship between y and the m&g
sors x, where economic theory posits y o x7 We can test the hypothesis of pr
tionality by estimating the relationship with a constant term and t.gliing Hi
IFthe data reject that hypothesis, we should not fit the model with the gelit]
removed. Many of the commaon attributes of a linear regression are alt ;
that truly lacks & constant term. For instance, the least-squares residuals a
-utmined L haw ZETO S0 o mea.:'., and R’ menmmd : will




| regressors, adding one variable to the list of k
t 0 there must be some useful information in regressor
‘cannot be deduced, in linear terms, from the first & regressors.
Jf accounting constraints or identities among the wvariables, one item
afy that condition. If that condition is detected, Stata will automatically
i Waﬂﬂ indicate n coefficient value of (dropped). Then, rather
sconstant option, we should drop one of the portfolio or budget shares
constant term. The significance of the fitted model will be invariant to the

uded regressor. We may still want to include a complete set of items
constant value in a regression model, so we must omit the constant term
q.nt aption) to prevent Stata from determining hat the regressor

ering estimation results

‘The regress command shares the [eatures of all estimation (e-class) commands. As
discussed in section 2.2.12, we can view saved results from regress by typing eretura
List. All Stata estimation commands save an estimated parameter vector as matri
the estimated virianee-covariance matrix of the parameters as matrix e(V).
e to an element of the estimated parameter vector as b [varname] and its
imated standard error us _se[varname) in later commands, However, the
Qﬂ' ":h[11 H‘.’ld. _ze[] are overwritten when the next e-class command 8
50 that if some of these values are to be retained, they should be copied to
scalurs, or matrices. :

ey iyping ereturn list for the regression above produced




BAtricos:

functions:
el{eample)

Most of the items displayed above are recognizable from the regression
that are not displayed in the regression output are e(11) and e(11.0), which
respectively, the values of the log-likelihood function for the fitted model and
aull model.? These values could be used to implement a likelihood-ratio. test of

model’s adequacy, similar to the Wald test provided by the ANOVA F.

Another result displayed above is e(sample), which is listed as & funﬂtiun( _
than a scalar, macro, or matrix, The e(sample) function returns 1 if an obse '
was included in the estimation sample and 0 otherwise. The regress mmﬂndhﬁppé‘v '
any if rap and in range qualifiers and then does casewise deletion to 1 i GO
observations with missing values from the data (y, X). Thus the observations actually
used in generating the regression estimates may be fewer than those " ﬁdﬁ
A subsequent command, such as summarize regressors if exp

regress command, /
in mange), will not necessanly use the same ohgervations as the previous rasrmai@

: ’ ' X . H L AT e
But we can easily restrict the set of observations to those used in estimation with the
qualifier if e(sample). For example,

. summarize regressors if of{sample)

will yield the summary statistics from the regression sample. The estir
may be retained for later use by placing it in a new variable:

. gonerats byts roglsample = a(snmple)

where we use the byte data type 1o save memory since ei.'-aampl_"f_ﬂj-}'-
variable. o
The estat -mmmu;],d _di:gz_g]__gy's

of those items (ic, summarize
g dompe ghe il




MNumber of obs = 506

s

.4pogss B.GIT1S 10.8198
2014102  1.34807  2.1844T
33 530501  .122218  2.49568
6.284051 7025938 3.56 a8.78
18.45929 2.16582 12.86 22

the matrix list command to display the coeffi-
e(b), the k-element row vector of estimated
and column labels, 50 an
mber®! ar by its row and

ng example. we use
ed by our regression:
s all Stata matrices. this array bears row
may be addressed by either its row and column nu
N DATES.
. matrix list e(b)
o) 11,8]
T lmex ldist rooms stratio _cons
. y1 -.S535aD02 -.13434015 25453706 -.05245119  11,083885

estimated vaTlace—COVATiane

We can use the estat vce command to display the
: display of the

‘This command provides several options to control the

matriz of coefficients of regress sodal
Anox 1dist rooms stratio eons

.00002182  .00003374 00003478
-.01001835 -.00341397 -.00088151  .10119496

/0B matrix are the squares of the estimated standerd




collinear, 0By one of these variables can be inch
eoefficient is the sum of the two coefficients on the o

Near-collinearity arises when pairwise correlations of regressa ;
aral, in the presence of near-linear dependencies in the rﬁgﬂﬁrmtmﬁ- LE
full rank condition on X is a problem of the sample, The information in the
sample does nov numerically identify all the regression parameters, but a dil
&xpm'ld'u‘d sample might.

With near-collinearity, small changes in the data matrix may canse large ¢
jn the parameter estimates since they are Illenrlj.r unidentified, Although l'-hE ﬂﬂm :
of the regression (as measured by R? or ﬁz] may be very good. the ﬂﬂﬁﬁﬁiﬁﬂﬁ':m@?
have very high standard errors and perhaps even incorrect signs or implausibly large
magnitudes. If we consider a k-variable regression model containing a constant and
(k— 1) regressors, we may write the kth diagonal element of the VOE as

L

P

(1— H})Skx

where [ is the partial 172 from the regression of variable k on all other variables lnthﬂ
model and Sy is the variation in the kth variable about its mean. Some observations

about this expression:

e the greater the correlation of x; with the other regressors (including the constant
term), ceteris paribus, the higher the estimated variance will be;

o the greater the variation in xg about its mean, ceteris paribus, the lower the
estimated variance will be; and _

o the better the overall fit of the regression, the lower the estimated variance will
be. iy

This expression is the rationale for the VIF, or variance inflation factor.
VIF; measures the degree to which the variance has been inflated because
18 not orthogonal to the other regression. After fitting a maodel with
measures may be caleulated with the estat vif cor i
there is evidence of collinearity if the mean VIF
VIF 5 greater than 10. We can be comfortable with the
price regression model, as the maximum VIF is less thar




Adj R-squared
MSE

[95% Conf . Isterval]

.1167418  -B.17 0.000  -1.182904 - T2417qp

0431032  -3.12 0.002  -.21902556 -,049654%"
0185303 13,74  ©0.000 2181203 2909335
0068871 =8.89 0.000 -, 0840373 =.0408851
.3181116  34.84 0.000 10.45887 1170886

‘Variabla VIF 1/VIF
inox '3.a8 0.251533
ldist 3.88 0.26T162
rooms 1.22 0.820417
atratio 1.17 0. 862488
Maan VIF 2.56

- | H}Hﬂ do we detect near-collinearity in an estimated regression? A sumonary measis
E ﬁ)rhﬁ&@egmlm equation is the condition number of (X'X), which measures the seis
tivity of the estimates to changes in X.27 A large condition number indicates that 5"1‘]”
changes in X can cause large changes in the estimated coefficients. Belsley (1991),8
ﬁ}l’!Q!IPHMUfHIE seminal work on collinearity, recommends that the condition rmnbet
I t{ﬂiﬁﬂmlﬂm&ﬂm ‘a transformed data matrix in which ‘each regressor has unit length-
: -ﬁ@mﬂiﬁm number for Belsley’s normalized (X'X) in excess of 20 might be :-mm%ff'
m Bub just as there is no objective measure of how small the determinant Ulfx .
mig to trigger instability in the estimates, it is diffienlt to come up with o particth®
that would indicate a problem: to some degree, it depends. Although we assunif
e identification condition is satisfied and X is of full (numerical) rank to
jon, there is no basis for & statistical test of the adequacy of that condition -
Mm have a command to generate the conditioning lifﬁﬂ"m:kﬁ-ﬂ-
hich beyond thie computation of condition mumbers include the W
h-may be used to identify the regressors that are HVE
The coldiag? routine, cantributed by John Hends
e eral of the disgnostic measures:



nearity adversely affects your rcﬁt:ﬂail;l;éﬁ
i o model to pecduce the near-linear depencient= 2BTE

!nrgl’; or better sample. Sametimes; near-collinearity reflects the hom
0

sample, 50 broader simple from that population would be helpful.
details on near-collinearity. see Hill and Adkins (2003).

i coll

For mare

4.4 Presenting regression estimates
it pasy to store and present different sets of ﬁtimﬂfﬁic!n
stores results (up to 400 sets of estimates-in
and, optionally, & descriptive title.

The estimates command makes
results, The estimates store comumaid
memory for the current session) under'a name

Yo can atganize several pruations’ estimates inte a table by using Bsftimataﬁ
tzble. You gpocify that the table include soveral sets of results; and Stata automat-
“eally aligns the coefficients irita the apprapriate rows of a table, Options allow you
' vandard errors (se), t-values (t), p-values (p), o significance stars

to add estimated = ‘
(stax). You can assign each of these quantities its own display format if the default is

pot appropriate so that the coeficients, standard ervors, and f—and pevalues need not
bis roundad by hand. You can change the arder of coefficients in the table by nsing the
keep() option rather than relying on the order in which they appear in the list of esti-
mates’ contents. You can use drop{) to remove certain parameter estimates from the
coefficient table. You can add any result Ieft in e() (see [P] ereturn) to the table with
the stat() option, as well as several other criteria such as the AIC and BiC. Consider:
an example using several specifications from the housing-price model:

- use htip: /e stata-press.com/data/imens/hpriceda, clanr
{Housing prica data for Boaton-aren communities)

= m‘m! rooms? = roomEs X

+ foietly regress lprice rooms

- sstimates stors medell

+ quistly regresa lprice rooms rooms? 1dist.
. estimatos store model?’

i!1



i =134

J0505 L0431

0.002 0.002

ol = 0775 =. 0635

ol L0066 L0059

0,000 0.000

1nox =122 - . 954

L a7

, 0. 000 0. 000

— _cons. T.62 11.3° 13.8 111
137 .584 304 318

£ 00 0,000 0.000 0.000

. A -359 5 A4 (581
Tmnm 317 283 311 . 265

- logond: biao/p

Hitting and storing four different models of median housing price, we B
ez table to present the coefficients, estimated standard errors, and pvalug
m Thﬂﬂt&tﬂ{} option adﬂbﬂ'lltlll'l’l[ﬂ‘} statistics from the e{) results. Usiig

aat 85 table modeld modell zodeld model?, atat(rd. 11)
‘titlo("Modeln of madian hnuui.n;p:u:‘}' =

f median housing price

‘=odell modold model 2
=1.%20es
e L 23T ens
<GfEees - B21ses
=07 Thsss
JDEAGsas

T.6204e S i




e ohtiees GbEmTadE
11:% mltiple-equation ﬁil Ben
sreparing publication-quality tables in v
' ich he deseribes s a wrapper for e
pimates i 8 varioty of formats, combines summney
and produces output in severnl formats, such as tab-
ddieets), INTEX, and HTML. A CoMmpanion prograa, you:
sigtistics to the e() arrays accessible by estimates. These seful programs:

from BSC.
As an example, we format the fonr models of median housing price for inclusion in i
(¥TgX document. This rather involved pxample using estout places the WX henders
and footers in the file and ensures that all items are in proper format for that I:ypmkﬂm
language (€8 using _cons would cause o formatting error unless it were 1“'5"'1}5“‘1'}-

sntout modell medell modeld sodeld using cha. 19b_sst . tox,

style(tox) replace title("Models of modian houning price”]
probead(A\bogin{table} [ht bpl \ieapeion{{\ac ftitlo} i Ncontering\\medskip
'q,trugj.n{tabu.lur}{ll{IH}{:‘}}}I

pasthead(“\hline*) prefoot(“\hline")

varlabuls{rooms2 "roome$ 28" _cone "constant”) logend

gtateii F ri_a mepg, fmt(i6.0f LG.0f %8.3f YE.3L)

labela (X" "F* "\bar{f)} 28" “RM8 error®)}

colln(bifmoiiB. 31)) selpar fmt(}6.3£31)

postfoat [\hl ine‘end{tabular}\end{table}) notype

VO WO W W W i

You can insert the BTEX fragment produced by this comimand directly in a research

AT



— o
(0.183) (0.019)

(237 0157  —0.134

(0.026)  (0.050)  (0.043)
—0.077 —f.052

(0.007) (0.006)

—1.215 —0.954
(0.135)  (0.117)

7624 11263 13614  11.084
(0127)  (0.584)  (0:304)  (0.318)

N 506 506 BO5. | 506

¥ 337 169 125 176

" 01.399 0.500 0.424 0.581
’. RMSerror 0817 0289 0311 0.265

mchﬂ-“se virtually every detail of the table by using estout directives. Si”ff
'-'H;ﬂ"“'- i5 a markup language, you can program formatting changes.

Tﬂﬂﬁn&; fl‘um u!:hm antuut output options, such as tab-delimited text fi

ary statistics and correlations

ing regression results also provide one or more mmﬁd
bly. nnmlatmns In more complex data structures:

panel data, summary statistics for l3""‘~“'h
wumaudsand uger-written cor |_




;,;;.1 datine erlev O *v.lov* 1 "lowt 2. 'qﬁq.uq* ;Ir ﬂﬁ#! RS _' ;
, agom crimelevel = et s arocaln). )
_ 1abal valuon criselevel crlov

atatsmat price, statin sean pb0) bylerimelovel) : '
» patrix(price_crime) format(N0.dg) vivle(“llousing prics by quintile of qrime® )
P;-i:p_:rin[ﬁ.ﬁl, Howming price by gquintile of crise

N BeAn pEO

v, low 101 27273 24400

low 100 24B06 22000
podiun 101 23374 21000 |

high 107 23233 189400
v, high 102 14887 13350

lan Watson's tabout rontine, amilable from sac, provides another app b Eils
problem.  tabout provides publication=cuality outpit of cros tabultions i seviral
outpul formmits,

Another wsefl routine B Nicholis Cox's makematr i reutine (available fram sge,
wiiil can sxecitto my reclnsd (ponestina bon) stacistienl command and produce i it
of tesulls: For instanee, vou conld nse this routine to display an oblong subset of o full
poreelntion matrix. Here we generate the correlations of three of the variahiles in tha
dataset with median housing |r|'i|':' I"heg e |14Ii.l"l.'."IHI.' correlations [see pWCore in
||t| correlata), invoked with the 1istwise II|'I1;HI1.

sakematriz po, fromir{rho) r(N}} labal cola(pricae)
» pitlel"Corralatians with medion housing price®) lintulse:
P oorr crime Agx diat

peld,2]: Correlations with sadian housing price

rho ]

erimhd committoed par capits =-.3E701812 DG
nitrous oxide, parts per 100m -, 4RB0STO4 506 '

dint . 2833844 506

4.5 Hypothesis tests, linear restrictions, and constrained
least squares

Resoarchers often apply regression methods in sconomics and finanee to test hypoth
Elinl e implied by o specifie theoretical model,. This section disoisses EU{DM
il intervil estimntes asstuning that the model is properly spoeified and

wre L, Estimators are random varinbles, and their mupli il

those of the etrar process, In chapler 5, we extend many of ﬂwnp L
which the errors uee ot i, »

-%“'-"F"“W WEEN output, B s
Bl st an aattabia e avalbic i soc 1y s




omality ¢ estimation pmblam. In'thy
mn@t tm::med on the estimation procedure, [y
énpmd The Wald test uses the point and VOE estimates
to evaluate whether there is evidence that the restrictions
Fhe LM test evalontes whether the restricted point estimates
untestricted estimator. [ discuss several LM tests in chapter 6,
jective-function values from the unrestricted and restricted
several LR tests in chapter 10.

I;.Eﬁlﬂ T present here are Wald tests. Let us consider the general form
st statistic. Given the population regression equation

y=x8+u

a M B
51;- set-of linear restrictions on the coefficient vector may be expressed as

RA=r

..ﬁ:iﬂﬁq * k matrix and r is a g-element column veetor, with g < k. The q restrie-
5 0n the coeflicient vector 8 imply that (k—g) parameters are to be estimated in the
nodel. Each row of R imposes one restriction on the coefficient vector; ome

- can involve multiple coefficients. For instance, given the regression equation
W= hay + Faxg + Bazy + Byra + u

W to test the ﬁ}'p{:thm Hy: # = 0. This restriction on the coefficient
J =7, whera

R = (0100

(0)



Given # hypothisis exprossed as Hy: RA = r, we can constriet: the Wald:

([

W= (RE- {REV)IRY (BB )

This quadratic form uses the veetor of catimated i-mm“im'nm,'ﬁ,'-nml :hamhnﬂiddm
v, and evaluates the degree to which the restrictions fail to hold; the magnitude lﬁm
clements of the vector (R@ = r). The Wald statistic evaluates the sums of squares of
that vector, ench weighted by a mensure of their precision.

The assumptions used to derive the large-sample distribution of the OLS estimator
gply that w has a lnrge-sample ¥ distribution when Hy is true. In small samples, the.
distribution of /g may be better approximated by an F distribution with g and (N =k}
degrees of fredom. When g = 1, /i has s large-sample normal distribution, which
r approximated by a Student ¢ distribution with (N = k) degrees of

jg sometimes bette
frepdom. 2

Now that we know the distribution of w when My is true, we can set up standard
hypothesis tests, which begin by apeeifying tht

Pr{Reject Fy | Mg) = o

whare o 18 the siguificance level of the 1ost.® Then we use the distribution of w to
identify a critical value for the rejection region at specific signiticance level,

Rather than reporting these critical values, Statn presents pevalues, which measure
the evidence against Hy. A pvalue is the largest signiticance level at whh._:h_n.--l;p?st..-ﬁﬁ
be conducted without rejecting Hy. The smaller the p-value, the more evidence there
is against . y

Suppose that the cstimates of a coefficient and its standard error are 79_5_;_1' (
8151707, respectively. These estimates imply that a f statistic of the null hyp
in which the population coefficient is zero—is =118, The Student ¢ app '
the distribution of this Wald test produces a two-sided povalue (P21el) of
cannot reject Hy at the conventional levels of 0.1, 0.05, or 0.01.% Howeve
for the analogous test on another coeflicient in the same model is 0
reject My at the 10% and the 5% levels, but not at the 17

L




il
St

\As we have seen in regress’s output, Stata ﬂltﬂm”m“-uf gunrla;m.ﬂ's[;zjmnﬂ L
statistics and their p-values: the ANOVA & and _t.hv:. ¢ statistics fm_' each coefficient, _.;:E
the null hypothesis that the coefficients equal zero in the population. If we w&utl m;
wore hypotheses after a regression equation, three Stata commands are particulady
\seful: test, testparm, and lincom. The first syntax for the test command i§

test coeflist
where coeffist contains the names of one or more variables in the regression model, &

gecond syntax is

Lest eIp=ay

where erp is an algebraic expression in the names of the regressors

i ['he testps
command works similaely but allows wildeards in the coeficient 1ist

‘testparm varlist
wheve the varlist may contain = or a hyphenated range expression such as indi-ind
The lincom commund evaluates linear combinations of coefficients
‘whure ezp is any linear combination of coeffic
il ; : ents that
test. For lincom, the emp must not eontain
e discussion of hypotlies; : L
’ Rt es1s tests with the si ; o hypothes®
sibossion coofficie, 1 the simplest case: a bypo

W

is valid in the second syntat!
an equal sign,

=_hi the ratio of the éstimated =1i 1

1t distribution under the pill



wnd heops /v ATATR-prons ., BT
“,.,1.; pr.lﬂ! datn for Boston-area comsunitien)

. regress lprice lnox 1dist rooms -BEIatio
Source 88 df I_IB

PR

Modal 45.3087735 4 12 3458034
feaidunal 35.1834874 501 mmmz

Total B4 BB22TOS sas_n L1BT4EIE4S

1price Coef. Scd. Erz. T
1nox -.95364 1167418 -g.17 0.000° -1.182004 - 7241763
1gigt | =-.1343401 .0431032 =342 0,002 .2190%55  -.0496548
SoORA .2B4BDT1 (0185303 1374 0000 ,2181203 .2909338
grratio - 0E24512 0058871 -3,89 0.0000 -.0B403T3 —.0408551
_cons 11.08387 ~S181118 34,84 0,000 10. 45887 11.TOBBE.

tnﬂ: IoOmE.
(1) rocms =0

F{ 1, 501} = 1B8.6T
Prob > F = 00000

whicll in Stata’s shorthand is equivalent to. the command test -blrooms] = Q {nnd
auich casier to type). The test command displays the statistic as Fi(l, N — k) rather
than in the £ form of the coefficient table. Because many bypotheses to which
test can be .]ppurrrl involve more than one restriction on the eceflicient Wﬁtﬂ?‘—ﬂd
thus more than one degree of freedom—Stata routinely displays an F mtlﬂtlnm' Ifﬂ'
cannot reject the hypothesis Hy: 3; = 0 and wish to restrict the equation as ¢ -
we remove that variable from the list of regressars.

More generally, we may want to test the hypothesis 3; = 8§ = #, where
constant value. 1f theory suggests that the coefficient on variable xﬂﬂﬂh-ﬂh&‘iﬂd
we can specify that hypothesis in test:

. ‘gquistly regress lprice lnox ldist rooms stratio

. test rooms = 0.33 z

(1} rooms = 33" i
CE{ 1, E01) = 1E.58

Prob > F = 0.0001




Hy ' Brocms + Praies Hesratio =0

ﬁlﬁfm&h thls hypnhhmia involves three estimated coefficients, it invalves only one re
i on the coefficient vector. Here we have unitary coefficients on cach term, buf

need not be so,

. gaistly regress lprice lnox 1dist rooms stratic
. lincom rooms + ldiat + stratio
¢ 1) 1dist + rooms + stratic =0

1price Conf. Std. Err: T p=ltl [asd Cont. Intervall

{1} JOBTTAST L 0AS0T14 1.38 0,168 -, D2BETEI 1641468

The sum of the three pstimated coeflicients is 0,068, with an interval pstimate i
cluding zero. The ¢ statistic provided by lincom provides the same p-value that tesk
wonld produce.

We ;:ih:._lmg tast to consider the equality of two of the coeflicients or to test thit
thieir ratio equals & particular value:

d q:u_l.m:ljr ragrans lprice lagx ldist rooms atratio
¥ t:-n_.l‘.ld.ht = mtratio
{13 1dinu - stratio = 0
F{ 1, BoI) = 3.83
) ’ Prob » F = 0.0574
. tost lnox = 10 » mtratic
1) lpox - 10 suratic = 0
R A, 01 = a07Y
Frob *'F =  0.0011

mt‘ the hypotliesis that the cocfficionts on 1dist and stratio are & uﬂ
HE W con reject the tpeal, that the ratio of the lonox e “i
) Nd At the 1% level, Stata rewrites hoth emmﬂ*““
ratio of two eoofficients would appear to be & L
by rewriting it as shown above. We ¢
'ﬂ:'ﬂl"-'mg a product of cooflicient:




PO ould substitute the restriction(s) into this
W jel, Here that wonld be simple enough
mmwmbmmum Second, we could use Statn
constraint t0 be imposed on the equation and estimat It
press ion) command. The constraint command has the :
oA b
constraint [detine] # [eapmeap|confiist]

eliere # 15 the number of the constraint, which may be expressed either inan ﬂ]Eﬁbﬂﬁ :

gxpression or a8 a voeflist. Using the latter syntax, the regressors in conflist are removed 1
from the equation. We can use the constraints in cnsreg:

cnsreg depuar ndepuars irj] |iu] [urf.-iyh-!.l, constrainta{ numiist)

The command’s syntax echoes that of regress, but it requires the constraints()

option with the constraints to be imposed listed by mumber (# above).
Toillustrate the latter strategy, we nseg constraint;

. constraint def 1 1dist + rooms + stratio = 0
. cogreg lprice lnox ldist rooms stratio, constraint (1}

Constrajned linear regrassion Husber of obs = L
F{ 3, 502) = 233.43
Prob » F = 0.0000
Root' MSE = 26524

{ 13 1dist + rooms + stratioc = 0O
lprice Coef. - Std. Err. t Pl [85% Cont. Interwall

Inox -{.08339% .0B6B1936 -15.66 0,000 -1.218337
1dint -, {B807T12  .D1BGZB4  =10.15 0.000 -, 2244739

rooms | 2430633  ,01658  14.66 0.000  .2104886 |
stratic | -.05400%22 .00S60YS  -9.B1 0.000  -.0660082  =.0438F
_cona 11 4BEB1  .1270377  90.42 0,000 11.23681

Thiis format displays all three coefficients’ estimates, so we need
vitriables to impose the constraint. You should not perform a test of
that have been imposed on the equation. By construction, the x '
isfied (within your machine's precision) in these estimates, 5o tﬂ'ﬁf
Also the Root MSE Mﬁ




: .bjn[,lr uninformative. In the
e mmm exactly this result. The duy

thEE}."plan&t.ﬂrrj power £o one Tegressor or another, but the combinatioy
s can explain much of the variation in the response variable.

in Stata by listing each hypothesis to be tested in

parentheses on the test command®® The joint I" test statistic will have as many
muherntor degrees of freedom as there are restrictions on the coefficient vector. As
entid above, the first syntax of the test command, test coeflist, performs the jont
tﬂt that two or more coefficients are jointly zero, such as Hy: 82 = U and F4 = 0. Thi
jaiul, hypothesis is not the same as Hi: B2+ B3 = 0. The latter h}|:u|.|u sis will be

satisfied by a locus of {3, B3} values: all pairs that sum to zero., The former hypothess
will be satisfied only at the point where each coefficient equals zero. We can test the

joint hypothesis for our median-housing-price equation with

We can construct & joint test

. guietly segresa lprice lnox ldist rocss stratio
.+ tant lnox ldist
£1) lmox =0
23 1dist = 0
F{ 2, BO1) = E8.95
Prob > F = 0.0000

y .__Tlﬁfﬂhl:n overwhelmingly reject the joint hypothesis that the model excluding 125
uunwﬂ:r Speni.ﬁﬁ:i telative to the full model.




454 Testing nonfinear restrictions and forming nonli
All the hypotheses diseussed above are linear in that ,m.-_;y,'nmy;.h%‘mﬁma’fﬁ.

- HyRA=r
ol we can express i set of g < I linear restrietions on Bg .y a8 the g = #‘mﬂhﬂ*

R and the g-veetor r. Indeed, the constrained least-squares method impleme in
ensrag moy be expressed as solving the constrained optimization problem
3 =g ngu u'n = arg ugu (y - X3)(y - X3)

st RO

r

and all the tesis above may b expressed ag an approprinte choice of R and r.

Suppose that the Liypothesis tests to be conducted cannot he written in this linear
form, for exumple, if theory predicis a certain yalue for the produgt of two coefficients in

the model or for an expression such as (Ga/ s +ftg ) Two Stata commands are analogues

to those we have used above.

tastnl lots us specily nonlineir hypotheses ot the @ values, bk unlike with test,
W mugl se the synibax _i)[r.-r,:r':rrum'J to refer Lo earh ﬂuvﬂil"iﬂlll. viilue., For a j-i‘zliﬂt
{oat, we must write the equations defining each ponlinear restriction in parentheses, as
ilstrated Below.
qr cambinations of the estimated cogthcients in point
and Interval [orm, similar to 1incom. Both comtnands use the delta method, an approx=
imation to the distribution of a nonlinear combination of random varinbles appropriate
for large samples that constructs Wald-type tests. ® Unlike tests of lingar hypotheses,
nanlinear Wald-type tests based on the delta method are sensitive to the seale of the y
Al X elatin, -

The median-housing-price regression illustrates these two commands.
=t } ..

nleem loks us compute monling

. quintly regress lprice Inox ldist rooms stratio
< testnl _blinox] # _blatratio) = 0.06
(1) _blinox] » _blstratie] = 0.06



blstratic] = 0.06)
. F _b0dist] =3 « _bllnox]}
[lnox] * _Blstratio) = 0.06
ﬁ%ﬁ-ﬂ f:f_hffl_ﬂilﬂ =3+ _bilnox]

. Rz, 501) - 5.13
Preb > F = 0. 0082

mre;m the joint hypothesis at the 1% level,

455 Testing competing (nonnested) models

How do we compare two regression models that attempt to explain the same respoise
wariable but that differ in their regressor lists? 1f one of the models is strictly nestod
within the other, we can use the test command to apply a Wald test to the original o
unconstrained model to evaluate whether the data reject the restrictions implied by the
constrained model, This appraach works well for elussical hypothesis testine where the
partameters of one model are proper subset of anot e,
e cast in the form of campeting hypotheses, wh
the other. Furthormore, no propesed theory
tncompasses all elements of both

E

But economic theories ofted
e neither mocel miy be nested within

may corresponed to e supermadel that
0L oSy theories by nartificially nesting both models! anigee
elem 1 in one structure, Tests of competing hypotheses versus i supermodel pit om
model against o hybrid model that eontains ol

L SansL 4 | Brients af both that wee ot proposed by
either theory, If we have competing hypotheses such as

| Hy:1y = X3 gy (4.7
- Hl:ﬁ=xﬂy+c| (4.5}

ﬂlﬁm of both x and z are unique (not included in the othet

h‘Hml-Et-l nse e differen) strategy, 47 Examining gorcidness ._!r fil by

: 'Jmﬁiﬂﬂ_ st one of these models hag 5 higher ##2 ar R s ot
results and lacks statistical rationse,

(1981) propased tisir / test as  solution o this prot

 Sple approach: if model 0 s better explanatory powet

. nd vice versa, Wo perform thi ./ tost by gendrating

o Cluding them in an avgmented rogression of

ted values of y using the estimates




adel (4.8). 1f the coefficient on g is significant, wo reject jeet the model
hypothesis. Unfortunately, ol four possibilities cun arise: Ho tay stan
may stand against Hy, both hypotheses may be rejected, or neither b

rejected, Only in the first two cases does the J test deliver a defini
Stata does not implement this test, but you can install Gregorio lmpayi

pnest (from ssc describe nnest).

Sl ests are those of Co (1961), Co (1962), extended by Pesaran (1974) and
Pesaran and Deaton (1978). These tests-are based on likelihood-ratio tests that can be
constructed from the fitted values and sums of squared residuals of the nonnes ol Ca0k
ols, The Cox-Pesaran-Deaton tests are also performed by Impavido's nnest packge.

We illustrate these tests with onr median-housing-price regression by sp}aqifjﬁﬁé;{tw!i
equation, one including crime and proptax but excluding pollution levels
(1nox), the other vice versa. The command uses an unusual syntax in which the first
regression specification is given (a5 it would be for regress) and the regressors of the
second specification are listed in parentheses. The dependent variable should not appear

forms of the

in the parenthesized list.

. nnest lprice lnox ldist rooms tratio (crime proptax ldist rooms stratie)

Mi: Y =a+ Xb with ¥ = [lnpx ldist ‘rooms atratiol
M2 - ¥ = a + Zg with Z = [crime proptax ldist rooms stratic]

J tast for non-nested models

HO = M1 (5000 10. 10728
Bl = M2 p-val 0. 00300
RO : M2 v(499) 7.19138
Hi : M1 p-val 0.00000

Cox-Pasaran test for non-nested models
HO + M1 MN(O,1) =20 . 0T2TT

Hl : M2 p-val 0.00000
HO : M2 N(0,1)  -17.63186
HL : M1 p-val 0. 60000

Here the Dayidson-MacKinnon test and the Cox Pesaran-

nisspecified relative to the supermods



g '-:midmﬂs for each @bﬁermtiuu g]h-m
‘the value of the response variable for that
mn Iy mnch larger or smaller than the actual valye
lets us generate in-sample predictions: the values of
hy the fitted model. We ma:.- also want to generate oyt
b is, apply the estimated regression function to observations
_b‘::- gm:m‘utre the estimates. We may need to use hypothetical values
or actual values. In the latter case, we may want to apply the esti
1 function to a separate sample (e.g.. to Springfield-area communities
Gston-area communities) to evaluate its applicability bevond the e
e A well-specified regression model should generate reasonable predictions
nple from the population. If sut-of-sample predictions are poor, the madel's
om may be too specific to the original sample.

‘regress does not caleulate the residuals or predicted values, but we can compute
3 a&er regress with the predict command,

€1 deim specifies the quantity to be computed for each observation. For linear
i, predict computes predicted values by default so that

« predict double lpricehat predict double lpricebat, xb

%ﬂ«- identical results. The choice xb refers to the matrix form of the regression
ﬂ‘i 1ﬂ Wh-iﬁh ¥ = XB. These are known as the point predictions. If you need

estimates are available only to predict until another estiniation
regress) is issued, 5o if you need these series, you should compute thei
ible. U!!lngﬂmlﬁ‘la as the optional type in these commands ensures that
erated with full numerical precision and is strongly recommended:

Mm:lﬂ; li]—:e genarate: (he named serics must not nil'ﬁﬂ'i?
ated for the entire available dataset, not merely (he .
: qus_llﬁaa: if e(sample) to restrict the computatior ':-




. use Nttp://uvu. stata-pross .con/data/ineus/hprice2a, cleas
CHouning price data for Bionton-aren communities) e

. quistly ragress lprice lnox ldist rooms stratio

. predict double lpricehat, xb

. inbel var lpricehat *pradicted log price”

atter lpricehat lprice, meize(s=all) =color(blac
ce lprice 4f lprice <., eluidth{thind),

i

sapectratio(1) legend(off)

taoway (sc ¥) Hiiﬂ{ﬁﬁ.‘ii.-‘w

; {1ine lpri !
> ytitla("Prodictod log median housing price

» gritle("Actunl log median housing prica*)

- i
834 I
] l
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Figure 4.2: Actual versus predicted values from regpmimmnﬂui



; mlua of the dependent variable for givey
: imates the value of the dependent variable for
5. The mechanics of OLS implies that the point estimates jre
ices of the predicted value and the forecast are different. Asi
104 oithé foreeast is higher than the variance of the predicted vl

alues xg, the predicted value is
Elulxo] = 9 = %o
imator of the variance of the predicted value is
lr-"’;,. — &% (XX xp
sor values iy, the forecast error for a particular yy is

I Eﬂ:.!.ﬂ}—ﬁn=xnﬂ+ﬂn—3‘}u

Wﬁhwfﬂrmthis ealeulation for each observation when the stdp option is specified,
 The zero covariance between g and @ implies*! that
Var|éa] = Varlio] + Var{ug)]

Vi = e x0(X'X) x4 + &
-8 consistent estimator. predict performs this calculation for each observation wher

i wﬁnn m&pamﬁﬂd As one would expect, the variance of the forecast is higher
wnnnw of the predicted value.

is an upper and lower bound that contain the true value-with

in-'repmad samples.'? Here I present s method for finding the

ven that the standardized-prediction error has an appro¥
1 l‘-h.e interval prediction begins by choosing bounds that
— M

— iy =
< by =1 -
atfe] 1 dﬂ} o

AN

s the inverse of the Student £t 1=/



Gubstituting Elylxa] for yo and BJE'I!E‘& 1
pext yields a prediction interval for the predicted
W ﬂ=fimigﬁgﬂj p
The variance of the predicted value increases as wo consic
i mean of the estimation sample. The interval (
on a pair of parabolas with the narrowest interval a ®
1he sample point of means. To eompute this confidence inte
option (see [i] regress postestimation), An a;rpmpriute conf
constructed from [£¢ stdpl, where ¢ would be 1.96 for a gﬁ% co
o sample with a large N. You may then construct two more varia Iﬁ
jower-limit and upper-limit values and graph the point and ]nberval i mn“ﬁ.

We consider 4 bivariate regression of log median housing price on 5&,:5 For illus-
wration, we fit only the model to 100 communities of the 506 in the datase T@&?%@

o L

predict commands generate the predicted values of lprice as xb and the standard

error of prediction and stdpred, respectively:
. pse hrtrp:ffved. stata-press.cos/data/imeus/hprice®a, clear I
(Housing price dats for Boston-area communities) |

guietly regress lprice lpox if _n<=100

. predict double xb if etsample}
(option xb mesumed; fitted values)
(406 missing valuss generated)

. predict deuble stdpred if e(samplel, stdp
(408 miseing velués gensratad)

To caleulate the prediction interval, we use the invttail() function to gener
correct t-value for the sample size and a 95% prediction interval as a
variables uplim and lowlim can then be computed:

. eoalar tval = dnvetail (eldf_r).0:976)

- generate double uplim = xb '+ tval » stdpred
(406 sissing values generated)

gemerate double lowlim = xb - tval * stdpred
(406 sissing values generated)

Finally, we want to highlight the mea value of Ino:

mand, storing that value as local macro
for the mph




“values, and riine for the prediction intony

if e(saspla}, mort),
ad log price) legend(cols(3))

i

Y o —%

"Im_ & |.' a

14 15 1.6 17
= Iog(nox)
[o tog(price) —— e

95% prediction |mawa|_i

. :‘; A NERT L 1 S 3
edlotins e esponse varinble against their poitt o5
terval is narcowest at the mean value of
Y summArizZe lnox if e(sample),storinh i



= mp]e from the pﬂp"lntmm If uutrﬂf-ﬁmnpla pmi:ﬁfﬂmm me*p;mi:“ 'h'ﬁa-
specification may be too specific to the original sample.

A prediction interval for 1'|IP forecast may be computed with prﬂii{:‘:’ﬂﬂdf {m-—
dard error of forec ast} option (see il-‘i] regress Pﬂsteﬁtimﬂﬂun} Un]ilge m‘ﬁﬂa Nﬁlﬂﬂ
calculates an interval around the expected value of y for a given set of X values {h#
out of sample), stdf accounts for the additional uncertainty asscciated thh the ﬁﬁ.
diction of one y value (ie., o7). We can use a confidence interval formed with stdf to
evaluate an out-of-sample data point, ¥, and formally test whether it could hﬂ-\fﬂ h&ﬁn
generated by the process genevating the ftted model. The null hypothesis for that test
implies that data point should lie within the interval g £ ¢ stdf.

4.7 Computing marginal effects
One of Stata’s most powerful statistical features is the mfx command, which comprites
margingl effects or elasticities after estimation in point and interval form:
mfx Irf] | in | v opticns ]

mfx calculates the marginal effect that a change in a regressor has on thmquahﬂﬂﬂ
computed with predict after estimation. It automatically uses the default pre '
option, for instance, for regress, the xb option that computes }’*

merely re produce the regress l:mﬂﬂ'll: ient table with one s:ha.nga li
sor is displayed. For regmsmun, the coefficient estimates. 'tallcuhlm

Elust:iml;}r and semielasticity measures, which we obtain wihh
eydx. The first is the elasticity of y with respect to z;; e
By default, these are mraluataﬂ at th'nuﬂhivnﬂiﬁ 1




Humber of cbs = 50§

(S 2 BOO) = 18588
2.67170+10 5 5.3434e+09 Prob > F = 0.0000
1.6100e+10 500 32217368.T R-squared = (.69
G Adj R-squared = 0,620]
4.26268+10 EO5 64803032 Raot HSE = Eels
price Coaf. Std. Err. t P2t {96} Conf. Intarval]
mox | -2570.162 407,371  =6.31 0.000 =3370.532 -1769.T83
dist | -BE5.TLTE  100.7128 501 0,000  -1330.414 -581.021
rooms BA28.264 395.7034  17.08  0.000 B042.95%  7613.560
stratio | -1127.534 140.7663 -8.01 0.000 -1404.08%  -B50.9638
proptax =62 24272 2253714 =232 0.021 =96.652188  ~7.963555
~Cong 20440.08  5290.616 3.86 0.000 10045 .5 30834. 56
< mfx, ayex
‘Elasticities after ragross
¥ = Fitted yalues (predict)
= 39511.51
\wETiabla ay/ax Std. Err. Pxlzl I 95% C.1. ] I
ﬂ :;mum 10068 -6.25 0.000 -.8300s4 - 435005 5.54978
' EARALAT 03221 -5.00 o0.p00 - E 5 75575
m 1_’mn liaﬂ o -22‘42?3 .UB‘B’G?-— 3"
stratio | -.8245708 11680 -1.05 o000 1.68344 2.10976 6.20K8
BopEax | -.0947401  loaoma p3n o000 C1.IS17H -.eo7azs 8.4
:-...__-_- Lo it & *2;32 ﬂ.ﬂﬂﬂ _.1?“?1 *.ﬂllﬂ'ﬁﬂg‘ -tl}.sm
=

lﬂ"."&h of ﬂlﬂ elasticitios ‘Are

5 ﬂhﬁfllﬂ 'mt.h

identical to those of the originsl @
an increase in rooms having almost
terms. The other three regressors ar |
llhit interval, but the 95% mnﬁdﬂ'ﬂﬁe




_ ff um .'-..p-inihu
" quietly regress price nox dist roome ptratic

_/f computa sppropriats t=mtatistic for DBY coufiissce deverval
. scalar tmfx = invtrail e lds c),0,876) e 'i-ntiwﬂ .
. geporate y.vai ° . /! generate variables meeded .

(606 missing valuas gonsratod) 2 : b

, ganaratd ¥ val =,

(506 minsing yaluns generated)

. gonorRte -yax.uai -,

{506 minping values gonerated)

, gEnorAty goyexl_val = . I
{506 misaing valuos ganorated)

E aanerutu dayex? _val = .

(506 misaing valuss goenerated)

./ pummarize, detail computas pereentiles of wvtratic

. gquietly gusparize stratio if elsample), dotnil

_local pet 1 10 25 5O Vo 80 ik}

_local 4 =D
. feraach p of local pet 1
7, 1ocal pe'pl=el(pip']
- local ++i
4. // set thoae percentiles into %_val
guietly replace x_val = ‘pe’p'' in i

8D

we must compute elnsticities at the selected percentiles and
gtore the mfx results in variable y val, The mfx command, like all estimation commands,
lerves behind results described in ereturn 1ist. The saved quantities hlﬁlu&e '
sich as e (Xnfx.y), the predicted value of y generated from the regressors, and ma
containing the marginal effects or elasticities. The example above uses eyex o comp
the elasticitios, which are returned in the matrix alxMix_eyex) .wil;.h-_at-md '

returned in the matrix e (xMfx.se.eyex). The do-file extracts the. OPT
from those matrices and uses them to create variables containing the

stratio, the corresponding predicted values of price, the elasticity:
their confidence interval bounds.

To produce the graph,



Jf for the stratio colusn
ﬁﬁ- sava in ayex_val

L - mﬁﬁ.'ﬂuu'} /i for the stratio colums
10, //f eomputs upper and lower bounds af confidence interval
5 ] 'l _'ll."' fﬂ"ll'ﬂt li}‘#l_‘ll = ljll'.._."?ll * !m‘_l_‘_[llt] in "L -
i ! ‘quietly replace neyexd_val = eysr_val - tafxeme[1,1] dn "1
1§ b 25

1 graph these series in figure 4.4, combining three twoway graph types: scatter for
Ui elasticities, r1ine for their standard errors, and connected for the predicted values,
with o second axis labeled with their magnitudes,””

. labsl vardisble x_val "Studant/teacher ratio (percentiles ‘pct’)”
. label wvariable y_val "Pradictsd median house price”

. 1abel variable ayex_wval “Elasticity”

. label varisble seyexl_val "BEY ¢.1,"

. labsl varisble seyex2_val "S8K c.1,°

. ff graph the scatter of elasticities wva. porcentiles of stratio
. /i as well ma the predictions with rline
. /f nnd the 96% confidence bands with connected
X vay Cacattor ayex_wval x_wal, mn(0h)} yacale(range(-0.6 -2.03))
» (rline seysxi_val seyex2.val x_val)
> (connocted y_val 'x_val, yaxin(2) yscale(axis(2) range (20000 350001313,
L #ﬁhlnuﬂkltr of prica ¥s. student/teacher ratio)
o drop y.aval z_oval eyex_val seyexl.vel seyexd_wal // discard graph's variables

o
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Figure 4.4: Point and imterval elasticities computed with mix

The model’s predictions for various levels of the student-teacher ratio demonstrate
that more crowded schools are associated with lower housing prices, ceteris paribus,
The elasticities vary considerably over the range of stratio values.

These do-files demonstrate how much you can automate generating a table o point
and interval elasticity estimates, in this case to present them graphically, by
stored in the T() and e() structures. You could adapt the do-files to generate
pstimates: for a different regressor or froin a different regression t_e.mi_:ih_ipn. We
the z-axis points from the percentiles of the regressor and specify the list of p
as 4 local macro, Although many users will use mfx just for its results, you can also w
those results to produce a table or graph showing the variation in n
elasticitics over a range of regressor values.

Exercises
1. Regress y = (2,1,0) on X = (0,1,2) without a constask 6
the residuals, Refit the model with a constant term and |
Compare the residual sum of squares from this mode
with & constant term included. Wh ﬁh‘
without a constant term?




‘of the price distribution

0 deciles of price and the

y=Xg+u (4.9)

'W'm:appmch to estimation, we want to solve the sample analogue
'hlmnﬂ

y=XB+1i (4.10)
the k-element vector of estimates of 8 and 1 is the N-vector of least-squans

want to choose the elements of 8 to achieve the minimum error s of
We can write the least-squares problem as

B =mgmin W5 = angmin (v - X8) (y - X4)

r independence of the columns of X (i.e, X must Bave
has the unigue solution



ndix: The large-sample VC

mpﬁﬂﬁ_jﬂhﬂﬂhﬂﬂﬂﬂ' ol mmﬂmnﬁurdml‘hguwﬂhuc
hot estimator (0 repented samples from the underlying pop : e of
mple IV 18 large nough, the sampling distribution of the estimntor may be i

{ptcly norinal, whother or not the underlying stochastic disturbances are nor
Aistributed, An estimator satisfying this property is said to bie asymptotically n
{f we Bre consistently estimating one parameter, its sampling variance will shr
woro a8 IV = An estimated parameter may be biased in smull samples. huhbhn
will dispppear with lurge N if the estimator is consistent. In the mu!:_t.lvﬂ.riﬁt; .
el varinbility af the estimates is deseribed by the variance covarianee ma'bri:tﬂf
Iun;\.nzanmi:hsm_n-uml distribution. We call this matrix the variange-covariang mg_trm.l:_:'i
our cstimator, or VOE. To evaluate the variability of our estimates, we need a consistent

estimator of the VOE. I
If the regressors are “well behaved™ with finite second moments, we can write the
probability limit, or plim, of their moments matrix, scaled by sample size N, as

L X'X
plim = Q

(4.12)

where Q is u positive-definite matrix.’® We can then derive the distribution of the

random estimates 3 ag

VN (8- B8) N (0;02Q) (4.13)

whore 2 denotes convergenee in distribution as the sample size N — o0. For B itself,
R | R all-: = | N
BN (;i.—,\TQ ) (4.14)

where & denotes the large-sample distribution. To estimate the large-sample VCE Ofﬁj
we must estimate the two quantities in (4.14): a2 and (1/N)Q~". We can auﬂaﬁtﬂnlﬁ;
estimate the first quantity, o2, as shown in (4.5) by e'e/(N - k), where e is ﬁhﬂ':w
sion residual vector. We can estimate the second quantity consistently from the sample
by (X'X)~!. Thus we can estimate the large-sample VCE of @ from the sample as

Wi can write

ve(B) = #(XX) = g (KR!
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5 Specifying the functional

5.1 Introduction

\ key pssumption maintained in the previous chapter s that the functions) form was
arreetly sprecified.  Here we discuss some methods for checking the validity of this
: i IF the seroscondit feanil=roeni r|..l-Egl_|.|1|pt.lm1 .

s m A

Elw | @1,®a o ok] =0 (5.1)

'y

is violated, the covfficient estimates are inconsistent.

e threo main problems that eanse the zero-conditionnd-mean asswmption o il
{i 1L PSS moddel are
w Improper specification of the el

o endozeneity of one or o TeEressors; or

& mensureienl errcd of o or miare FeITeREnrE.

Th specitication of o rerression model may b awed i its list of ineludled regrissons on
i the functional e specilied for the estimated relationship. Endegeneity means thisk
0o OF more rerressors oy be correlibed with the error term, o eandition thuit, often
arises when those rogressors are siltansonsly deternmined with the response variable.
Mesurement crror of o rogressor implies that the underlying behavioral relationship in-
ehides one or more varinbles that the econometrician cannot aceurately measure. This
ehispter discnsses specification issues, whereas ehaptor 8 adedréesses endogeneity and men-
BNl errors,

5.2 Specification error

Thy consistency of the linear regression estimator requires that
futiction correspond to the underlying population regression fu
the respionse variable y:




~ Let us assume that the empirical specification may differ from the population ro-

gression function in one of two ways (which hoth might be encountered in the same

fitted model), Given the dependent variable y, we may omit, relevant variables from the
- model, or we may include ircelevant variables in the model, muking the fitted model
Sshort™ or “long”, respectively, relative to the true model.

" 5.21 Omitting relevant variables from the model

) Suppose that the true model is

I- y=%i8, +xaf;+u

with ky and ks regressors in the two subsets, but that we regress y on just the x

variahles:
y=x1) +u

This step vields the least-squares solution

-

A = (XiX)) 'Xjy (5.2)
: By + (X4Xq) ™ X Xafe + (X X)X (5.8)

Unless X{Xa =0 or #; =0, the estimate fi. is biased, since
ELH]le = lﬁl + P|.:f fj;

‘where Prg = (XX, )" 1X4 X, is the ki x ks matrix reflecting the regression of el
“eolumn of X on the columus of Xy, If ky = ky = 1 and the single variable in Xy B

- correlated with the single variable in Xy, we can derive the direction of bins, Gene? allf
e ."HE!-F variables in each set, we can make no statements about the nature of the

gost of omitting relevant variables is high. 1 E[x} x| v
the estimator was inconsistent, If the population ©

and x; are zero, regression estimates would be o
samples. In economic research, & varinblo m‘“%
I u : .

1y :i-'lﬂﬂ-that_j:hp

be uncorrelated in the population of in ¢




) ﬂ.;ﬂj’ﬂmﬂlﬂ. ; in time-series regression models

rolated concern arises in models for time-series
" ifics the time forim of the dynamic relationsl

Y specify the ultimate response of an indivi duﬂmp%m
inoaime. However, theory may fail to indicate how I'ﬂrilﬁl;-','r-
cqving 1o & permanent L'Il:ﬂ.nge in her salary, Will that
one, bwoy three, or more biweekly pay perinds? From our analy
cpecification error, We know that the advice to the mo&eler-_-“m__*ﬁ B i
he dynamies.” Hwe do not know the time form ﬂra’dmmﬂ-!ﬂnﬁbﬁﬂﬁﬁﬁ ﬁhﬂmﬁﬂf‘_

we should include several lagged values of the regressor. We can then use the “test
fown” Strategy discussed below to determine whether the longer lags are necessary.
Moreover, omitting higher-order dynamic terms may cause apparent nonin STy
of the regression errors, as signaled by residual independence tests. ;

522 Graphically analyzing regression data I

With Stata’s graphics, vou can easily perform exploratory data analysis on mtm
gion sample, even with large datasets. In speeification analysis, we may want Lo examine
the simple bivariate relationships between y and the regressors in x. Although multiple
inear regression coefficients are complicated functions of the varions bivariate regression
coefficients among these variables, we still often find it useful to examine & sot of bi-
variate plots. We use graph matrix to generate a set of plots iﬂlﬂtrm the bivariate
relationships underlying our regression model of median housing pﬂbeﬁ:' o e
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Figure 5.1: graph matrix of regression variables

- The first row (or column) of the plat matrix in figure 5.1 illustrates the relationships
m the variable to be explained (the log of median housing price) and the foue

factors. These plots are the y — z planes, in which a simple regression of

using price on each of these factors in turn would determiine the line of best ff.




varinble plot identifies the important va
" ¢he multivariate relationship into a set ! p
peslng i, the added-variable plot is based on two residual serie

" antains the residusls from the regression of x, on all other x. whercas

o, contains the residuals from the regression of y on all & variab e L
‘m: ropresents the part of x, that cannot be linearly related to those other regressors,
ki sresents the information in y that is not explained by all other regressors.

whereas £2 €1 g . Wi

(excluding x,). The uc_l{i:ed-mrmhl-:- plot for x; is then the zeatter of t:;-.{qgl:_ thn»uxh}
orstis €1 {on the penxis). Two polar cases (as discussed by Cook and Wﬁﬁ]?_ﬂl‘;ﬁ 1?-%
j04]) are of interest. If most points are clustered around o horizontal l.i.l-lﬁ.'lﬂ.. : ?mﬁe
oo in the added-variable plot, x, is irrelevant, On the other hand, if most points are
clnstered around a vertical line with abscissa wero, the plot would hdicate near-perfect

collinearity, Here as well, adding x, to the madel wonld not e hetpful.

The strength of a linear relationship between e; and es (that is, the slope of a least-
squares line thirouzh this scatter of points) represents the marginal value of x; in the
full medel. [f the slope is significantly different from zero, x, makes an important con-
tribution to the model heyond that of the other regressors. The more closely the points
are grouped around & straight line in the plot, the more important is the contribution
of %, at the margin Ax an neded check, if the specification of the full model (including
x,) is correct, the plot of ey versus g must exhibit linearity. Significant departures from
finearity in the plot cast doubt on the appropriate specification of x, in the model.

After regress, the cotnmand to generate an added-varisble plot is given as

avplot varname

whare varname is the variable on which the plot is based, which can be a regressor or
# variable not included in the regression model. Alternatively, B

ayplots

qumeﬁ.una graph with all added-variable plots from the last regression, as we
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h of figure 52, we see several
i . response variable and that r
lin® " vident in the graphs for 1nox and 1d

cel ] e sssociated with prices much higher | _
_EI”ﬂ Statistics shown in each panel test the hypothesis that (e v
b e sinificuntly different from sero. “These test statistics are identical o ¢
‘h r fll'ill:i““l repTession, shown above,
t

g2

24 including irrelevant variables in the model

including irrelovant FeEressors does not violate the zero-conditional-mean assumption.
“ce their population coefficients are zero, including them in the regressor list does nol
ditional mean of the w process to differ from zero. Suppeds that i b

o
H

5
canse the comt

1
i y=%0 +u (5.4)
tp we mistakenly inelude several xs variables in our regression model. To that case,
we fnil to impose (hie restrictions that @, = 0. Sinee @, = 0 in’ the population, in-
duding %z leaves our est imates of 3, unbiased and consistent, as is the estimate of r.‘r-a+
Overfitting the model and including the additional variables canses a loss of efficiency
se section 4.2.3). By iznoring that the xp variables do not belong in the model, our
wtimates of 3, are less precise than they would be with the correctly specified model,
and the estimated standard ervors of @, will be larger than those fitted from the correct
windel of (5.4). This property is especially apparent if we have k; = k2 = 1 and the
porrelation between 7y and x2 is high, Mistakenly including x5 will ie&il to imprecise
estimates of 3 .

Clearly, overfitting the model costs much less than underfitting, as discnssed ear-

|
|
i lier, The long mode! delivers unbiased and consistent estimates of all its parameters,
, including those of the irrelevant regressors, which tend to zero.

5.25 The asymmetry of specification error

We inay conclude that the costs of these two types of specification error are asymimnet
We would much rather err on the side of caution (including additional variables) to avoid
Lhiy mm!mi:steut estimates that wonld result from underfit de

tanelusion, a model selection strategy that starts with
o tefine it by adding variables is Hawed. The opposit
Specification and seeking to refine it by imposing apg
10 recommend it,* Although a general spes
O the '




, we would expect one of those 20 estimates 15

variety of models in search of the true model is to avoid using
ce to erronecusly reject a theory because we have misspecified the
hip. If we write down one model that bears little resemblance to the true
it that model, and conclude that the data reject the theory, we are resting our
t _mt_«{bhg_mdj’qtaiﬂéd livpothesis that we have correctly specified the population
‘model. But if we used a transformation of that model, or added omitted variables to
‘the madel, our inference might reach a different conclusion.

526 Misspecification of the functional form

A model that includes the appropriate regressors may be misspecified because the model
may not reflect the algebraic form of the relationship between the response variable
“and those regressors. For instance, suppose that the true model specifies o nonlinear
relationship between y and z;—such as a polynomial relationship and woe omit the
squared term.! Doing so would be misspecifying the functional form. Likewise, if the

|I true model expresses a constant-elasticity relationship, the model fitted to logarithms
I of y and x could render conclusions different from those of a model fitted to levels of
the variables. In one sense, this problem may be easier to deal with than the omission

of relevant variables. In a misspecification of the functional form, we have all the
uﬁpmm'iate variables at hand and only have ta choose the appropriate form in wehicl
they enter the regression function. Ramsey's omitted-variable regression specification
“error test (RESET) implemented by Stata’s estat ovtest may be useful in this contexh

FeRTES on of y on the levels of various x's restricts the effects of pach j ot
|y linear: If the functional relationship linking y to x; is nonlinear. & lineat
: k reasonably well for some values of z; but will eventually b‘“’:;

T is based on this simple notion. RESET runs an augment
, the original rogressors, powers of the predicted values from (%
he original regressors. Under the null hypothesis &




1, {hir
dlull regresso i
nl’ ihe test in small ﬁumples ha::au:se it wﬂl mr_tudﬂ man;r T
W perform RESET after our regression model of log housing pric

quietly regress lprice Inox 1dist rooms stratio

_ gpatat ovtest

famsey RESET test using powers of the fitted values of lprice

Ho:

F(3, 488) =
Prob > F =

. |atat gvitest, ThE
Ramsey RESET test using powers of the independent variables

Ho:

Prob > F =

11.78

modal has ne omitted variables
8,689
020000

podel has no cmitted variables
F{12, 489) =

0, 0000

we can reject RESET s null hypothesis of no omitted variables for the model using either
form of the test. We respecify the equation to include the square of rooms and include
another factor, 1proptax, the log of property taxes in the community:

. regress lprice lnox ldist rooms rooms2 stratio lproptex

Source 85 df HE Nombar of obs = 508
F( "6, 499) = 138.41
Modsl | 52.8367813 8 8.808596356 Frob > F = 0,0000
Residual | 31.7464896 498  .06362022 R-squared = 0.624T
hdj R-squared = 0.6202
Total | £4.5622700 505 .167489645 Root MSE = .25223
lprice Cosf. Std. Err. £ P2l (95% Conf. Intervall
inox | -.66156894 1201606  -5.51 0,000, -.BOV6534 M
ldiat -.0950B7 .0421436  -2.26 0.024 -, 1778876 -.01
rooms | -.5625662 .1610815  -3.49 0,001 - . 6789496
rooms?2 (0634347  .0124621  5.08 0.000
_stratio | -.0362928 .0050699  -6.98 0,000
Iproptax | -.2211125 .0410202  -5.39 0.000
| -com ' 4 .5693846  24.86  0.000




on the residuals have been developed to help you evaluate the specifics-

> model because certain patterns in the residuals indicate misspecification. We
he residuals versus the predicted values with rviplot (residual-versns-fitted
them against & specific regressor with rvpplot (residual-versus-predictor

s qu:l.ti;.'l.y regrass lprice lnox ldist rooms rooms2 stratio lproptax
. rvpplot ldist, ms(0h) ylina(0)




true model implies that 8y/da;

y= By BaXa bk By o BeXe ok Byl Sag) e
e regressor (0 «re) Is an interaction term. With this tevm uelded to the mo
g Oir; = B + By, Theeffect of @y then depends on Ze. For example,
ﬂﬂﬂd m:‘i’uiyir t:nmilu;.-, prices on attributes of the dwelling, the pffect of adding a
in & 1o the house may depend on the honse's square footage” 1f the coefficient B,
od to equal zero [that s, if we estimate (5.5) without interaction effects], the
] derivatives of both 2, and 2y ave constrained 1o be constant rather than varying,
i Hhey would be for the equation including the interaction term. If the interpetion term
o terms are frrelevant, {laeir ¢ statistics will indicate that you can safely omit thern.
But here the correct specification of the model requires that yon enter the regressors i
gy proper form in the fitted model.

As-an example of misspecification due to interaction terms, we inclide taxsehl —
an interiction term between lproptax, the logarithm of average property taxes in the
aid stratio, the student-teacher ratio—in our housing-price model.” Both
tors. in the sense that buyers would prefer to pay lower taxes and enjoy
rper stall and would not be willing to pay as much for a house in a

Iﬁ_mmtmiﬂ

conmimiy,
are negative fa
schools with la
community with high values for cither attribute,

. geneé¥ate taxschl = lproptax atratioc
.'ragrose lprice lnox 1dist lproptax stratio taxschl

Sauron 58 df Ma Number of oba = BOE

L F{ B, 500) = '84.47

Modal 38, 73016632 B T.74603123 Prob > F = 0.0000
Reaidual 46.8531148 50D .09170423 R-sguared = 0.4579
Adj R-squared = @.4535

Toral | B4.BB22709  BOS 167489648 Moot MSE: = 30983
lprice Coof. Std. Err. t  Paltl [95% Conf. Interval]

lnox | -.o041i03 1441288  =6.27 0,000 -l "
ldist | ~-.1430841 .0B01B31  -2.85 0,006

lproptax -1.48103 .Bi83iiT  -2.87 '0.004

stratio | -.43g@7z: .1638321  -2.85. 0.008

tazachl 0641648 [RGA06 2.43 0.018
_cons | 91.47905 2.052307 7,28 0.000




(] Tor

of the specification of an fitted model, we must also considy
e model's robustness to influential data. The OLS estimator iy
t the regression sample as well as possible.  However, our objective i

el often includes inference about the population from which the sample
ting ont-of-sample forecasts. Evidence that the model’s coeflicints
influenced by o few data points or of structural instability over
doubt on the fitted mudel’s worth in any broader context. For this
consider tests and plots designed to identify influential data.

wvariety of statistics have been designed to evaluate influential data and the n
onship between those data and the fitted model. A pioneering work in this held i
[ath, and Welsch (1980) and the later version, Belsley (1991). An autlier in 4
ssion relationship is a data point with an unusunl value, such as a value of housing
tavice #s high as any other or o community with a student- teacher ratio 5 st
bulnrw the mean, An outlier moy be an observation associated with o lorge
{in abselute terms), a data point that the model fits poorly.

b thie other hand, an unisual data point that is far from the center of mass of the
it ition may also be an outlier, althongh the residunl associated with that data
_m_ ﬁfﬁﬂ:l e small because the least-squares process abtaches i .H(;I:Iqll'n"|| penhll\'
hﬁ reaidual in forming the least-squares eriterion. Just as the arithipetic menn (&
ares estimator) Is sensitive to extreme values (relative to the sample unedianl,
ast-squares regression fit will attempt to prevent such an unnsual data point from
ating o sizable residual. We say that this unusual point has a high degree of lever
on the estimates because including it in the sample alters the estimated eoellicints
ible amount, Data points with large residuals may also liave high loverage

h low leverage may still have a large effect on the regression estimates. Mes

e and the identification of influential data points take their leverge 14

cutlate & measure of each data point’s leverage after regress with

mputed from the dingonal elements of the “hat iy
5 th row of the regressor matrix® You e ot
g values versus the (normiaized) squared

X B
v el
f




Ll R

Mean  Std. Dev.

Min

T

506  23511.B1
506 9.941057

9208856
409258

] E"ﬂﬂ =lev
1ist town price lprice lov apsZ in 1/6

——

towhh price lprice lav apsl

366 27498 10.2219 LA1T039262 .B1B13T18

368 22100 10:04T58 LA12T263T .30022048

365 21800  9.394242 10847853 33088957

o58  BOOOL i0.8198 . DB0360ES ,EﬁﬂiTﬂﬁl

295 BOOON 10,8158 0723036 .03382768

We can also examine the

. gsart -epsl

towns with the largest squared residuals:

. 1ist town price lprice ley eps2 in 1/6

#

Fﬁsfﬂuﬁha-*

ara
arg
408

20001
50001
6000

10.8198
10.8198
8.517183

. 02056501

-0172083.

. 00854955

town price lprice lav apsld
363 50001  10.8198 02250047  1.7181195
373 50001  10.8198 .01609848  1.4894088

1.2421085




- h
L i -—jﬁj

(standardized) residusl,

Ei
P a1 —hy

-;afurmglm the root mean squared ervor (s) of the regression equation with the
i n removed. Working through the algebra shows that either a large valye
1) or a large absolute residual (e;) will generate a large |DFITS; ). The
W is a scaled difference between the in-sample and out-of-sample predicted

{ jth observation. DFITS evaluates the result of fitting the regression model
1 excluding that observation. Belsley, Kub, and Welsch (1980) suggest that
alue of |DFITS;| > 24/k/N indicates highly influential observations. We now
DEITS in our housing-price regression model:”

. predict double dfits if e(sample), dfits

 sort the caleulated DFITS statistic in descending order and caleulate the
‘cutoff value as an indicator variable, cutoff, equal to 1 if the absolute
'S is lavge and zero otherwise. Consider the values of DFITS for which




7499 10.3219

gfl.: 23100 10.04768,
3 372 50001 1.':!.31;\_3_ {
;: 38 50001 10.8198  .B38B73964

| BT
a7i 50001 10,8198 56639311
70 50001 10,8198 54354064
2] iaey Loagewr i1o.13%ER. L BEIBASAR
| 21 | asa 22700 10.03012 31616743
o | ace 27e0r 10.23842° ;3178132

.'__———-_._
| y. | ser 21900 9.994242 31060811
12 | 360 22600 10.02571  .28892467 )

| 35 | 3sa 20800 9.942I08 . 27393758
- . | 3ss 21700 9.985067  .24312885
288 7200 B,B81B36  -.23B38T40

w1, | 38 7400 8.908236 -.25905383
47, | ‘41 8100 8.999619  —.26684785
494, 400 G300 B.T4H305  -.28782824
404 416 7200 B8.881836 -. 20288953
485, 402 7000 8.881836  -.20B0GEDE

486, 381 10400 9.243561 - . FOE68364
44T, 258  BOOOL 10,8198 -.30053391

498, | 386 B200  9.082507 -, 302916
493, 420 B40D  9.035887  —.30843065
B0, | 490 7oO00  R.8B3GES - 3142718
501, | 401 5E00 B.63D522  -.83273658
502. | 417 YEOD  B.922888  =.34850136
643, 399 5000 B.517183  -.36818133
504, 408 OO0 8.517193 -, 3TEG1BG3
ED5. 415 7012 B.855378 =, 43879798
fos. - . 85150064 ) =

L35~'5 21900 9.994242

Aboyt l‘i‘}f, of the ahservations are flagged by the DEITS cutoff .
@dia:l:,ﬂnﬂ'mniutﬂd with large positive D[-"lTﬁhaH&‘ﬁ.'ﬁB ap-
thag of ousing price, and the magnitude of positive DFT!
W‘;@hm DFITS, The identification of top-coded val
.Ihh'wmmr‘lﬂd price suggests that we consider a dif
ety g The tobit regression model, presented 1
- or the censored nature of the median

.



n @Eﬁg&ﬁm and consider its effect on the estimates by
dfbeta command after a regression.'" The Jth

for regressor { may be written as
TE'U.['
/(1= hy)

BFBETA; =

duals obtained from the partial regression of 2, an the remaining
tstheir stum of squares. The DFBETAs for regressor ¢ measure the
s regression coefficient would shift when the jth observation is included N
thet‘egmmiﬂn, :s:;ulf.'d h:r the hﬂltlrih‘fl atamlanl error of the fll!fhﬂﬂﬂ '

'me standard error. H-e!:#lev. huIL an "|."|. I'"i:if]l [WH[I; sugpest o cutoff of
1 >2/VN.

ympute DEBETAS for one of the regressors, Inox, in our housing-price regression

TR DFinox: DFbetal(lnox)
.'.. qu;tiﬂr- generate dfcut = abs(DFlacx) > 2/sqrt(e(i)) k ol(sampla)
-},@;’;_DEM

Hean Etd. Dav.

Hin Hax

1853081 (014102 1.348073  2.164472



|BY

1

=3

i

S

£0001  10.2198

369
§ ar3  BoOOL 10.B198
i | ‘an sl 10.8198 BA2138 -
5 aT00  S0001 10.8198 Lﬂm -:m
s | 385 =900 5.004242  L.4V12088 - 2107068
20| 4ps 27e01  10.23642  1.885563 - AT2E72E L
“H. agE 23100 10.04758  1.8A2136 -.130053%
£ 11 16000 9.615806  1.656321  -.1172723
jo. | 410 27498 10,2218 L.TBETAT - 1117743
4. | a3 17900 6.792656  1.786747  -.0969273
2. | 437 SE00 9. 168518 2.00148  =.0955806
14, 146 13800 95.532424 2.164472° - 08914387
400, | 154 19400 5.873029  2.164472 0910494
481, 463 19800 5. B7TBIT  1.964311 0941472
ag2, | 464 202000 9.913438  1.86431L 0974507
a3, | 437 10200 9.230143  1.754731 1007114
404, | ape 5000 B.517183 1.93586 1024787
5, 161 21500 9.976B08 2.163472 LA10ETRST
456, | 152 10800 (9_GE3286  2.164472 S1120427
407, | 460 20000 5.903487 1.364311 1142668
498, 160 23300 10.06621  2.16844972 1185014
4, | 491 8100 B.099618  1.806643 1222368 ,
500, | 382 18900  9.BIBATH 2.04122 1376445
Egl. | 385 20B00 9.943708 2.04122 JAToTE4
EG2. | 400  TOOD B.B5366G  1:GO6648 ATH1869
E03. | 358 2ITO00 9.985067 2.04122 1827834
Ep4. | =80 228000 10.025T1 2.04122 2200745
] 361 24869 10.12559 2.04122 2423812
B 459 227000 10.03012 2.04122 2483543 -

Compared 1o the DFITS measure, we sé¢ & similar pattern for the DFBE‘]‘:K
with roughly 6% of the sample exhibiting large values of this measure.
thie large positive values exceed their negative cmml:erpm'tﬁmmi
pisitive values are associated with the top-coded median house yalue ok
(presumably wealthy) communities have values of Inox well ine: [

e, In contrast, many of the communities with large negative
extremely igh values (or Hlemmﬁanumrmfﬂﬁla o ’
Mow should we react to this evidence of m:




abler ing (or coding of extreme values) wy
110.3.2). A version of the tobit model, two-limit tobjy,
ower and upper limits. 4

Endogeneity and measurement error

Inmnmnetrica, a regressor is endogenous if it violates the zero-conditional-mean ge
sumption Efu | X] = 0: that is, if the variable is correlated with the error term. it s
: nous. I deal with this problem in chapter 8.

We often must deal with messurement error, meaning that the variable thar the
ory tells us belongs in the relationship cannot be precisely measured in the available
data. For instance. the exact marginal tax rate that an individual faces will depend
on many factors, only some of which we might be able to abserve. Even if we knew
the individual's income. number of dependents, and homeowner status, we could only
approximate the effect of 4 change in tax law on her tax Hability. We are faced with
USINg an approximate measure, including some error of measurement, whenever we try
tor formulate and implement such a model.

This issue is similar to a proxy variable problem, but here it is not an issue ofa
latent variable such as aptitude or ability. An observable magnitude does exist, but the
e_cﬁmmmetri{:ian cannol observe it Why is this meastrement error of concern? Becalse
the ecanomic behavier we want to model—that of individuals, firms, or industries—
presumably is driven by the actual measures, not our mismeasured approximatioss

_:iﬁ-t_'l'méafa factors. If we fail to capture the actual measure, we may misinterpret the
behavioral response.

Mathematically, [messurement error (commenly termed errors-in-variables) has the
same effect on an OLS regression model as endogeneity of one or mere regressors (5%

dra.phnx '8];

dataset, regress 1ifeexp on popgrowth and 1gappe. Genert®
by using avplot safewater. What do you conclude aboil
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: d{uﬂlm in section 4.2.2, if the regression errors are i.i.d., OLS prﬁ&lm
M:' tes: the Jarge-sample distribution in large samples is normal w'r't:h :
e L.;Eﬂ';]{:iﬁ{]t values, and the VCE is consistently estimated by (4.15). If 8
AR t-n-b:nal.mmn assumption holds but the errors are not i.i.d., OLS produces consistent
Wﬂdi:iips whose sampling distribution in large samples is still normal with a mean at
fjijl::-ue coofficient values but whose VOE cannot be consistently estimated by (4.15).

We have two options when the errors are not ii.d. First, we can use the unnmsﬁentr
oLs point estimates with a different estimator of the VCE t-_lmt E.ﬂﬂl.‘.'l.l.lltﬁ' for nami,i._d;..
arrars. O, if we can specify how the errors deviate from i.i.d. in our I"Egl'Eﬁﬂl‘ﬂn ml:"l..'].(‘?]., we
r,-&ll use a different estimator that produces consistent and more efficient point estimates.

The tradeoff between these two methods is robustness versus efficiency. A rE:u_bust
approach places fewer restrictions on the estimator: the idea is that the c?nslstﬁnt
poinit estimates are good enough, although we must correct. our £sUInALOE of their VCE to
account for non-i.i.d. errors. The efficient approach incorporates an explicit specification
of the non-i.i.d. distribution into the model. If this specification is appropriate, the
additional restrictions it implies will produce a more efficient estimator than that of the
robust approach.

The i.i.d. assumption fails when the errors are either not identically distributed or
not independently distributed (or both)., When the variance of the errors, conditional
on the regressors, changes over the observations, the identically distributed assumption
fails, This problem is known as heteroskedasticity (unequal variance), with its apposite
being homoskedasticity (common variance). The ii.d. case assumes that the errors

are conditionally homoskedastic: there is no information in the regressors about the
variance of the disturbances.

When the errors are correlated with each other, they are not independe
tributed. In this chapter, we allow the errors to be correlated with each other
the ii.d, assumption) but not with the regressors. We still maintain th i
mean assumption, which implies that there is no correlation between

Tegtessors are correlated with the errors.




§ : ; ill }
':nm.i mat mume that it is distributed multivariate normal!

gq:_:‘emﬂxed linear regression model (GLRM) that lets us consider
B¢ i.d. errors on the estimated covariance matrix of the estimateq

“E'Hﬁ-mw
y = Xf8+u
EujX] = 0
Fha'|X] = =,

; ihﬂ- ptﬁiﬁifﬂ-deﬁnil‘.l: matrix of order N x §.? This is a generalization of the
model in which £, = ¢2/x.

*‘Whm E.u = o2l the OLS estimator of 3 is still unbiased. consistent. and normmally
ﬂjﬂtﬁhut.ﬂ{] in large samples, but it is no longer efficient, as demonstrated by

ﬁ — [xrxj Ix.l}r

] = (XX) XX +w)
|.I = [+ (XX)"'X'u
Big-pl = 0

ven the assumption of zero-conditional mean of the errors. That sssr mption implies
'ﬂ:q;h ’ihﬁ sumpling variance of the linear regression estimator (conditionsd on X) will be

VarBIX] = B[(X'X) ' X uu/X(X'X) =]
(X/X) (X', X) (X/X) ! (6
%‘U@Mmputed by regrass is merely o2 (X'X) . with o replaced by its estimatt

:ﬁﬁlx. this simple estimator of the VOE is not consistent and the & “’"’“j

are hnppmpﬂata Hypothesis tests and confidence intervals
o .-qﬂhu NOE aftor regress will not be reliable.



(hemiode conditional on X, to vary across the observations. For
AR sing & household survey, we could model consumer expenditures as a function.
We might expect the error variance of high-income individuals to
sincome individuals beeause high-income individuals

| allows the variance of i,
ﬁﬁlﬁﬂ-
n@["]mﬂiluigl ineoine.
pe il greater than that of low
h". ye mutich more digcretionary ineome.
Second, we can Separate the observations into several groups or elusters within which
{h CrTOTS 4T For example, when we are modeling households' exper s
i eir income. the errors may be correlated over the house-

s within a IL[:"ij_.{]I]IIrI.'iI.I:Jl.HL

Clustering—correlation of errors within a cluster of observations—causes the Xy
matrix to be block-diagonal because the errors in different groups are independent of
ane another. This case drops the independently distributed assumption in & particular

say. Sinoe each cluster of observations may have 1ts own erior variance, the identically

distributed assumption is relaxed as wiell,

e correlated,
function of th

=1 0 ]
0 .
22y T (6:2)
- 0
0 0 Zu

ltlﬂm notation; B, represents an intracluster covariance matrix. For eluster (group)
Enmﬁhr“ observations, X, will be Ty X Tm. Zero covariance between observations. in
; jH diffevent. clusters gives the covariance matrix Xy & block-diagonal form. "

' ‘I’Hird, the errors in time-series regression models may show "
the errors are correlated with their predecessor and '
ion, the error ¢ovariance matrix becomes

Al (AL =




(XX (X3, X)(KX) !
(XX) X Elun | X]X)(X'X) ! (6:4)

%mm that we must estimate, | X' Elou’[ XX}, is sandwiched between the (XXt
terms. Huber (1967) and White (1980) showed that

e Lo

So=% z: %!, (6:3)
@fﬁ&iﬁ‘b&ni-lﬁf estimates (X" EJou|X]X) when the w, are conditionally heteroskedastic
In this expression, w, is the ith regression residual, and x; is the ith row of the regressor
matrix: a 1 x k vector of sample values, Substituting the consistent estimator from
{6.5) for its population equivalent in (6.4) yvields the robust estimator of the VOE*

- N iy .
Var|B|X] = ——(x'x) ' (Zu;x:x.) (X'X)! (6.6]

The robust option available with most Stata estimation commands, including lbﬂ*
h regress command, implements the sandwich estimator deseribed above. Caleulatiig
rabust standard errors affects only the coefficients’ standard errors and interval estimals
ancd does not affect the point estimates 3. The ANOVA F table will be suppressed,
‘will the adjusted R* measure because neither is valid when robust standard errors are
being computed. The title Robust will be displayed above the standard errors ol the.
“coefficients to remind you that a robust estimator of the VOE is in use, After wﬂl“ﬁ’ '
. tests produced by test and 1incom, which use the robust estimator of the VOE B2
: ' tional heteroskedasticity of nnknown form.! See [u] 20,14 ObtaIRES
variance estimates for more detail.

of homoskedasticity is valid, the simple estimator of the
bust version, If we are working with a sample of !
homoskedasticity is tenable, we should rely on the &
Lecatise the robust estimator of the VOE is easily




('L
e

to thit ise of the robust estimator of ¢
L atoins dnta on 4361 women from & developing
that ! of children ever horn. (cab) to each wom
 (agefbreh), and an indicator of whether
fon (usemeth).® 1 present the descriptive
| on those observations with complete du

o gumber
ﬁ first hirt!

. use Bttpi /v stavaTproos. con/dava/inaua/fercil2, clear
, quietly Tegress ceb nge ngefbrth upemeth

, gutimates store nonhobust

. sumsarize ceb age agofbrth usemeth children if o(sampla)

Yariable Oba Hoau Sed. Dov. Min Max
b 3213 3.730003  2.236836 1 13

age 3213 20.93931 7.920432 15 49
agafbrth 3213 19.,00498  3.088121 10 38
usempth 3313 6791161 .A66aBAY 0 bt
children 3713 2,999378  2.0BBET { 13

The aversge woman in the sample is 30 years old, first bore a child at 19, and has
tiad 3.2 children; wil b just under three children in the honsehold. We expect thiat tﬁﬁ
iimber of children ever born is increasing in the mother's current age and decreasing in
fier age at the birth of her first child, The use of contraceptives 18 expected to decrease
the number of children ever born.

For later use, we use estimates store to preserve the results of this (undisplayed)
regression. We then fit i e same model with a robust estimator of the VOE, saving those
results with estimates store. We thenuse the estinates able command to display
the two sets of coefficient estimates, standard errors, and ¢ statistics. L

, regress ceb age agefbrth usemeth, robust
Linoar regroasion Husber of oba

F( 3, 3209




0,006

47.99

-0.2607

0.010

=47.36

0. 1874

0. 056 0.061
3.38 3.09
1.3681 1.3581
0. 174 0.168
T.82 B.11

legand: b/sa/t

Our prior results are borne out by the estimates, although the offect of eontraceptive us

il appears 1o be marginally significant. The robust estimates of the standard erroms i
| similar to the nonrobust estimnates, suggesting t hat there is no conditional heteroskedss
' 6.1.3 The cluster estimator of the VCE

Stata has implem;mmd an estimator of the VOE that is robust to the ;zurmlatiun"f
t identically distributed disturbances, [u s oo

disturbanees within groups and to no
monly referred to as the cluster robust VOE estimator, because these groups are knoth

'i'ﬁ':ﬂﬁhms:c:Wi'thin-_;:lusttﬂ"rmreluL‘mn allows the £, in (6.2) to be block-diagonil WEE
'W'Hmm'ﬁtmﬂ each block on the diagonal. This block-dingonal Htri.lr‘tlll'ﬂd'
E;Wi]i(aiﬂjuturhm within each cluster to be correlated with each other bul TeqiEs
 that the disturbances from difference clusters be uncorrelated.

;i thin-cluster correlations are meaningful, ignoring them leads to incd
VO Sinee the robust estimate of the VOE assuies indepe
s estimate of (X' E[uu/|X]X) is not consistent. Stata's c1u8
stimation commnands including regress, In_tﬁ-ydu'.ﬂﬁq-".‘
Jike' the robust option (which it mm'wmy]'ﬂ '




.51“-““.-, s tho- 161 rosltlul Erote, e Jthuclusbee, @ytoRcIR KR LR
e from the iUl observation in the jth clister, -

' mem“ (6.7) hns the same formm s (G.6), A:ﬂ'i;lii fromn the ﬂnmll_-u_nﬁi'pﬁ'ﬂﬂ}jmmlﬁ_li'
7) differs from (6,6 only in that the “meat™ of the sandwich mmmm
mh it estimator of (X' Fluu'|X]X). p
fhe goul af the robust and the elusterspobust- Ve estimntors J80 60 m‘mﬁhﬂﬂ?

atimate the Var[@|X] in the presence of non-Lhd. disturbanees. Different violations of
the 1l disturbance asstnption simply require distinet estimators af [}{*E[uu’l‘}[])t}.

To illustrate the use of the eluster estimator of the covarinnee matris, we revisit the
model of fertility in a developing country that we estimated above via nonrobust anel
okt methods, e clustoring variable i children: the number of living children in
i household. We oxpect the errors from lonseholds of stmilny sise o be corrolated,
while indeperident of vhose penerated by households of different size.

, ragrann cob age ageflrth uiemeth, cluster(childran)

Linear regressiou Kumbar of aba = ani

- 13) = 20,91

Prob * F = 0,0000

Renguared = 0.6720

Humbar of clusters (children) = 14 oot HSE - 1.463
Rpbunt a

cal Conf. Std, Brr. £ Pl [o8% Conf. Intervall

g J2237a68 0315086 7.0 0.000 L IBEAGES 2918071
agafbrth _ saneca4 .04BA208  -T.36 0,000  =.3372046 - 1841324

ussanth CLBTATO2 0843663 1,00 0,060 -.016412 3002138
ons | 1,358154 4248880  5.30 0.007 4402818  2.278085

The cluster estimator, allowing for within-cluster correlation of errors, e
muich tiare conservative standard errors (and smallor ¢ statistics) than those
b e previens oxample, '



. ﬁijmfur heteroskedasticity, the estimator proposs)
: m]g}mxlf;m produets of the residuals to account fyp

Y Lo
ﬁ =8+ %}: z Wy Tigiig (3 Xi— + Xy 0%0)

= =1 t=l 41

fﬂﬁﬁhhhurﬂhmﬂ estimator of the VOE from (6.5), tiy 48 the tth residunl, and x; i
the fth

1he Wﬂﬂf the 'fﬂﬁm'; mabeik, The Newey - West formula takes 8 specified number
Wﬂfhhﬂmlﬂ nutocarrelations Into meeount, using the Bartlett kernel estimator,

!
w=1—-—-—

E+41

Ao generste the weights.

T.'Ill& estimator is said to be HAC, allowing for any deviation of ¥, frome:lopto
Mih'ol-ﬁm antotorrelntion. The user must specily ber choieo of L, which shionld be lange
enough 16 encompiss any likely autocorrelation in the error process. One rule of thuimh
ﬁit'? ghaose I = SN This estimator s available in the Stata command newey (s
[irS] newey), which you can use as an alternative to regress (o estimate o regressiof
with mac stahdoard errors. This command has the following syntax,

nevey. depuar [ indepvars] [if] [m], lag(s)

i mnhurglwn .ﬁ':!r the lag() option is L above. Like the robust option, the
A _.11_lilli_ _lfll;.‘_lir.lil'j.' the point estimates; it alfects only the cstimator of the
Wﬂﬂ an the HAE VOE are robust 1o arbitrary histeroskerlasticity

T HARTERTT
hiss estimator of the VoE by using o time-series dataset of anonthly

ﬁ'lbﬂm&t- vates on LUK, govermment securities (Treasnry b
12, The descriptive statistics for those series are given ™




/ .' ) e Newy=VWestiestimaiar o

k

) Phe rejgressor and regeossined
;l;ﬂm“‘ p. and L. The model "ﬂpfﬁm; &W fm
We fit the model with and without HAc P .
8y. pespectively, using estimates store to Hﬂ'-'al !“mﬁﬁ'w
ﬁ:u:tlﬂlm' them. Sinee there are 524 ohser ﬂ-ﬂna'.. 'hhﬂ mhml;

five Tags, which we specily in newey's lug 0y )

recominends

quistly Fegres: D.ro LDGT20
_ gatimaten store nonHAC
| paway Duro LELX20, lag(5)

e e

fagrossion with Neyoy-West standurd rxors Huabor of oba = 524

marimum’ 14875 FC 1, §9) = 38,000

Frob » F = 0.0000

| Heway-Weat .

| D.rd | Conf, Std. Err. t Pl {55: Cont, :-E‘EIEFIIJ
)

Lo, LAEE2883 0813867 6.00 0.000 . 3284026 -._Hﬁ_l“

_tanm 0040183 0254102 0-18 0874 - 0450004 _OEAGITL

, aptimates store HaweyWest

., agtisates table ponHAC NeweyWsat, biUS.4f) ae(lE.3f) w(ls.28) N
» title(Estimates of D.rs with OLS and Newey--Wost etandard erroral :

Estimates of D.re with OLS and Hewsy--Wast standard errors

Variakla nonHAC HewayWeat

Lh. £20 0.4883 0. 4983
Q.067 0,081
727 6.00
_EORE 0. 0040 0, 0040
0.022 0.026
0.18 0.16 ._._

logond: biseft

The HAC standard error estimate of the slope coefficient b
that produced by regress. n]thnrugh the maﬂiclinnh retains |

E‘ﬁ;’i-

The mlrremﬂmum s that
h{"@m iﬂhmis '



Wmm the coefficients of a
amption holds, but the errors are not i.i:d. Kng
ized this technique relies on the insight thay i
‘we could algebraically transform the data so that the resulting errors yen

Wﬁﬂmthhnmmgl‘ﬂwn on the transtormed data. We do not know
’ o this estimator is infeasible. The feasible alternative requires that W
strn ure that deseribes how the errors deviate from ii.d. errors, Given that
1 we can congistently estimate %, Any consistent estimator of 2, may be
to transform the data to generate observations with i.i.d. errors.

Although bath the robust estimator of the VCE approach and FGLS estimitors -
count for non-i.i.d. disturbances, FGLS estimators place more structure on the estimation
method 1o obtain more efficient point estimates aned consistent estimators of the VB
In contrast, the robust estimator of the VCE approach uses just the OLS point estimates
and makes the estimator of the VCE robust to the non-i.id. disturbances

First. consider the infeasible GLS estimator of

¥y = XB+u
Ejuu'|X] 1

[}

which implies that it

The known N x N matrix 2, is svmmetrie and positive definite,
el

hag an inverse E:: = PP/, where P is a triangular matrix. Premultiplying the

by P yields

P'y P'X3+Pu

F'I i xtﬂ -+ tla IE'E:I

Varfu.] = Eju.u] = P'E,P = Iy
. by th

, regression of y. on X, s asymptotically et T
mhmnd.ﬂ-ﬂ Thl’l.t- Eﬁliﬁlﬁtnr _n'_li'.lfﬂh’ I'EP ‘..
omned datas




ator of Sy, denoted b
(6.8). The L5 estimator has g Sei

interpart.? That result does not depend on t:
merely any congistent. estimator of By : v 9
i estinator of B Jies in ite dimension:

sallenge in devising:a consisie i e T
a mfl::edﬂ-mnrfME matrix of order N with {N(N -+ 1}”2 gighines ~lzations:
aately; the most commor depurt.ums.fm.m i.i.d. errors 1am'l__’u_'.~ p_umet__kmww
with- many fewer paramerers. As T discuss in the next sections, HEH g
autocorrelation can often be modeled with a handful of parameters. :
consistency of these estimates is a fixed number of parmmeters it B, a8 N — o0

The gain from using FGLS depends on the degree Lo which 5, diverges from atIn.
jance matrix for i.id. errors. [f that divergence 15 small, the FGLS estimates

f standard linear regression, and vice Versi.

the COVAr
will be similar to those o
s the most conmon violations of the i.id, errors

The following two sections discn
\—and present the FGLS estimator

gesumption hetercskedasticity and serial coreelation

appropriate for each case.

6.2 Heteroskedasticity in the error distribution

asets representing individuals, households, or firms, the distur-
ited to some measure of scale. For instance, in modeling

hange variances are often rels
consumer expenditures, the disturbance for variance of high-income households is usu-

hat of poorer households. For the FGLS estimator deseribed above,
matrix for these errors will be related to that scale

In cross-sectional dat

ally larger than t
the diagonal elements of the 3,
MeAsITe.

We may instead have a dataset in which we may reasonably assume thatthediﬁh;;}%
bances are homoskedastic within groups of observations but potentially heteros c
hetween groups. For instance, in a labor market survey, self-employed indi ¢
workers paid by salary and commission (or salary and tips) may have a grea
around their conditional-mean earnings than salaried workers. Fnrthaﬂﬁlﬁ-
there will be several distinet values of o2, each common to those individuals
but differing between groups. ' e |

Asa third potential cause of heteroskedasticity, consider th '
which each observation s the average of microdata (

i |
,;g



ticity at length, but the use of the autoregressive condition)
ity flﬂ_ q0H) and generalized ARCH (GARCH) models for high-frequency
is based on the notion that the errors in these contexts are condition-

and that the evolution of the conditional variance of the disturbance

feled.®

e
=

ﬁﬁtamskedastmty related to scale

We- oft use an economic rationale to argue that the variance of the disturbance proces
&ﬂ'ﬂtﬂl to some measure of scale of the individual observations. For instance, il the
TEs variable measures expenditures on food by individual hounseholds, the distur
banees will be denominated in dollars (or thousands of dollars). No matter how wel
the estimated equation fits, the dollar dispersion of wealthy households® errors arouid
{'.lie‘lt predicted values will likely be much greater than those of low-incone households

Thus a hypothesis of
. a? o3 (6.4)

is often made, whete z; is some seale-related measure for the ith unit, The notion of

portionality comes from the definition of FGLS: we need only estimate Xy, upiioh
factor of proportionality. Tt does not matter whether = is one of the regressors or merety
maore information we have about each unit in the sample.

Wi te z in (6.9) since we must indicate the nature of this proportional rela
For instance, if & = 2. we are asserting that the standard deviation of the
o provess is proportional to the level of ; (e.g., 1o household income of &

sts). If o = 1, we imply that the variance of the disturbance proces
to the level of z;, so that the standard deviation is pmpuﬂ.iumﬂ t0 yf Fir

usible choice of =, why is the specification of o so important? |f1“ﬁﬁ“;
: 1 dofioe

0 deal with heteroskedasticity, our choices of 2 and o in (6.9) W G0y
or 10 be used. Before I discuss correcting for heteroskedasticity reli
understand how to detect the presence of heteroskedasticity:




4 Pl L

o regression model, x
s Why is this apps
S crors unnsabe?
Wrﬁ‘dlluhlhﬂt may be used to make inferen
gl homoskedusticity conditionl on

éﬁﬂ]ﬂm Hp: Varfulv] = o}

Under this pull hypothesis !ilw -:911:lit:iunu] variance of t.he Sivor process
i i on the explanatory ‘-'Hl‘llﬂme-‘!- Given that Efu] = 0, this null

et to requiring that E[u?|X] = 02. The conditional mean of
uld not be a function of the regressors, so a'r s o the

should have no meaningful explanatory power 1001

ﬂluifﬂ
| paneces <ha

on iy candidate 2 .

One of the most common tests for heteroskedasticity is derived from this line of
easonitg’ the Brensch-Pagan (B} test (Breusch and Pagan 1979}.‘2 The BP test, an
[af test, involves regressing the squared residuals on a set of variables in an auxiliary
ii; = dy + dozip +dazig .o dezie + (611}

We could use the original regressors from the fitted model as the z variables,'! use
o cubset. of them, or add measures of scale as discussed above. If the magnitude of
o squared residual is not systematically related to any of the z variables, then this
egression will have no explanatory power. Its R2 will be small, and its ANOVA

aliliary ©
# statistic will indicate that it fails to explain any meaningful fraction of the variation
15

of ii? around its own mear.

The BP test can be conducted by using either the I or 1M statistic from the anxiliary
regression (6.11). Under the null hypothesis of (6.10), LM ~ x?, where there are £
regressors in the auxiliary regression. We can obtain the BP test with estat he
after regress. If no regressor list (of z's) is provided, hettest. uses the fitted v
from the previous regression (the 7, values). As mentioned above, the varia )
'E;:heaet. of 2's could be chosen as measures that did not appear in the ori

1, must be a function of the regressor.

f;- % has been generalized to be a vector. o _
The Stata manwals document this test as that of Cook lﬂﬂ WL

B e
i1

o
Final

Eﬁ"‘;‘ (1978), and Cook and Weisherg (1983) separately
% p:::imld not be confused with a different test devised by
A0 LM test statistic evaluates: the results of o

g ioms aze those implied by homos |
ould bo wncarrelnted with any




: if crime and crime-squared were in
ance of the squares term will enter the list of Zs. Under
f these variables should have any explanatory power fﬂttﬁz
The White test is another LM test of the N x B* form but involves
s in the auxiliary regression (especially for a regression in which kis
; resulting test may have relatively low power because of the many degrees
m devoured by a lengthy regressor list: An alternate form of White's test uses
I 'ﬁtmd values of the original regression and their squares. We ean compute both

] ’ _.hjl these tests rest on the specification of the disturbance variance expressed in
(‘Eﬁ}r. A failure to reject the tests’ respective null hypotheses of homoskedasticity doss
not ‘iﬂdicalseau absence of heteroskedasticity but implies that the heteroskedasticity is
not likely to be of the specified form. In particular, if the heteroskedasticity arises from
group membership (as discussed in section 6.2.2), we would not expect tests hased o8
measures of scale to pick it up unless there was a strong correlation between scale and

group membership. '

- —

 We consider the potential scale-related heteroskedasticity in our model of median
‘housing prices where the scale can be thought of as the average size of houses in ead

;MIIE, roughly measured by number of rooms. After fitting the model, we galenlate
three test statistics: that computed by estat hettest, iid without arguments, w]ﬂt‘fl

F_wi'lshfﬂmi'hﬂat based on fitted values; estat hettest, iid with a variable list, whidl

'mwf;ﬂmblﬂ in the awxiliary regression; and White's general test statistic ffof!
L R R DR

tffwuv. stata-press. com/date/izeus/hprice2a, cloar
t ~for Boston-area communities)

crine ldist

55 df M5 Kumber of obs = : 506
— F( 3, Eo3= 219,08

3 15.9632294 Prob > F = 00000
(B02 072973272 R-squared = 0.560%

Adj A=squared = Qiﬂﬁ"f




crisd
idist
_eonn
 gstar battost, did
~Pagan Cook-Weisberg teat zm- m“‘“hﬂlﬁ-nﬂz
’rﬂl“h J"s: Copgtant variance
variables: fitted values of Iprice
ehi2(1) = a4 BT

prob. > chid =  O.0000
pstat hottest rooms crime Tdiat, 144
ergtisch=Fagan Cosk-Waisberg test for heteroskedasticity
Ho: Constant variance
yariebles: rooms crime ldist

| chiz (3} - 50.11
Prob > chiZ = Q.0000

. vhitstst
White's ganeral test statistic ¢ 144.0062. Chi-gql{ 8} P-valus = l;i‘liﬁé:
Eaeli of these 1ests indicates that there is a significant degree of heteroskedast ticity in

{his el

FGLS estimation

To use FGLS on @ regression equition in which the disturbance process exhibits het-
pm-i-:;-_'([ubt_ml'. related to scale, we must estimate: the 5, matrix up to & factor of
pmpmlmmlm We implement FGLS by transforming the data and running a:regres-
shonom the transformed equat ion. For FELS to sucesssfully deal with the dﬁ&lﬂ-‘[ﬂﬂ from.
iid. errors, the transformations must purge the heteroskedasticity from the disturbance
process and render the disturbance process in the transformed egun.l:i-:m I.i‘.d.

'Eﬂlll'bﬂl‘l-l‘e vatianee of the ith firm is pmpﬂmﬂﬂﬂ] t‘“ T “’iﬂ‘
0 seale related to the covariates in the mudel We assume

W induce homoskedastic errors would be to dl_ i

ﬁlﬂm m’lumn of X] by a,;. Thm‘. equation 3
= (1/2}) Varfu]-

ﬂ%




e mmiggaf the coefficients in the transformed equatiog
and its estimate da still represent dy/0z,. Since we have L
wriable, measures such as R® and Root MSE are not “nmpnmhlém’h;
nal equation. In particular, the transformed equation does not haves

r

,__.Im,:ﬁi‘hli;r_ﬂgh_m_cmﬂd do these transformations by hand with generate statements
ﬁﬂbﬁuﬂit@ Tegress on the transformed (6.14), that approach is cumbersome. For
instance, we will normally want to evaluate measures of goodness of fit based on the
N ‘original data, not the transformed data. Furthermore, the transformed variables can be
. rMIJfl.tElJ]g For example, if z; were also regressor 73 in {(6.12)."* the x* variables would
include 1/z; and ¢, a units vector. The coeffciont on the former is reallv an estimateof
the constant term of the equation, whereas the coefficient labeled as _cons by Stata i
“actually the coefficient on 2z, which could become confusing.

Fortunately, we need not perform FGLS by hand. FGLS in a heteroskedastic conted
can be accomplished by weighted least squares. The transformations we have defined
above amount to weighting each observation (here by 1/ ). Observations with smiallér
d:smhmce variances receive a larger weight in the computation of the sums and there
fore have greater weight in computing the weighted least-squares estimates. We ¢t
instruet Stata to perform this weighting when it estimates the original regression M
defining 1/2% as the so-called analytical weight, Stata implements several kinds
weights (see [U] 11 Language syntax and [U] 20.16 Weighted estimation).
‘this sort of FGLS involves the analytical weight (aw) variety. We mierely estimate the

regression specifying the weights,

. generate Toomsd = roomsTl

grass lprice rooms crime ldist [aw=1/rooms2]
-~'5_|g.i:_1_ng:;:'1g 1.331Ta+01)

s  8a ree | 55 dt Ms Himber of abs * 3
T F( 3, 5og) = 1EAey
| as.cosiss3 3 13.2017204 Brobis F = 10,0000

| 41426616 502 .082523139 R-squarsd = O

i, R S —— Adj R-aquared = O




ﬁ::;d with rphuﬂ:ﬁ;.ﬁth slightly weaker measures of e
: e coefficient cstimates and standard errors from th

those computed by hand if the y7,x* variables are g
gutput from (6.14), the regression with anal glita

identict) t{;m!
fh“_mi easures of goodness of fit (e.g. 2 and Root MSE) m&w&ﬁim :
,r;dicwd wiliis oF rcsi-?ualﬂ in the units of the uul.mnsfnrmeddepﬂnﬁlﬂmm i
volLS point estimates differ from those generated by ragx:a\gs_' from the: 1hea
Feuression See (6.12). However, both the standard regression and FGLS point estim:
are consistent patimates of G

The series specitied as the analytical weight (aw) must be the inverse of tliﬂﬁbﬁﬂf‘
variance, not s standard deviation, and the original data are multiﬂi'ﬂ_d_ hy the: -
eight. not divided by it. Some other statistical packages that provide facil-
in how they specify the weighting varinble, for instance, requiring

ilue that appears as the divisor in (6.13).

1';"'.1'5'“
analytical W
itjes for FOLS differ
pavide the v
on see empirical studies in which a regression equat :
For instance; per capita dependent and independent variahles for
tries are often used, as are financial ratios for firm- or industry-
mention heteroskedasticity, these ratio forms;
ial damage of heteroskedasticity in the

you 1o P

We oft S o
i some Tatio farm.

duta on states or coul
lovel clata Although the soudy may not

probably have Leen chosen to limit the potent
fited model. Heteroskedasticity in & per-capita form regression on country-level data

i mueh less likely to be a problem in that context than it would be if the levels of GBP
ereused in that model. Likewise; scaling Arms’ values by total assets, total revenues,

ar the number of employees can mitigate the difficulties caused by extremes in scale
hetween large corporations and corner stores. Such models should still be examined .
for their errors’ behavior, but the populasity of the ratio form in these instances is an.

implicit consideration of potential heteroskedasticity related o seale.

622 Heteroskedasticity between groups of observations.

Between-group heteroskedasticity is often associated with pooling d
tiay be nonidentically distributed sets of observations. For instance,
conducted in Massachusetts (MA) and New Hampshire (NH) may gi
equation predicting the level of spending as a functio f several
:ET&L pool the sets of observations from MA and NH into one
we may want to test that any fitted model is tr v stabl




‘may arise, as noted above, with other individual-level series
. | i Dol el

How might we test for groupwise heteroskedasticity? With the assumption that each
‘group’s regression equation satisfies the elassical assumptions (including that of b
"moskedasticity), the s2 computed by regress is a consistent estimate of the group
specific variance of the disturbance process. For two groups, we can construet an F
test, with the larger variance in the numerator: the degrees of freedom are the residual
degrees of freedom of each group's regression. We can easily construct such a test if
bal:h groups’ residuals are stored in one variable, with a group variable indicating group

membership (here 1 or 2). We can then use the third form of sdtest (see [R] sdtest),
swith the by (groupvar) option, to conduct the F' Lest,

~ What if there are more than two groups across which we wish to test for equality

of disturbance variance: for instance. a set of 10 industries? We may then use the
robvar commantd (see [} sdtest), which like sdtest expects to find ane variable cO®

I taining each group’s residuals, with a group membership variable identifying them. The
by {groupvar) option is used here as well. The test conducted is that of Levene ( 1960k
labeled as wp, which is robust to nennormality of the error distribution. Twe wurinuif
ﬁfﬁktﬂﬁt proposed by Brown and Forsythe (1992), which uses maore robust estimates
-ufcuntml tendency (e.g.. median rather than mean), wsg and wyg, are also ¢omputed

I illustrate groupwise heteroskedasticity with state-level data from the NEdata.dt®

ata comprise one observation per year for each of the six U.S. states in the

| region for 1981-2000. Descriptive statistics are generated by summarize
disposable personal income per capita.

/ /sy stata-press.cos/data/ineus/NEdata, cloar

Mean Std. Dev.




llﬂ 8. Bauvtuu¢

gonidual
__..--""'-_._-- - :
apipe Coef. Std. Err. ¢ Pltl  (95% Cont, Intervall
jar | -soodsER 0413041  20.88 0.000 7884865  .9504298
e | -irio.sos m2.39534 -20.76  0.000 ~1873.673  -1B4T.343
._--—'—'_-_'_'_-

et double apd, rasidual

, pohvar 903, by{atate)

Summary of Residuals
gtate Mean Std. Dev. Freqg.

T 4167853 1.3596266 20
MA 1.6G187T86 LBE550138 a0
ME: -5, GB41068 .83T9TE25 20
WH .E1033312 .61138299 20
RI -.BO2T223 LB3408T22 20
yT | -2.4201543 THATORTT 0
-
Total | S5 .OB3e-14 206037100 120
g = 4.3882073 aftgs, 114) pr o> F = 00108662
ved = 3.zo8seaS  df(s, 114) pr > F = 00806752

V10 = 4.2536245  dfi5, 114) Pr > F = .00139084

The hypothesis of equality of variances is soundly rejected by all three rnbﬂr tmt
stiitistics, with the residuals for Clonnecticut possessing a standard deviation cor
ably larger than those of the other three states.

FGLS estimation

1f different groups of observations have different error varis
Iﬁﬂma:tor using analytical weights, asﬁesmb&d above in se




’Island‘ﬂ residuals are much :-ma]lnr than those of Tllf' ot tmr fuur qml_e-t, Wo now
ate the regression with FGLS, using the analytical weight serjes:

. Tegress dpipc year [awe=gw_wt]
{sum of wgt is  2.0265e+02)

(Source 85 df M5 MNumber of obs = 120
g 1 118) = 638.19
Hodol 2845565409 1 2845 .55400 Prob > F = 3,.0000
Residaal 480.821378 11B 4.07560:06 R-zguarad = (.B554
Adj R-sguared = 0.8542
Total 3326.47537 119 27.8535745 Raot MEE = 20188
dpipe Cosf. Std. Err. R [95% Conf. Intervall
: ey e
year -B444948 0319602 26.42 0000 L TE12045 L BOTTEAT
_COonS- -1663,.26 62.617T05 -26.14 0.000 -{7@0. 939  -1537.281
e

a consider

‘Compared with the unweighted estimates’ Root MSE of 2.6147, FGLS yvie ds
ably smaller value of 2.0188,

! .%:33 “Hetamskedastlclty in grouped data

. | addressed a third case in which heteroskedasti
where our observations are grouped or aggregated data,
of microdata records. This situation arises when the
"ﬁ'rbm&uges or standard deviations of groups’ observations, [0
S. state observations, Because we know the population of vach S0 g
: much more accurate California’s observation (based ot '”nm
! w,1511@;: Vermont's (based on fewer than & miltion). This 3t
contex representing average. avtainmert
@ know that ench school’s (07

city arises i i
mpﬁﬁmt:ﬂ#
mrm Jiﬂﬁ




e e, the T Eﬂdﬂr e d:nth.,lmm cnow |
' Iﬁﬁm’ mdukm:eadﬁ-nﬁbﬁmhﬁdm
s could consider this a problem of nonrandom sampling,
v, when a0 million California records are :Eplmdbymatﬂﬂ
oh jittle weight in the average. In a smaller state, each individunl WO
i !1|t in her stafe’s aVCTAZS values, If we want to nbndi:'nt luf&mﬂmfﬁr
wﬂ%um sample, we must equalize those weights, leading to a heavier wevs?t_ i
raﬂr_‘fu.li!'u:-rniu‘::'nt:u@t-u?!rml.iﬂm and a lighter weight being placed on Vermont's. L he
il the relative magnitudes of the states’ populations. Each ob

 determined by ) 1 ; i
f"mr data stands for an integer number of records in the population [ﬂt'c'md'
i

instanet, in pop).

FGLS estimation
We can deal with the innate heteroskedasticity in an OLS regression on gmupt_ai‘i datm.?}y
considering that the precision of each group mean (i.e., its standard error) clepu:mr_ls on
the size of the group from which it is caleulated. The analytical weight, proportional to
the inverse of the observation’s variance; must take the group size info account. I we
have state-level data on per capita saving uned per capita income, we could estimate

. tegress sawing income [aw=popl

in which we specify that the analytical weight is pop. The larger states will have higher
weights, reflecting the greater precision of their group means.

I illustrate this correction with a dataset containing 420 public school districts
characteristics. The districts’ average reading score (read.scr) is modeled asa function
of their expenditures per student (expn.stu), computers per student (comp.-stu), and
the percentage of students eligible for free school lunches (meal pct, an ndicator of
poverty in the district). We also know the enrollment per school district (enrl. tot).
The deseriptive statistics for these variables are given by summarize: o

. use http://wwv.stata-press.com/data/imeus/pubschl, clear !

- summarize Tesd scr exXpn_stu comp_stu meal_pct encl_tot

Variabla | tba Mean Std. Dev: Min
read_scr 420  ©54.9705  20.10798
oxpn_stu. 420  6312.408  633.9371
NP osEn. 420 . '

420




_ [95% Conf, Interval]
0007204 6.48  0.C 0032538 006086
7.168347 : §,795143  33.07654

JO1E4TTT _ -, BETEZL  -.602T41
3.812206 : . 0o £48.3502 £63.3468

nuh; .We reestimate the parameters. using ﬂnrnl]::mnl a8 an mmiﬂ :ml W r-u.,]u

. ﬂp:ﬂ!l road_scr expn_stu compostu meal_pet [av=enrl. tot]
(eum of wgr i 1.1041e+06)

Source g df ME Humbar of obz = 430

F{ 3, 416) = 908.75

| . Model 123602, 671 3 41230.8903 Frob > F = §,0000
) Residual 18915.9815 416 45.4711083 R-sguared = 0.8674
: Adj R-eguared = 0.B664

Total | 142608.652 419 340.354772 Reot MSE § 7432

‘read_scr Coaf. Std. Err. T | [yaf Conf. lntervall

|expr_stn 0066534 .0008322 6.67 0,000 . (0331 TE ooT1892

camp_Etu 27.28378 B.197228 3.33 0.001 i1.16063 43. 37693

‘meal pet | -.B3E2220 (013148 -48.31 0.000  -.6610636 - .BOBaTE2

" _conms §48;988 4.163875 155.86 0.000 &40 .8031 6571726

g ==

.:Inﬂllding the nght-'.i modifies the coefficient, estimates and reduces the Root MSE of I
uation. Equally weighting very small and very large sehool districts I-"i"':'tqi
:h weight on the former and too little on the latter. For instance, the effect 8

s in the number of computers per student is almost 50% larger in the weightt!
th effect of expenditures per student is smaller in the OLS 3 estimate
‘more precise coefficient estimates.




e eross-sectional data, time-sevies data by its
"wgm preyions and subsequent observations are those
ity crolitions arise i & time serigs, we speak of the
o or autocorrelation; it s literally corvelated

aritl correlation

¢ wary of specification issues, as apparent serial corrolation in

more than a reflection of one or more systematic factors m

ession model. As discussed in section 5.2, inadequate SPee

| of dynamic terms may cause such a problem. Bul sometimes errors will bey

1 ariietion, serially correlated rather than independenl Across observations, Theoretical
_pemes such 1S partial-adjustment mechanisms and agents’ ndaptim.gquetaﬁ:m_,um
% bt cannot be serially independent. Thus we also must consider this

v st L0 errorsit # h .
sort of deviation of . from @[y, one that is generally more challenging to deal with
-t]:mll e pure heter hedasticity.

We must b
iy be pouhing

cluded from the regr

§3.1 Testing for serial correlation

hi we test for the presence of serially correlated errors? Just as for pure
heternekedast idity, wi base LesLs of serial correlation on il !'Hg!'r.'asiut-. residuals. Tn the
simplest case, autocorrelated errors follow the AR(1) model: an antoregress ive process

ol order one, also knowi ds:a first-order Markov process:

How mig

wy = M= + s Bl <1 (6.15)

lated random variables with mean zero and constant varianee,
We impose the testriction that [p| < 1 o ensure that the disturbance process u is
stationary with a finite variance. If p = 1, we have & random walk, which implies that
the vadanee of u is infinite, and u is termed a nonstationary series, or an mmgtata&'
process of order one |often written as 1{1)]. We assume that the u Pmﬂm is stationary,
Eith :1&!!.'1[0 variance, which will imply that the effects of a shock, vy, will e
e,
The larger (in absolute value) pis, the greater will be the persistence
g il the more highly autocorrelated will be the sequence o disturk
in the AR(1) model, the autocorrelation function of u Wi :
Stata, the autocorrelation function for # time seri

whore thew, are uncorre




the null hypothesis p = 0, 50 4 rejection
 that the disturbance process exhibiss

4ﬁ‘ﬁqm];cmmdum that supports testing for higher-order autoregrie.
the LM test of Breusch and Godfrey (Godfrey 1988). In this test,
is angmented with p lagged residual series. The null hypothesis is that
W independent up to order p. The test evaluates the partial cor

' tﬁﬁ'ﬁregrmursx partialled off** The residuals at time f are orthogonal
columns of x at time £, but that need not be so for the lagged residuals, This

W‘}mﬁuﬁgﬂtﬂﬁh. The test is available in Stata as estat bgodfrey (see [R| regress
postestimation time series).

‘A variation on the Breusch-Godfrey test is the @ test of Box and Pierce (1970), s

ﬁ&ﬁﬂéﬁb}'bjung and Box (1979), which examines the first p sample autocorrelations of

' Q=TT+

J=i

:
=

where 72 is the jth autocorrelation of the residual series. Unlike the Breusch-Godfey
‘test, the @ test does not condition the autocorrelations on a particular r. @ is based o0
‘the simple correlations of the residuals rather than their partial correlations. Therefort
it is less powerful than the Breusch-Godfrey test when the null hypothesis (of no serial
Jeorrelation in u up to order p) is false. However, the @ test may be applied to any ¢
“Series whether or not it contains residuals from an estimated regression model. Under
hypothesis, € ~ x*(p)- The @ test is available in Stata as untestq, named such
be-that it may be used as a general test for so-called white noise, a property o

dest test (but still widely used and reported, despite its shortcomings) & the
nd Watson (1950) d statistic:

d.:w = 9(1— p)
J L G

) best proceeds from the principle that the numerator ’-’[ud: ,
e the variance of the residuals mins (1%
f p =0, that autocovariance will D¢




i aget distribution of thie statiseie depencaion’ thy
1'1'9“;“ a constant term and must not contain

ﬁﬁ.hmnﬁ . sot of critical values, the D-W test has
autistic fulls below dp, we reject the null; above dir, we ¢
A tistic is inconclusive, (For negative autocorrelatio

= j!pl’m|J"ll|!3lw<i critical values.) The test is available in Stata a
iH] rogress pﬂﬁtﬂ'&thl'lé’l.tiﬂu time series) and is automatic v displayed in the outp
of thie prais estimation command. - . :

In the presence of a lagged dependent variable or generally. : ined Tegressors,
e d statistic is biased toward 2.0, and Durbin’s alternative (or k) test (Bur‘bhllgmjl
st be used 2% That test is-an LM test, which is computed by regressing t‘ﬂiiﬂﬂﬂlf L
heir Tagged values and the original X matrix. The test is _Elsj'mpt.ﬂﬁ';_ﬂﬂﬁ’ G ﬂm
o the Breusch-Godfrey test for p = 1 and is available in Stata as command estat

durbinalt (see [it] regress postestimation time sories).

I fllustrate the diagnosis of autocorrelation with a time-series dataset of monthly
siort-term and long-term interest rates on UK. government securities (Treasury bills
and gilts), 1952m3-1995m12. sunmarize gives the descriptive statistics for these series:

_ume Wttp:/fiwe.stata-press. con/data/imeus/ukrates, clear

, pussArize re r20

Variable | {iba Menn Srd. Dev. Hin Max
T8 526 T.651613 3.563108 1.561667 16.18
a0 B26 B.BEATIE 3.224372 3.35 17.18

The model expresses the monthly change in the short rate rs, the Bank of E‘n.glainﬂ‘ui
monetary policy instrument, as & function of the prior month’s change in the long-term
rate £20. The regressor and regressand are created on the Ay by Stata’s time-geries
operators Do and L. The model represents a monetary policy reaction function. We
save the model’s residuals with predict so that we can use wntestq. '

- regrass D.re LD.r20
Source 55 df NS ‘Numbsr of obs =
F( 1, 622) =

Model 13.8769739 1 13.8769739
Hosidual 136.888471 522 262430021

Total | 150.865445 523 288461654

bes|  cost. swaEm. & PRl €

D,




) to sixth order in the disturbance process, and that null is soundly rejected. Tha
s conditioned on the fitted model. The @ test invoked by wntestg, which allows
m&ganﬁml alternatives to serial independence of the residual series, confirms the
psis. To further analyze the nature of the residual series' lack of independence, W
@ the autocorrelogram (displayed in figure 6.1). This graph indicates t he strong
: of first-order autocorrelation—aAR(1)—but also signals several other empirici!

:,:!" 'r' NI tTTﬂ '
S - )




<timation with serial correlation

B (1) Jisturbances of (6.15), if p Wmluwu. oy i
. form of ¥, displayed in (6.3) h.ﬁmpw.ﬂmﬂﬁpém
Gl fatiots with one parimeter g An analytieal invers

futl

T—p* "0 L
B (616)
{'.i —p 1
() eee —f

peteroskedasticity, we do not explicitly construct and apply this matrix.
Rather, W& can implement GL3 I‘:t,*r' transforming the original data and running A regres-
<on on the iransformed data. For observations 2, ..o, T, we quwlcllfferﬂmé the data:
;.--. g1y . and so on, The first observation is multiplied by /1 —p7

The GLS estimator 15 Tot feasible because p is an unknown population parameter

ke @ and g2. Replacing the unknown p values above with a consistent estimate

5, yields the FGLS estimator. As with heteroskedasticity. the OLS
inal model may be used to generate the necessary estimate.

i} estimator uses an estimate of p based on the OLS residuals to.

atimate &, by (6.16). The closely related Cochrane and Oreutt (1949) variafion on
s only in its treatment of the first abservation of the transformed

that estimator diffe

data, given the estimate af p from the regression residuals. Either of these estim .
may be iterated to comvergence: essentially they operate by ping-ponging bnqkﬁ g
forth between estimates of 8 and g Optional iteration refines the estimate of ¢ which
isstrongly recommended in small samples. Both estimators are available in Stata v )

the prais command,

As with
:r_u.r l":'-rl_.' I

jst 1
and computing
redduals from the orig
Prais and Winsten { 195

Other approaches include maximum likelihood, which simultan
pproach of g

parameter vector (B3, o2, p), and the grid search appro

Although you could argue for the superiority of & maximum
Carl studies suggest that the Prais-Winsten estimator is
s maximum likelihood.




P 0 () Lk |
g ey
‘Numbor of ‘obs =
Bl 1, 522) =
Preb > F T
F““‘m‘m =ik
mj H-‘Btiﬂh‘“ﬂﬂ'-r !
Root MSE . 50508

Coef. Std. Err, P>t [95% Canf. Interval]

3405857 .0683132 5,07 0.000 2142067 L GB4965T
.0D4908S  .0IT2L46 0.1 0, 854 -, 0484649 0584618

rho .1895324

Durbin-Watsen statistic (original) 1,702273
‘Durbin-Yatson statistic (transformed) 2.007414

In sumumary. although we may use FGLS to dial with antocorrelation, we should always
be aware that this diagnosis may reflect misspecification of the model’s dynamies of
omsission of one or more key factors from the model, We may mechanically correch fie
first-order serial correlation in a model, but we then attribute this persistence 10 e
sort of clockwork in the error process rather than explaining its existence. Applying
FGLS as described here is suitable for AR(1) errors but not for higher-order AR(p erron
ar moving-average (MA] error processes, both of which may be encountered in Pmﬂifi"'
Regression equations with higher-order AR errors or M errors can be modeled by Uit

Biinta’s- arima command.

Exercises _
s ﬁmj_the cigconsump dataset, refaining only years 1985 and 1995. Regress 191"‘3’; J

‘on lavgprs and lincpe. Use the Breusch-Pagan test (hettest) for VATRLES L

~ Save the residuals, and use robvar to compuie tlieir variances by year- L

hhﬁﬂ’w“t*“f““'? R
3. Use FGLS to refit the model, nsing analytical weights based on the residuals €75
How do these estimates differ from the OLS estimates?

il et date. Regress th first difference




7 Regression with indicator vari

(ne of the most useful concepts in applied economies is the indicator variable, which
s the presence or absence of a characteristic. Indicator variables are also known as
ey OF Boolean '-r.'}rml.}hé:: and are well known to econometricians as dummy variables

: .aning of that latter term is shrouded in the mists of time). Here we

|cﬂ|iauu,gi|1 the meani |
consider how b0.Us€ indicator variables

{0 evaluate the effects of qualitative factors;

o in models that mix quantitative and qualitative factors;

in Eu't’H-";'l]]!"‘] LT lliH.\-TI:I]l"'l'lt: and

¢4 evaluate structural stability and test for structural change.

71 Testing for significance of a qualitative factor

Feonomic data come in three varieties: quantitative (or cardinal), ordinal (or ordered),
and qualitative.' In chapter 3, | described the first category as continuous data to stress
that their values are quantities on the real line that may conceptually take on any value,
We also may work with ordinal or ordered data. They are distinguished from cardinal
measurements in that an ordinal measure can express ouly inequality of two items and
not the magnitude of their difference; for example, a Likext scale of “How good a job
has the president done? 5 = great, 4 = goad, 3 = fair , 2 = poor; 1= very poor”
will generate ordered numeric responses. A response of 5 beats 4, which in turn beats
4 for voter satisfaction. But we cannot state that a respondent of 5 is five times more
likely to support the president than a voter responding 1, nor 25% more likely than a
respondent of 4, and so on, The numbers can be taken only as ordered could
be any five ordered points on the real line (or the set of integers). The tion: if
data are actually ordinal rather than cardinal, we should not il
measires and should not use them as a résponse variable or.
Tegression model, e




Wmmm itmayhetakenth:

! les, m: dumm:r vaﬁables Fnllowing the dmmim

- et a Jmnt test on their coefficients. If the hypothesis to

s one quai:l;a:hver factor, the estimation problem may be deseribed asa
Eeonomic researchers consider that ANOVA models may be expressed

‘F'ﬂhi j-'=_|;;'ggmssinn with one qualitative measure

ider measurés of the six New England states’ per capita disposable persond al ineome
s } for 1981-2000 as presented in section 6.2.2. Does the state of residence explait
m.ul; proportion “of the variation in dpipc over these two decades? We caleulaté
erage dpipe (in thousands of dollars) over the two decades by nsing mean {5ee

iat prosents the rewults of ANOVA "’ﬂ_ﬁ




g i SERUACERERIES /4
© 5 apipes over(stata) .
poan o512 Humbor of obs =

CT: state = CT ¥

MA: stato = HA

ME: state = ME
HH: state = HH
fI: state = A1 Y
¥T: atate = VT .
oat Mean Std, Err,  [95% Conf. Interval]
dpipe
or | 22.32587  1.413766 19.52647  25.12527
Ml 19.77681  1.2898507 17.20564  22.24798
s | 15.17381 (9571261 13.27871  17.06811
il 18.666835  1.193137 16.30582  21.03088
RI 17.26520  1.045117 15.19586  19.33473
VT 15.73786  1.020159 13.71784  17.75788
Lo e

gtates’ average dpipc in 2000 varies considerably between Connecticut {522,335}
and Maine ( $15.174). But are these differences statistically significant? Lot uBtEE!t-
tliis hypothesis with regress. We first must create the appropriate indicator variables.
One way to do this (which | prefér to using xi) is. as described iu_ :a.ac:]ii{m--ﬁ‘.ﬂﬂi, ' ;
sabulate and its generate() option to produce the desired variables, The following
command generates six dicator variables, but we recognize that these six mﬂlﬂﬁﬂﬁ
variables must be mutually exclusive and exhaustive (MEE). Each observation must
helong to one and anly one state. Also the mean of an indicator variable is the fraction
or proportion of the sample satisfying that characteristic. Those means must sum 1o
L0 across sy complete set of indicator variables.

If tabulate generates a set of indicator variables Dy g where there are |
(here: six), then D¢ = ¢, where ¢ is the units vector. If we sum the nd
#erss the g categories, we must produce an N-vector of ones.. th
must drop one of the indicator variables when run a regn
collinearity with the constant term. We fit the :
indicator variable (that for CT):




; R-squared u,m'n
M;‘l 'ﬂ-ﬂq'l.tlrld l'.l. 1621
5. Em

[95% Conf. Interval]

-2. =Hnnﬁ'r 1.648991 -1.55 0,128  -5.816685  .7175814
~7,161859 1.648991  -4.34 0,000 -10.4186  -3.88632
-3.66752 1.B4RSS1  -2.22 0.028  -6.904158  -.3008815
~5.060575 1.648991  -3,07 0.003  -8.327214  -1.793937
=B, BHA00T 1.648991 -4, 00 0. 000 =0, 854646 -3, 321368
0% 59587  1.166013  19.16° 0.000 20.01601  24.63573

i produces estimates of a constant term and fve coeflicients. We hue
g | the first state (C1), so the constant term is the mean of CT values over tine,
; ea]ta the means output above. The coefficients reported by regress represent Ehat
fferences between each state’s mean dpipe and that of 1. The state means shown in
:l'uam aul;puh above are six points on the real line. Are their differences stasistically
significant? It does not matter how we measure I,hu_lhr' differences, whether from the

‘&"'l'.' 'nnhm’:: e of 15.7 or frony the o mean value of 22.3. Although we must pcelude

plilhﬂtﬂ.l;;eﬂ indicator variabile from the regression, llw :Iiul:: of the excluded closs &
s 4 yﬁltrhry and will not affect the statistical judgments.

i for relevance of the qualitative factor state is merely thie ANOVA
regression. The ANOVA F. as section 4.3.2 describes, tests the o
rﬁk that all slope coefficients are jointly zero. In this context. that s :*um'.'lli'lll u
testing that all six state means of dpipe equal a common j. The strong rejection o
' otlesis from the ANOVA I statistic implies that the New England states 1
¢ different levils of per capita disposable personal income.

sther transformation of indicator variables to produce centered indicator = s alted
'I Wmﬁﬂmﬁ}dlmm:ﬁ d} = di—=d,, where o, is the indicator for the exel
; g=1) d; variables in the model rather than the ariginal d; U“"“hl
the e Eﬂ ents on the original d; variables are contrasts ""“h pe
which are trinary (taking on values of 1.0 “
d mean. The constant term in the regression 00 d; W
il df coefficients are contrasts with that ek

o -.|4|IL\H'
Il hypothe




g s, S e T B Sfter
o esion with bW qualitative measures.
18 RSl
iitaies 4RI/ ;
” ;';ﬂ-fll '.lht“ FE_ ‘it = ljl‘__ﬁ"!-"lfﬁ
ai )
regrens dpipe NES : _ Fre ;
P a5 ar He Nusbor of obs = 120
F( 5, 114)= ':Frg{
Wodel | 716.218512 5 1$43.243702 Prob = F - el
Regidusl | 3099.85611 114 27,1817115 R-squared = 0.187T
Adj R-squared = 0.1621
Total | 3816.07362 118 32.0678486 Root MSE = 5.2146
_._-—-_'_'_.'_ I
dpipe Coef. 5td. Ecr. :  prlel [95% Conf. Intervall .
NE1 | 4.167853 1.084418 883 0.000°  12.06043% 6.276459
FE.2 1.618796  1.084419 1.52 0.131 -.48081  3.727402
NE.3 | -2.984106 1.064419  -2.80 0.008  =5.092712 —.B754996
E 4 .5103331  1.054418 o.48 0.633 -1.508273  2.618939
NE.S - B927223  1.084419 -0:84 0403 -3.001328 1.215884
_cont 18.16802  .4TE0ZET 38.16  0.000 17.21602 19, 10101

This algebraically equivalent model has the same explanatory power in terms of its
ANOVA F statistic and 72 a5 the model including five indicator variables. For example,
1,168 + 18.158 = 22.326, the mean income in C7T. Below we use 1incom to compute the
csefficient on the excluded class as minus the sum of the coeflicients on the included

classes.
lincom ~(NE_1+HE_+NE_3+NE_4+NE_5}
(1) =NE 1= NE:2 = NE_3:— NE.4 — HE_.& = 0

dpipe Coaf. Std. Err. t P>kl [a8% Conf. Interwal]

(13 -2.420154  1.064419 -2.27 0.025 =4.52876 =.3115483

1.1.2  Regression with two qualitative measures

m use two sets of indicator variables to evaluate the effects of two
tors on @ response variable. Take for example the Stata manual w e
::Hmm L ﬂ:l'E.U.S. National Longitudinal Survey -flilﬁw};;ﬁmﬂm sl w - .
ﬂhhnug; restrict the sample of 2,246 working women 10 a subsample for
the sample to 1.878 workers. We also ha WMH

.,
| S




1.151368 39 23074

82241 q: T
A : a il
5.640676 0 25.91867

e, the log of the reported wage, as the response variable. The variahe
ded 1, 2, or 3 for white, black, or other. We want to determine whtle
iance in (log) wages is significantly related to the factors race and union, We
t fit.a regression model with two complete sets of dummies, so we will exchude ges.
y from each group.* The regression estimates show the following:

. ‘tabulate race, generate(R)

‘TAre Fraoq. Percent Cum.,
vhita 1,353 72,04 72,04
black: 501 26,63 88,72
tther 24 1.28 100,00
Total 1,878 100. 00
. ragress luage Rl R2 union ,
Source &5 df M5 Kumber of obg = 1678
F{ 3, 1874) = 381
Model | 29.3349228 3 9.77830761 Prob > F = | 0,000
Residual | 473.119208 1874 252464893 R-squarsd = 0.0584
- Adj R-squared = 0. 0588
Total | S02.454132 1877 267690001 oot MSE = .50N6
e _-_-_._._
1 . Std. : g5y conf. Intervall
wage Coaf td. Err T Prlel [95% !'t_.________
Rt --0349328  .1036125 =0:34. 0738  -iRSTHAA4 -lﬁﬂf::?
R2 | -.2133924 1049954 -2.08 0,042 -. 4193126 _'N:rﬂ
union -239083 0270353 B.84 0.000 , 1BE060E 29*5‘1 pe:
—cons | 1.913178 .1029691  18.58 0,000  1.7u1252 1

joint test for the effact of race



as o group. n L ; :

O jicator varinbles to make inférences beyond noting, as noe
o moans. The ning‘ni%uﬂwﬂfthmmuﬁnlmt&nnd their # statistics de

ﬂéﬂ of excluded class, which is arbitrary. LIRS
The model of two quulitative factors illustrated here s 4 special MWW'

ymes that the effects of the two qualitative factors are independent mﬂm e

aiditive: That is, if you are black, your (log) wage is expected

to be 0.213 lower than
hat of Lhe other Hice category.® whereas if you are a union member, it is predicted to
:H, 1.230 higher. What would this regression model predict that i black union member

contld eariL: rolative to the excluded class {# nonunion member of other race)? T.twmﬂd
predict merely th fect is slightly

e sum of those two effects, or +0.026, ginee the union @ LA
gronger than the black effect. We have a 3 = 2 two-way table of race nnd‘min{n )
categories. We can il in the six cells of that table from the four coefficients asmmf.t_m‘l
i1 the regression. For that approach to be fensible, we must -asStne mdepm;dw&m l::~f
tie qualitative effects so that the joint effect (reflected by a cell within the table) is the
of the marginal effects. The effect of being black and o union member is I-_uke“ Lo

gyl 3
af the effects of being black, independent of union status, and that of being

|]|;‘-‘|hl' S
& union meber, independent of race,

Interaction effects

Although sometimes this independence of qualitative factors is plausible, often it is not
Clonsicer variations of the unemployment, rate across Age
landing a job because they lack Jabor market
pxperience, so teenage unemplovment rates are high relative to those of prime-aged
workers, Likewise, minarity participants generally have higher unemployment rates,
whether due to diserimination or other factors such as the quality of their education.
These two effects may not be merely additive. Perhaps being & minority tesnager
ivolves two strikes against you when seeking employment. If so, the offects of being
bath minority and a teenager are greater than the sum of their individual contributions.
This reasoning implies that we should allow for interaction effects in emluattuﬁ‘ﬂhﬁ& T
qualitative factors, which will allow their effects to be carrelated, and requis thin
estimate all six elements in the 3 x 2 table from the last regression example

In regression, interactions involve products of indicator variables. D ¥
may be treated as algebraic or Boolean. Adding indicator variables |
wﬂnﬂﬂ]m “or" operator (1), dmtmsmmm o Sets; W S
indicator variables is equivalent to the Boolean “and” ¢ (&),

an Appropriale assumprion.
and Face, Teenagers have a hard time




+ Bumton; + B5(R1, x union;) + So(R2 X untony) 44,

LA *T i

o pﬁmm race R1 (white) is ) + (32 for nonunion members, by
r union members. Fitting this model yields the following:

A2u = R2sunion
wage Rl R2 union Riu R2u

o df M3 Numbar of obs = 1878

E{ &5, 1872Y'= 9563

______ 33.363601T b 6.67272035 Prob > F = 0.0000

d 469.09053 1872 250582548 R-squared = 10,0664

- Adj R-squared = 0.0638

B02.454132 1877 267690001 Root MSE = 5058

Coaf. Std. Err. t Frle] [95% Conf. Intervall

-.1818955 1280945 -1.44 0.149 - . 42918632 . 0654051

R2 -. 4162868  .1278741 -3.25 0001 - 6662731 -.1642905

. union =, 2378316 -2167585 =130 0,373 = BH26452 187582
d Riu JA232827 2152086 1.92 0.0B4 -, DOBE5E1 ,BE3181E
R2u ~BI93BTE 2221704 2.79  0.008 1836302 1, 055085

—consg 2.07205 1251456  16.56  0.000 1.82661  2.317489

. test Riu RZu Iy joint test for the interaction effect of racesunion
{1 Ru=o0
(D Rm=o
Fl 2, 1872) =  B.04
Prob > F = 000038

int test of the two interaction coefficients Riu and R2u rejects the null hypothe®

pendence of the qualitative factors race and union at all conventional I i

ction terms are jointly significant, it would be a misspeificatiol

rather than this expanded form. In regression, we el "dn'

with d without interactions by merely fitting the mode! | 1o
the joint test that all interaction cocfficients re o0




W luags R1 K2 union tenures
Seiirce 55 df M&

Model | T77.1526731 4 19.28B1883
fesidual | 418.434693 1863 224602626

I

Totsl | 485.5BT386 1867 265445831

——

Tunge Coef. Sud. Err. o Pl
s ——
Rl =.070349  .08T6T11  =0.72 0.471 -.2519053  .1212073 B
B2 | --2612185 0021164 -2.64  0.008  -,4556074 -.066829T
v 25 JABTI116  .0257654 Ti28  0.000 .1366784 2376438
teours 0289352 00189646  14.73 0.000 0250823  .0327882
_cony 1.777T386  .087E548 18.22 0.000 1.586088  1.868T16

cpest Rl R2 /S joint test for the offect of race

{1y 'Rl =0
(@) Ri =
F{ 2, 1863) = 28.58
Prob > F = 0. 0000

These results illustrate that this analysis-of-covariance model accounts for consider-
ably more of the variation in lwage than does its counterpart based on only qualitative
factors.” How might we interpret fit,m;:" Using the standard approximation that
log(l 4+ x) =~ 2,7 we see that a given worker with 1 more year on her current job can '
expect to errn about 2.89% more (roughly, the semielasticity of wage with respect to
tenure), How o we interpret the constant term? It is the mean log wage for a nonunion
worker of other race with zero years of job tenure. Here that is a plausible category,
sinee you might have less than 1 year’s tenure in your eurrent job. In other cases—for
istance, where age is used as a regressor in a labor market study—the constant term
may fot t'urreﬁpmld to any observable cohort. o 17

space; a total of six lines, mrrea-pmrdtng to tlie ssib man
“\;:ﬁh. with their Lntt&rneptﬂ cﬁmpumd ﬁ'ﬁm their nts.




i

Stk

'+ quietly generate uTen = unionetenure
regrass luage R1 R2 union tenurs uTen

: es larger annual wage increments by using its org
‘Might we expect two otherwise “identical workers—one union, ape
erent profiles, with the unionized worker’s profile steeper? 1,
return to the notion of an interaction effect, but here we intemt.
re (tenure) with the indicator variable union:

Source 58 af MS Number of obg = 1868

F{ 5, 1862) = 63,27

Model TT.T26069 & 15.5452138 Prob > F = {,0000

Residual 417.861297 1862 224415304 R=squared = {1,1668

- .ﬁdl} R“:Squ;jri!'l:l = (.1546

Total | 405.5B73556 1867 265445831 floot MSE = 47372

1 1vage Coef. Btd. Err. t P>ltl [95% Conf. Intervall
A1 -, 0715443  .08T76332 -0.73 0.484 - 2630264 . 1199377

"2 -.2638742 0890879 -2.66 0.008 -. 4582083 -, 06895381

union .2380442 0408706 S:81  0.000 L 15TE81 . 3183075

tenure 0309616  .0023374 13.28 0.000 LOZ63TT4 . 0B5E4EE

uTen -.0068813 .0043112 -1.60 ©.110 -, 0153467 . 01564

I _cang 1.7686484 0877525 18.07 0.000 1.574768 1.9582

@ tenure effect is now measured as Hlvage/dtenure = Brape f0T nODURION member
0t (Banure + Burea) for union members. The difference between those values is the
estimated coefficient Biiress which is not significantly different from zero at the 105

ﬁm’aj ‘Imﬂnngaxjm Counter to our intuition, the data cannot reject the h}"pn[.héﬂih'l
: of the union and nonunion profiles are equal.

it about the profiles for race? It is often claimed that minority hired ;:::'
ually over time, for instance, that promotions and larger increments 870
hier than to blacks or Hispanics. We interact the race categories with “’mﬂ’ g
the slopes of the {log(wage). tenure} profiles to differ by race




union 18760
Lanure bt s
Riten 0024973 O1BTGAE B.43
Raven | 0050825 018989 Q.27
_cons. 1,794018 1382080 12.98°

I

_ gegs Riten R2tan

(1) Riten =0

{2) R2ten =0

Fl.. 25 1861) = 019
Prob > F = 0.B2o1

We cannof reject the null hypothesis that both interaction coefficients are zero. nnpb[ihg
that we do niot have evidence against the hypothesis that one slope over categories of
race suffices to express the effect of tenure on the wage. There does not seem to be
evidence of statistical diserimination in wage increments; in the sense that the growth
rates of female workers” wages do not appear to be race related.”

This last regression estimates five {log{wage), temire} profiles, where the profiles
for nnion members and nonunion members have equal slopes for a given race (with
intercepts 0.188 higher for union members). We could hilly interact tenure with both
qualitative factors and estimate six {!ngl:wﬂgn'}. tenure} profiles with different slopes:

. regress luage R1 R union tenure uTen Riteo R2ten

Source 88 df M8 Humber of obs = 1868

- F( 7, 4860) = 40.48

Hodel 778008722 7 11.114ai03 Prab > F = 0.0000
Regidunl | 417.786494 1860 224616354 R-squared = 0.1E70
- Adj R-squared = 0,1538

Total | 405.587866 1867 .265445831 oot MSE = 47394

lunga Conf, Std. Err. T Pxitl

Ri 0637086 . 1396881 =0, 50

Rz -2TEB2TT 1423788 -1.96

union .238244 0410597 5.80

tenure .0304528  .0188572 1.61
uTen | -.0068628 .0043311 .

Ritan .0001912  .0188335

R2ten |  .0023429  .0190698

i




oint test conducted here considers the null of one slope for all six categorie,
separate slopes. That null is not rejected by the data, so one slope will suffi.

~ Before leaving this topic. consider a simpler model in which we cansider only the
de indicator variable union and one quantitative measure, tenure. Compare the

equation

lwage, = /3 + faunion; + fytenure, + {#i{union; * tenure;) + U, (7.1

with the equations

lvage, = 71 + yztenure; + v, i +union

lwage, = 4; + dstenure; +uy, 1 =union (72

That is, we estimate separate equations from the nonunion and union cohorts. The
point estimates of @ from (7.2) are identical to those that may be computed from
(7.1), but their standard errors will differ since the former are computed from sl
samples. Furthermore, when the two equations are estimated separately, each has i
own o- estimate. In estimating (7.1), we assume that u is homoskedastic over uniof

;ﬁqum;ib_ﬂ workers, but that may not be an appropriate assumption. From a béﬂ:m"_
standpoint, collective bargaining may reduce the volatility of wages (€& by
ot rit _innmmints in fwvor of across-the-board raises), regardless of the eiﬁzds"i"
ve bargaining on the level of wages. Estimating these equat jons for the

- data illustrates thiese points. First, 1 present the regression over the full stmples

. regress luage union tenurd uTen

Source 85 df M5 Numbar of obs =
- F{ 3, 1is84) =
- B4.0664855 3. 21.3554952 Prob > F =
|431.52088 1864 .231502618 R-squared  * o
=1 i Adj R-squared = Figg
. 495.BBT3I66 1B67 .265445831 Root MSE o |

. S Bt Pl




o it .

—oger | 368472672 1 3b.e4r2em2

".-'Hi-is I[ﬁﬁ L
o n
A ol

"l“_‘ll‘m "“ “349.032053 1406

Toval | 385.87935 1407

274256823

LB "

'F-----—-_-' - =
Coef,' ~Std, Err. T

1wnge
-_.---_-_--_._.
tanure (OEBRDZE. 0024536 12.18
_conE 1865064 LO2ONEDE 2%, 41 A
adict double uny if e{sample), res
'141'0 pipsing values ganarated)
rogTosE lwage tonurs if unton
Source 58 df HS ¥ gt '"‘;E!, s :W_jﬂ
Bl 1, 458) = 55_,_95
g Wi 1 10.0775663 Prob > F = 0.0000
Residual | ©2.4888278 458 .1BO108611 H-squavad - o108
adj R-sguared = 0.1069
Taral g7 EG63041 469 201865704 el e
L =
eie Coof. Std. Brr.  t  P>ltl  [95% Cent. Intervall
tonure | 0242707 .0032447  7.48 0.000 0178044 .030GR60
Sons 1.863513 .0323515 57.79 0.000 1.806837  1.933088

predict double nomw if ef{zazplel, Tom

(1418 misaing values gonerated)

The Root. MSE values are different for the two subsamples and could be tested for eouality
nt of groupwise heteroskedasticity:”

a8 deseribed in section 6.2.2°s treatme
. generate dovble allras = ponw
(1418 missing valuea generated)

. replace allires = anu if unwe,
(1408 real changes made)

. sdtest allres, by{union)
Variance ratio test

Group Obs Mean  Std. Err. Std. Dev.
nonunion 1408 6.19e-17  .0132735  .4980645.
saicn 460  6.47e-1T  .0197EET .423827T1

5.500-17




Humber of obs = 1868 |
F( &, 1884) = 108.84

Frab > F = 00000
R-squared = 01283
Root MSE = 48118

Robust
luage Coaf. 5td. Err. T Prltl [954 Conf. Interval]
union 2144588  .0407254 .27 0.000 1345864 2943308
tanurs 0208026 -DO23964 1247 0. 000 Q251928 0345524
uTen = 056219 038631 -1.46 0. 146 -.0131984 LO0I854E
_cons: 1.656054 0210893 T8.48 0.000 1.613693 1. 686415

Although robust standard errors increase the { statistic for uTen, the coefficient s not
significantly different from zero at any conventional level of significance. We conelude
that an interaction of tenure and union is not required for proper specification of the

model.

7.3 Seasonal adjustment with indicator variables

Economic data with a time-series dimension often must be seasonally adjusted. For i
‘stance, monthly sales data for o set of retail fitms will have significant vairiations j
the halidays, and quarterly tax collections for municipalities located in a pourist M 5
‘ﬁ'ﬁﬂ ﬂuﬂ’mﬁle widely between the tourist season and off-season., A commaon MESEE
: onal adjustment involves modeling the seasonal factor in the time series 1= e
itive or multiplicative. An additive seasonal factor increases (dect __]5#

he same dollar amount every January (or first quarter), with the amet
i u‘lﬂt&‘ﬂl‘t.hﬂ variable, In contrast, a multiplicative seasonal factor




e w&{aﬂ;{&“mj}‘ == 1)
" generate geeasl = (quarter (dafqldntavar)) == 1)
for data that have L PR,
by tsset datevar. The variable mseasi will be 1 in January and :
geeas? will be 1 in the first quarter of each year and (0 otherwise. Thi () and'
or() Functions, as well as the more arcane dofm() and dofq, are described in
] functions under the headings Date functions and Time-series functions. The set of
goasonal dummies is easily constructed with a forvalues loop, as shown in the: _
bl

To remove an additive seasonal factor from the data, we regress the series on & '-i
constant term and all but one of the seasonal dumnmies

been identified as monthly or qnarteﬂy data ti i

. regress sales msemas
" EEE:’EEE raxrev L‘!REE.E' |
for monthly or quarterly data, respectively. After the regression, we use prﬂéiﬂ.wijth_._
the residuals option to produce the deseasonalized series. Naturally, this series wﬂ.l
have a mean of zero, since it comes from a regression with & constant term; usually it is |
srebenched” to the original series’ mean, as I illustrate below. We use the turksales
dataset. which contains quarterly turkey sales data for 1990q1-1994q4, as deseribed by

summarize:

. uise http:,.f,.fuuq.-.atutn-praau.cm#dntnjmew.r‘turksalum clear

, BuEmATiZE Bales
Variable | Oba Mean  Std. Dev. Min Max

ama1 40  105.6178  4.056961 97.B4603 112.9617

Weﬁmﬁnd the mean of the quarterly sales sariﬁ':and'genammfﬁmiﬂ




Root MSE.

Bed. ‘Err

1.633891  -3.20 0.003  -B.B45731 -1.918362
1.633891 -1.74 0.090 -6.156437 LAT0a31T
1.633891 -0.55 0.B86 =4.210621 2.416748
1.155335 §3.36 0,000 1065177 110.%030

in sales. To genemte the d&seasnn&lued series, we use predict o
r the residuals and add the original mean of the series to them:

« predict ‘double saledSA, residual

. replace salesSA = zalesSA + 'mu’
(40 real changes made)

‘We can now compare the two series:

[ . summarize sales salasSA

'?htillb]e | Obs ‘Mean Std. Dav. Min Max
~ sales 40 105.6178  4.056961 97.84603 112.9617
- salesSA 40 105.6178  3.510161 97.49429 111.9563

l,uhl:l var salesSA "sales, acasopally adjusted”
- 'Es:l.:l.m ‘Bales salesSA, lpattern(solid dash)

zed series has a smaller standard deviation than the original the seaso®

een removed. This effect is apparent in the al series a1d
eseasonalized - graph of the original 5¢
B series in figure 7.1,




We may also want to remove the trend component from a series. To remove & linear
trend. we merely regress the series on a time trend. For a multiplicative (geometric, or
constant growth rate) trend, we regress the logarithm of the series on the time trend. In
either case, the residuals from that regression represent the detrended &urims.‘“ We may
remove both the trend and seasonal components from the series in the same regression,

o5 illustrated herd;

. ‘regrass sales qsonse T

Figure 7.1: Seasonal adjustment of time series

Sokrcn 58 df M5 Humber of obs =
F{ 4, 38)=
Model | 552.T10487 4 138, 177822 Prok » F -
Residual | B9.1B784B7 35 2.54822425 A-squared =
— Adj _Eﬁm-ﬂ'-* ;
Total | 641.898336 39 16.4689317 Raot MSE -
aales. Goaf. Btd. Ezrr.
geeasl | -4,415311 .7168295
qseasd | -2.298262 ?Wﬁﬁm -3
qseasd | -.6246916 7142821
g 69, 47421




les, ag;xgdn! ‘and SA"
Wﬂ{wﬂﬂ dash) yline('mu')

d t is highly significant in these data. A joint F test for the seasonal fa
it they are alm significant beyond a trend term. The detrended and deses.
ies, rebenched to the mean of the original series (shown by the hmmnu[:

198041 198203 198541 186793 200041
1

[ — salas, datranded and SA |

Figure 7.2: Seasonal adjustment and detrending of time series

W:ﬁﬂﬁt mglihﬂdﬂ of seasonal adjustment and detrending for time-s® i
ed in Stata under the heading tssmooth; see in particular [T5] €
and MacKinnon (2004, 584-585) point outs the »



ariables are used 1o test for stractural stabil
+ we specify a priori the location of the possible struetirs

'[T : wo foundl that the intercept of the regression differed

and nonunion coliorts but t'lmg-m'_’aﬁtm purameter for tenure was:

g, WO found that the o dlﬁ'l.‘_“ﬂlld significantly between these two.
saimple: 11 we doubt structural _H.‘Lul:;qlu,}-._-fm- iﬂﬂtﬂ-llrp_"-‘!'._'ﬂ iliﬂi_iﬁh‘}'.—_lh"@lgﬂ_l regression over
o st of 1t ural nmuri::*--imm!stlw and mﬁnuF_a-;:l.uring inﬂﬂal'_.ri_éﬁ—'*.b‘e may use indieator
carjables t0 identify groups within the sample and test whether the intercept and slope

(FAIeLers dre gtable over thése groups. In honsehold data, a fonetion predicting food
pxponditures might not b frtnhlv over familics with different munbers of children. Merely 1
including the number of children as a regressor might not be adequate if this relationship 1

s ponlinear in the number of mouths to foeed.

gructiral instability over coliorts of the sample need not b confined to shifts in the
intercept of the relationship. A stroctural shift may not be present in theintercepl, bt it
may be an jmportant factor for one or more slope parameters. 1Fwe goestion structural
stability, we showld formulate a peneral model in which all regressors (including the
porstant term)] are int eracted with eohort indicators and test down where coefficients
nppear Lo b stable across cohorts,

Sestion 6.2.2 considers the possibility of heteroskedasticity over groups or cohorts in
the ditta that may have been pooled. Beyond the possibility that ai may differ across
groups, we shonld be concerned with the stability of the regression function's coeflicients
over the gronps. Whereas groupwise heteroskedasticity may be readily diagnosed and
gorrected, improperly specifying the regression function to be constant ayer groups of
the sample will be far more demaging, rendering regression estimates biased and ineon-
sistant. For instance. if those firms who are subject to liquidity constraints (because
of poor credit history or inadequate collateral) behave differently from firms that have
ready access to financial markets, eombining both sets of firms in the same TegrEssion
will yield a regression Runction that is a mix of the two groups' dissimilar behavior.
Such a regression is unlikely to provide reasonable predictions for irms in either group.
Placing the two groups in the same regression, with indicator variables used to allow
for potential differences in structure between their coefficient: vectors, is more sensible. &
That approach will allow those differcuces to be estimated and tested for significance.

T4.1 Constraints of continuity and differentiability




Ll = .
. g = I’l‘uﬂ t I'Im? & venurec=12
i} mn Tn.iﬁ = {Ten2 & I1Ton7 & !Tenl2 & tenure<,

ﬁéﬁ-mﬁwﬁ_igenm!aw interactions of tenure with each of the tenure categories, run the
regression on the categories and interaction terms;'! and generate predicted values:

. gemerate tTenZ = temuresTen?
{15 mizsing values generated)
. penerate tTen? = tenuresTenl
' 'E'IE :I.i.ln!i.ng values genarated)

,pnu:_a.ta tTenl2 = tenure*Teni
(15 miszing values gensrated)
. generate tTendh = tenurasTenlS
{15 mizsing wvalues ganerated)
- r-;uu lvage -Tm:* tTen*, nocons hascons

Source 85 df ] Humber of obs = 2231
: E{ 7, 2223) = 3nid
Hodel TE.GIBTOES T 109483867 Prob > F = 0.0000
Residual |  655.578361 2223 .204907045 R-squared = 01047
Adj R-squared = 01018

Total | 732.217T068 22730 378348461 Root MSE = 54305
luage Coef. Std. Err. t  PriEl [95% Conf. Intervell
Ton2 1.55662 .0383358  40.62  0.000 1.481482  1.831778
Ten7 | 1.708728  .060084 28.44 0.000  1.590801  1.B26G54
Tenl? | 1.870808 _1877798 59.86 0,000 1.502588 2,23905
TenZE | 1.751961 1691799  10.36 0,000  1.420194  2.083728
tTen2 |  .0897426 .0331563 2,71 0loo7 0247221 1547631
| tTen? -0434085 0140739 3.08 0,002 .0168D95 0710083
m -0154208  .019786  0.78 0.436  -.0233801  .0542218
b | -D2380i4 0102517 2.38 002 +0035191
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Figure 7.3: Piecewise wage-tenure profile

As we see in figure 7.3, this piecewise function allows for a diﬂhmmshva
tercept for each of the four ranges of job tenure, but it is not ﬁﬂﬂﬂﬁﬂﬂmm
the estimates predict that at the point of 2 :.'n:fm‘ i.:lépur_&_,;_théﬁw LR
will abruptly jump from 1.73 per hour to 1.80 per hour a
hour to 1,98 per hour at the point of 7 years® tenure.

Wee niny want to allow such o profile to be flexible aver.
hut force the resulting function to be piecewise cont
mathematical function that enforces continuity bet
functions are characterized by their degre




e A

ﬂﬁ&mhﬂmmﬂmﬁ warname with (k — 1) kg,
| #(k = 1) of the splined variable. The resulting sot of
be used as regressors.

wsion above, we estimated four slopes and four intervepts for
' r@ﬁmiﬁnmrmnptﬂﬂ Fitting this model as a linear spline places
the parameters. At each of the three koot points (2, 7, and 12 vean)
axis, v+ 0 tenure must be equal from the left and right. Simple algebra
o thist each of the three knot points imposes one constraint on the parameter vectar,
ecewise linear regmﬂﬁﬂiﬁn using a linear spline will have five parnmeters tatlier than

. skapline aTend 2 sTen? 7 gTan1Z-12 sTen2h = oonure
i i Tegreses luage sTeos

Bourca 55 df M5 Number of obs = 2231
: FC 4, '22068)-= 6455
Hodel | ¥6.1035947 4 19.02589a7 Prob > F «  0.0000
Hesiduml | BB6.113473 2276 294749083 H=gquared »  0,103% i
E hdy R-sguared = O, 1023 >
Total F32.21T068 2230 328348451 Root MSE S
wage Coaf, Std. Err. t P>lt] [55% Coni Intorvall
aTen2 JA1TIEE 0248619 4.72  0.000 .OBB5619 L 1BEOT16
aTan? JO4TIITT . B08448 4.9%  0.000 L OZEES 0856455
sTon}2 JDOES0A1 0111226 0.49 0,821 - 0163076 0273158
aTenzb -023TTET .O0B361R 2.80 0,008 .oOTaTE 0401744
_conn 1.638885 0358606 42.82 0,000 1. 4652465 A [
. predict double lung
loption xb assumed; fitted values)
EEﬂﬁm._mﬁm;guimm

wﬁi FFradicted log(wige), oplined”

Mm eur estimation, displayed in figure 7.4, is 8 pertinngE
kinks at the three koot points. From an economic S0
desirable, The model’s earnings predictions for l'_'““mi

now be smooth, without fmplausible jumps at the ¥
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Job tenurny (yenrs) =

Figure 7.4: Piecewise linear wage-tenure profile

742 Structural change in a time-series model

With time-series data, a concern for structural stability is usually termed a test for
sructural change. We can allow for different slopes or intercepts for different periods
in 4 time-series regression (e.g., allowing for a household consumption function to shift
dowmward during wartime). Just as in a cross-sectional context, we should consider that
buth intercept antisle pe parameters may differ over various periods. Older econometrics
et often dmum lhh :illferenm in terms ﬂl' a Chow test and: I -

atest statistic. This slpp is not neoessary since the Chow l‘ul’ﬁt is
Fiest that all regime dummy coefficients are jointly zero. For exam

;hmﬂwl = 1 during calendar guarters of the G[]l[f War
*mﬂﬂtﬂmthat this regression funetion is -




' previous Ty observations. Then we muatmﬂl; an F mﬁ?
: on over all T' = Ty 4 15 observations and then estimating it g
i 8 obsmnhiﬂns, The sum of squared residuals (542) for the full sam

‘will exceed that from the first T} observations unless the regression fits perfecl;l_-,r over
the additional T data points. If the fit is very poor over the additional T, data points,

we can reject the null of model stability over [T}, T3], This Chow predictive F' test has
I’g. dqgrees of freedom in the numerator:

| (Wpty — Uy, )/ T2
F(To, Ty — k) = (g ) /(11 — &)

where 17 is the residual vector from the full sample. Following a regression, the error
sum of squares may be accessed as e(rss) (see [P| éreturn).

These dummy variable methods are useful when the timing of one or more structural
breaks is known a priori from the economic history of the period. However. we often
‘are not sure whether (and if so, when) a relationship may have undergone a structural
shift. This uncertainty is particularly problematic when a change may be a gradual
process rather than an abrupt and discernible break. Several tests have been devised 1o
evaluate the likelihood that a change has taken place, and if so, when that break may
have occurred. Those techniques are beyand the scope of this text. See Bai and Perrof
(2003).

L Uﬁiﬂﬁ the dataset of section 7.1.2, test that race explains much of the varito

in lwage.
2. Consider the model used in section 7.2 to search for evidence of statistical dhﬂi""
ination. Test a model that includes interactions of the factors race and té®

. thﬂ mud.u,l used in section 7.3 to seasonally adjust turkey sales d”‘"‘j "
¢ seasonal model to these data. Is an additive seasonal facter!

in mﬂau 7.3 to seasonally adjust turhel:f-'-
oth ahwinterﬂ,



81 Introduction

The ?HnamnclItlmml-meml assumption presented in section 4.2 must hﬁlﬁ 5 'Hf )
Jinear Tﬂ!_.rrea-'s.'ilﬂ-!l There ave three common nstances where this: asaumﬁtmntﬁ# j

olated in economic research: endogeneity (simultaneous determination of response vari-
Jble and regressors), omitted-variable bias, and errors in variables [measur&m’entm&
i the regressors). Alt hough these problems arise for different reasons in microeco!
models; the solution to each is the same econometric tool: the msmmﬁﬂ-mﬁnhhi
(1v) estimator, desc ribed in this chapter. The most common problem, endogeneity,
s presented in the next section. The ather two problems are discussed in chﬁptﬁ"
appendices. The following sections discuss the IV and two-stage least-squares. {JBLB} o5
timators, identification and tests of overidentifying restrictions, and the gﬁnm'aﬁmﬁﬁh
to generalized method-of-moments (GMM) estimators. The last three sections of the
chapter consider testing for heteroskedasticity in the 1V context, testing the relevance

of instruments, and testing for endogeneity.

A variable is endogenous if it is correlated with the disturbance. In the model

i = I.j-l,'l‘] -+ _."'1_5.7.7‘2 + R ,Sk-'l:k + u

7 i endogenous if Covlr;, u] # 0. @; is exogenous if Cov[z;, uf = 0. The OLs et
will be consistent only if Covla;, r:] =, 3 =125 K 'I'lusmru—cmannnmaasum?
and our convention that x; is a constant imply fllat E[u] = 0. Following WMI(M‘W

(2002, 2006), we use the zero-conditional-mean assumption

Elufey, 2z, .o @k] =0

which is sufficient for the zero-covariance condition.

Although the rest of this chapter uses economic intuition
able is likely to be endogenous in an empirical study, it is the
geneity that matters for empirical work.



"= By + fap + Puine

y demanded of a good (¢) depends on its price (p) and 1,
s e (inc). When ) >0, B; <0, and By > 0, the demand cyry
: Wd and for any given price the quantity demanded will rig
: rs’ income.

tion rﬂﬂeated an individual’s demand function, we might argue that the
aker who pays the posted price if she chooses to purchase the aood
sed income at her disposal on shopping day. But we often lack mic rodaty,
level data, for the estimation of this relationship for a given zood. Rather
a generated by the market for the good. The observations on p and . are
um prices and quantities in successive trading periods.

If we append an error term. u. to (8.1) and estimate OLS from these [p, g pairs,
ﬁmmmmates will be inconsistent. It does not matter whether the model is specified a3
‘above with g/as the response variable or in inverse form with p as the re sponse variable.
Mﬁt]!ﬁ ease, the regressor is endogenous. Simple algebra shows that the regressor must
‘be correlated with the error term, violating the zero-conditional-mean assumption. In
(8.1), & shock to the demand curve must alter both the equilibrium price and quantity
(in'the market. By definition, the shock u is correlated with p.

E'_'-

Hﬁw can we use these market data to estimate a demand curve for the product? We
nust m an wstrument for p that is uncorrelated with u but highly correlated with
AN économic model, this is termed the identification problem: what will allo¥
ﬁﬁ-‘ or trace out the demand curve? Consider the other side of the market
the supply function that does not appear in the demand function will
If we are modeling the demand for an agricultural commodith 3
or temperature would suffice. Those factors are determined ouis

but may have an important effect on the yield of the c::ﬂ"““d"
-"ﬂﬁ uﬁnﬂ'lar M the grower will bring to market. In the economic 1
in the reduced-form equations for both g and p: the algeh™
wm smmn




of an instrument there. We"dlsmﬂje]]&ﬁ
" |f we decide that we have a valid instrument, how can we use it? Reti

qad write it in matrix form in terms of ¥ and X i g5 |

y=XB+u g

eliere A i the vector of coefficients (8y, 3, 35)" and X is N x k. Define a matrix Z of the
aame dimension a8 X in which the endogenous regressor—p in our example above—is
replaced by =. Then
Z'y=2Z'X8+ %'

The assumption that Z is unrelated to u implies that 1/N(Z'u) goes to zero in proba-
bility as N becomes large. Thus we may define the estimator By from

2y = ZX By
By = (@X)'Zy (83)

We may also use the zero-conditional-mean assumption to define a method-of-moments
estimator of the 1V model. In the linear regression model presented in section 4.2.1,
the zeva-conditional-mean assumption held for each of the & variables in X, giving rise
to & set of k moment conditions. In the IV model, we cannot assume that each X
satisfies the zero-conditional-mean assumption: an endogenous @ does not. But we can
define a matrix Z as above in which each endogenous regressor will be replaced by its
instrument, yielding a method-of-moments estimator for 3:

Zu = D
Z(y—-%XB) = 0

'“R_"F“&"H_len-subs_bil;_ute caleulated moments from our sample of data
i replace the unknown coefficients 3 with estimated valu




i the ease where we have one endogenons regressor and more than one potentisl
i 'éh,t In (8.1), we might have two candidate instruments: 2, and 2. We could

-a.@];,r the IV estimator of (8.3) with 2; entering 2, and generate an estimate of ,En 1f

we repeated the process with z; entering 2, we would generate another By estimate,
‘and those two estimates would differ.

‘Obtaining the simple 1V estimator of (8.3) for each candidate instrument raises the
question of how we could combine them. An alternative approach, 25LS, combines
multiple instruments into one optimal instrument, which can then be nsed in the simple
IV estimator. This optimal combination, conceptually, involves running a regression,
Gam‘i&er the auxiliary regression of (8.2}, which we use to check that a candidate z 18
mnabi}r well correlated with the regressor that it is instrumenting. Merely patonitl
that regression model,

DI =TT 1+ Ta& + TaZe 4wy

and generate the instrument as the predicted values of this equation: p. Given the
mhehnmm of least squares, pis an optimal linear combination of the information in 21
“p.ml 5: We may then estimate the parameters of (8.3), using the 1v estimator with
an m’lumn ol 4.

sql'ﬂs-;smﬂﬂrlg more than the 1V estimator with a deeision rule that reduces the
of instrunients to the exaet number needed to estimate the equation and
‘matrix. To elarify the mechanics, define matrix Z of dimension N = (i £ >k
ents. Then the first-stage regressions define the instruments as

X=z(2'z)'z'xX
B(ZZ) 2 05 Py Thon from (8.3),




i e disturbances, a cor
s wtmtor - .

7 is computed as

wher® A% Ty _
: ' N ¥
lculated from the 2518 residuals .
cale

u=y—Xfaurg
defined by the original regressors and the estimated 2518 coefficients®

The point of using the 2518 estimator is the consistent estimation of 'E'mg,g ina model “
containing response variable y and regressors X, some of whicl are correlated with the
Jisturbance Process u. The predictions of that model involve the original regressors X,
pot the instruments X. Although from a pedagogical standpoint we speak of 25LS a5 a
sequence of first-stage and second-stage regressions, we should never perform those two
steps by hand. If we did so, we would generate predicted values {X} from first-stage.
pegressions of endogenous regressors on imstruments and then run the second-stage OLS
regression using those predicted values, Why should we avoid this? Because the second
stage will vield the incarrect residuals,

u; =y — XBass (8.8)
rather than the corvect resicuals,

U = yi — XBass
which would be calculated by predict after a 25L8 estimation. Smtiﬂbiﬂﬂ'.computﬂﬂ
from the incorrect residuals, such as an estimate of o® and the estimated standard
ervor for each Bug; s in (8.7), will be inconsistent since the X variables are not the true
explanatory variables (see Davidson and MacKinnon 2004, 324). Using Stata's ﬂ:[aﬂ
command ivreg avoids these problems, as [ now discuss.

84 The ivreg command
The ivreg command has the fuﬂﬂnﬁng_pmﬁal.ml'

Cuarlist2 = instis) (3] Lin] [

o on

vreg depyar | varlisti




it inc Is serving as its own instrument, Jyg .
m in the equation by default. If & constyy
; implicitly appears in the instrument list used 10 Speciy
uments in the first-stage regression. The first-stage regression (o

regressor) may be displayed with the first option. '

fuation with multiple endogenous regressors such as

: ;__Ei,ﬂk}'\lli (x3 x4 = za 2b zc zd)
ce users of instrumental variables often ask, “How do T tell Stata that [ want touse

‘zb as instruments for %3, and ze, 2d as instrumients for x47" You cannob, bt mod
‘of any limitation of Stata’s ivreg command. The theory of 2515 estimation
it allow such designations. All instruments—included and exeluded-—must be
n&n&g;reaanm in all ETSL—SEHH{’! regressions. HE!I’EL]TUF h %3 and x4 are regressed one
Za 2b zc zd and a constant term to form the X matrix.

= “We noted above that summary statistics such as Root MSE should be caleulated
ﬁlﬂﬁm the appropriate residuals using the original regressors in X. 10 we compare e
Root MSE from ivreg and the Root MSE from regress on the same model, the form
will inevitably be larger. It appears that taking account of the endogeneity of onedt
TOTE TEEress0Ts has cost us Hﬂulﬂt]ﬂng in H.'UUIIHME of fit: least seuares is least 5{]“91_“"
#] The minimum sum of squared errors from a model including {y x} is by definition
. that computed by regress. The 25LS estimator caleulated by ivreg is a least-squars
] estimator, but the Eritﬁl‘i.ﬂl’l minimized involves the iTHl)I’:J[!t‘r I';'::i-:iiil.leﬂ:\' af (8.8). The 33t
'W!sﬁtturgy to X by least squares to generate consistent estimates Fogis: ’i'fmlﬁ-
jminimizing sum of squared errors with respect to X. As long as X # X. those f
it mﬂt« also minimize the sum of squared errors caleulated by |.“J regress

‘aﬂ'ﬁﬂm M‘Eﬁd to be identified when we have sufficient

or produces unigie estimates, In aconometri
e leters in that equution a1t f"



uﬁan stated as req,uimng that there
w.ﬂnhlm The order condition is &

condition fails, the equm;mn is said to I:ia

luee consistent estim
2 :_ﬂ,,;gdure can proc estimates. IF ¢ ‘Ehﬁlk .
¢ :] is said to be exactly identified. If the rank of [Z’quf}- k ijﬁ i

(o be ,,;,w_-ndeurr.l’its'd

The rank condition requires only that there be enough eorrelation between
ruments and the endogenous variables to guarantee that we can compute unique p
eter estimates. For the large-sample approximations to be useful, we mﬂmﬂ&ﬁn
higher cotrelations between the instruments and the regressors than the min!mial 1&‘-’@

equired by ihe rank condition. Instruments that satisfy the rank condition but are
ol .,uliwwnm correlated with the endogenous variables for the large-sample app:mei—. .
be useful are known as weak instruments. We discuss. weak instruments in

piations 1o
<ction 8.10.

The parameters of exact ly identified equations can be estimated by IV, The parame-
ters of overidentified equat ions can be estimated by 1V, after combining the instruments
o in 2518, Although overide ntification might sound like a nuisance to he a‘nmllflﬁd it

& au:rualh oreferable to working with an exactly identified equation. Overidenttyiny

to working with an exactly identified equation. {}wnd&n [ying
restrictions produce more efficient estimates in large samples. Furthermore, recall $ha,t-
tlie first. essential property of an instrument is statistical independence from the dis-
turbance process. Although we cannot test the validity of that assumption directly,
an overidentified context with a test ﬁf

we can assess the adequacy of instruments in
overidentifying restrictions.

In such a test, the residuals from a 25LS regression are mg:es&ad on

variables: both included exogenous regressors and excluded i _
hypothesis that all instruments are uncorrelated with w, an LM ﬁt_ List
form has a large-sample y2 (r) distribution, where r 18 the number

Mmﬂmﬂ& the numhpr of EXEER: lnstmment-s f.f we Eﬁb@

a.lll'

ppear to be unmrrelabed with the dzsturb&m@ S5,
‘ﬁ]?}mis available in Stata as the overid comm
s }Tﬁp mmmmm_, B8



andaﬁetnf;w dummm since the datamam
Zenous regrmr is iq, the worker’s 1Q score, w!n&.

= .' rin a.srruct.ural equation.” The 1Q score is m%trummﬂtﬂ with four
ed from the equation: med, the mother’s level of education; kww, the score

,alf-eﬂiﬁ’. 1 ]:!l:'@n_l:..the deat:ﬁptive statistics with summarize and then fit the 1v model

+ use http://www.stata-press.con/data/imeus/griliches, clear
(Wages of Very Young Men, Zvi Griliches, J.Pel.Ee. 1978)

« summarize 1Y 5 expr tenure rns smsa ig med kuv age mrt, gap (0)

Variable Dbz Menn Std, Dev. Min Max
1w 758 5.GEE730 42894594 4.605 70561

5 758 13.40801 2.331828 a 18

axpr 788 1.735429 2.106542 0 11,444

tenure 758 1.831136 1.67363 o 10
rns 758 2691293 4438001 ] 1
aman TE8 .T044855 486575 ] 1
igq 758 103. 8562 13. 61867 54 145

med 758 1091029 2.T4112 ] 18
kuw 758 36.57388 71302247 12 56
age 768  21.83800 2.081758 16 30
mrt 758 5145119 5001194 ] 1

ﬁ “ﬂ ﬂlﬂ- first option for ivreg to evaluate the degree of correlation between L
AMour factors and the endogenous regressor iq:
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47176 4676
932228583

156
T42

128: 531"2"!5_

140399. 326

TEY

1B5. 488066

Coaf.

Std. Brr.

{23

Pl

| ————

— .| z.aeT7a2 .2866189 8.74 0.000 —
- 033548 2534458 -0.13 0.895 o i
“::f; .6iGE215  ,D2TRILLE 2.26° 0,004 Aionh:
She | -2.610221 9489731  -2.76 D.006 -4,4TBLTT  -.7452683
snE3 0260481  .D222585 0.03. 0.977 -1 'r;g::; 1?3::%
I?m_f,;.- A254535 1.565969 0.660 0.676 ' 3:5“.5 4'_17"'433.
“Iyear 66 .4706951  1.5T4861 0,30 0.768  -2.620439 3.561682
“Iyenr 69 2164635 1.521387 1.42 0,165  -.8221007 5.45137
“Jysar 70 5734706 1,696033 3.38 0.001 7.405181  5.064381
“ryear. T £.180639  1.562156 3.32 0.001 2.113866  B.247411
“Iyear_73 4. 526688 1.48294 305  0.002 1.615429  7.437943
wad ogTTTas: 1822338 1,77 0.077  -.0307i76  .B062865
vy 4cE1116  .OBH9323 6.55  0.000; 3708229 5954003
age - BADG144 2233635 -3.05  0.000 -1.318188 —.4426307
=TT - GE4TAL . 348056 -0.82 0.B37 2442086 1.273474
_cons g7.00448  4.107281  165.36  0.000 £0.14121  T5.267T76
]
Instrumental variables {2518} regressicn
Source 58 df HS Kumber of oba = 758
F( 12, 745) = 45.91
Model | 59.2ETHIEL 12 4,93839301 Prob > F = 0.0000
fesidual | BO,0182337 745 107407025 R-squared = 0.4255
Adj R-squared = 0.4163
Total 139.78616 757 183997566 Root MSE = 32773
1w Coef. Std. Err. t  Prlzl (95} Cont. Intervall
ig LOho1T4T 0032374 0,04
& .DE91TEY . 013048 5.30
expr 25866 ,OOBEST 4. 46
tanure 0432738 .00TBE34 5.62
Tms | -,1035897 0297371 =3.48
.1351148  .0268889 5.02
-.052598  .p4m1067  -1.09
.0Ta46858  .04B107H. 1,76
2108962 nm;ﬁs._ 4.78




et :“P&ﬁq:,qppmpriabﬂg uncorrelated with the disturbance progess?

. we compute the test for overidentifying restrictions:

Tests of overidentifying restrictions:
‘Sargan NeR-sq test 87.655 Chi-sq(3) P-valua = 0.0000
‘Basmann test 97.025 Chi-sq(3)  P-value = 0.0000
i The above test signals a strong rejection of the null hypothesis that the instruments are

'unmrmlataﬂ with the error term and suggests that we should not be satisfied with this
specification of the equation. We return to this example in the next section,

In the following sections. I present several topics related to the 1V estimator and &
‘generalization of that estimator. These capabilities are not provided by Stata’s dvrag
but are available in the extension of that routine known as ivreg2 (Baum, Sehaffer,
and Stillman 2003, 2005).7

8.7 ivreg2 and GMM estimation

In defining the simple 1V estimator and the 25LS estimator, we assumned the presence of
ii.d. errors. As for linear regression, when the errors do not satisfy the ii.d. assumpion:
the simple [V and 2518 estimators produce consistent but inefficient estimates whos

[ large-sample VOE must be estimated by a robust method. In another parallel 0 e
linear regression case, there is a more general estimator based on the GMM that wil
produce consistent and efficient estimates in the presence of non-i.i.d. errors. Here
deseribe and illustrate this more general estimation technique.

Thﬂequumn of interest 15
y=XB+u, Efu|X] = 2




o1l The GMM estimator

4 grandard 1V and 25LS estimators are Special cases of the GMM estimator. As with
thie simple 1V case discussed in section 8.2, the assumption that the instruments z are
Lyggenous can he expressed as a set of moment conditions Elzu] = 0. The { instruments

give s set of £

JOIments:
ai(B) = Ziwy = Zily — x:8)

where giis £ % 1.7 Just as in method-of-moments estimators of linear regression and
smple 1V, each of the £ moment equations corresponds to a sample moment. We write

these £ sample moments as
iy

N
e 1 1 i 1
g8) =« Z_:Mﬁ} = J?E_:,E.[y.- - x;8) = -N-Z’u
=

=1

The intuition beliind Gy is to choose an estimator for @ that solves ﬁ[.ﬁc;mﬂ =,

IF the equation Lo be estimated is exactly identified (€ = k), we have just as meauy
moment, conditions as we do unknowns. We ean exactly solve the £ moment conditions
far the k coefficients in By Here there is a unique By that solves G(Banm) = 0-
This GMM estimator is identical to the standard 1V estimator of (8:3). .

Ifthe equation is overidentified, £ > k, we have more equaﬂoﬁs&hﬂh-ﬂé’ﬁﬁ'ﬂﬂkﬂﬂwnﬂ;?
We will not be able to find a k-vector By that will set all € sample moment conditions
tozera. We want to choose B S0 that the elements of ﬂﬁmﬁa '
# possible. We could do so by minimizing (Beam) @B, but this
0wy to produce more efficient ﬂﬁt]mmwhﬂnbhﬂmmmﬂﬂtiﬁrd‘
the MM estimator chooses the Beygy that minimizes




By = (XZWZ'X) ' X'ZWZ'y

.- tinn—ﬂﬂd ]wnue the GMM :ﬂmmamr—wﬂ] be identical E;'

b bg]r_;w HﬂWE\fEr, there are as many GMA extmmtnrh as there are choios
1@ matrix W. For an exactly identified equation, W = iy. The weighting
mﬁg riml;l; plays a role in the presence of overidentifying restrictions.

The optimal weighting matrix is that which produces the most efficient estimate.
_ {1ﬂ3‘2} showed that this process involves choosing W = s7', where 8 is the
Gov :__am:e matrix of the moment conditions g:

S = EZ'w'2] = E[Z'QZ] (8.1

‘where 8 is an [ = [ matrix. Substitute this matrix into (2.10) to obtain the effiient
GMM estimator: j:

B = (X Z8 T ZX0) ' X282y
Note the generality (the G of GMM) of this approach. We have made no asstEmpnGs
about Q, the covariance matrix of the disturbance process.'” But the efficient GMM
muimt.nr 15 ot a feasible estimator since the matrix 8 is not known. To implement the

estimator, we need to estimate S, so we must make some assumptions about €, a3 W
discuss next.

ﬁmmu that we have developed a consistent estimator of 5, denoted 8. Cenerall
Bﬁﬂhm estiator will involve the 2SLS residuals, Then we may use that estimator 1
f&amblf: efficient two-step GMM estimator (FEGMM) 11nplm:wntecl in ivred
g option is used." In the first step, we use standard 2608 estimation 1
nerate ,p’aramutar estimates and residuals. In the second step, we use an assumpti®
! r’f‘hﬁmm of €2 to produce S from those residuals and define the FEGHM

#FE{IMM = {x zs_lz"x:’—lezs—lzry

. the optimal weighting matrix implied by (& 1
matrix. i

Since no mhﬁngialnwlwﬂiﬁ 2




M and heteroskedasticity-consistent stan

Tl
tered problems in economic data is

i commonly encaun

of the Mos SH ;
S pknown form, as described in section 6.2, We need a heteroskedasticity-co t
of 8. Suchan S is available by using the standard -aa.ndwit:happrmﬂlm

d in section 6.1.2. Define the 2518 residuals as T

gtimator
ator of 88

olist povaTIATC
anid the jth row

¢ patimation deseribe

af the instrument matrix as Zi. Then a consistent estim

given i
= Lo .
= T A A _ ‘
sl

estimator of B because efficiency of the
is not required. In practice, 2318 residuals
rdson and MacKinnon (1993, 607~

The residuals can come from any consistent

F"'mm_pmr pstimates ised to compute e ‘ﬁ.
are almost alw For more details, see Dav

filly).
If the regression equal ion is e

gan will be identical to t hose of ivreg
For sveridentified models, the MM approach makes more efficient
2518 approach that reduces them to k-

in the [ moment_condit ions than the standard
mstruments in X. The 25LS estimator can be considered & GMM pstimator with a8

suboptimal weighting matrix when the errors aré not iid.
To compare GMM with 25LS, we reestimate th

using the gnn option. This step automatically geners
dard errors. By default, ivreg2 reports -l_arg:e-sa.mule:.a_ tatistics

nys psed.
cactly identified with { =k, the results from 1vreg2.
2, robust or from iyreg with the Tobust option.

nt wse of t.haiﬂﬁ:m'ﬂﬂﬂw i




Humber 'of obas =

F( 12, T746) =
) A2 Prob > F =
= 139.2861498 Centered R2
= 24BE2.24662 Uncanterad R2
= §1.28217887 Root MSE
Robust

Conf. Std. Err. z [85% Conf. Intervall
ig -.0014014 0041131 =0,34 0,733 =. 008463 L0660
! 07683556  .01318569 5.83 0.000 (0508816 1026794
RERT .0312339  .0DEE93] 4.67 0.000 JO1B1157 .0443822
tenure .(B9998 0073437 6.67 0.000 0346064 , 0833931
nn -.1006811  .0298887 -3.40 0,001 - 1REET38 0426884
amaa 1386973 .0263245 5.08 0,000 0820021 1851925
_Iyear_ 67 -.0210135 0465433 -0.46 0.845 -. 1102768 . (EE2498
Iyear 68 , 0890883 L042702 2.09 0.037 0054049 1727937
lyonr B9 L 2072484 0407985 5.08 0.000 L1272828 L2ETI4
_Iyear_ 7O .2338308 0628612 4,42  0.000 1302445 L 33TALTR
_Iyear_T1 .2346525 0425861 5,61 0,000 . 1511244 - 31 TR0
_Iyenr_ 73 3360267 0404103 .32 0.000 ,3see23a 4152298
_cons 4.436784 . 2898504 15.30 0,000 3.868402 5, 008077
LR statistic (identification/IV relevance tost): 54,33

Anderson canon. COYE.
e, Chi-sqta) P-val = O-

E——

T4.168
0.0000

tast of all lnstruments):

‘Hansan J atatistic foveridentification
Chi-sq(3) P-val =

Instrumentad: iq
Inciuded instruments: 8 eXpr fenura Ins smsa _Iyenr_ 87 _Iyear_ 68 _Iyear 69
Ayear 70 _Iyaar_T1 ZIyanr_ T3

Excluded instrumenta: med Ky age mrt o uuy

: not play a role in the quﬁl:;_

statistic displayed by ivreg2 is the GMM equivalent of the 93%
rerid above. The independence of the instruments and the distIEES
to question by this strong vejection of the J test null N’Pﬂm

@ endogenous regressor iq still does




p
g

o ahservation on g, X; 5 th
' 33 :;«a-s'mnming over the Af
o that we essentially do not

rion
s

clusters. That number, M,

O e M — € the effective degrees of freedom of the cly
wﬂ pable pumber of instruments, this constraint may t

‘.ﬂﬁn the cluster( } option will canse ivreg? to
sy of the VCE. If the equation is overidentified, ad;
ﬂﬁ;ﬂ:ﬂ o the cluster-robust estimate of 8 to compute m
1 ute mor
ﬂ-lmﬂllﬁ«

5 GMM and HAC standard errors

i

\iien the disturbances are conditionally heteroskedastic and Eut@ﬂurml,nl:ed, we can
pute HAC pstimates of the VCE and if the equation is overidentified, we can op-
::]uldh' use an HAC estimate of S to compute more efficient parameter estimates. The
‘i n-agﬁ routine will comprite MWy .‘n‘h’{t-ﬂ. estimates of the VCE using the Bartlett-kernel
seighting wiien the robust and bu() options are specified. When there are no endoge-
s regressons, the results will be the same as those computed by newey. If some of
{§¢ regressoms are endogenous then specifving the robust and bw() uptiﬁm:‘ﬁﬁl[-m; e -
frreg? to compute an HAC est imator of the VOE, If the equation is overidentified and
e robust and gmm oplicns are s] wecified, the resulting GMM estimates will be more
diigient than those produced by 2515,

The number specified in the bw() (bandwidth) option should be greater than that
sicified in the lag() option in newey. The ivreg2 routine lets us choose several
dernative kernel estimators (see the kernel() option) as described in the-uh]hmhlﬂp‘
b that command. ' S
To illustrate, we estimate a Phillips curve relationship with annual time-series ¢

I the United States, 10481996, The deseriptive statistics for consumer.
(¢taf) and the unemployment, rate (unem) are as follows: ,

- Use ht.tp:ffm.atat.a-p:qsﬂ.mm!dntlfilﬂnl_»fphil“rﬁi ""];'“‘F-' Akl e '- .
- Sm2arize cinf unem if einf < . " et d SO
Mariadle | b Mean  Std. Dev. .




=1

-ﬂﬂmm:hﬂicny and autocorrelation-connistent atatiatics

kernel=Bartlect; bandwidth=3
time variable {t): year

Nusber of obg = 28

F( 1, 44) = 0,39

Prob > F - 0.5371

*r:m {centered) 53 = 2174271745 Cantersd B2 = =0.1266

Total (incentersd) 55 = 2174800005 Uncentered B3 = -0.1363

fesidual 55 = 244.94589113 floor MSE - 2,308
Robust

cinf Coef. Std. Errx. = Pzl [a5¥ Conf. Intarvall

unem .1949334 3064662 0.64 0.525 - . 4057252 . THS586

_cons =1.144072  1.588995 -0.68  0.498 - . 460622 2,162378

Anderson cangn. corr. LR statistic (identification/IV relevance tost): 13.545

b " 0,0011

Chi-sqt2) P-val =

Mllh;l stavistic [overidentification test of all instrumenta) ;

Chi=-sq(1) Prval =

g, 583
0,4426

S

—

rﬂl,ﬂ.t'inus.'mp is not borne out by these estimates, as iy
ulntimm}dp over the period ending

(s supply shiocks and high infation:

o Hansen .J test statistic indicates that the i

th m disturbance process. If the fi

an instrument in this specification.

l'ﬁﬁu:ia its null with & p-value of 0,02,

rosearche™
in the late 19608

To focus o
nstnunﬂﬂﬂ

rat and second
The first iiua

g e



pses into question.

-ﬂ];ﬂ;l,; the everidentifying restrictions
of Hansen (1982).1° This statistic is it
on (89 evaluated at the efficient GMM estimator By

JBeeam) =N Eiﬁmm}*ﬁ*‘ﬁtﬁmﬂm 4 f;?’é‘%n.i-'

here the matrix S is estimated using the two-step methods described above.

Thie statigtic s ﬂ.'%::'lﬂlpwﬂt‘idl?’ c!istril:--:md as x* with degrees of freedom equal to
he nunber of pveridentifying restrictions ¢ — k rather than the total number of moment
= yditioos, £ In effect, k degrees of freedom are spent in estimating the coefficients
i Hansen's J 18 thie most common dingnostic used in GMM estimation to evalunte the
atability of the model. A rejection of the null hypothesis implies that the instraments
o niot satisty the required orthogonality conditions— either becanse they are not traly
sxogeONS OF hecause they are being incorrectly excluded from the regression. The
1 atatistic is calenlated and displayed by ivreg2 when the gmm or robust options is

.-tpﬁf‘”‘_ll'![i-lh

g8l Testing a subset of the overidentifying restrictions in GMM

The Hansen-Sargin tests for overidentification presented above evaluate the entire seb
of overidentifying restrictions. In a model containing a very large set of excliuded instr-
ments:sinch o test mav have little power. Another common’ problem arises whe you
Have suspicions about the validity of a subset of instruments aml want to test them.

R e . i

In these contexts, vou can use a differance-in-Sargan test.'” The € test allows us to
tist & subset of the original set of orthogonality conditions. The statistic is computed
35 the difference between two J statistics. The first is computed from the fully efficient
regression wsing the entire set of overidentifying restrictions. The second is that, of the
inefficient but consistent regression using a smaller set of restrictions in which a specified
set of instruments are removed from the instrument list, For excluded instruments; this:

. Thos Bavidson and Mackinnon (1003, 234);  “Teis of ahrlduntlﬁ-in;rm:khJ:Mﬁhmﬂ 1
:‘ﬂlﬂtﬂ rootinely whenever one eomputes IV estimates”  Surgan's own cited .
), Wi that regression annlysis without testing the arthogonali :
15, For conditional homeoskedasticity (see section 8.7.2), this statistic is nun
s B bt statistic discussed nhove. y il |
16 Despite thie

he figl) ;




I w'iahlﬁ are proper i
atistic is distributed x2 with degrees of freedom equal
fﬁtﬁqhﬂm or the number of suspeet instruments beirg

w

‘orthoginstlist) with the suspect instruments causes 1vreg?2 to compute
instlist as the exeluded instruments. The equation nust still be identified
uments removed (or placed in the endogenous regressor list) to compute
Bl t.he ﬂquatwn excluding suspect instruments is exactly identified, the J

' or that equation will be zero and the €' stafistic will coincide with the statistic
. ﬁ' the original equation. This property illustrates how the J test of overidentifving
restrictions is an omnibus test for the failure of any of the instruments to satisfy the
u&t&iﬂgﬁnahty conditions. At the same time. the test requires that the investigator

believe the nonsuspect instruments to be valid (see Ruud 2000, 577).

Below we use the C' statistic to test whether s, years of schooling, is a valid instri-
ment in the wage equation estimated above by 2518 and Gyvm. In those examples, the
Sargan and J tests of overidentifying restrictions signaled a problem with the instri-




Totnl {cantared) S5 = 130, 2861488
Total (um:ﬂntund} 83 = 29652.24662

Jasidiual 55 = B1.26217887
e -
Robust
v Coef. Std. Err. z  pslzl [95% Conf. Intervall
e
ig | —.0014014 .0041131  -0.34. 0.733 =.009463  .COGGE0Z
2 0768355 0131859  6.83 0,000 0509915 1026794
i 0312339 .0066931 4.67  0.000 0181157 .0443522
eiita .0489898 0073437 6.67  0.000 0346064 0833931 ,J
£n8 -, 1006811 0295887 -3.40. 0.001 =/ 1686738  -.0426884
smaa .1335973 (0263245 6,08 0,000 JOBYOO2L. 1851926
_Iyear 67 | -.0210135 0455433  -0.46 0.645  ~-.1102768  .0582498
_Iyear_63 .0B80333 42702 2.09° 0.037 .00B4049. AT2THAT
Tymar 82 (20T2484 0407995 5.08 0.000 L2TIBRE - 287214
_Tyaar_70 .2338308° .0528512 442 0,000 (1302446 3374172
“Tyear_T1 2345525 0425661 E.51 0.000 (iB11244 3179805
_Tyear_73 3360267 .0404103 §.32 0,000 2566239 (4152095
_cons 4.436784 2809604  15.30 | 0.000 3.868492  5,008077

Anderson canon. corr. LR statistic (identification/IV relevance test): 54,338
Chi-sg(4) P-val = 00000

Bansen J statistic (overidentification teat of all instrumenta}: T4.188
Chi-sq{3) P-val = 0.0000

-arthog- optian:

Hangen J statistic (eqn. excluding suspect orthog. conditions): 16.997
Chi-sql2) P-val = 0.0003
C etatistic (exogeneity/orthogonality of suspect instruments): 58.168

Chi-sg{i) P-val =  .0000
Instrusents tested: &

Instrumented: ig
Included instruments: s axpr tenure rns smes _Iyear 67 _Iyear_ 68 - _lyear_69

_Iyear 70 _Iysar 74 _Iyasr 73 b -
Excluded instruments: med kve age mOt o S !




F{ 12,

d inatruments: s 83pr tenure rns smsa _Iyear 67 _Tyear 68 -

_Iyear_70 Iyear 71 _lyear.73

instruments: med kww age mrt

suspect instruments, free of the
d mrt, has an insignificant

enificant. These two mﬂ"'“
];;mrn fﬂunﬁ

i
J _-_,mtl.'iﬂcr

T45). =
iR Prob > F =
= 139.2861498 Centered H2 =
= mu.mm Uncentersd B2 =
= 81.26217887 Root MSE =
Robust
Coaf. Std. Err. T P>lz| [95Y Conf. Interval]
. iq | -.0014014 .0041131  -0.34 0.733 -.009483  .00e6E0:
s | .0768355  .0131869 5.83 0.000 L0500915 1026734
expr 0312339 0066931 4.67 0.000 (0181157  .044362
tenure . p4gag9s  .0OT343T 6.67 0.000 ,0346064 0533931
ens | -.d0o6sit| .0295887  -3.40 0.001  -.1586738 - 0426884
~ smsa .1335973  .0263245 5.08 0.000 .0820021 1851935
_fyear 67 | -.0210135 0455433  -0.46  0.645 -.1102768 0682456
_Tyear_68 .0B90983  .042702 2.08 0.037 0054049 1727937
_lyear_69 .20T2484 0407965 5.08 0-000 1272828 Jparand
_Iyear_T0 .2338308  .0528512 4.42 0.000 . 1302445 2374171
_Iyear_71 ,23456256  .0425661 B.51 0.D00 1511244 3179888
_Tyear_73 .3360Y6T  .0404103 8.32 0.000 2568239 41821
_cong 4.436784  .2899504  15.30 0,000 3868402  5.00907
e
Madavson cemon. corr: LR statistic (identification/IV relevance tastd: 54.338
) Chi-gq(4) P-val = 0.0000
‘Hansen J statistic (overidentification test of all instruments): ”&ﬁ
Chi-sq(3) Prval = @
;-rou:thng- option: 7E
‘Hansen J statistic (egn. excluding suspect orthog. conditions)! 15;3;-
Chi-sq(1) P-val = gt gl
: € statistic (exogemeity/orthogonality of suspect instruments): 0.0
) Chi- Bq(E] p-val = }
_._-—-—-_._.-.-.-.-.-.-r.-'-
1yaar.6?
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saskedasticity in the IV context

pathif 25 1
‘tﬂ & ju 8 eXPT tonure rog amsn _Ie (igemad H!TP
e
AT arion
e Humber of obs =
F( iz, 745 =
Prob = F =
srored) B3 = 139.28614898 ﬂmﬂh‘l_‘ld R =
qoral (688 @ ered) 85 = 24652.24662 Uncantored R =
qocal (RRED = 124.9313508 oot REE &
I;aaiﬂ'-"'i -4 ==
f‘_'_F__T_ Robust
|| coef. Std. Err. £ Pzl [86% Conf. Invervall
ﬂ_ 0240417 .00E0861 3.94  0.000 (0120836 0359899
5 Oo0e181 LO184208 0.05 0,962 = 03T1469 LOaBgaz
o .0393333 0088012 4.47  0.000 .0220833 0565834
t :uuﬁﬂ ,0324916 0081333 4.66 0.000 (0146122 .050371
M ne | -.0326187 .0376678  -0.B7 0.387  -.1084433 (041212
i 114463 .0330718 3.45 0,001 0456434 1792825
a7 | -.osea178 (0568781  =1.22 0.222  -.1808968  .0420613
,I}Ear' &8 _0E91S34  .0S8BE2Y 1.52 0,138 — O25EATT L2032845
e 1780712  .0532308 3,35  0.001 .OT37407 2824016
Sysaei0 | 130594 0677261 2.08 0.039 .0088533 2723948
- ear7i | 1730181 0821623  3.83 0.001 .0T0772  2TB2E12
e 0490918 6.13  0.000 2048407  .3969772
=frpig 4083706 7. 0.000 2.058721  3.659504
IR  corr. LR statistie (ddentification/IV relevance teatl: 35.828
Apdérsen canomn. ©OT Chi-2q(2) P-val = &3
- i : 0. 781
] tistic {overidentificatien test of all instruments)
Hanzan J atati Chi-saliy) Bavalor 0.3768

Instrusantod

49

Includad instrusents: @ @Xpr TLenure ITHE S25H
Iyear_70 _Tyenr.T1 _Iyear T3
Ercloded instruments: med kuw

_Iyear 67 _Iyear 88 _Tyear 63

P

!n these results, we find that in line with theory, iq ?ﬂpﬂm:&ﬁ &mﬁmb Pﬂﬂm
o the first time and the equation’s J statistic 15 satisfactory. Thﬂ
peared in a earlier test to be inappropriately considered ex

this form of the estimated equation.!?
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sttest command follows the abbreviated syntax:

vhettest [varkist] [, options]

w]iﬂl:ﬂtha 'npﬁimal_mrﬁﬂf. _spﬂéiﬁes the exogenous variables to be used to model the
gruared errors. Common choices for those variables include the following:

1., The levels only of the instruments Z (excluding the constant). Tius choice is
available in ivhettest by specifying the ivlev option, which is the default option.

9. The levels and squares of the instruments Z, available as the ivsq option.

3. The levels, squares, and cross products of the instruments Z {exeluding the o
ﬂ'“-“t:h as in the White (1980) test: available as the ivep opt Thi

4. The fitted value of the response variable:®® This choice is available in ivhettest
by specifying the fitlev option.

5. The fitted value of the response variable and its square, available as the fitsq
oplion.

f. N user-defined set of variables may also be provided.

The tradeoff in the choice of variables to be used is that a smaller set af ""‘“E’fh,m_'
will' conserve degrees of freedom, at the cost of being unable to detect heteroskedasticit
in certain directions,

_ The Pagan-Hall statistic has not been widely used, perhaps because it b5 00t
M rd feature éf'ml' regression pac 33 However. from an analytical shu::lpﬂw‘
1 : ta the techniques more commonly used since it ig robust

city elsewhere in a system of simultaneous equations ¥

ol elacurhere |

disturbances. "
$ will
Y

ke tesits for hotereakodisticity (Browsch and Poagan ‘Ig?ﬂ,
it Pagan and Hall (1983) point out (00, T8
Mhne equation and nowhiore e 0 ""’ﬁ_‘ abo M

peyprissors HIEEE




ot, nll
iy Mereroskedasticity teat(s) uning levels of IV only
: : kedastic b )
flo¢ Disturbance is homoak 3, 3 Pevalua = 10,7682
: 2 t atatistic @ 8,645 hi-sq(13).1 i
iimll genural tes Chi-pq(13) P-value = 60,7311
“Pevalun = 'D_.m.
p-yplue = 0.3530

Pagan-Hall test w/nasused normality ¢ ~9.539 i
Vhito/Koenker DRI temt statistic @ 13.923 Chi-sqlid)
Breusch-Pagan/Godf rey/Cook-Wainborg : 15.929 Chi-sqli3)
tent, fitag all
i-.ri;:::r;:kn-duﬁ:nj test{a) using fitted value (X-natsbota-hat} & ite aquare
Ho: Disturbance iz homoskedastic

Pagan-Hall general test statistic = 0877 Chi=sql2) P-valus = g;}r:; —
Pagan=Hnll tont w/asaumed normality : 0,771 Chi-sgf2) P=valus : n.TnEB
White/Hoenker nR2 test statistic :  0.697 Chi-zq{2) P-value :

Brousch-Pagan/Godfrey/Cock-Woinberg = 0.728 Chi-sq(2) P-valis = 0. 6710

¥ - L)
None of the tests signal any problem of het eroskedasticity in the estimated equation:s
| disturbanee process,

10 Testing the relevance of instruments

L As discussed abiove, an instrmental variable must not be correlated with the equation's
Udisturbance process and it must be highly correlated with the ineluded endogenous
regressars,  We may test the latter condition by examining the fiv of the first-stage
regressions. The first-stage regressions are reduced-form regressions of the endogenous
regressors, %, on the [ull set of instruments, 2. The relevant Lest statistics here relate to
the explanatory power of the excluded instruments, 2;, in these regressions. A statistic
wommonly used, a5 recommended by Bound, Jaeger, and Baker (19495), is the R* of the
first-stage regression with the included instruments partialled out.®® This test may be
expressed as the F' test of the joint significance of the %, instruments in the first-stage
regression. But the distribution of this F' statistic is nonstandard.®® Also, for models
with multiple endogenons variables, these indicators may not be sufficiently informative.

Mo grasp the pitfalls facing empirical researchers here, consider the following simple
xample. You have a model with two endogenous regressors and two excluded

e ‘H«UM of the two excluded instruments is highly correlated with each of the
etidogencus regressors, but the other excluded instrument is just noise. Your mode

ﬁhﬁ-lmﬂﬁm@ﬂﬂm You have one valid instrument but two
The Bound, Sueger, and Baker ' stutistics and partial R




g Indeed, the F stattics wit v

igation you may not malupuutmm

deal with this problem of instriment irselevane,

G _ are ugg&atl:_or_-aﬁe'of the endogenons :W:m
model. The statistics proposed by Bound, Jaeger, and Eqﬂwrm
¢ rolevance only in the presence of one eudngenmia PORTESSOr, WE:

genous regressors are used, other statisties are required.

~ One such statistic has Boen proposed by Shea (1997): a partisl B* messure that
mm-mmwmﬁlhtimﬁ among the instruments into account 2T Tor a model ton
j‘.aining—-_m;e_ nuduggmﬁm regressor, the two [i* measures are equivalent, The dist-
“.I.iu'ﬁun of Shea's partial 12 gpatistic has notbeen derived, but it may be interpreisd
like any 2. As uorule of thily, if fnestimated equation vields i large value of the
srandard (Bound, Jaeger, and Baker 1905) partial /° and & stoall value of the Shes
“measure; you should conclude that the instruments lack sufficient relevance to explii
all’ the endogenons TEEresscrs. Your model may be essentially nnderidentified. The
Bound. Jaeger, and Baker measures and the Shea  partial R2 statistic are provided by
the first ar ffirst aptions of the ivreg2 command.

A more general approach to the problem of instrument releviice was proposed be

Anderson (1984) and discussed in Hall, Rudebusch, and Wilcox (1996).% Anselersan®
“'Fhmu.::h considers the canonical correlations of the X and Z aatrices. T s meEsuns
E represent the stirrplations between linear combinations of thit k colimps
b TF an equation o '|:..=4-.--1.im:1'--'|_!'.IL
all & of the CAnuRE

"G Ii'j._.-li]|:|-;|1|-r~|||"l"!
o hik
{atistie

ri =1
of X and linear i:;nnhiuul.'mmi of the £ columns of Z.°
instrumental variables is identified from & numerical standpoint.
correlations maust e significantly different from zero. Anderson
has the null hypothisis thiat the smallest canonical correlation is eTo Al
the regressors are distributed multivariate pormal. Under the null, the 1820 4oy
distributed y* with (f — k =+ 1) degrees of freedom, it may be caleubntd

| s
- an thet
ok less cills ”r‘ .

o for an exactly identified equation. A fuilure to rejec! phe udl 1y oiic S
sstion. The Andersan stati

i _éﬁtlﬁneskmuﬁ.ar the estimated equation into gu
|ﬂl,sﬂﬁf@din iyrega's standard output.
y Th';lﬂﬂﬂﬂll:al correlations between X ind Z may olso be
for redundancy following Hall and Peize (2000). Inan et
e instruments are redundant then the large-sumple l]“:':'!i:: " it
kit [TRL8
i

% not improved by including them. The test statistic 184 s [EIES
‘on the eanonical correlations with and without the instrufit
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sed to test 56t o il
i Hu.]!'!.': v

overidont i
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2 gtatisiic muy be ensily computed aevording ot "'":nﬁ _
ta thist Shia's statistic for anidogenous regreer ! I-“?,n-*"‘ -
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A
1 Fels
T g

(ested. Under the M@pﬂhﬁi&tﬁaﬁ
et i distributed s X* with degrees of freedom
S essars times the number of instruments being
jundancy test assumes that the regressors are dist
(ot is available in ivreg2 with the redundant () option.
[ ilustrate the weak-instruments problem with a variation on the lg

using only age and mrt as instruments.

. dvreg2? lu g expr tenure rns smsa _I+ (ig = age ﬂrﬁia f*ﬁiﬂﬁ

Susmary results for first-stage rogressions

Shea " ’ ey
| Partial R2 Partial R2  F( 2, T744)  P-value
| 0.0073 0.0073 e 0.06656

Variable

ig

Undaridentification tests: ) - |
Chi-8q(2) P;.'.'!l!!“.

jnderson cenom. corr. likelihood ratio stat. b.52 0. bbas
0.08626

Cragg-PDonald HeminEval stat. 6.54 ;
Ho: matrix of reduced form coefficients has rank=K=1 {underidentifiad)

Ha: matrix has rank>=H (identified)

Weak identification statistice:
Cragg-Donald (N-L)*minEval/L2 F-stat 2.72

Andersen-Rubin test of joint significance of
endogenous regressors Bl in main equation, Ho:B1=D
E(2,Ta4)= 43.83 P-val=0, 0000
Chi-sq(2)= 80.31 P-val=0.0000

Number of obsarvations N 768

Humber of regressors K 13
Humber of instrumenta L 14
Nusber of excluded instruments L2 2




Humbar of oba = 5y
F( 12, T46) = '3 “
Prob > F - n"ﬁu_
Centerad R2 = ;51‘1&6
Upcentersd B2 = g g5

Hoot MSE = [ !M

T

x Prlzl [95Y% Cont. Intarval]

-5.48 0.028° - iTOTTOH  -.010004c

o7l GI00T 0936856 . 5A5T3sE

-0.93 0.817 -, 082604 04335

2.5 0.010 0208852 1450856

-2.38 0.047 - GET4B34 -, 0HE3085

10296132 2.13 0.033 (0176008 4185474

0077748 1733579 0,04 0.984 =. 3320005 . 34TSEN]

.oaT7ees (1517101 0.93  0.816  -.2791466  .354Tdm

lasyTon7  .leeesgz  2.01  0.045 .DOS0SEB 6613447

Tyone 70 ng J24BELIHG 2.63 0.011 -141369 1. 11550
_Iyenr.T1 4448008 183733 2.43 0.015 .OBEGESS | 8027EE0
fyear.73.|  .435027 1542401  2.85 0.004 % G
_cons 10.56096  2.B21408 374 0.000 §.02111 16. 0B0AZ

Anderson canon. corr. LR statistic (identification/IV relevance tes 5.52
Chi-=qf2) P-val 00642
=radundant- option:
i 1% redindadcy test (redundancy of spacified instruments): 0.002
! Chi=agf{1) F-val = {1, 3685
Instruzonts tested: art

Sargan statistic (overidentificarion test of all instruments): 1333
Chi-sq{1) P-val = D.3879

Instrusented: ig

Included imstrusents: & expr tentre rns smsa _Iyoear_ 67 _Iyenr 66 _Tyear 69

- LIyear 7O _Iyeer 7i Ivear 7 v

WWE mmﬂts- Shea's partial RB? statistic is very Fr“.i!” -W .;'b:
S Cragz-Donald statistic marginally rojects its mul 11}'!’*“]“?'"”5“":1";14;r
AIGeTsan mum_mﬂﬂrm{miuu statistic fails to reject its nul WY
m .ﬁ]ﬂ.*.' ﬂ-]t-h:ﬂ'llg]l we ]I&W more i]'l.ﬁl.l'lll"“.‘m S than l\'_l['iﬁ-l{;'ﬂi
' be inadeq mate to identify the equation. The redundant (B

w:““mrul il]ﬁ}rmatiu” to adentifyv tlae E‘[IIIHIEUIL )
il ) o ddentify

.
ks with little explanatory power E'lnﬂf#
and Hausman 2002b) and uww";ﬂﬁ



- ator s the sime as that of the
w““] from instramenting (Haln
.]Hgn e Gaiger ind Stock (1997) and oth
o arise even when the first-stage tests are significs o
II%II anel the resoarcher s using o Jarge samplo. One eule of thue

poug regressor, an I statistic less than 10 is cunse for coneern.
{og7, 867). The magnitude of large-sample bias of the 1v estimator e KRR
aumbir of instruments (Hahn and Hausman 2002b). Given that, one recomme '
when faced with o weake-instrument problem is to be parsimonions in the choiee of in-
gruments,  For Further discisgion, see Stadger and Stock ( LO97); |"|fllm and Hausman
'l;r{ulz;n.h}'i Stock, Wright, and Yogo (2002); Chao and Swanson (2006); and references
tlperein

g.11 Durbin-Wu-Hausman tests for endogeneity in IV es-
timation

There may well be rensan to suspeet o fullure of the zero-conditional-mean assumption
presented i seclion L2 0 muny regression models. Turning to IV or efficient GMM
etimation for the sahe of consisteney must be balanced against the inevitable loss of o
ficiency. As Wooldridge states, “lthere is an] important cost of performing 1V estimation
when'x and w wre nnearrelabed: the asymptotie varance of the IV estimator is always
larger, and sometines much lorger, than the asymptotic variance of the OLS estimator™
(Wooldridge 2006, 516, cmphasis added ), This loss of efficiency is a price worth Pying
i the OLS estinator is biaseel and inconsistent, A test of the approprinteness of ¢LS and
the necessity 1o resort Lo 1V or GMM miethods would be usefal,™ The intuition for-such
i test mnay also be couched in the number of orthogonality conditions available, Can all
or some of the included endogenons regressors be appropriately treated as exogenons?

ko, thise restrictions can be added to the set of moment conditions, and more efficient
estimation will Lie possible,

Many econometries texts discuss the issue of OLS versus 1V in the context of the
Durbin-Wu- Hausman (DWH) tests. These tests invalve fitting the model by both oLs
and WV approsches and comparing the resulting coeflicient vectors, I’”‘h‘iw )
form of the test, & quacratic form in the differences between the two coeflicient vectors
scaled by the precision matrixs gives rise to o test statistic furhhﬂmﬂihﬁww it
Hh OLS estimator is consistent, and fully efficient. R

___ Hﬁ-;hrﬂ" the estimator that
o ses, and hy @1 the estima
1 the il is ot true, T




test of endogeneity in an 1V regression s forried by chogs.

efficient estimator B, and IV as the inefficient but consistent estimggo;

statistic is distributed as x® with &y degrees of freedom: the number of

being tested for endogeneity. The test i3 perhaps best interpreted not ps g

‘the endogeneity or exogeneity of regressors per se but rather as a test of the

of using different estimation methods on the same equation. Under the

In?pqthm that OLS is an appropriate estimation technique, only efficiency should
by turning to 1v. The point estimates should be qualitatively unaffected.

~ There are many wavs toconduet 4 DWH endogeneity test in Stata for the standard 1V
case with conditional homoskedasticity, Three equivalent ways of obtaining the Durbin
‘component of the DWH statistic in Stata are

1, Fit the less efficient but consistent model using 1V, followed by the command
a@stimatas store iv (where iv is a name of your choice that is attached fo this
sat OF pstimates: see the discussion of stored estimates in section 4.4). Then f tlfr
fully efficient model with regress (or with ivreg if only @ subset of regressors B
being tested for endogeneity), followed by
hausman iv ., constant sigmamore.’

2. Fit the fully efficient model using ivreg2 and specify the regressors 1o he tested
in the orthog() option,
8. Pt the less efficient but consistent model using ivreg and use ivendog o e
~ duet an endogeneity test. The ivendog command takes as its argument & AR
‘consisting of the subset of regressors to be tested for endogeneity. 1 the varlst =
“panpty, the full set of endogenous regressors is tested.

M-

last two methods are more convenient than the first because the 1t ""“"“:_1
- Furthermore, the hausman command will often generate & {“‘r“-“ %
ritig the test infeasible. Stata’s documentation describes the rmiﬁll
n in which the varience of the difference of the couffic
positive definite in finite samples. 3 The different -fm”:,: s
tests, which although asymprotically equivalt

samples.




. quistly ivreg? 1w -!=.-_.:pr'flhﬂ.’ﬁ._ ]
. sstimates store iv =
[ quistly restess v % SXPT tenure Tua sssa te
. haussan i¥ ., constant sigmasors '
Hotn: the rank of the differenced vorisncs mpce
: of coefficients being tested (13}
there may bs probless computing the test
eatizators for anything wnexpected and: bly conmid
variablas so that the cosfficients are on a similar scale
— Coefficients — Nl

2 B Diesernine TR ldiaat b B
iw . Differonce 8y ¥

iq .0243202 -G02TI2Y 021608 0048882
B - 0004825 0819548 -.0814923 0133347
expr 039129 0208385 .UoBza98 0017985
tenuza (0327048 0421631 - .00B4582 . 0020521
rns -.034161T - p0e27s3s 0621318 .0134804
o~ .1140326 1328593 - . 0IBBEEY 000834
_Tysar_67 -.067T9321 - 0642095 -, 0137226 -0039773
_Iyear_63 0900522 GB06A0E 084714 . 002056
_Tyenr_69 1TH4E0S 207515 -. 028141 -0061056
year_T0 1396765 2282237 -, 0885482 0152338
~Iyaar_T1 .1736613 - 2228915 - 0491302 -0108586
_Iyear_73 2971599 C322ET4AT =, 0257148 LO0BETAR
_EGns | 2837163 4, 235387 -1,398204 3033612

b = consistent under Ho and Ho; obtained from ivregl
B = inconsistent under Ha, officient under Hs: obtained fram np-u

Tezt: Ho: difference in coefficients nat dyetematic :
chi2(1} = (b=B)'[IV_b-V_B}~{=1)](b-8)
- 2_'[‘:4
Probrchi? = 0. 0000
(V_b-V_B is not positive definite)

The comparison here is restricted to the point estimate &u&éﬂl
“rror of the endogenous regressor, iq; the hausman test statistic rejects
this variable. The command also warns of difficulties computing a
tovariance matrix, The large v value indicates that estimation of the
Tegress yields inconsistent results, .

: L now illustrate the second method, usi

stiould notice ghe peculiar the p:




F:_ 12, Ta46) = 46,88

-y Prob > F - :hi'm

= 139.2881493 Centered B2 = D.430)
24652.24662 Uncentered R2 =  0.995%
Root MSE = L3088

Coef. t  Pxg] [95% Conf. Interval]

LBl
T4
B4
B0

:

: .D619548
xpT 0308385 0065101
tenire .0421631 0074812
g -,0062838 0275467

8 04 TEEEE OTE2438
4
o
: -3
‘gmBa , 1328993 JOZEETEE 5
e |
1
4
i
5
T

.a0a ,0180592 0436198
000 L02T4ATES 0558458
001 =, 1603718~ 0422161
000 JOBOTRES J1B5071T
. 258 =, 1481506 0397317
OT3 - . 0755581 1687168
. 000 1214887 2936963
000 132423 .A240245
L 00 1380889 LA07204
OO0 . 24305789 ADZESLE
0 QO0RaT3 0047369
14 1] 4.0128386 4:467878

0o
13
T4

_Iyear 67 | =.0542095 0478522
_Iyenr 68 .0E0EE0A (0448551
_Iyear 69 2075916 0438605
_Iyear_ 70 23820237 0487994
_Tyear_71 9996015 (0430952
_Iyear 72 _377BTAT (0406574

ig 0027121 .0010314 2

_cons 4.235367  .113348% 37

o
.G&
AT
L4

o000 o0 ooo oo

63
37

L= B

Sargan gtatintic (Lagrange multiplier test of excluded in sErisants): 27659
Chi=-sq(2) F-vel = 0. 000

-orthog- option: 5
Sargan statistic (eqn. excluding suspect osrthogonality conditions): 1,04
Chi-sg{1) F-val = 0. 3067

¢ staviatic fexogenaity/orthogonality of suspect s bamants) a1 614
Chi-sqfl) P-wal = 0. 0000

Instruments tested: ig
. : .

Included instruments: S expr Lenurs rns smsa _Iyear 67 _Iyear_6 _Iyenx 69
- _Iyesr_70 _Iyear 71 _Iyear 73 iq

Excluded instruments: Bed Ky | o

S

second method’s C test statistic from ivendog agrees qualitatively with the!

haussan. | now illustrate the third method’s use of ivendog:

Lo ) o+ guietly iyreg lv 5 expr tenure ras smIa _I+ {igemed kwwl

y gooed
= a4’ p-valus ® ”'-ogwb-' 04
2183742 F(1,744) Boyalie (i

21.61394 Chi-aqll)
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Exercises
1. Following (he discussion in section 8.3, use the Griliches
sstimate two-stage least squares “by hand”. Comp ﬁ!"&ﬁi o

those computed by ivreg on the same e AT
s When we presented robust linear regression estimates, the estim: 3 -

and summary statistics were unchanged; only the VCE was affec R
the éstimates displayed in section 8.6 with those o &_éﬂﬁ_hﬁ 873, Wiy

coefficient, estimates and summary statistics such as R-squared mﬂﬂﬁwﬂﬂﬂ -2

differ? e
a. Using the Griliches data, estimate the equation

_ jyreg? 1w & expr rns smsa (iq=med kuw age mrt) if year==5T, pgmm

What comments ¢an you make about these estimates? Reestimate the Btiyiaﬁﬂn-;
adding the cluster(age) option. What is the rationale for clustering by age?
Fvaluate this form of the equation versus that estimated without clustering, What
are its problems?

4, Following the discussion in section 8.7.5, refit the Phillips curve model {B}Wﬂh-

out, the gmm option and (b) without the gmm and robust options. How do these
2SLS-AC—compare with the GMM=

estimates—corresponding to 25LS-HAC and
HAC estimates displayed in the text?
5. Refit the Phillips curve model using lags 1,
the unemployment rate. What do you find?
6. Does the Phillips curve require an IV estimator, or can it be.mnai_stenﬂ
with linear regression? Refit the model of section 8.7.5, using the:
tion of ivreg2 to decide whether linear regression is satisfactory using
framework.

7. Does the Phillips curve exhibit heteroskedasticity in the time

the model of section %.7.5 without, the robust option, and us
ivhettest to test this hypothesis. e

5. and 3 of unem as instruments for




 high schols

4 expendituse per pupil (spen), and he

diﬁhﬂﬂl:'-_lﬁ@pvasty) ;

sat = 4 -+ Foexpend + [Jspoverty + u; (8,12)

We cannot estimate this equation because we do not have access to poverty rates at
the school-district level. However. that factor is thought to play an important role jn

educational attainment, proxying for the quality of the student’s home environment, I

2 ‘we had a proxy variable available, we could substitute it for poverty, for example; the]
| median income in the school district. Whether this strategy would succeed depends on®

h how highly the proxy variable is correlated with the unobserved poverty. If no proxy
' is available, we might estimate the equation, ignoring poverty: |

log{sat;) = B + Geexpend, + v,

The disturbance process v; in this equation is composed of (Jipoverty, +ui). If expend
‘and poverty are correlated-—as they are likely to be regression will yield biased and
inconsistent estimates of 3 and fs because the zero-conditional-mean asstmption i

To derive consistent estimates of this eéquation, we mus! firiel ‘an IV, as diseussed
in section 8.2. Many potential variables could be uncorrelated with the hll]{lh}‘ﬁ'l"'-"-*;!’m
factors influencing SAT performance (including poverty) and highly correlated witl

expend.® What might be an appropriate instrument for expend? Perhaps We 1:rrum
P g

mu‘xsure euch school district’s student-teacher ratio (stratio). This measure is likel

be (negatively) correlated with district expenditure, [fstates’ education policy |"3”‘]ﬂtﬁ_'
that student-teacher ratios fall within certain bounds, stratic should not he correlt
with district poverty rates.

concept of measurement error in section 5.3 and now discuss 11320

o m‘m appear in the respomse mrigbié’. Say that :ﬂ']’-‘b
observe y = y* + ¢, where ¢ i§ 8 e i of e

nponent of the regression error teri, 7 et B
test taken by U8, am.m:nuﬁmﬁ‘@"

| ."Iyu

—_——




o Appendix: Magsuramient aroor
{ equation. Wi assuime thist ¢ Is not systematie in 4
“lpflﬂi'l-t ?ﬂl‘iﬂl.‘llt‘,ﬂ b= 3 Th@'ﬂ. nlmmmﬂm m‘ﬂmm
model without introducing bias in either point o

.M;imillﬂ

il indel

wenkens Ghe RS
On the other hand, measurement error in o regressor i§ A far more seTIONE. ]

Gy tlut i true model is

Y= & fars 4w

o3 is not observed: we observe xy = 23 + 6o We assume that Eiug]:i-'hi
Wit whionld we pssume about the relationship between ez and xs? Firat, lob iﬂﬂﬂl-lm?
(it £ 15 0ot correlated with the observed meastre rg larger values of zs do not give
rise to ﬁ}n‘[l']tliﬂi"ﬂ“_‘l' larger or smaller crrors of meadurement, which we can write @
Covlea, z2] = 0. Bul if s0, Covlen, #5] # 0: that is, the evror of measurement must
e sorrelated with the true eaplanntory variable 25, Wit can then write the estimated
ion i which 5 is replaced with the observable Ts as

Sl 1 hind

peptiit
y= 3+ ez + {u — (Haea) {_El:ﬂ
and ea have zero mean anc, by assumption, are uncarrelated with
of measurement error merely inflates the error term. Var |u — faez] =
Measurement ercor in eh does not damage
loes measurement

Siee both u
b, the presence

14 sero correlation of u, e
it ‘merely inflates the error variance, as ¢

ﬂ-;: 4 .I':,Ir:I,‘I
the il L (a1 of W oI g

prror in the responsae variable;

\liis is not the case that is usually comsidered in applied cconometrics
It is more reasonable to assume that the measuremeny ErEOT
riable; Covles, 23] = 0. For instance, We
ported income and actual income is not
ez, (5 + €2)] # 0 by construction.

However
we errors in variables.
bt ncorrelated with the true explanatory va
micht assume that the diserepancy. between ra
% hunction of actual ineome: 1T 80, E‘::v[rg, .r-_r] = Clay
Banid the rerrossion of (8:13) will have ‘4 NONZETO correlation between its explanatory
Wariable 2 and the composite error term, This result vialates the zero-conditional-mean
wssumption of (4:2). The covariance of (22, % — Baea) = —F:Cov ez 2] = —f ﬂri =4l
wed and inconsistent. In this simple case

eausing the OLS regression of y on &z to be b
the nature of the

of one explanatory variable measured with error, we can determing
bias hecause Fo consistently estimates

- _ Tow [pe = faeal
= et =
3, P A vm[le

P
B (———” )
2 2
as L

his: expression demonstrates that the OLS point estimate will be atteminte
ward zero even in large samples—because the bracketed expression of squa
ies must be a faction. Tu the absence of messurement, error, a7, — 0

T the saagnitude dtmhrmnmwmmmmm



ﬁnﬁﬁlﬂ, then tha BLE estimates will he ]mif
not merely for the coefficient of the

 the direction of bias with multiple regresars.

or in an economic model may be subject to mes.

i huth repurt:ad income ﬁm] I'E}':III.'}IIE\‘] muajﬂ; ihay

~ 8.B.1 Solving errors-in-variables problems

! - We can use the v estimator to deal with the errors-in-variables model discussed in
Ll A n 8.B. To deal with measurement error i one or more regressors, we must be able
JE an instrument for the mismeasured ¢ variable that satisfies the usual assump-
instriument must not be correlated with the disturbance process u bt st
ml‘l:ﬂlatl"d with the mismeasured . If we could find o second measurement
-Hm me that is prone to measurement ercror—we could use it s A m:-munt'nt
' Wﬂlﬂd Wﬁumﬂhl? be'well correlated with @ itsell. If it is ge nerated by an i
L urement process, it will be uncorrelated with the original measurement
! ‘inatame we might have data from a household survey that inquired about
| family’ disposable mcome, consumption, and saving. The re spiondents’ Answer
E&rﬂ? last, year might well be mismeasured since it is much harder to track
earned income. We could say the same for their estimates of b 2tk
various eategories of consumption. But using income and runhllmlmm
d devive a second (mismeasured) estimate of saving, which we :'nlllif e 49
i ﬁlﬁﬁﬂuiﬂm problems of measurement error in the direct pstimalt




4 panel dataset has multiple observations on the same ee
e may have multiple observations on the same memﬁw _

data, each element has two subscripts, the group identifior :

Jenoted by t in economet rics, because it usually identifies m

Given panel data, we can define several models that arise from t
P resental (n11H

[inetr ¢

k
Wit = Z-"A‘ir.‘ﬂkir b e 7 e 1,,, .;N. t= 1,....,T

el

where NV is the number of individuals and T is the number of periods.

In sections 9.1-9.3, 1 present methods designed for “large N, small Tﬁ ’
which there are many individuals and a few periods, These methoda use the large
wumber of individuals to construct the large-sample approximations. The small 331‘13@";..
limits on what can be estimated. b

Assume a balanced panel in which there are T' abservations for each of th
dividuals, Since this model contains k x N x T regression coefficients,
pstimated from N % 7' observations. We could ignore the nature of the
uppl}f ;nmimi or duml v least squares, which would assume hhﬂt B= ﬁj Kf

*‘hlp T E]JS[:UE.‘: thase techmques, the ﬂxed—eﬂiaa’gs

in the next section. They impose restrictions on the. aboy
ﬂmh:r aJJm',rlng only the mnatant 10 dﬁw*w g




J&@ﬂﬁr;mﬁs the notion of moving-window estitigop,
noving-window regression for each unit of panel.

ucture represented in (9.1) may be restricted to allow for heterogeneity acros
s without the full generality (and infeasibility) that this equation implies. In partie.
, we might restrict the slope coefficients to be constant over both units and time and
for an intercept coefficient that varies by unit or by time. For a given ohservation,
ercept varying over units results in the structure |

Yit = X By + 2,0 +u, + 6 (9:2)

’F].'f.ﬂl'ex“ i5 @ 1 x k vector of variables that vary over individual and time, 8 is thekx1
vector ufmelﬁmem.s an x, z; is a 1 = p vector of time-invariant variables that vary only |
mmdw!duaia Jis t-hEFX I vectar of coefficients on z, u; is the individual-level effect,

and e is the disturbance term.

The u; are either correlated or uncorrelated with the regressors in % and 2 G
Jm.a!.mya assumed to be uncorrelated with e,.)

gt iF £l B
ferm !”‘I =

1wy are uncorrelated with the repressors; they are known as HE.
ﬁ‘tﬁd with the regressors, they are known as FE. The origin of the t
*hm iy are uncorrelated with everything else in the model, the Flltflﬁ.ltiluii leye
ks are. il parameterized as additional random disturbances. The sum 1+ 2
times referred to as the composite-error term and the model is sometime kRats
model. The origin of the term FE is more elusive. Whet! e
of the regressors in the model, one estimation stratesy . I.i![
s or FE. But simply including a parameter for every indiv? l\
WOl ltliljill:,hf an infinite number of parameters in ¢ UL ]m“
ions, The solution is to remove the u, from the st
till identifies some of the coefficients of interest:

: ﬂ.*'."t the u; are uncorrelated with the M""‘gﬁ
‘e process of removing the u;, FE m:mﬁ i!

:@n dditional cost of using the FE ,M'
ks N : umt.:nst inmwnﬂ'




]

The FE model modestly relaxes the assumption ¢ the:
gver time and space. A one-way FE model permits each
il Wi constany term while the slope estimates () are cons

e o, This estimator is often termed the least-squares d =i

sineo it is equivalent to ineluding N — 1 dummy variabl inu.m_t__ﬁ__m_“_fﬁh
(ineluding & units vector). However, the name LoV is rmﬂﬁmhm'ﬂ?fh bl
jmplies an infinite number of parameters in our estimator. A bett N‘W Tk
the FE estimator is Lo sec that removing panel-lovel averages from each side of
pomoves the "?if: from the model, Let ¥ o= {”ﬂEL; Wit E._i =(1m :T.L.*Rr |
&= (1/7) 1 tir- Also note that z; and 1y are panel-level averages. Then siuiple
algebra on {9.2) implies

Mie .r_ja — [x-r r= f,]]ﬂ + [z. — z;;!& = Ei

which fmplies tha -

G = (%) B+ 5 (9.9)

Equation (9.3) implies that OLS on the within-transformed data will produce con-

cistent estimates of & We call this estimator apg. Ecuation (9.3) also shows Ehah

sweeping out the u, also removes the 8. The large-sample estimator of the VOE of Byg

i just the standard OLS estimator of the VCE that has been adjusted for the degrees of
froelom vsed wp by the within transform

(3 Eamt)

=1 =l

where & = {1/(NT— N — k- 1)} 0%, 337, 2, and & ate the residuals from the OLS
regression of ¥y on 3.

This model will have explanatory power only if the individual's y ab
the individual's mean is significantly correlated with the individual’s x values
below the individual's vector of mean x values. For that reason, it is ter
estimator, since it depends on the variation within the unit. 1t does no
individuals have, ¢.g,, very high y values and very high x values because
Within vasiation that will show up as explanatory power.® This o
tat any characteristic that does no




Wit i mﬂuul FE mndei with the Stata command xtreg by iising
¢ command has & syntax similar to that of regress:

[indepmm], fe [options|

it | regression, options include robust and clustar(). The command

b syseat.lmnteﬁ of o (labeled sigma u), o2 (labeled sigma_e), and whit Stats
ﬁrm&:‘hﬁ. the fraction of variance due to uy. Stata fits a model in which the u, of (9. 9)
,amtaiaem a8 deviations from one constant term, displayed as _cons. The empirical
correlation between u; and the fitted valies is also displayved as corrfu i, ¥b). The're
estimntor does not regquire o balanced panel as long as there ere ot least 2 olssrvitions

per unit.*
We wish to test whether the individual-specific heterageneity of 4, is necessary: are
there distinguishable intercept terms across units? xtreg, fe provides an F test of
th&m:]l ]urpul,hems that the constant Lorms are o Wil il Arross units. A rejoction af this
aull hypothesis indicates that pooled 0LS would produce inconsistent estimates. The
one-way PE model also assumes that the érrors are not contemporaneously correlated
across units of the panel, De Hoyos and Sarafidis (2006) deseribe some new tests for
mwanmm correlation, and their command xtsed is available from $8C. Likewist,
»&adgpam:re frium the assumed homoskedasticity of ¢, neross units ||F thie panel—thal
s, a form of groupwise heteroskedasticity as discussed in seetion 6.2.2-may be testd
'h;.nu LM statistic (Greene 2003, 328), available as the author’s :\\:ttea.tﬂ romtine from
‘ssc (Baum 2001). xttest3 will operate on unbalanced panels.

’-ﬁm example below uses 19821988 state-level data for 48 ULS. states o trafic

p rates (deaths per 100,000). We model the highway fatality rates is 8 funtion
i n factars: besrtax, the tax ona cose of heer; spircens, & T“"ﬂ"’"m“
; and two economic factors: the state unemployment rate (une F:E

ﬁﬂﬂ‘tﬁpﬂlﬂ-ﬁnlﬂ im‘&mﬂ, in ﬂlﬂl.lsﬂ.l:ldﬂ (perinckK). Descriptive statistics !




b

LATO1808
(461407 1,010077
AATRARE3 1.4665G

LATTBAAZ OARBLOH
LATRBELY LOARLETO
LOBB2203 L 1416362 [T935124

L BO3ETAH 10 4.9
(BTAM649 LB614286 4, 380672

SATTeR 1.266118  2,266119

7 ._14“';-'_“', 2 .'4 1‘
4.1 13,3

4, 0BT 12.146873

13, 80018 2.263046 g, blaras 2219246
2,132%T13 i, aROT 19, 516832

an
::::;::r- AoGasLG 11.43261 16, 66782

gverall y. 187H 16, 30085 1
iFoddaBed 1

tuaan e

‘:':ﬂﬂl‘ W a0, LATE

averall 1 G 3 GH2a8R3 1687
i tuaan 0 1685
within 7. 00aNH3 1982

Stk for thio pane) identifier, state, and time variable, yea
rtee of the additionnl informat lon provided by xtaum, .Ey. e i i
lie state does not vary within the prnely; e, it 15 AhE ARVATIREE S i
i fact by reporting that the within standard deviation is R
4 devintion of zero will be dropped from the ¥
sl within standard davintions are no!
Ahat the coeflicient on beertax muy v
U between standard deviation of year

e




Humber of obn =
Fumber of groups = %
Obs per group: min = 7

& .. S
> .;;- : *"ﬂ g = ] -ﬁ
« aal ki F(4,284) = 3
corr(u i, Xb) = -0.8804 Probia ¥ = 0.0000
fatal Coof. Std. Erx. b= Pritl [85% Conf. Interval]
benrtax, | -.4B40728° 1625106 =2.98 0.003 - BD39508° -_15418
‘spircons .G169652  .OTB2118 10,81 0.000 L6E104B4 972818
unrate | -.0290450  .0080274 =3.22 0.001 - 0468181 = 0112808
parinch .1047103 0208986 5,08 0.000 J0B4165 1457565

_cons - 3B3783 4201781 -0.91  0.362 =1.210881 4432754

algma u 1.1181543
sigma & - 156THI6S
rho .0B071823° (fraction of variance dus to u_i)

F test that all u_i=0: F{d47T, 284) = 59.77 Prab > F = 0.0000

All explanatory factors are highly significant, with the unemplovment rate havieg #
r_!ggntiw effect on the fatality rate (perhaps since those who are unemployed are inouse
constrained and drive fewer miles) and having income a positive effect (4s exped®
hm-aubp d{'iviug is & normal good). The estimate of rho suggests that nimost 5
variation m fatal is related to interstate differences in fatality rates. The E
Fﬂlm the regression indicates that there are significant imlix-im;::f (state level) L
implying that pooled OLS would be inappropriate.;

9.1.2 Time effects and two-way FE
it 1Bl h :
?mdﬁlﬂr;mn::_w d L““ “uaﬂ]mthF fit wo-wiy FE models. 1T the nm:;hg{

indie inh S Wecan fit o two-way FE model by creating 85 ﬂﬂF‘

Py iy . H-H bat onein the "Egﬂﬁiu‘ll." The j:Ji'lllf- fest I

i |_::_atur variables are sora will be a test of the :'IE'M

: il ires regrossors’ varintion Over i

B e l.“-'“'.*.‘ a time indicator variable) require B
each period, Fat yidual
-mmpmnmﬁ_dﬂ :




o ﬁ'!.l’l'l‘w FE model ]w nelelivi i |
m’_['hl! time effects are generatod Est*m offects tg gy
:“ﬂﬂ.mni;nrl‘d indicators (as diseussse E'huimh s g 2
fiar ihe excluded class from each of the '-‘n‘f'f-ha' hx._-lju
| xpresses the time cffects as variations from phe. X
. than deviations from the excluded class (1988), et

gabulate Your, penerate(yr)

P ety

g
drop yIi
.m fatal beertor spircone unrate porinek yr+, fg
. ieffects (within) regrassion Nusber of cbg &
,;.'ﬂ_- within = 0.4528 Obs per group: min = g
mm‘ﬂ.!ﬂﬁﬂ avg = 1.0 i
prarall = 0.0770 may = ‘1' i
F10,278) = 23 0
aee(did, Xb) = -0.8728 Prob > F = 0,0000
fatal Coef. Sed. - Err. t P>1x] [95% Conf. Imterwvall
beartar | -.4347195  .1539564 -2.82 0.005  -.7377ETE  -.1316511
spircons .BOBBET  .11264325 7.156  0.000 .6841168 758
wrets | =-.0548084  .0102418 -5,31  0.0000 -.0752666
perinc .0BR7A36 0199988 4.41  0.000 . 0485853
yréd 1004321 0355628 2.82 0,008 0304383
yeB3 0470600 (0321574 1.46 44 =.0162421

pos -, LOBTTTL
000 -.1384138

o
yr81 | -.0B45507  .0224667  -2.87 O
ye85 | -.0933055 .0198667 @ -5.00 O
yrBE 0306988 0237895 2,13  0.034 .0038554
yr87 0003583 0289315 0,01 0.9%0  -.06E5833
~ tonn 0286046  .4183346 p.07 0845  =.7948812

Elgma 1.0987653
‘®igae | 14570531
: .98271904




b secified model. Otherwise, the
with much varation explained by the i

Another estimator for a panel dataset is the between estimator, in which the group
means of ﬁmregr{lﬁaﬂd on the group means of x in a regression of N observations.
This estimator ignores all the individual-specific variation in y that is considered by

the within estimator, replacing each observation for an individual with his or hier mein
hehaviar. The between estimator s the OLs estimator of 3 and & from the model

= ‘flﬁ e Eilﬁ + 1t + & ﬂ.”]

Equation (9.4) shows that if the u, are correlated with any of the regressors in: the
model, the zero-conditional-mean assumption does not hold and the between estimator
will produce inconsistent results,

This estimator is not widely used but has sometimes been applivd where the time
sories data for éach individual are thought to be somewhat inanccurate or when they are
nmm_‘led ta eontain random deviations from long-run means, If you assume hiat the
in_qfa:urat}' has mean zero over time, a solution to this measurement error problem il
be found by averaging the data over time and retaining only 1 observation per unit. We
eonld do so explicitly with Stata’s collapse command, which would generate a ie®
dataset of that nature (see section 3.3). However, vou need not form that dataset ¥
113;&'%!111‘ hm &:Li.]'l'llltﬂl' berause the commanc qu;r,ag with the be (bet ween) ﬂl'ﬁw
will invoke it. Using the between estimator requires thay N > k. Any macro factif
that is constant over individuals cannot be included in the between estimator beca=
its average will nov differ by individual,

w“ﬁ;:hmh&‘;ﬁﬁﬁmﬂﬁl OLS Eﬁtii:nal.ur is a matrix-weighted m-m-.rgg qi\lﬂ
e ‘.f?j-.;ﬂth the weights defined by the relative precision ? P
ation ldlhldh&dml[ '.']. mla;b:'wm ir]am-if}- shother the interesting soures
mhmmc,l%“"“nd their means or in those means B
! of ouly the forimer, whereas the between




{fatal beertax BPIrCONN URTAYS parinck, b
FLIIE e gy {regroosion on BEGEH s e '..I_' : -
e ciable (i): state P moEns)  Wumher

githin = 0.0479
Sotuoen = 0.4565
gyernll = 0. 2683

et ;1-5{9_1.}'.!' LA208489

Coef. Std. Err,

0740362 1456333 g ==
ertax . BL 0u8 =
’::ﬁ,ﬁ, ;298TEIT  .1128138 288 o .n:: “2196814
wrate | 032333 033005 o.g5 gy L orLT
perinck -. 1841747 0422241 -4.36 0.000 ¥ 411
CORE 3796343 -TBO2036 5.06 0.000 zmg:p:;
_._._._'_._ _-_-______—__________.

114 One-way RE

guther tham considering the individual-specifie intercept as an #g of that
sl specifies the individual effect as a random draw that i :
PSS and the everall disturbance term

unity the RE
uneorrelated with th

tie = Xief3 4+ 2{d + (g + e [4.5)

wene (0 +6¢) is 0 composite error term and the u, are the individual effects, A&
mucial assumption of this model is that the u, are uneorrelated with the Fogre ars J:_;q.,
wdz, This orthogonality assumption implies that the parameters can be consistently
piimated by OLS and the hetween estimator, but neither of thess estimtors is efficlent.
1 AE estimator wses the assumption that the w; are uncorrelated with regressors to
Stk & more efficient estimator. If the regressors are correlated with the g, they
i corredated with the o aposite orvor term and the RE estimator 18 inconsistent. =

The RE model 1ises the orth gonality between the w; and the regresors (o,
:’_ﬂl{ﬂﬁthﬂ unmber of estimated parameters. Ina large survey, with thousands
*HH% U RE model has k4 p coefficients and two variance parameters
i k=14 N coefficients and one variance parameter. The ca
U variables are identified in the RE model. Because the RE
00 paranicter that deseribes the individual-les :
Pertains to the underlying population o
H0del cannot estimate the parameters that
from the Fi model is conditional o
- more efficient and allows.
b that the u, are uncorrelated wh




Chapter 9 Panci-daty g

ﬁw‘lﬂl m nthﬂr g that thirve is o l.'ﬂ'ﬂ?lﬂllm“
" abservations belonging to the ith unit of the pa, gy,

= thi+ it

Ef'ﬁ!ﬁl_ﬁﬂ-h the error-components model with conditional varianee

Elnilxt]=op + a?
-and mdlf-iunﬂl covarianee within a unit of
Elgunil®’l =i, t#5
‘The covariance matrix of these T errors can ilien be writton as
N=aly + ooty

Sinoe observations § and j are uncarrelated, the full covariance matrix of g aores tlit

sample is block diagonal in B: @ =1, & B.59

The cLs estimatar for the slope parsmeters of this model is

e = (XU (X2 y)
.| "
> . i X2 v
(Exi=x) (o

Ty compute this estimator, we require 7'/% = (1, © )1/, which involves

B2 = o7 (D= T Oupiy)

= —
. yios +To2
' ﬁlﬁjl% transformation defined by 3 '/* is then o, (e = Eﬁd‘
teacting the eutire individual mean of y from wach value; W
that wean, ss defined by 0, The llltl-“lﬂiiﬂl"“““‘“m'E
wi trmé&wmum!pn wl:.r.-n 0= L Like pnnh.'!l 0-.:




 that A differs from unity,
R ch weight on the between-units variation, attriiy
% ¥ han apportioning some of the variation to thy

e setting A = 1 (0 =0) is appropriate if g? —

pﬂfzﬁ ors model is optimal. 116 = 1, A = ¢ R
. extent that A differs from zero, the FE estimator will s
| -l!lf-" weight te the between estimator. The GLS jE mﬁma
1 init interval 1o the between estimator, wherens tha pis. Al
0. This imposition would be appropriate only il the vasia i
with the variation in u, 2 bt b L

phe t
=
omparisoil

To iIJIPlE’"“‘”t the FGLS estimator of the model, all w need are conghs it
oo and a-. Because L he FE model is consistent, its residuals can hﬂllﬂuhﬂﬂlmm i
| o Likewise. the rr?guh_lluls ttrnm the pooled OLS mode] ean hri'uaedtq e f’i#
r consistent, estimate of (o7 4 03). These two estimutors may be H&Eﬂlﬂﬂhmﬂﬁfarﬁa'%
wansform the data for the GLS model.” Becanse the GLS model ses qumdummhas,:
it ean inclhude time-invariant variables (such as gender or race), B 1

The FGLS estimator may be exeeuted in Stata by using the commanid ﬂﬂm% i
the re (RE) option. The command will display estimates of a2, o2, and what Stata
palls rho: the fraction of the total variance due to e, Breusch and Pagan [Iﬂaﬂ}jhm
developed a Lagrange multiplier test for a? =, which may be computed following an
RE estimation via the command xttest0 (see [XT] xtreg for details). -

We can also estimate the parameters of the RE maodel with full nmximmn-‘:l}:pﬂ_]mﬂi';
Typing xtreg, mle requests that estimator. The application of maximum liluﬂﬂmnai
estimation continues to assume that the regressors and u are uncorrelated, :
assumption that the distributions of @ and e are normal. This éstimator will p
o likelihood-ratio test of o2 = 0 corresponding to the Breusch-Pagan test availi
the GLS estimator.

To illustrate the one-way RE estimator and implement a test of &
ssumption under which RE is appropriate and preferred, we estimate. 31'
of the RE model that corresponds to the FE model above. .




tusber of obs =
H‘lﬂhl‘l.' af ‘rﬂnp' -
Oba per group: min =

I-T,; -

= an Wald chi2(4) =  48gq
L § -.mﬁﬂﬂ Prob > chiZ2 = Lﬂmﬁt

=T T psizl  [95% Conf. Interval]

0442788 1204613 =yt -. 191823 2803765
3024711 .0B42964 - .00 17645496 L A7B4ETT
- 0491381 0098197 | L - QEB3B43  -.029891%
=.0110727. 0194746 - i - 0492423 (D3T00Es
2001873 /3811247 1.254083 0. T4RSE4

sigma.u LA1GTEEE0
Eifma_s . 1BETHEES
rho JBTE0119T (fraction of variafnce due to u_ 2}

Compared with the FE model, where all four regressors were significant. we see thint
The

beartax and perinck variables do not have significant effects on the [mtality rHid
latter varinhle’s coafficient switched sign,

9.1.5 Testing the appropriateness of RE

We can nse o Haosman test (presented in section 8.11) to test the ml] 51}'[’“']]"&‘-‘“
the extra orthogonality conditions imposed by the RE estimator are valid. If the 1=
gﬁaﬂmﬁ are correlated with the 4, the FE estimator is consistent but the BE pstimte’
Is:not mﬂ"t If the regressors ire uncorrelated with the u,, the FE estimidies \
still consistent, albeit inefficient, whereas the RE estimator is consisteit and ¢
Therefore, we may consider these two alternatives in the Hausman test Framenii: -
both models and comparing their common coefficient estimates in @ probi ﬁ |,
bl

i E}!ﬂtﬂ i ﬁ:ﬂd R‘E mﬂﬂﬂlﬁ.geumam consistent point estimates af t]‘h:ﬂ slope -
usisten HE“:&&HHI v meaningfully, If the orthogonality assumption =5 o
it will significantly differ from their FE counterpari®

H;ﬁ__uﬂnau._“. st, we it each model and store its results
mtion (set defines that set of estimit
model). Then typing hausman setoonsst



I - t e -
u'h‘qﬂ'wmﬁmm*m N
:-"'.‘i“l‘ﬂ" xtreg fatal beertox spircons unrate pe
 entimates store ran

yangman fix Tan
. —— Confficients ——
(b A (B) _
fix Tan o

basrtax -.4840728 0442768 ~. 5282485

apircons . BIEOEER . 3024711 514494
unrate =, 0290498 = . 040138] 0200882
perinck -1047103 —. 0110727 .115783

e

b= consistent under Ho and Haj '
B = inconzistent under Ha, efficient under Ho:'
Test: Ho: difference in coefficients not aystesatic
chi2(4) = (b=B)" [V b=¥_B)" (=133 {b=B)
= 130.93
Probrehi? = 0. 0000 )
(V_b-V_B iz not positive definita)

A< we might expect from the different point estimates generated by 1‘,\1& '

the Hausman test’s null hypothesis—that the RE estimator is l:nuﬁust-ant-fim o
wjected. The state-level individual effects do appear to be correlated with the re

&

FOTE.

0.1.6 Prediction from one-way FE and RE

Following xtreg, the predict command may be used tugmmte&
defanlt result is xb, the linear prediction of the model. 5‘-&5&

elfvcts (whether fixed or random) as:ll::'i::;:inns‘f{?m'thﬂi tercept
the xb prediction ignores the individual effect. Ve can genel

the RE ar FE by s;ﬂcifying the xbu aption; the individual effect
with aption ;" and the e, error component (or “true” residus
option e. The three last predictions mmﬂaﬂﬁ‘““ﬁf‘ :

RE model, whereas the linear prediction xb and the “co

default will be computed out of sample as well, just




cates that the RE u; cannot, be considered orthog
¥, an 1V estimator may be used to generate consistent esime
“on the time-invariant variables. The Hausman-Taylor estimag
or 1981) assumes that some of the regressors in xi, and 2 are oge.
‘that none are correlated with e, This estimator is available in Sty
.. This approach begins by writing (9.2) as '

i =Xy + X By + 2100+ 22,002 + U+ &

where the x variables are time varying, the z variables are time invariant, the varishles
subseripted with a “1" are exogenous, and the variables subseripted with a = ae
correlated with the u,, Identifving the parameters requires that by (the number of
%1 ¢ variables) be at least as large as 3 (the number of zy | variables). Applying the
Hausman-Taylor estimator citcumvents the problem that the xa ¢ and 2, variables are
eorrelated with u;, but it requires that we find variables that are not correlated with
the individual-level effect.

Stata also provides an 1V estimator for the FE and RE models in which some of the
s,y and 2, varigbles are correlated with the disturbance term €. These are dlifferent
assumptions abiont the nature of any suspected correlation between the regressi
the composite error term from those underlying the Hansman- Taylor estimatar, '
xtivreg commaond offers FE: RE. between-effects; and first-differenced 1V pstimistors it
a panel-data context.

9.3 Dynamic panel-data models

A serious difficulty arises with the one-way FE model in the context of o dynatié ’mﬂ.
'd,l_l_i:iﬂ_{m]'!-'_",' maodel, one containing u lagged dependent variable {and possibly W
mh ['.l_n_rll;il.:'l.llgrh' in !Ih]: “small T, large N context. As Nickell “_'-]EI.]_ St
s problem arses beeause the within-transform N, the lagged dependent VT2
correlated with the ecor term. As Nickell (1981) shows, the ?&.im.ﬁwwmﬁ““ |
-=am“":.tﬂ?*h'“'m Lhﬂ_ﬂfﬁﬂ’ihlﬂ of the coefficient of the lagged dependent!
st :i : mitigated by increasing N, b mimber of individual units 1 ihig
situp of o pure AR(L) model without sdditional T

ESHOISD




;‘,&m- process is autocorrelated, the prob
Jroblem affects the one-way RE model, The w, error con
by assumnption. so that the lagged dependent varinble cannot
composite erTor process. e :
A solution to this problem involves taking first differences of the
(onsider @ model containing a lagged dependent variable mul:ﬂgrmqr‘x.

e = + by +Xiufa+ w4 ey

The first difference transformation removes both the constant term and the ine

ffeots . .
Ayir = pAtig-1 + Axa B 4 Avig -

There is still correlation between the differenced lageed dependent variable and the

disturbance process [which is now a first-order moving average prociss, or MAU]: the

former containg y, i and the Iatter contains e;,—,. But with the md}kid.ﬂ;&l%‘ﬁﬂﬁ?épﬁ

out, a straightforward 1V estimator is available. We may construct instriments for the
! laggzed dependent variable from the second and third lags of y, either in the fnrm,nf
differenices or lagged levels. I e is Lid., those lags:of pwill be highly corralated with the
lagged dependent variable (and its difference) but uncorrelated with the composite-error
process.'® Even if we believed that e might be following an AR(1) process; we could still
follow this strategy, “backing off” one period and using the third and fourth lags of 3
(presuming that the time series for each unit is long enough to doso),

The DPD approach of Arellano and Bend (1991) is based on the notign: that the
IV approach noted above does not exploit all the information availab
ple. By doing so in & GMM context, we ean construct more efficient ¢
0PD model. The Arellano-Bond estimator can be thought. nf'muﬂ :
Anderson-Hsiao estimator implemented by xtivreg, fd. Arclla

that the Anderson-Hsino estimator, although consistent, fmw tﬂfmﬁé
orthogonality conditions into aceount., Consider the equatins

v = xuBy+walytvie
ty = W - Eir

where x,, includes strictly exogenolis regrosse
(Which may include lags of '




s, since by period 7 all lags prior o
instruments. 1f T is nontrivial, we :
s the maximum lag of an instrument fo prevent the il
ng too large. This estimator is available in Stata as xtabond

al weakness in the Arellano-Bond DPD estimator was revealed in later
¢ty Arallano and Bover (1995) and Blundell and Bond (1998). The lagged levels
areoften rather poor instruments for first-differenced variables, especially if the variables
e close to s random walk. Their modification of the estimator includes lageed levels
s well as lagged differences. The ariginal estimator is often pntitled difference Gam,
s the expanded estimator is commonly termed system GMM. The cost of the
em GMM estimator involves-a set of additional restrictions on the initial conditions
of the process generating y.
Both the difference MM and system GMM estimators have one-step and two-step
I ’ﬂlﬁﬂnlﬁ The two-step estimates of the difference GMM &1 amdard errors have been shown
tio have a severe downward biss. To evaluate the precision of the two-step estimators
for hypothesis tests, we should apply the “Windmeijer finite-snmple correction” (see
Windmeijer 2005) to these standard errors. Bond (2002) provides an excellent guide Lo
the DPD estimators.

~ All the features deseribied above are available in David Roodman’s improved version
] of official Stata's estimator. His version, xtabond2, offers a much more fexible syntax
han official Stata’s atabond, which does not-allow the same specification of instrument
ﬁelta,,nur does it provide the system GMM approach or the Windmeijer correction to the
upmdmﬂ errors. of the two-step estimates. On the other hand, Stata’s xtabond has &
~simpler syntax and is faster, so you may prefer to use it.

K ustrato the use of the DPD estimators, we first specify a model of fatal 85
ending on the prior year's yalue (L. fatal), the state’s spircons, and a tine '
We provide a set of instruments for that model with the gam option and
(51 mfﬁmmt We specify that the two-step Arellano-Bond mmﬂ:{
ME" correction. The noleveleq option specifies the HTE'““l

/i stata-prass.con/data/izeus/traffic, cloar




d2 “fatal L.fatal spircons. %

:_; gstyle(beartax Spircons unrate per 5

B twtrl"{?“"" twostep robust nole inck) _

pavoring Space over speed. To switch, t :

> ,,,.aa.“ o + EYP® O click on mata;
ng: um ngtruments may 'h- 1

stad rule of thumb: Keep number ”lri:tnlnmm.;g

lﬂnm-m:rnd dynamic panel-dato estimation, ““1“? di.l.ffn:m“.m
2

T ek .
Group variable: state
fime variable : year m ﬁ ots =
ber of instruments = 48 e groups =
yald chi2{2) = 51,90 Por group: :;: =
¥ = -
prob > chil 0. 000 S
Corrected
Coal . Std. EBrr. x Pxizl {95Y% Conf. Inter T
faral
| I 3206569 ~OT1963 4,45 0.000 LS1TR51R] .dﬁmqiﬂ
splrcons - 2924675 1856214 13T 0.07TT ~.0319485 _E16863
year 0340283 0118935 2,86 0,004 LO10717E .0573891

Hepsen test of overid. restrictions: chil(82) = 47.28 Prob » chiZ = 0.999 |

prellano-Bond test for AR(1) in first differences: z = -3.17 Pr> == l rM'- |
Arellanc-Bond test for AR(2) in first differences: 2= 1.24 Pr>z= ﬂ-i‘.lﬁ'

This model is moderately successful in relating aplrmna to the dynamies ﬂl"lih&:ﬁt E*
rate. The Hansen test of overidentifying restrictions is satisfactory, as m-t.h& W
AR(2) errors. We expect to reject the test for AR(1) errors in the Arellano-Bon

To contrast the difference GMM and system GMM approaches, ﬂm*ﬁ Ll il
gstimator by dropping the noleveleg option:



= ‘Corracted
Coef. Std. EBrr. z Pzl [95% Conf. Interval]
fatal
L1, LHET0R31 CRRATI624 31,80 0.000 8136188 + 3204865
ihpirnauz -,0333788 . 0166285 -2.01 0.045 - 0GEAGIT  -.000TET4
. year 0135718 L0051791 2.682 0.00% 0034208 0237226
—cong -26. 62632 10.27964 =259 0.010 -46.77285 -6.477793

Hansen test of overid. restrictions: chi2(110) = 44.25 Prob > chi2 = 1.000

‘Arellano=Bond test for AR(1) in first differences: =z = -3.71 Pr » z = 0.000
‘Arellano=-Bond test for AR(Z) in first differences: = = LT Pr-ez = OTT

Altheugh the other summary measures from this estimator are acceptable, the marginally
significant negative coefficient on spircons casts doubt on this specification.

9.4 Seemingly unrelated regression models

(Often we want to estimate a similar specification for several different units, a production
l’l.'l.m:innu or cost function for each industry. If the equation to be estimated for a given
uni‘bmﬂeﬁb the zero-conditional-mean assumption of (4.2), we can estimate each equation
tndﬁpmdenti}* However, we may waut to estimate the equations jointly: first, to allow

uation restrictions to be imposed or tested, and second, to gain efficiency, since
pect the error terms across equations to be contemporancously mﬂ'ﬂlﬂ'."__
uations are often called seemingly unrelated regressions (SURs), and Zellnex
o an estimator for this problem: the SUR estimator. Unlike the
\ ﬁrge-mmple Justification is based on “small T, large N
e SUR estimator is based on the large-sample properties of

- h T — o0, 50 it may be considered a multiple




3 f!'_ﬁw i eicj:iq!'ét_ﬁli_iun ufﬂara el - !
consider only the case where we haye T oliseryy
o the model with an unbalaneed 1:-'5.11'!!31. Each (4]
ors, and ﬂpffl‘t. from the constant ferm, tihm 1y be
the % Applying SUR requires that the T ol Imglium
b of units, to render £ of full rank and invertible. 1f this constraiy
pot use SUR. In practice, T" should be muel | L N for
imations to work well. R o

We assiume thit Eleireqa) = Tiy. b= 8, and otherwise zero, which: inigslics thiat W
allowing for the error terms in different equations to he "Dmﬂmpﬂi‘uneud;ﬂy:'bhﬂ:ﬁ': by
put assuming that they are not correlated at other points (ineluding within a unit: 'ﬁhtﬁaf:
are wﬂnﬂl independeont ). Thus for any two error vectors unit: they

for theith acqistion; The o

: | Blee;] = o,y i
f i1 oy I

[

where X is the N x N covariance matrix of the ¥V error vectors and @ is the Kronecker
Bissproduct,. T

Had S b

The-efficient estunator for this problem is GLS, in which we can write y as the stacked
sat of ¥y vectors and X as the block-diagonal matrix of X,. Since the GLS estimator is

Bers = (X' X)(X'0ty)

and
R~ =277 -

We can write the (infeasible) GLS estimator as

Bows = (X(E o DX X2 9By}

which if expanded demonstrates that each block of the X/X, matrix
stilar o72'. The large-sample VR of B;;q is the first term of

L W’huu will this estimator provide a gain in efficiency over e

Firs, "h“"”"f.h__i # j are actually zero, there is gaiu
s8 equations—mnot merely having the
erical values—GLS is identical to e
these gain in efficiency




fon is estimated from T observations.™ We use thes
er step”, where the algebra of partitioned matrices will
he Kri _xv,in'[',s may be rewritten as produets of the blocks in the
n for O, e The estimator may be iterated: The GLS estimates will produce o
of residuals, which may be used in a second Zellner step, and so on. Tteration
ﬂﬁ-ﬁlﬁ'ﬂﬁﬁmﬁm'ﬂﬂiﬁwﬁ oy maximum likelihood estimates of the system.

T &ﬂmmmﬁuamﬂs available in Stata via the sureg command; see [R] sureg, SUR
can be .ﬂ.p]ﬂwﬂ to panel-data models in the wide format.'® SUR is a more attractive
estimator than pooted OLS, or eéven FE, in that SUR allows each unit to have its own
coefticient vector."! Not only does the constant term differ from nnit to unit, but each
of the slope parameters and o differ across units. In contrast, the slope and variamee
purmeters are constrained to be equal across units in pooled OLS, FE, or RE estimatons
"ZWE,_M"M;_-HLHJM&H]_F tests to compare the unrestricted SUR results wit h those that
may be generated in the presence of linear constraints, auch #s cross-couation restrictions
(see [R] constraint). Cross-equation constraints correspond to the restriction that &
particular regressor’s effect is the aame for eich panel unit. We can use the isurs aption
to iterate the estimates, as described above,

_"Iu‘_lh cnn test whether applying SUR has yvielded a significant gain in efficieney by

“’m“ test for the disgonality of £ proposed by Breusch and Pagan ( 1980),'% Their

LM statistic sums the squared correlations between residual vectors i and j, with 8
mﬂ-'-hﬂ-"bt-hm of diagonality (zero contemporaneous covariance between the eron of

) different equations). This test is produced by sureg when the corr option is specified

 We apply SUR to detrended annual output and factor input prices of five U.S i

disstries (SIC codes 52-35) for 1958-1996, stored in the wide format.!* The descripi
Vonpa e b oot dod o A ¥ he wide format. ! The descript
~ statistics of the price series are given below,

'-““5%"" BLaLA-prons;con/data/imeus)
' o 2 1m Bactor duta) am_wide _defl, clear




.611389
-5444872
3 lsissran  oiseiss
piaad 38 4948206  .0149315
pk3ad 39 .5190769 035114 427TE:
p133d a9 5200258 0434153 4308808
| 23d 39 5706154 093766 4387668
pmaad 39 .5192564 0151137  4BVOTAT
pizad 39 -5013333 .017BE8% 4859021
pkadd 3@ .5167692  .0558736  .377311
p134d 38 5073077  .0169301  .468933
pe3ad 39 5774359 0974223  .4349643
pm3dd 39 . 5440258 0180344  .5070866
pidsd 39 (5159487 ,0168748  .4821945  .5484785 AL
pk36d 39 7182051  .1315394  .423117  1.061852
p135d ag 4084872 0216141 4453806  .5516838
peasd | 33 5828231 .0BE5262  .44T6493  .T584586
pm35d | 30 5684615 0234541 5317762  .6334837
| 3
year | 3g 1977 11.40175 1958 1996

its lagged value and four factor

e Ear

We regress each industry’s output price on
those for capital (k). labor (1), energy (e), and materials (m). The
tequires the specification of each equation in parentheses. Wﬂ..’hﬂﬂd'@;'ﬂk

‘specification by using a forvalues loop over the industry codes, .

; forvalues i=32/35 { _ _
2. local eqn "‘sgn’ (pifi’d L.pi'iid pkti‘d

3. }
- Bureg ‘eqn’, COTT
‘Seemingly unrelated regression

Obs Parme




-.0BG3556

4.7 -.786149
‘0,68 0.497 -.0758289 . 1663684
325230 4.88  0.000 9502717 2.225181
104716 0.83 0.743  -.1803159 25271208
,D495681 3.28 0.001 (66642 . 2599453
pkasd | -.0198381 .0250173  -0.80 0.425  -.0689712 0290949
plasd | - 0ess277 0225466 -2.91  0.004 -.1097181  =-.0213872
‘peaad | -.06B7604  .008287  -7.94 0,000  -.0820027  -.0496181
pm3ad | 1.133285  .084572  13.40  0.000 (9675273 1.200043
_cons: | -.0093547 0185494  -4.98  0.000 -, 1287108  ~-.0559885
piasd
11, .B146301 0462574 6.80 0.000 2239673 . 406293
pk3dd 0137423 008935 1.38  0.167 - . 00BT298 .03301486
plidd .0613416  .0373337 1.38 0.169 -.0218312 . 1245142
padqd | -.0483202° 0115829 4.7 0,000 -.0T10222  -.0256182
pm3dd (8680835  .0TH3ATE 11,08 0,000 .T1a5251 1021642
‘B “gons | ~.1338756 .0241583  ~-5.54 ©0.000  -.1812279 -.0866252
pidtd
pidsd
L1. 2084134 .1231019 1.69 ©0.080 - 0328618 4496887
phaSd | -.0459452 0135305 2 -3.99 ©.000  -.0745046 2 -.0263858
plasd J0129142 0847428 0.15 0.aAT9 -.16317RE L 1T00T
" padtid 1071003 .0641549 1.67 0.095 -.018641  .2328415
pm3&d JOB10171 2051799 0.30 0.763 - .3402282 L 4BA0624
. ~cons LSART0LT L 14832804 231 0.021 L OBI0GRTE , 6333454
_____-l-

';_

Correlation matrix of vresiduals:
Pis2d  pidad  pidad



(st eross-equation constraints in the sy
p fheses a8 expressions in parentlieses, Wo
[ T}'TE cocflicient on the mwﬁ' 'Fﬁ{.'ﬂ mé . “en
ach Ind sty index is the
{[pi32dlpe32d = [pi3d4]peaad ., SR 1| |
i< lhﬁiampﬂﬂﬂﬂ = [FJ.EEd] :Mﬂ; (mmm-wm:

{2 [pis2dlpe32d - [pi3ddlpedsd = o
(@) [(pi32dlpeddd - [pidSdlpe3td = o

ehili '3) = 11.38
Prob > chi2 = 0.0058

The joint test fl_l“'i‘-*i"_"]"' rejects these equality constraints. 'To illustrate wsine cor

it estimation with sureg, we impose the restriction that the cosfd 1“%
sy price index should be identical over industries. This test involves ﬂiem{iz;:i ion
f three const raints on the coefficient vector. Imposing constraints eannot un mﬁ;ﬂﬁ
fit of gacll equation but may be warranted if the data accept the restriction PAGH H¢

. constraint define 1 [piazd]lpedad = [pi33d] peazd
. constraint define 2 [piZ2dlpedzd = [piddd]pe34d
. gopstraint define 3 [pi32d]pe32d = [piaGd]pedsd
.-Bureg ‘eqn’, notable {1 2 3)
Seemingly unrelated regressicn

Constraints:

(1) [pis2d]pedzd - [pi33d]peddd = 0

{2 [pia2dlpe32d - [pidddlpeddd =0

{ 38) [pi32dipeddd - [pi3bd]pe3bd = 0

Equation Dbz Parms RMSE "R~Eg! ‘chd2 P
piazd 38 5  .0098793  0.8472  236.78  0.0000
piagd 38 §  .0029664  0.9567 719.32  0.0000
piddd aa 5 0030594  0.9672 121712 0.0000
pia5d 38 5  .0101484  0,6055 110.37  0.0000

- These constraints considerably inerease the RUSE (or Root HSE) values for
e would expect from the results of the test command.

b

SUR with identical regressors




systems estimation to impose the cross-equation constraints
economic theory. Here we drop one of the equations and estimate the system
‘equations with SUR. The parameters of the Nth equation, in point and interval
: ,m-:"'i:iu algebraically derived from those pstimates. The FGLS estimates will be
tive to which equation is dropped, but iterated SUR will restore the invariance
perty of the maximum likelihood estimator ©
(2003, 362-369). Poi (2002) shows how to fit singula

f the problem. For more details, see
r systems of nonlinear

9.5 Moving-window regression estimates

wis (nAv want to compule
ith mvgumm, We CAn Com:
Stata’s statsby come
wonld

As with mvsumm and mvcorr (discussed in section 3.5.3),
moving-window regression estimates in a panel context. As w
pute regression estimates for nonoverlapping subsamples with
mand. However, that command cannot deal with overlapping subsamples, as that
correspond to the same observation’s being a member of several by-groups. The fune-
tionahity to compute moving-window regression estimates is available from the anthor’s
rollreg routine, available from ssc.

With a moving-window regression routine, how should we design the window!? One
It that 18

obvious scheme would mimic mvsumm and allow for a window of fixed widt

to be passed through the sample, one period at a time: the move(z) option.'’ o
othier applications, we may want an “expanding window”: that is, starting with te
first T '?E'ﬁ:c‘_ﬂﬁu we compute a set of estimates that consider ohservations Lol

{7 +2), and =6 on. Tlis sort of window corresponds to the notion @
information set, available to an economic agent at a point in time (and to the schen®
erate instruments in a DPD model; see [XT| xtabond). Thus ro
at, functionality via its add(r) opfion. For completeness, the routing
#) option, which implements a window that initially tikes into ¢
s and then : he beginning &
the




umh{uﬂﬁ 11[1‘011—11_# [including built-in sraphics with the g
_ibie with panel data whan applied to ape time series within the pam
& rﬂ' or in runge qualifier. However, mllmgwmiﬁﬂrm&ﬁ_ -
";“5_1 pasel. For instance. a inance researcher may want to calculate 8 “CAPM b
.‘h Frmi in & panel Gsing & moving window nhﬂmuwati:m.!ﬁnuhthmﬂ! i
. investor at each point in time: Therefors. rollrag has been
o goerate with paiK L= where the same sequence of rolling regressions ’uw
b time series within the panel ™ In this contexi, the muﬂl!h."i‘gmphkllﬂqﬂ“ﬁ3
r ot ailable. Althougl r:ll;ég dows ot produce graphics when multiple time series
gv inctaded from & panel, it = easy to generate graphies using the results joft hehind

gt wand by the

ey FTATR-pIeEE. Jomfdata)icese S iovestd, clems
fis =
LS i
P el - |
. o X
salilre TTes =e, sovel(d) stublsikcc)
el Lis

=i refresa & rl® 2f compamy=="1" {
replace fzilpamcls = _b{“vamtcoef™] if cospamy=="i* &k ting > &
« Tabel var ‘sexh’ “vastcoef’ “sowing besa®
Tlize “wruk' ‘sasccoef’, “ru!L“wl".ﬂ'm
* broptaizitieMoring coeffictent of narhet oo imvess)
PEtitle*Fall-sample cosfficiest displayed') yrescale

* ai%lstilize fullsample time if fullsample < .)
f2le Ezwwat. gk sawed)




~ Moving coefficient of market on invest
Full=sample coefficient displayed
B 2

T T —_— —

L] 15 20 i0
Last obs. of sample

o
B

Graphs by company

Figare 9.1: Moving-window regression catimates

(Companies 1 and 2 display broadly similar trajectories, us do companies 3 J:EF
second pair is different from the first puir. A clonr uneerstanding of the tomjporal 4
ity of the coefficient estimates is perhaps more readily obtained araphically: _'“
| m%' A0y E_liﬁpia.:.rﬂd o this graph, rollrag also creates series of coefficlents }irg.p,[i#'
ervoms, fram which we can compite confidence intervals, as well as the Root 82
- equation and its o .

e could use Stata's ol 1ing profis to specify thit the moying-wind® “'ﬂlg i

run over each firm, " Below we save the estimated coefficients (-b) 88 Sy

we may then merge with the ariginal ditaset for further snalysis 0EEEE




© 7 panel variable: company, 1 to 4
timo variable: time, 1 to 20
ing b, window(8) faving{roll_invest, repl
parkot L{OS1) . invest time e

L" roll-invest.dta saved
w.n:cp.‘.I'fF‘W-ﬂ.tﬂt“‘Pr.“‘lrWﬂ!tﬂiwff&W}.f""' ;
(rolling: regress) i

taset cospany Start

s el variable: company, 1 to 4
time variamble: start, 1 to 13

] roll

o d,uct‘ihﬂ
pootains data-fros roll_invest.dta
ey 52 relling: regress
PR 7 9 Jun 2006 14:08
ek 1,684 (99.8% of memory fras) .
storage display value
variable mams Eypa format label variable label
coapany fleat J[0.0g
gtart float JN9.0g
and floar ¥9.0g
_b_invest float  WB.0g _blinvast]
Tatat 2 float %8.0g _blL.invest]
“b.time float %9.0g ~b [t dms]
b.cons float JY8.0g -bl_cons]

Sorted by: company start

We could praduce a graph of each firm’s moving coeflicient. estimate for invest with.
the commands

- labgl var _b_invest "moving beta® ; an
- #tline _b_invest, byopts(title(Moving coefficlent of market on invest))

ing the roll invest dataset produced by rolling.

_ Exe'rcisg,;

L The cigconsunp dataset contains 48 states' annual data
FE model of demand for cigarettes, packpe. as a function
P4 Capita income (incpe). What are the expected sig
“”.f“;ﬁ'f tes? If not, how might you explain the e




n of the model as a dynamic moc
L . the two-step robust DPD estimatar
- MM instrument and year, L.avgprs as IV in
s support. dy ¢ formulation of the model? Is the
o with economic theory than the static form? Is it adequate for
ing restrictions and second-order serial correlation? -

il eigeonsumpNE dataset contains the log demand, price, and per capita inetme
variables for the six New England states in wide format. Use that Mh
fit the constant-elasticity form of the model for the six states as mw-'" -
unrelated regression model with sureg. Are there meaningful correlations acnss
the equations’ residuals? How do the results differ state by state? '
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Phaiw chusprt o s modeds of Binary choiee, which can be fitted Ly binomial legt =
of profil Lekins e | e Bl lomwriing, sescbiom Lakes up theli mwrmlimﬂ:mmmmim;
ar apdered i ot b thie rosponse 15 e of B set of values from an ordersd sonli |
Lot bonidepiies apeparaprrite for veapeatod aond censored dats and Chelr cxtansion
o bt oddeds. The Ginal section of the chaptey considers bivirinte protit

thets paresatil
T ‘ﬂlrlilll it

disd protat wil -4

0.1 Binomial logit and probit models -

i gaadeds of Boolean response variables, or binary-choice inodeds, Vi m‘
s oo s 1 or 0, corresponding Lo responises of true or fiskser 00 i psrbiculae quastion:

o 10 yirs watady U seventh game of the 2004 World Bepies?
o Were you plossed with the ouleone of the 2004 presidentisl el

o Didd yom garchume s ew cas b 20067

1 Mt "y;' “ampirdat anrinin inspinses like mrmm
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Ve o1 ¥ are airher (0 or 1 and may Im vimm:l as the ex jmat
“yes” Lo the question posed. But the predictions of a linear
) are unbounded, and the model of (10.1), fitted with regress, can
g M{;ﬂunu and predictions exceeding unity, neither of which can be
ilities. Bocause the response variable is bounded, restricted to take on
AL 'I:ha model should generate a predicted probability that individual ¢ will

30 10 Answer “yes" rather than “no”. In such o framework, if 4, > 0, individuals
| wmﬂtm of iy will be mare likely to respond “yes”, but their Iﬂ"”‘”"”""’”I dloing
st wet the upper bound. For ingtance, if higher disposable income makes o

1I.l.'l'l:|:'l:lhleil:’f more probable, we must be able to include o wealthy person in the
wl el that his or her ]:I‘l.'flltll'{l prabability of new car purchase is no greater
i 1. Lilmw:at-.. i poor person's pradicted probability must be bounded by ().

ﬁ.lthﬂuah‘“mt'ml Bt (10.1) with OLs, the model is likely to produee point predictions
outside the unit interval. We could arbitrarily constrain them to either 0 or 1, but
“ﬂﬂ H'l'lﬂﬁl' [.'Il'ﬂhﬂhﬂlh" model bas other |Jrul'_||¢'u1||L, thie érror Lerm eannot satisfy e
mmpt’l&n ﬂrhﬂl“tﬂikﬂdﬂﬂuﬂt? For s given sel of x values, there are anly bwo |:|u'\hlt il
'J‘lll.]l!! for the disturbance, ~x@ and (1 - xM3) the disturbanee follows a binomial
mutm“ Given the properticys of ”'li" binomial distribution. the variance of the
“disturbanee process, eoncditioned on x, is

Viar[ulx] = %@ (1 — x3)

it can ensure that this quantity will b positive for arbitrary x values
W cannol use regression with a hinary-response variable but must follow &
tl.h:_mr. Before developing that strategy, lot us eonsider another formulation
from an ecanomic standpoint,

'1“;“*3“95513-'“!?1’% bo sueh an econometric model, Expres the
(10.2)




!:",i':_.. | S ﬂﬂ ]‘!‘ﬁ{i = r

me=00 gy <

m=1 “:nr: Eu

X 1
abserve thit the “J-(H'Ir’!l’il]ﬂ] (ﬁd {y =1 “I' Ly D=

It F“‘;:: we speak of »* 05 4 latens variahip, ;"1-..,@%?,;4 ’ﬂ*‘{

- . s

£ Ly

Gl’1 Jisturbance process . a
i

.o

e j y
{n the Iatent model, we model the protakbil

j'y 'Df Al iﬂﬂ;'r I, T
ez (10:2) and (10:3), we have MW
[is

Pr(y® > 0fx) =

l"l'l:_u > —xf3l%] =

Priu < x8x) =
Priy=1jx} = W(yr)

(10.4)
ghore W) isa cumutative distribution funetion (CDF),
Wo can estimate the parameters of binapys

choice models by using maximum |ikeli-
hood techniques.” For each observation, the

probability of observing y conditional on

x may be written as

Prylx) = {¥(x:B) 1" {1 - W)} ¥, =01 (10:5)

the log likelihood for observation § may beweritben o
£ 03 I lu:_' ["l'{:'i.,l"”} -+ “ = HI.' |'l'.lﬂ {I = "I'f:ﬁﬁ}i'

and the foz likelilood of the sample is L) = E:.ﬁ I f8), lﬂllﬂﬂllﬂlﬂfim]-l]l’- iz

Rith respect to the b elomernies ol .-':'3.

The two common estimators of the binary-choice model are Lh‘*fw
Wnoiial Jogit morlels. For the probit model, ¥(-) is the CDF of the normial dis 5
inetion (Sya 8% normal() funetion).

. 5 ST Ty e <
For the logit model, o (<) is the epE of the logistic distribution:
: __exp{x#8)

Priy = ”x} = £+Exp{-xﬂ}

CDFS of the normal and logistic distributions are

L e gyt assiime that the disturbance prOfEs
Ity “Eression problem, we do not h“”e'mm‘.gh’
& For dis

Tha

wasion of mushmivm Hiloliliood sstimation, see

lmw Sribniy. G, _

ety o ity donsity Funetion of the'
Mzl s expls) /{1 + exp()}*




(10.2) by any positive o without alteriy
L is set to one for the probit model mﬁg

 distribution has fatter tails, resem bling the Student ¢ distribution wiy,
wﬁ The two models will produce similar results if the distribygjy
iz 18 not too extreme. However, & sample in which the proportin
¢ proportion y, = 0) is very small will be sensitive to the choice of ope
O e e i renlly amensble to the binary-choice model. T an unusual evn
58 mo ﬂedl:qrm, the “naive model” that it will not happen in any event is hard to buat,
The sane s true for an event that is almost ubiquitous: the naive model that predies
that all people have eaten a candy bar at some time in their lives is accurate.

We can fit these binary-choiee models in Stata with the commands probit and
legit. Both commands assume that the response variable is coded with aeros indicating
2 negative outcome and & positive, nonimissing value corresponding to a positive outcome
(i, T purchased a new car in 2005). These commands do not require that the variable
e coded (0,1}, although that is often the case.

10.1.2 Marginal effects and predictions

One major challenge in working with limited dependent variable models i the con
plexity of explanatary factors’ marginal effects on the result of interest, which arke=
from the nonlinearity of the relationship, In (10.4), the latent measure is transtated b
Wiy to'a probability that y; = 1. Although (10.2) is a linear relationship in the 2
parameters, (10.4) is not. Therefore, although =, has a linear effect on yf. it AL
have o linear offect on the resulting probability that y = 1

Pely =11x) _ 9Pr(y =1lx) Ox4

T i b H ¥ ] I
;. ox3 B = '(x3) - 3; =v(x0) - (10:0}

’ﬂl Mngulz,;fhn effoct of an increase in x; on the probability is the p_ru;]un:ﬂl't'l"“
!‘:Lq on the latent variable and the derivative of the CDF evalus
bter iter, 9(°), is the probability density function of the distributiof:

model, the coefficient 8 tensures the marginal effect .j]gfﬂ-?‘h

he sample. In a binary-outcome modeh .";u B
t change in the Pr{y = 1/x) hwn_tﬁ;{} o b
use




Qa7 e dprobit to display the marging] ,
'.ﬁ;'.ﬂ‘”h initesimal ehiange in ;.5 We cary g0
-~ it command to “Teplay’ _ﬂ"“ probit results j;
,'.}"h ot alfect the = statistics or palyey of thﬂ,
Wl ¢ nonlinear, l-|!(‘r=:lf'.-"d:t reported Ly P!'
= Dfi.hﬂ explanatory variables. By default, the
point of means but can b caloulnted sy iiﬂm

3'|:"I1= eommantd reports the m
alstt

’ﬂhﬁi"‘w Y
After fitting the maodel with either probit or
ol effects. A probit estimation followed by mfy o

.‘kjllil'"] tor Lt from-dprobit). We ean tee mfx's at() E]'I! 3 e

jpglar point in’ the sample spase, Ag discrissed Ty ; 2

J:s,:j[.lll‘ elnsticities and semielasticitios,
£

py default, the dF/dx effects produced by dprobit or mtx are'the it
4 ,.,.I: gerage individunl: Some argue that it wenld be “ﬁm. mrmﬂh.lllh - L

e arernge marginal elfect: that is, the average of each individimls mﬂrs‘im |
fhe marginal effect computed at the average x is different from theu'm;noﬂl' the
garginal effect computed at the individual xy. Increasingly, surrent practico Is moving
whoking at the distribution of the marginal effects computed for demﬁ%
gasple, Stata does not have such a capability, but a nseful margeff m“ﬂnﬁfﬂl‘“-‘lﬂi'bjg
Barts (2005) adils this capability for probit, Togit, and mmtni'uuwﬁm'n&'w:'
dseusged in this chapter (although not dprobit). Its dunmies() option signals the

Lir = lled of categorical explanatory variables, If sOTne Emﬂ“ﬁ'ﬂr}" whb]m.minm

mriables, the count aption should be used.

Alter fitting o probit model, the predict command, with the default optiot p
cwmpites the predicted probability of a positive outcome, Specifying the b no

alctilates the predicted value of u.

The following cxample uses a modified version of the womenwk duthset, |
. " Ele .
Smation on 2,000 women, 657 of which are nol récorded ﬁﬂ-w
ﬂ'r1ln:|:ur variable work is set to gero for the nonworking and to one
Pt ivp Wildreey '

- e htip: feww, stata-press.com/data/imeus/vopenik, clear
© PEmarize work age married children education
"lr]].blg 2ed. mr‘




IR chi2(d) = g

= A Prob > chi2 = 00000

- 1027, 0616 Paaude A2 = 0. fing.

==

Coaf. Std. Err. = Pzl {95% Cont. Tnterval)

0347211 0042293 B.21 0.000 0264318 .0430i0s

.4308576 074208 5.81 0.000 2864125 Evpage

: (44T3Z69 (0287417  16.56  0.000 .3909922  .50uERTs
‘educktion 0583646 0108742 5.32 0,000 0368565 .O79ETas
Lcons || —2.467365 (1925636 -12.81 0.0000  -2.B447827 -2.009Mg

Surprisingly, the effect of more children in the household increases the likeliheod tha
the woman will work. mfx computes marginal effects at the multivariate point of mens.
or we could generate them by using dprobit for the estimation

I . mfx compute

Marginal effects after probit
"y = Priwork) (predict)

= 71835048
varinhle dyfdx  8td. Err. = Pzl [ ssgicl: 3 1
ago L0117 .00142 §.25 0.000 .008835 (014507  36.208
marrieds . 160478 02641 5.70 0.000 (098716  .20224 <ET05
‘childran (1510069 00922 1638 0,000 132939 .169073  1.64%
aducat-n L0197024 L0087 5.32 0.000 .012447 .026963  13.08

‘*’I’fm -f.i -ﬂl: digcrote change of dummy variable from 0 to

wh&rﬂas a murgmnj ctmnge in age from the average of ﬂﬁ
i % increase in participation, Bartus's margeff muJ:inﬂ
m‘ of which is slightly smaller than that comput
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“-11.?41 the logistic CDF is used in (10.5), the probability of y = 1.
= expixi8)/{1 +exp(x;8)}. Unlike the CDF of the normal dist
% :rct-ud—fﬂﬂ“ inverse. this funetion can be inverted to vield

lm(lﬁm)zxﬂ

This expression is termed the logit of 7, which is a contraction of the log

ratio. The odds ratio reexpresses the probability in terms of the odds

does not apply to microdata in which y; equals zero or one. but it =

averages of such microdata. For instance, in the 2004 1.5, presidential m e
paosit J,n;nn-ﬂu itv of a Massachusetts resident WHI‘IE for John Kﬂ‘l‘y‘mﬂin‘ THIL
was 0,62, with a logit of log{0.62/(1 — 0.62)} = 0.4595. The probability

witing for George W. Bush was 0,37, with a logit of —0.5322. Say that we.

for all 50 state=. It would be inappropriate to use linear regression on

votelerry and voteBush, just as it would be inappropriate to run a
voteBush :nd;rator mnables af mdn'tduai Vutﬁm. WQM'

n'a}tﬂr'. and

ddlﬂ As an .Lt|1.l’_r"h|11 VE, We can use blegit to pm-duce mﬂxm:mm
of that model on grouped (or “blocked™) data, or we could use the e [
gprobit and bprobit to fit a probit model to grouped data.

What if we have microdata in which voters’ preferences ar
variables, for example voteKerry = 1 if that individual vot
versal Instead of fitting a probit model to that response
With the logit command. This command will
Probit, express the effect on the latent variable 3
“”" dprobit, we can use logistic to compute

the explanatary variables in terms: Iith;&qﬁ; .
ctor. Given the: algebra of the model. the ods

L estimated by logit ‘and ma
the 1ogiy command. o

“dd and is not an a
for dogigt e .




- after logit calculates the probubilivy of

focts expressing the effect of an infinitesiu

- of & positive outcome, evaluated by default at i)

alsa calculate elasticities and semiclasticities, We

routing to ealenlate the average marginal effects over the
pither logit or logistic.

"t 2

.. i e .
1013 ‘Evaluating specification and goodness of fit

Wi can apply both the binomial logit and binomial probit est imators, so we might wone
der which to use. The hFs underlying these models differ most in the tails. producing
ﬁmﬁhrpredlcted prubzi.bi"liﬂm for nonextreme values of x3. Because the likelihoot func-
ions ol tlhe two estimators are not nested, there iz no obvious way to fest one against the
ather® The coeflicient estimates of probit and logit from the same medel will differ
‘hecause they are estimates of (Bfoy). Whereas the variance of the st andard pormal
distribution is unity, the variance of the logistic distribution is 77 /3, causing ripottid
]ug:t coetficients to be targer by a factor of about 7/ via= 1814, However, we often want
the marginal effects generated by these niodels rather than their estimated coeflivionts.
The magnitude of the margingl effects generated by mfx or Bartuss margefi routing
are likely to be similar for both estimators.

We use Togit to fit the same model of women's probability of working:

,11:31!:“#1:&5- married children education, nolog

Logiatic regreasion Huzbar of obs = 2000

LR chi2(4} = 4re. 82

Prob * chil = 0000

Proudo R2 = 0.8
-

Std. Err. Pxlzl [95% Conf. Intervall
JER S

imm‘ £ ' 437774 OTa0833
dasijod,  BET 0. 4938001
e L R 6634938

v . 00 016536
3320307 . 0000 -4.510033

Log likelihood = -1077.9144

mmﬁmﬂ*ﬂ’w considerably from their probit €U
the mnltivariate point of means are similar 10 £

Him




. =fx cospute '
- effocts after [
mﬂﬁ;l S ortuosio) ¢ Togie

= (72678688

yariable dy/dx  Btd, Err..
age 0115031 'Nlﬂ i
sarriede| 1545671 ‘02708 gg{
childran - 151803 00838 m;u:-
aducat-1 .ﬁlgﬁﬂ'ﬂﬁ_ L0037 -5-!? 2
e m L vy

(+) dy/dx is for discrets change of dimmy wubii-m: :"'l:r'm'kt

we illustrate the at () option, evalusting the estj A loatt i
The maghit ides of each of the marging effects arp Illl:'a'iaﬂ.ﬁet] an
with the effect of an additional year of education being almost 5%

0.0195) for the ehildlvss woman, A

o afx compute, at{childrenw()

verning: ne value assigned in at() for variables age married sducat:
seans used for age married education Bge ducation;
Harginal effects after logit I 1
y = Priwork) (predict)

= 43074191 '
yariable [ dy/dx atd. Erc, = RelEl 0L SERELTL ] .-:ﬁ: -y
age | LO14204T 00178 7.97° 0.000 L0107t .M7T m = F.'
garrisds | 1762662 L02E2E 6.24 0.000 120887 .231615 4’% -
childron . 1874651 01116 1682 0.000 .165608 .208301 ; '
educat-n | .0240916 .00458 5,26 0.000 .015115 .033088  13.0¢

{*} dy/dx is for discrete change of dummy variable from ﬁ-lﬂ!:%

| We can test for appropriate specification of a subset model,
context, with the test command. The test statisties for exclusion
planatory variables are reported as x* rather than ¥ stalistics becaus
ML estimators have large-sample x* distributions. 1ppl

How can we judge the adequacy of a
108187 Just as the “ANOVA F fests




measure called Pseudo R2 for both commands juy4
: maximum likelihood; see [R] maximize. Lt [, 1,
for the fitted model, as presented on the estimation Outpit
Ly be the log-likelihood value for the null model excluding g))
This quantity is not displayed but is available after estimation
chi2(k — 1) likelihood-ratio test is merely 2(L; — Ly), and it has
s sumple y2(k — 1) distribution under the null hypothesis that the explanatory
fuetors are jointly uninformative.
) tﬁmmngg the log-likelihood values, we may define the pseudo R2as (] -L [ Ly),
“ucﬁ like regression R* is on a [0. 1| seale, with 0 indicating that the explanatory
variables failed to increase likelihood and 1 indicating that the model perfectly predicts
Hﬂh f-!lm._ rvition: We cannoy interpret this pseudo-R2, as we can for linear regression,
as the proportion of variation in yexplained by £, but in other aspects it does resemble
an R measure.”" Adding more explanatory factors to the model does nat always result
in perfect prediction, as it does in linear regression. In fact, perfect prediction 1Ay
inadvertently ocour because one or more explanatory factors are perfectly correluted
with the response varinble. Stata’s documentation in probit and logit discusses this
issue, which Stara will detect and report,

Several other measures based on the predictions of the binary-choice model have
been proposed, but all hiave their weaknesses, particularly if there is & hich proportion
_ﬂmﬁ or 1sin the sample. estat gof and estat clas compute many of these measures.
With u constant term included. the binomial logit mode
regression: the average of predicted probabilities from 1he model equals the sample
proportion 7, but that outcome is not guarantead in -

el

| will produce W=7, asdoes

the binomial probit model.

10.2 Ordered logit and probit models

Eﬂ.:fmm ?“Hmm the issues related g using. ordina independent variables, which
i Hoate 8 ranking “r vsponses, rather than a cardinal meassiro. stieh s the codes of
o : MH“F fereement with a statement, Since the values of such an ordered

P i ordinal variable as if it can be mensured
! L mto.a TeETessETGn, either asa : i T

Wang o i = sl GETESI0r Or A5 4 resp
HIHIE-; TR m.!!mdﬂlir ﬁn;u::ﬂl“ﬂl m'i“hlu BH 3 fu:"_-'.inu of & st ol mﬂlﬂﬂﬂ““’."‘.
w.‘-' e ﬁn-ul':_ﬂ:u., hinm'ﬂhﬂit"& fromeweark Lknown as apelenod
technigues,

bl tesits iy '“ﬂﬁlll_'lqﬁ- Far more information, see Great
e W0 Jisclge et ), (1685), but othor sources descrite 1t




For instance B
the Intent R
aver the laten mﬁw e

e =2 if K2 < 1" < ny, we
holds: In a sense, this is imprecise.
yut only the range in which it falls. Tmpree
_fmw.ﬂf microeronomie -_iat.a. that are “bracketed :
pUFpOSES: Alternatively, the observed ‘diﬂlﬁﬁ-migm . X

preference:
The parameters to be estimated are g sei ol GO
axplanatory l'mru;:r:i in o, as well ssa get of (r=1) t'hmhﬂ!d
o the I alternatives. In Stata's implementation of these «
ologit. the actual values of the response variable are not g
iaken to correspond to higher ontcomes, If there are [ pﬂﬁiﬁlg ﬂ'l.lt !
Likert seale), a set of threshold coefficients or cutpoints {xy, Ka, ... o IR,
where s = =00 and xp = oa. The model for the jth ul}mmﬁuddgﬁfﬁ g o

Prizgy =14 =TFuixi = X840 < )

where the probability that individual j will choose suteome i depends on the product
| X3 felling between cutpoints (i — 1) and £. This is a divect Eﬂﬂﬂfﬂi!&tiﬁ'ﬂ ﬂfﬁlﬂiﬁé—
guteome binarv-choice model, which has one threshold ot zero.  As in the Bincmis
probit model, we assume that the error is novmally distributed with vaviames unity (o
distributed logistic with variance w° /3 for ordered logit). i

Prediction is more complex in ordered probit (logit) becaise thers are [ pnmhkn
predieted probabilities corresponding to the I possible values of the raap:pmvaﬂabfln
The default option for predict is to compute predictecd ]}robabilitiﬁs. HI new variable
names are given in the command, they will contain’ the probability that s = 1, the

probability that ¢ = 2, and so on.

The marginal effects of an ordered probit (logit) model are also more complex than
their binomial counterparts because an infinitesinal change in x; Wiﬂﬂﬂtumﬂ?’ ¥
the probability within the current cell (for instance; if ka2 < " < Ky ) but will
it more likely that the individual crosses the threshold into the adjacent cat

ifwe predict the probabilities of being in each category at & different point in
space (for instance, for a family with three rayh'érlthan-hﬁﬁ-'thlllm'
those probabilities have changed, and the larger Fam]h* be more Ii
the jth response and less likely to choose the {j — 1)st

WWerage margingl effects with margeff.

Weillustrate the ordered -r_@_rgblt'ilﬁﬂ l@t
Mngs. The dataset contains information




- .un M-'l:p*ﬂm stata-pross,cos/data/imeus/panel8dextract, cloar

mi:i ratinghdc 1283 dia

Variablae I Oba Maan Scd. Dav. Hin Max
rating8ic a8 3.479582 1.17738 2 5
iaf3 a8 10, 11473 T.4415946 -13.08016  30.74564
din a8 JTOTEIE2 401211 -10.79014 20.05367
. tabulate ratingBlc
Bond
rating,
1983 Freq. Parcant Cum,
BA_B_C 26 26.563 26.53
BAA 28 28,57 55,10
AR_A 15 15.81 To. 41
AAR 28 29.58 104,00
Total a8 10000

We fit the model with ologit: the model's predictions are quantitatively similar if we

use oprobit.

- ologit ratingfdc 1a83 dia, nolog

Drdered logistic regrossion Humbar of chs = a8
LA chiz(s) - “'g:

. Prob > chi2 - 0.00
Log 14kelihood = ~127.97146 Pseudo R2 = e
ratingfic Conf. ‘Std. Err, = Pzl [98% Conf. Intarwnll
1nB3 .0939168 0286106 34T 0,002 g

: 09391 - -0358633 151

dia | -.0BSSS25 0449780  -1.93 0.054 - 1743406  .DO14646
y = _-_--
femel | -.1853083 3571432 -.8852931 51682

1.-!..35'?55. 3
1.908413

13882098 .4248480
4164805 1.,092108

. mm' positive effect. on the bond rating, but somewhat $ur

G FW\’Q effict, The model’s aneillary par!
he ratings




; B_C spBEL
.:'Eﬂd‘t:n-‘;ﬂ&md|ip w m

ion
. pusmarize sphAd, moan
, 1ist sps rating83c if spAkA=sr(max)

cted probabilities)

spBA_B.C spBAA sphA_A apAAL

31, | 0388718 .08BSSET 1096733  .7528986

. gussarize spBA_B.C, mean
. list ap* ratingB3c if spBA_ B Ce=r(zax)

spBAB_C spBAK SphAA_A apAhA  rari-83c

67. | -TibB453 1526148  .0449056 0466343 AKA

Economic research also uses response variables, which represent unordered discrete
alternatives, or multinomial models. For a discussion of how to fit and interpret un-
ardered discrete-choice models in Stata, see Long and Freese (2006).

10.3 Truncated regression and tobit models

I'now diseuss a situation where the response variable is not binary or
ger but has limited range. This situation is a bit trickier, because the rﬁh‘l'_
the range of a limited dependent variable (LDV) may not be obvicus. We n
understand the context in which the data were generated, and we must i
testrictions. Modeling LDVs by 0LS will be misleading.

103.1 Truncation

Some LDVs are generated by truncated processes. Fﬂ!‘_ﬂﬂﬂmm he i
from a subset of the population so that only ¢ertain values mlﬂﬂ L
_WE' hu':k observations on both the response vxria.h I T:;



3

' he subpopulation defined by a truncated sample, ye
: f an about the characteristics of those who were excluded. For instanee
{o not know whether the proportion of minority high school dropouts exceads the

WM&‘ minorities in the population.

We cannot use a sample from this truncated population to make inferences about the
“entire population without correcting for those excluded individuals® not being randomly
selected from the population at large. Although it might appear that we could tise these
i tj‘uﬁ:}a.md data to make inferences about the subpopulation, we cannot even do that,

A ﬁ;g:ﬁg,lﬁn estimated from the subpopulation will vield coefficients that are hissed
toward zero—or attenuated—as well as an estimate of o2 that is biased downward. If
we are dealing with a truncated normal distribution, where y = x,0 + u, is observidl
anly if it exceeds 7, we can define
T—%i8
ﬂ 1

oy =

iy )

z‘\{ﬂl} = m

‘where o, is the standard error of the untruncated disturbance u, () is the normal
density funetion, and () is the normal CDF. The expression A{o; ] is permed thie inverse
Mills ratio (IMR).

Standiard manipulation of normally distributed random variables shows that

Bl = 7% = %8 + o M) + ()

The above equation implies that a simple OLS regression of g on- X ﬁll[‘ﬁ.‘-'ﬁfﬁ.;;':;
the exclusion of the term Alay). This regression is misspecified, and the effect © Lﬁ
misspecification will differ across observations, with a heteroskedastic error beas i':: :
variance depends on x;. To deal with these problems, we include the IMR asan A00 e
§ : we ean use a truncated sample to make consistent inferences ABOUE S

A . 3 L .I.']_ﬁ_
justify the assumption that the regression errors in the PGF*{W :
yibied, we can estimate an equation for a pruncated sample ¥ ~

- - the assumption of normality, we can make G




wirs. Upper truncation can be handled with the ul gy =
I;Tﬂ? u sample of individuals whose income is wﬁ#ujpﬁﬁm Ifrm }
poth lower and upper truncation by combining the options, In the example.
consicler 2 sample of married women from the 1sborah e .
(uhrs) are truncated from below at zero. Other variables of interest are the

F:rmitfhﬂul children (k18), number of school-aged children (k618), age (wa), and
aducation (we). ' : i

. LEe http:f.a’r.ru-u.stntn-prua.cmfd,n:nnnausnm"u;;. clanr
. sumearize whrs kK16 k618 wa we

Variable | Oba Mean Btd. Dav. Min Max
whrs 250 799,84 8158035 o 4950

k16 250 336 LB11323d o 3

KGIE 250 1.364 1.3707T4 [ a

wa 250 42.92 8.426483 30 &0

v 250 12.362 2164912 3 17

To illustrate the consequences of ignoring truncation, we fit & model of Hours worked
with OLS, including only working women,

. regress whre k16 k618 wa we if whrs>0

Source | 55 df MS Husber of obs = 150

' F( 4, 146} = 2.8

Model T326995. 18 4 1831T48.79 Prob > F = 00281
Residual 94753104.2 145 B53745.546 R-squarad = 0.071T
= Adj R-squared = 0.0461
Total 102120098 148 6B85369.794 Root MSE = B08.855

whrg Coef. Std. Err. t P=ltl [95% Conf. I'“m‘u :

kL6 -421. 4822  167.5734 -2.51 0.013 =753, 4748

k818 | -104.4571 54.18616 -1.93 0.056  -211.5538

va -4,784917 9.680502 -0.48  0.622 ~%3.9578

we 9.353195 31.22793 0.30" 0.765 ~52.38731
_cons 1629.817 615.1301 2066 0.009 414.0371

WEL now refit the model with truncreg, taking into account that 100 o
vations have zero recorded whrs:



k16 | -803.0042 321.3614 -2.50 0.012  -1432.861 -173. 1474
xg18 | -i72.876 80.72808 -1.96 0.061  -346.7H06 1 020578
gl =B.PR1I23  14.36848 2 -0.61 0.638  -36.9H263 18, 34058
W 16.52878  46.50375 0.36 D.722  -T4.BLE9S 107. 6744
_cang 1586.26  912.356 1.74 0.082  -201.9233 3374442

T88:68213

1168831

983, 7262

Some of the attenuated coetficient estimates [rom regress are no more than half as
large as their counterparts from truncreg. The parameter sigma _cons, comparable
ta Root MSE in the OLS regression, is considerably larger in the truncated regression,
reflecting its downward bias in a truneated sample, We can use the coeflicient estimates
and margingl cffects from truncreg to make inferences about the entire population,
whereas we should not use the results from the misspecified regression model for any

purpose.

10.3.2 Censoring

Censoring is another common mechanism that restricts the range of depende
Censoring oceurs when a response variable is set to an arbitrary value when the
is beyond the censoring point. In the truncated case, we observe neither the depender
nor the explanatory variables for individuals whose g lies in the truncation region. In
contrast, when the data are censored we do not observe the value of the depencdent
variable for individuals whose g is beyond the censoring point, but we do observe “1';“"
@-M:'ﬁ'-l"l"é explanatory variables, A common example of censoring is "1Op poding
‘which ocours when o variable that takes on values of & or more is recorded s T
instasice, many household surveys top codo reported income at $150,000 or §20000)

There [;mmadlacmnn in the literature about how to interpref some "m“m
: pensored. As Wooldridge (2002) points out, censoring is 8 pt B

generated. For instance, it the
chose not to top code the datas

=. o

nit variables:
arinhle




| su’l'u_zsﬁfa-w_ﬂ'-é,'ﬁn;qﬁam.mﬁ
s the censored regression model; it e o
;ﬁ,,dﬂ.m-_ The model can be expressed in to }%?:Jll%m*

Wio= xB+u

W = 0 H"-y" ED
¥ty >0

y contains either zeros for nonpurchasers or 4 positive dollar amount for thess who,

chose to buy a car last year. The model combines aspects of the binom ial pro "'%

the distinction of y; = 0 versus ¥ > 0 and the regression model for Blmly: > lﬁﬂj‘?

Of course, we could collapse all positive observations on , and treat this 5 o Binonsad

pruhit for logit) estimation problem, bug I'Jﬂil'tg a0 would i d t.ha; :H imm

the dollar amounts spent. by purchasers. Likewise; we could throw away the g =0

observations, but we would then be left with a truncated distribution, Mththemw
problems that creates, ' To take account of all the information in y; properly, we must

fit the model with the tobit estimation method, which uses maximum likelihood to
combine the probit and regression components of the log-likelihood funetion, We can
express the log likelihood of a given observation as T,

o) = T ='1}iug{'—q‘(§£)} +

Tie

V(BN Ll
I(y; > 0) {!ue-,m (”—f’"’g) —gle (?f)}

where I(-) = 1 if its argument is true and is zero otherwise, We can wri‘te th&ﬁllm]:.]mgd
function, summing £, over the sample, as the sum of the probit llkﬂlihnm:lfﬂr
observations with 3 = 0 and the regression likelihood for Lhmﬁub&umhm.ﬁifﬁh-ﬁ -3

saring from below at any point on the y scale with the 11(7) op
Similarly, the standard tobit formulation may use an upper

above, or right censoring) using the ul(#) option fo. i
tobit command also supports the two-limit tobit n
tensored from both left and right by specifying both
~ Even with one censoring peint, predic

5




ensored prediction, where the threshold is
effects of the tobit model are also complex. The estimated coefficients
al effects of a change in @, on y*, the unohgervable latent variahle

[ Ly |x
Wil _
ai'-l_’
but that information is rarely useful. The offect on the observable i s
AEylx) R
_Tz'_,_ =3 x Pr(o <y <b)

where a.b are defined as above for predict. For instance, for left censoring at zero,
a =0, b= +no. Since that probability is at most unity (and will be redueed by a larger
proportion of censored observations), the marginal effect of &y 15 al tenmated from the
reported coefficient toward zero. Au increase in an explanatory variable with a positive
eoefficient implies thar a left=censored individual is less likely to be censored. The
predicted probability of a nonzero value will increase. For an uneensored individual, an

- imerease in &, will imply that Elyly > 0] will increase. So, for instance, a decrease in the
muortgnge interest rate will allow more people to be homebuyers [sinee many horrowers
incomes will qualify them for & mortgage at lower interest rates) and allow pregualified
homebuyers to purchase a more expensive home.  The marginal offect captures thet
combination of those effects. Since newly qualified homebuvers will be purchasing the
cheapest homes, the effect of the lower intorest rate on the average price at which
homes are sold will incorporate both effects. We expect that it will increase the sverss®
“wﬁum price, but because of at temuation, hy a smaller amount than the r:‘ﬂﬂ"ﬂiﬂ“
fu.nut.imt component of the model would indicate. We can caleulate the marginal effects
‘with mfx or, for average marginal effects, with Bartus's margef .

For an empirical example, we return to the womenwk dataset nsed to illustrate bivg:
and logit. We generate the log of the wage (1w) for working wornen aG

| 0 1w for working women and zero for nonworking women,'® We first fit the
i ﬂ“&’“’ﬁﬂ-ﬁm“" the censored nature of the response variable:




937, Biaiﬂﬁ_:
3485.34135

4422.21454

1550 221071383

Coet,

Std. Err.

marrisd
childron
education
_cons

. 0363624
3188214
. 3305008
. B43345
-1.077738

_08goasg
(0213143
-0102255
1703218

e

Refitting the model as 4 tobit and indicating that 1wf is left c&naumdﬁhmuﬂﬂthﬁ@ —
11(0) option ¥ ields

. tobit luf sge married children education, 11(0)

Tebit regression

Log likelihood = -3349.9685

Tuf Coef. Std. Err. £
age JOBZ1ET  ,00BT4ST7 9.08
married 4841801 . 1035188 4.68
children 4860021 L0317T054 15.33
education 1149492 0150913 T 62
_cons -2.B0TGE6 2632666 10.67

/signa 1.872611  .040014 1.794357
DObe. summary: 657 left-censored observations at luf<=0

The tobit estimates of 1uf show positive, significant effects &
mumber of children, and the number of years of aﬂ .

factors to lnm-aae the probability that a woman will
conditional on employment status. Fb]hwmg

1343

uncensored qbanntim
0 right-censored ohservations




Pzl [ @sner 3

age. 007327 8. 0.000 .005703 .008952
‘marriede| Q706984 J0I5768  4.48  0.000 .033808 101595

children 0682813 L0479 14,26 0,000  .058899 077663
aducat-n 0161499 L0218 T.48 0.000 .011918 020382

(=) dy/dx is for discrete change of dusmy variable from 0 to 1

We then caleulate the marginal effect of each explanatory variable on the Elpeﬁa&hg
wage, given that the individual has not been censored (i.e., was working). These effects.
unlike the estimated coefficients from regress, properly take into account t}mmmﬁﬂ'
nature of the response variable.

. mix computa, predict{e{C,.))

Harginal pffects after tobit
y = E(lwf|1wf>0) (pradict, a(0,.))

= 2.3102021

variable dy/dx Std. Ercr. . Prlzll [ get e 1. 1 3
age 0314522 00347  9.08 0,000 .024665 .03820 55,004
marrisds| 2881047 05882 4.TE 0,000 168855 403384 G706
children 2934483 .01808  15.38  0.000 .95E04l (3308520 154
oducat.n 0694055 00912  7.61 0.000 .051531 087281  13.08%
B

(%) dy/dx is for discrete change of dummy variable from 0 to |

Singe the tobit model has a probit component, its results are sensitive o m*—-“
sumption of homoskedasticity, Robust standard errors are not available for Sea . I"
tobit command, although bootstrap or jackknife standard errors may be “I%
‘Hu"lt-h the vee 'ﬂpﬂﬂTl The tobit model i imposes the constraint that the .:m]]i,ﬂ'm
tors o determine both whether an observation is censored (e.g., whether s divi
pln'd'lﬂ.sﬂd il C&r} and the value of a noncensored observation {how gl
Hpﬂﬂl: o bhe ear), Furthermore, the marginal effect s constr ained to have:
in both. parts of the model. A generalization of the tobit model, often we
model (after James Heckman), can relax this constraint and allow diff
enter the two parts of the model. We can fit this generalized tobit mo
eckman command, as deseribed in the next section of this chapter:




T,E[mm-shiu between y and a set of explanatory fctors x can b
ol with additive error u. That error -“ﬂmmod"tﬁ;ﬁniﬁﬁf'u )
: ﬂﬁ',ﬁpﬂuu of (4.2). Now consider that we observe only some ~_- 5
o whatever reason—and that indicator \'a.rml:le 8 qu 1 5

i ani x; and is zero otherwise. If we merely run i regression on the o
=%+ u (mey

b

an the full sample, those observations with missing walues of i [mwmﬂf_ {
will be dropped from the analysis. We can rewrite this regression as i

= sixiﬂ =+ Eiy tiﬂ:iﬁ-j

The OLS estimator A of (10.10) will yield the same estimites as that of (10.9). They
il be unbiased and consistent if the error berm s;uy has zero mean and is uncorrelate

with each element of ;. For the population, these conditions can be written as .
Elsul = 0
El(sx)(su)] = Elsxul=0

because 5° = & This condition differs from that of a standared regression equation (with-
out selection], where the corresponding zero-conditional-mean assumption requires on
that Efxu] = 0, In the presence of selection, the error process « must be uncorrelate
with sx. i
Consider the source of the sample-selection indicator s,. If that indicator is pu
i function of the explanatory variables in x, we have exogenous sample selection. 1
explanatory variables in x are uncorrelated with u. and & is a function of '
too will be uncorrelated with u, as will the product sx. OLS i
subset will vield unbiased and consistent estimates. For imstance, [
explanatory variables, we can estimate separate regressions ' e
no difficulty. We have selected a subsample based on observable chars
identifies the set of observations for females.

~ We can also consider selection of & r:
i




dual's probability of participation.
d on the factors underlying that decision

w = xf+u (10.11)
8 = f{z-f‘]' + v 2"} Il!.'r.l'.'i'}

‘where we assume that the explanatory factors in x satisfy the zero-conditional-mesn
assumption Efxu] = 0. The I{-) function equals 1 if its argument is true and is zero
ﬂ’ﬁharw‘.ﬂe We ohserve iy if s; = 1. The selection fumtetion contains a set of explanatory
factors z, which must be asuperset of x. For us to identify the model, 2 contains all
% but must alsocontain more factors that do not appear in x.'7 The érror term in the
selection equation, 1. is assumed to have u zero-conditional mean: Elzv] = 0, which
implies that Elxv] = 0. We assume that ¢ follows a standard normal distribution.

Incidental truncation arises when there is & nonzero correlation between w and v If
both these processes are normally distribut edd with zere means, the conditional expec
tation Blu|v] = pv. where p s the correlation of v and v. From (10.11),

Elylz, v] =3 + pv (10,13)
We cannot observe v, but & is related to v by (10.12). Equation (10.13) thien Decomes
Byl 8l =%x84 pElulz. 5]

The conditional expectation Efvlz, s| for & = 1, the case of observability, is merel¥ ‘l"l'
the ik defined in geetion 10031, Therefore, we must angient (10,11} with that term

Elylz, s = 1] =x8 + pMzy) (10.14)

It p # 0 'l;al..s.mii:_mu-s from the incidentally truncated sample will not 'lmﬁwu":
estimate 3 unless the IMR term i included, Conversely, if p = 0, that 01§ FEEE

will yield consistent estimates. ¥
~ Then  term includes the unknown population parameters 7, which ¥ be

' Prls = 1|z) = ®(zy)



' woman participates in the labor foree
pation equation: it appears in z but not x. We ¢u
|, Other factors are likely to appear in both
n-and years of experience in the labor foree wil

: kely influ e
pute as well ns the equilibrium wage that she will m};nh:ﬂ the Tl )
necknan command fits the full muximum-likelihood version of the Heckit f

e following syntax: o

pockman depuar [ indepyars | [ if | [in], select(varlist2)

wliere indepvars :iilll"l."iﬁl'ﬁ the regressors in o and varlisi2 specifies thie list of 2 factors
wpected 10 determine the selection of an observation as abservable. Unlike with tobit,
where the depvar is |‘1*i'n1‘d{.=:F at a threshold value for the censoreed observations, we
dould code the depvar as missing (.) for these observations that are not soleeted. 1
e The model s fitted aver the entire sample and gives an estimate of the crucial correlation
polong with a fest of the hypothesis that p = 0. If we reject that hy pothesis, o
pegression of the observed depvar on indepvars will produce inconsistent estimates of
Bt

The heckman command can also generate the two-step estimator of the selection
model (Heckman 1979) if we specify the twostep option. This model is essentially the
regression of (10.7) in which the IMR has been estimated as the prediction of a binomial
probit (1012} in the first step and nsed as o regressor in the second step. A significant
enetficient of the IMR, denoted lambda, indicates that the selection model must be used
to avold inconsistency. The twostep approach, computationally less burdensome than
the full maximum-likelihood approach used by default in heckman, may be preferable
i complex selection models.®!

The example below revisits the womenwk dataset used to illustrate tobit. To use.
these data in heckman, we define 1w as the log of the wage for working women and
a8 missing for nonworking women, We assume that marital status aﬁmtsmlachﬁm;
(whother & woman is observed in the labor force) but does not enter the log(y

tuation. All factors in both the log(wage) and selection equations are. ca
g the selection model, we have relaxed the assumption that the fa

the prabability of selection (participation) but
onal on participation. The likelihood-ratio test for p




Log likelihood = -1052.857

Censored obs

Uncensored oba 1343
Wald chi2(3) 454.78
Prob > chi2 = 0.0000

oef.  Std. Err. z Pxlzl [95% Conf. Imterval]
1w )
education 0397188 .0024625 16,20 0.000 0349121 .0445256
age JO0TEBT2.  .0D09748 T.78 0.000 OOBETET - 0024977
children | - 0180477  .0064544 -2.80 O0.006  -.0306881 -.0053973
_com® 2.305493 (0653024 35,30 0.000 2,177509 2,45349
salect
age 0380233 0042344 8.27  0.000 . O2ET241 (0833225
married .4547724 0735876 6.18 0.000 .3105434 5990014
children ,4538372 0288398, 16.74 0,000 .3a73122 5108621
education (0565136  .0110025 5.14 0.000 0349482 JOTBOTEL
_cong =2.4TAOEE  .1927823 -1Z.856 0.000 _o p5Eg0l  -2. 100208
Jathrhs LBATTETR 1152261 2,83 0.003 1116304 5636045
finaiges | -1.375643 .0246873 -55.72 0.000  -1.423020 ~1.327188
rho | .3254828  .1030183 1114653 5106468
sigma .9527024  .0062385 _oq076E2 2652308
lanbda: .DB22603  .0273475 .0288501  .1368509
__——-—_'T.-
LR test of indep. eqns. (rho = 0): chi2(1) = 5.63 Prob > chi® = 0:018T
_————-'--

"?}&ﬂm uaﬂhhﬂhﬂ':kmn two-step procedure, which makes use of the tm&mﬂ
-~ equation for selection.




yman Iv oducation age chil
. gaLscr(sgy wazrind chlake |
S p pelection sodel — two-

'_WWHJE model with sample

—_— :
Coef. Std. Err, z  PEl=|

C—

1w Ly g
sducation -DA2TOET 003108 13,78
age 009322 0014343 .50

childzen -.0019549 0115202 -0.17

_Comns 2134787 ~1249TRS 17.00

R
salack
age LAD34TIN] 0042503 B2l
parried 4308575 - Q74208 B.81
childran A4TI248 LJO2ETALT 15.56
T USB3645  .010974% 5,32
_eond =2 . 456T7385 1925536 =12.81
gills
1azbda 1822815 LOB3E285 2,88 D.004 05718
e 0. 66698
sigma V2TAZEIE 1.

1pzbda | 16228151 0638385

Although it also provides consistent estimates of the selection model’s paran
see & qualitative difference in the log(wage) equation: the number of chil

I significant in this formulation of the model, The maximum likelihood

when computationally feasible, is attractive—not least because it con gener

sstimates of the selection model’s p and o parameters.

105 Bivariate probit and probit with selection
Auother example of & Iim‘:tndwdep_endcnt‘wihblg_f_u_'a:'p_@:wﬁtkj_ﬁ}‘ i _

equations’ disturbances plays an important role is the :

simplest form, the model may be written as




Ld

.Ffi;xmm consider one common formulation of the bivariate probit model b

is similar to the selection model described above. Consider a two-stage process i

the second equation is observed conditional on the outcome of the fisst. For

some fraction of patients diagnosed with circulatory prablems undergoes milif.lpto-h;gm
surgery {y = 1). Foreach patient, we record whether he or she died within | year of
the surgery (ys = 1). The ya variable is available only for those patients who am
postaperative. We do not have records of mortality among those who chose other forms
of treatment. In this context, the reliance of the second equation on the first i i isie
of partinl observability; and if p # 0 it will be necessiry fo take hoth equations’ factons
into account to generate consistent, estimates. That correlation of errors may be likely
in that unexpected health problems that caused the physician to recommend bypass
surgery may. recur and kil the patient.

As another example, consider a biunk deciding to extend credit to b sl business
The clecision to offer a lean can be viewed as y; = 1. Conditional en Elist cutcome, the
borrower will or will not default on the loan within the following year, whinex dufult
is recorded as g2 = 1. Those potential barrawers who were dlenied cannot be ohservd
defaulting becanse they did not receive a loan in the first stage. Agnin the disturbances
impinging upon the loan offer decision may well be correlnted [I:f.n* negatively) with

the disturbances that affect the lkelihood of default

Stata can fit these two bivariate probit models with the biprobit command. The
seemingly unrelited biviriate probit model allows x; # x. bt the alternative form
e consider here allows only one warlist of factors that enter both e S. In B8
medical example, this varlist might include the patient's body mass index (u
obesity), indicators of aleohol wnd tobaces use, and age all of whieh might ﬂﬂl‘ﬂ ’f“k
the recommended treatment and the l-year survival rate. With the partial 0P
specify that the partial phservability model of Poirier (1981) be fitted.

10.5.1 Binomial probit with selection
Eﬂl:mhr related to the bivariate probit with partial observability is il bir i
with seloction tlmdd This formulation, frst presented by Van e :;:Jﬂ i

» basic setup as (10.15) above: the latent vari
:ac,inﬁ the binoary outeome g = 1 arises when y\‘ =0, Howe




eulatory problems are not aﬁ'l'i__ehr't&nm*‘ﬁﬂ
In the second example, we consider small b
an and for successful borrawers, whether they defag
M-aﬁﬂfﬂltl[ if they were selocted by the bank to rece
gt TeCRIVIng @ T, !-|'|.‘ﬂ}.' did or did not fulfill their obligations,
focus only orl loan recipicnts and whether they dﬂfn\ﬂhad, Wi AT i
st Presumably. a well-managed bank is not c]mns&ng among loan
| andom. Both deterministic and random faetars 1nﬂumr3in.g- the extensi :
harrowers’ subsequent performance are likely to he mrpﬁ]:ﬂ,eﬂ, like i
probit with partial observability, the probit with sample -Bﬁ;'lﬂnt’ihn E:lm]l tly considers
x # x2. The factors influencing the granting of eredit and tﬁé'bli::rruﬁtﬂﬁ fﬂmlnéh )
must differ to identify the model. Stata’s heckprob command has a sy o
that of heckman, with an indepvars of the factors in #, and &x-‘_a.ﬁl‘idéﬂﬁdi' ) wﬁm:
specifying the explanatory factors driving the selection outeome, B

[ illustrate one form of this model with the Federal Reserve Bank of Boston By

, dataset*! (Munnell er-al. 1996), a celebrated study of racial ﬂi'sﬁkimiﬁ&ﬁ:ﬁél-.it.];m
' home mortgage lending. Of the 2,380 loan applications in this subset of the d
885 were granted, as approve indicates. For those 2,095 loans that were approv
originated. we may observe whether they were purchased in the secondary

. Fannie Mae (FNMA) or Freddie Mae (FHLMC), the quasigovernment mortgage
| agencies. The variable fanfred indicates that 33% (698) of those loans were
| Fannie or Freddie, We seck to explain whether ecertain loans were attractive
| to the secondary market to be resold as a function of the loan amount (1o
indicator of above-average vacant properties in that census tract (vacancy),
of above-average median income in that tract I[mﬂl;'(.illﬁp.tlﬁ}, and hhﬂ'
of the dwelling (apprvalue). The secondary market activity is obser
loan was originated. The selection equation contains an indicator lo
applicants’ income, and their debt-to-income ratio (debt_inc.x)
approval,

. use http://wew.stata-press.con/data/imevs/hada, clear

- replace fanfred=. if deny N
(285 real changes made, 285 to missing)




m Wean  Std. Dev. Min Hax

approve 2380 SBBOREZL 3247347 0 1
fanfred 2085 +3331742 JAT14E08 0 1
loannmt 2380 138, 1353 83.420a7 2 SB0
NACATCY 2380 A2G5546 <ARE062E 1} 1
mned_income 2380 B204118 L ATE22TE o 1
Bppr_waluo 2380 198. 5426 1529863 25 4316
black 2380 142437 3485719 0 t
appl_income 2380 13,9406 115, 9485 0 899,999
dabt_inc_r 2380 33, 08136 10. 72673 Q 300

We fit the model with heckprob:

« ‘heckprob fanfred loanamt vacancy med._incoms appr_value,
> galectiapprove= ‘black appl_incoms debt_ine_r) nolog
Frobic model with gample selection Niumbar of obs
Cannored oba
Uncoenaored aobg 2055

i ; Wnld chi2{g)
Log likelihood = -2083.068 Prob > chi? 0.10000

Coaf. Std. Err. P> |z [95% Gonf. Intervall

fanfred .
Leanast . QOOB0RE : : -.0042169  -.0010898
vacancy 0B0STAE i ; -, 33cgqgs  —.0968134
. : ; 0920407 L AgPI0Ed
appr_value : F ; ; —.0024381  -.0004363
' ' . ; -.0631954 4001613
——

-.sadyezy -.5raendl

- (011321
- .033979




AN .gqﬁﬂﬂ unﬂti.ﬂﬂ, the Oﬁﬂhﬂl Tk PRI I;
eome s an (unexpected) negative effect on i:hatm o
i Jebt-to-income ratio has the expected “rﬂwi;m probabil |

hdu?ﬂldm“' _taqtmtlmlﬁ CHHI‘.:"IIEng]\\I.- rejects liha.l.-ﬁuﬂ- a};ﬂp"t TH‘E 1r..
_ (.54 between the two equations’ errars, indicati tWﬁhM i

sroved status would render the estimates of a Imi‘.:f'- Uhint mm
quation hiased and inconsistent, late probit equatio

Exercises
1. Tn section 10.3.1, we estimated an OLS regression and y

y T a truncated regression from

the 1aborsub sample of 250 married women, 150 of whom work. This dataset can-

eated as censored in that we have full information on nﬂnworlﬁﬂg‘wﬂmm’&‘

he tr
characteristics. Refit the model with tobit and compare the results to those of '
: ;

OLS.

9. In section 10.5.2, we fitted a tobit model for the log of the wage from womenwk,
taking into account a #era wage recorded by 1/3 of the sample. Create n wage
variable in which wages above $25.00 per hour are set to that value and missing '
wage is set Lo zero. Generate the log of the transformed wage, and fit the model as.

a two-limit tobit. How do the tobit coefficients and their marginal offects ditfer:

from those presented in section 10.3.27

3. Using the dataset http:// www.stata—prm.::mn,-“datnft-{llf sehool.dta, fit

probit model of private (whether L
vote (whether the parent voted in favor of public school fug
L .

first response variable as depending on ya&rsi-and lﬁi@nﬂ; the '
able as depending on those factors piu
G |

a student is enrolled in private s

estimate the second response vari ; L
Are these equations successful? What do the estimate of pand

Wald test tell you? 4
4. Using the HMDA dataset from section 10.5.1
fications of the model for loan approva: 12
the loan amount or the ratio of the
property be entered in the loan &pp
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Getting the data into Stat

e appendix discusses pru_hle:m; you may have in inputting ol

| mﬂ:ﬂnmﬂ] data. You can download source data &m:::gﬁ :’:;aﬁlﬁ ﬁ E"ih
formuat, Or import it from some other shatis_tical Pm’-kﬁﬁ'-"i‘hetwm
ith those variations. ' a "

al inputting data from ASCII text files and spreadsheets
pefore ecarrying out econometric analysis with Stata, many researchers must face several l
thorny issues in converting their foreign data into Stata-usable form. These muﬁrmm
from the mundane (€., & text-file dataset may have coded missing values as 98) ta the
diallenging (e.€., & text-file dataset may be in a hierarchical format, with master records
and detail records), Although 1 cannot possibly cover all the ways in which EKI]E!.'HHJ
data may be organized and transformed for use in Stata, several rules apply:

o Familiarize yourself with the various Stata commands for data input, Emtms
its use, and in the spirit of “don’t pound nails with a serewdriver”, data handling
is much simpler if you use the correct tool. Reading (U] 21 Inputting data is

well worth your time.

o When you need to manipulate a text file, use a text editor, not a word processor
or spreadzheet.

» Giet the data into Stata as early as you can,
well-documented do-files that you can edit and .
the Data Editor, which allow you to interactively enter data, or v&
paste strategies involving simultaneous use ﬂf&mdﬂm“ﬁ"

strategy is not reproducible and should be avoided.

track of multiple steps of a dﬂ“::'hi?..ﬂi@ﬁ



hat will cause columns to be misaligned. Vit

very operating system supports a variety of text editors; many of which are freely
available Aumﬁﬁmmmuy of text editors of interest to Stata users is edited by Nicholas
,“Gm:anﬂis available a8 a web page from ssc as the package texteditors. A ool
' text editor—one without the memory limitations present in Stata’s ado-file editor or the
huilt:—in routines in some operating systems—is much faster than a word processor when
scrolling through a large data file. Many text editors colorize Stata commands, making

. them useful for developing Stata programs. Text editors are also useful for working
with large microeconomic survey datasets that come with machine-readable codebooks,

which are often many megabytes. Searching those codebooks for particilar keywords

with a robust text editor is efficient.

Free format versus fixed format

el fles may be ee format or fived format. A free-format file contains several Fiefds
per record, separated by delimiters: characters that are not to be found within the fields-
A purely numerie file (or one with simple string variables such as U.S. state codes] may
be space delimited; that is, successive fields in the record are separated by one or [HOre
| ‘spave characters:
A¥ 12.34 0,090 2E2000

AL 3.02 0,076 378000
AZ 102.4 0.1 BABIED

The columns in the file need not be aligned. These data may be read from a text fik

default with extension .raw) with Stata’s infile commiand, which assigns BEEE
(and if necessary data types) to the variables:




E1:2), OF eVETY
W may even ha

- EleRr
j.lll“" atrd lt_n':q mumbers prop petential 0
ﬂ phgervations raad) LR L

.- list

state members potant-1

AR 12.34 : SR
AL .02 . 3TR000
AZ 1024 - 546250

Hiwever, this scheme will break down as soon: as we hit New Ham'pd'lﬁﬂ. Mﬁ -

ead the space within the state name as a delimiter. I you se atrlng- d
muhmid"*l spuces in @ space-delimite dl file, you must delimit the w,tmhle‘nnmm
with quotation mar ks in the text file):

; claar 'I

o bype apph.d.Tav

AR 1238 0,08 262000 Alaska 1 e
AL 8,02 0,075 378000 Alabama 2

j2 109.4 0.1 645350 Arizoma 3 -
§H 14.9 0,02 212000 “"Maw Raspahire” 4

. {nfile ptr? stato members prop potential str20 gtate.name Key using apf =

(4 ghasrvations raad)

. 1ist

state members  pEOP potant-l

17,34 Bl 262000
g.02 0TS ITHO00

102.4 b 545250
4.8 .04 212000

So what should vou do if your text file is space dﬂli“ﬂwlmﬂ
with embedded spaces? No mechanical transformati
For instance, using a text editor to change multi)

single pr."e- to & tab character will not help
“Hmnpﬁhﬁe"




To read tab-delimited text files, we should use insheet rather than infile. Despits
its name, insheet does not read binary spreadsheet files (e.g., .x1s), and it reads s
Yab-delimited (or comma-delimited) test file, whether or not a spreadsheet program was:
used to ereate it. For instance, most database programs have an option for gererating
‘o tab-delimited or comma-delimited export file, and many datasets available for web

downlond are in one of these formats. )

The insheet command is handy, as long as one olgervation in vour target Stata
dataset is contained on one record with tab or comma delimiters. Stata will putomati-
cally try to determine the delimiter (but options tab and comma are available), or you
gan specify any ASCI character as a delimiter with the delimiter (char) option. For
instance, some European database exports use semicolon (1) delimiters because stas
dited European numeric formats use the comma as the decimal separator. IF the first
line of the .raw file contains valid Stata variable names, these names will be uged, I
you are extracting the data from a spreadsheet, they will often have that format, Tause
the sample dataset above, now tab delimited with a header record of variable nanies,

you could type

. cleax

| dnsheet using apph_4
{6 vars, 4 obal

« list
grate @esbers prop  potent-l atato_nome  KeY
Li AR 12:34 08 22000 Alnaka 1
2. AL .02 OTe STRO00 Alabaza z
b f v 1024 W 46250 Arizona 3
4. Kk 14.9 02 212000  New Hampabire 4

wﬁuenfrm‘quded spices or commas no longer arises in tab-delimited a8
of the file defines the variable numes, B
ol attention to forinational or ecror messages produced H
how ' are in thi fext B




that veasonable values appear in

i se infile with if erp and in ringe ot
You ﬂl.ﬂ- L _ "—"F and in g

= insheet. For instance, with alarge text-file d
I suly the first 1,000 observations and verify that ;
. Using if gender=="H", we could vead only the male ohesry
N om0 <= 0. 15 we could draw a 15% sample from the input.
these giuﬂl:iﬁurs with insheet: but unless the texi-file dataset is
oyl could always read the entire dataset and apply keep or drnfi E
pilmic the action of infile. VTS .

al2 Accessing data stored in spreadsheets

Above, | said that j.'fll.!l should not eopy and paste to transfer data from tlll,ﬂl:hﬂfﬂ-l‘h B
plication directly to Stata because you cannot réplicate the pw For lmmfﬁﬁ

cannot guarantee t hat the first and last rows or columns of & :;praﬁrhheél wureﬂd[ectaq

and copied to the clipboard without affecting thedata. 1F the data are'in & Bpmad&'li‘ﬁi,

copy the appropriate portion of that spreadslicet and paste it into o new blank shieet

(in Excel, use Paste Special to etisure that only values are stored). If you are going to

add Stata variable nanmes, lisgve the Hirst row hlank 5o that WOLL CRI il them il] hw.

Gave that sheet, and that shest alone, as Text Dﬂly—Ta'b dolimited Lo o new ﬁlmmmn.

Using the Ble extension . raw will simplify reading the file into Stata.

Both Exeel and Stata read calendar dates as successive integers fromy an arbiteary,
starting point. For Stata to read the dates into a Stata date variable, they mmﬁﬂ;
formatted with a four-digit yvear, preferably in a format with delimiters (e, 12/6/2004
or 6-Dec-2004). It is much easier to make these changes in the sprea ! :
before reading the data into Stata. Macintosh (8 X users of Excel I
Excel's default is the 1904 Date System. If the spreadsheet was produced i
Windows, and vou used the steps above to create a new sheet mﬁh"hh“'m
the dates will be off by 4 years (the difference batween Excel for Macintosh o
for Windows defaults). Uncheck the preference Use 1904 Date System belore

file s text.

AL3 Fixed-format data files

'.-h-!".""l!_'}%ﬁledammts are composed of
A format; in which a variable appears in &




VAR 0007
VAR 0008
VAR 0009
VAR 0010
YAR 0011
VAR 0012

VAR 0013

-2
8 WIDTH

mrﬁm“umm

33 WIDTH

DR 1oL 7

& WIDTH 3 1 0L B-10
no H.Iasmﬁ DATA GnI:as.
8 WIDTH OE 1 COL f1-14
111] m&sws DATA CODES
REF 0005 13 WIDTH 4 DK 1 CiL 16-18
PROTY NG MISSING DATA mss .
REF 0006 17 WIDTH. 1 1 00L 1§
TINE BEGUN-HOUR Hu'-ﬂﬂ
REF 0007 Loc 18 WIDTH 2 DK 1 COL 20-21
TIHE BEGUN-HMINUTE HD=03
REF 0008 Lo 20 MIDTH 2 oE 1 CoL 22-23
TIME BEGUN-AM/PH NI
REF 0009 Loc 22 WIDTH 1 px 1 .coL 24
AGE HO MISSING DATA CUDES
REF 0010 Loe 23 WIDTH 3 oK 1 coL 2527
HAISPANIC GROUP WO MISSING DATA CODES
REF 0011 LoC 26 WIDTH 1 oE 1 COL-38
HISPANIC GROUP-OTHER HEwaE
REF 0012 LOC 2T NIDTH 2 oK iocolL 25-30
MARITAL STATUS HO MISSING DATA CODES
REF 0013 oo 28 WIDTH 1 Dal i ¢oL 3L
OA3. AHE YOU NOW MARRIED, WIDOWED, DIVORTED, SEPARATED, OR
HAVE TOU NEVER MARRIEB?
1083 1. MARRIED
815 2. WIDOWED
160 3. DIVORCED
93 4, SEPARATED
14 5. MOT MARRITED, LIVING WITH PARTHER
6. MNEVERL MARRIED
umm. STATUS-YEARS MDs57 OR GE 98
LOC 30 WIDTH % Dk 1 Gop 32
. P
LOC 32 WItTH 1 o 1 cobL 34
o8
HD=GE -

36 VIDTH




quency counts of each response,
1 fixed-format. data files, fields need not |

W We must tell Stata to interprety g.;{:h of |

hich we can do with a data dictionary: a separate 5

" wifying the necessary information to read a fixed-format

i the codebook may be translated, line for line, into the Stal

gtata data dictionary need not be comprehensive. You mig}m

wariables from the raw data file, so you would merely ignore those columns. T
(o select data might be particularly important when vou are work o 1@ :
gigta and its limit of 2,047 variables. Many survey datasets contain

2 ()00 variables. By judiciously specifying only the subset of variables that i
in your research, vou may read such a text file by using Intercooled Stata. 1

Stata supports two different formats of data dictionaries, The ﬁEFler:[GTiﬁﬁtﬁ-'m y
by infix, requires only that the starting and ending columms of each variable be given
glong with any needed data type information. To illustrate, 1 specify the informa-

tion needed to read a subset of fields in this codebook into Stata variables, uﬁn@t@
description of the data dictionary in 0] infix (fixed format): . |




ot wit
Jine 12
it w13
iny vid
int w15
int vi6
int v1T
4int w18
‘inp w19
int w20
int w21

:
{3299 observations read)

ﬁ“qﬂﬂlﬂ tnstead set up a dictionary file for the fixed-formal version of fnfile. This
%,thnmnm w[‘ﬂ' (',DII.II‘:mmL as it allows us to attach variable labols and r'\p!'ﬂ"ir.II
mlnn labels. However, rather than specifying the eolumn range af each fiold, wie must
'il'lﬂi{ “mi 1 whiere it starts and its field width, given as the %infimd for that variable. With
ﬁ'} et ok like that, displayed ahove, we have the Aeld widths svailable. We could alo
misﬂiﬂw uiab the field widths from the starting and ending aliumn mumbers.. We oimst not
‘only specify which are string varinblis Bt also give their data storage type: Thie StorEE
10 -Ei'mjr from lf]l,ﬁ"ﬁ{ﬂﬁﬁt for that variable. You might read a gin-charueter codi*
PEECE acter field, knowing that other data use the latter width for (hat variabie-




LE
vig
Vig
V20
Va1

(2299 cbgervations read)

The column () directives in this dictionary are used where dio
adjacent. Tndeed, you could skip back and forth along the input reca
read need not be i ascending order. But then we could achieve t
the order command after data input. We can define variable labels and
for each variable by using infile. In both examples above, the ﬂﬁ:hi-"' |
the name of the data file, which need not be the same as thnﬁ of the' ﬂlﬁ T
For insbance, highway.dct could read highway.raw, and if ﬂﬂ..wenw& e
latter filename. But we might want to use the same dictionary fo read more th
_rav file, and we can do that by changing the name specified in the. -det file:

F lpading the data. we can describe its contents:
I . describs
Coptains data
oba: 2,288 E
VATS: 21 4 _Il
size: 105,754 (98.9% of memory free) Wlms: i
gtorage display yalus
wvariable name type format Tabul variable labal
¥1 int  #8.0% 1CPSR STUDY NUMBER-9288
vz int ¥8.0g vz ICPSR EDITION HUMBER-2
va int e 0g ICPSH PART NUMBER-001
va int  }¥8.0g ICPSR 1D
V& int %8, 0g DRIGINAL ID
V& int W8.0g V& PROXY
VT int we.0g L ﬂﬂlw
Ve int  18.0g ve 'TIME BEGUK- 2
va int  Y8.0g Ve TINE H
vio int  YB.0g vig
a.og Vit

%8.0g

%B.0g



of the more elaborate infile data dictionary format comes when
: with a large survey dataset with variables that are real or ﬂm
dues, such as a wage rate in dollars and cents or a percent interest rate such
as 6.125%. To save space, the decimal points are excluded from the text file, and the
‘codebook indicates how many decimal digits are included in the field. You could read
these data as integer values and perform the appropriate division in Stata, but a simpler
mlutiun"mmld be to build this information into the data dictionary. By specifving that
'q.miﬂbll:has an “linfmt of, for example, ¥6.2£, a value such as 1234 may be read
properly as an hourly wage of §12.34.
‘Grata’s data dictionary syntax can handle many more comj il
including these with multiple records per observation, or those with
are to be ignored. See D] infile (fixed format) for full details

jeated text datasels
header records that

A.2 Importing data from other package formats

ht into Stata. Often
Jage or applicé-

The previous section discussed how foreign data files con tld be browg
the foreign data are already in the format of some other statistical pac
tion. For instance, several economic and financial data providers mike sAs-formatted
datasets readily available, whereas socioeconomic datasets are often provided in PS8
format. The easiest and cheapest way to deal with these package formats i L0 U
Stat /Transfer, a product of Circle Systems, which you can purchase from StataCorp:

If you do not have Stat/Transfer, you will need a working copy of the r:-lllt'rjh[;;ﬂ“:lhmﬁi
ut

package and know how to export a dataset from that format to Ascll format.

isa mthﬂf Fumhﬂ"-‘i_ﬂmﬁ solution, because (like Stata) packages guch as SAS#

“have their own missing-data formats, value labels, data types, and the like. Alf s
you can export the raw data to ASCI format, these attributes of the data will ave 0 )
2 ¥ A IHIEE ﬂl;lr"fel" dataset with many hundred {or spveral Lhﬂllﬂ“‘d!: e,

; mpalatable. A transformation utility like Stat/1

g chores, placing any attributes attached 10

alue labels, ete.) in the Stata-format file. |
virlue




d double, in addition 1o stripn?t:g:mw%m
apport this broad array of data types but stare all ﬂﬁmﬁ'lﬁ i
e “Raw data come in many different fﬁmjr, ubisat s
there are just two data types: numerie el chamctm"’ (Dely
4). This simplicity is costly, because an indicator variable requir

of storage, wlwrmst a double-precision Hoating-point, .vé.i-in]j]g requires 8
up to 15 decimal digits of accuracy. Stata. allows you to speeify the date.
o the contents of each variable, which can result in considerable savings mﬂ
and execution time '["]’f‘" reading or writing those variables to disk. You can instruct
-E-tw:ﬂa“grer to- optimize A target Stata-format fls in the Lransfer pmemﬁ,urwwm
= Stata’s compress command to automaticslly perform that optimization. Ium
pase, vou should always 1_.-.|kr- advantage of this optimization, since it will reduce the sige
of files and require less of your computer’s memory to work with them,

Stat(Transfer lets you penerate a subset of a large file while I.ranﬁrerring it fmmﬁhﬁ
or8pss format. Above I mentioned the possibility of reading only certain variables from
a text file to avoid Intercooled Stata’s limitation of 2,047 variables. You can always use.
Stat/Transfer to transfer a large survey data file from SAS'to Stats farmat, but if there
are more than 2,047 variables in the file, the target file must be specified as a Bt.atm
file. Ifyou do not have Stata /SE, vou will have te use SQH’-’-;’TTBIIS['{'!I‘ to read & hﬁﬁﬂf
variables that you would like to keep (or a list of variables to drop), which will generate
a subset file on the fly. Because Stat/Transfer can generate a machine-readable list of
wriable names, you can edit that list to produce the keep list or drop list..

Although I have spoken of SAS and sPss, Stat/Transfer can exchange datasets with
many other packages, including GAUSS, Excel, MATLAB, and others: see. ; ol .
littp:/ (stattransfer.com for details. Stat/Transfer is available for Windows, Mac
and Unix. -

To transfer data between databases that support Structured G
Stata can perform Open Data Base Connectivity (ODBC) oper
Hiat support ODBC (see [D] odbe for details). Most SQL data
Siructures, such as Excel and Microsoft Access, support OBBC
10 deal with foreign data. The computer system on whic




appendix discusses some key aspects of programming in Stata. As

oy 301, you can place any sequence of Stata commands int

il and execute them by using Stata’s do command (or the Do-file Editor

wﬂ' wctions discuss Stata programs, which are stand-along roubines that
i the Stata language, A program can also be contained in s text

commands ; : .

o quromatic do-file or ado-file, and can be invoked by the name of the ado-f
dt-zﬂﬂlﬁ it. Most of this appendix deseribes how you can apply Stata’s programiming
wools in using do-files. As discussed in section 3.9.1, you can often use a Stata do-hile
(o wark more efficiently by simplifying repetitive tasks and reducing the need Lo rotype

ool quantities

eomput
To enhanoe your knowledge of Stata programming, you should hve meopy of the
guata Programming Reference Manual, as many key comands related to do-file con-
struetion appear in that volume, The manual also documents more advaneed comminds
el in writing ado-files, To learn from the masters, you can take one or more of the
agita NetCourses about programming to learn good programming technigues. If you
participate in Statalist —even as a passive reader—yon can take advantage of the many
good problem-solving tips that are exchanged in the list's questions and answers,! You
can also dissect Stata’s own code. More than 80% of official Stata's commands are
written in its own programming language, as are virtually all user-writtén mnl.‘-jnm
available from the 5S¢ archive? Although you may not be interested in mﬁt’mgynﬁm
awi ado-files, it is invaluable to read through some of Stata’s code and borrow ﬁ'ﬂmﬂ‘iﬂ
techniquies used there in your own do-files, Official Stata’s ado-tiles are, pro ionally.
written and tested and reflect best practices in Stata progeatuming at the time of their
construction. Since Stata's programming language is continually evolving, even | s

of official Stata may be legacy code.

Yot can use the findfile command to locate any Stata command’s
machine,* To examine an ado-file, you can use the viewsource Goml
use the sse type command (o inspect any ado-file hosted on the SSC

Sew Bt/ fweww staticom /statalist/. _ : '
: ot all: support for pluging in Statas 8.1 has
neod not be aceessiblo in soureo form.




id m :mrpy af summarize.ado as summarize2.ado in one {ﬁw.-.-
on. ado-path. 1 would then edit the copy to change the progras
i definn Bmarizgi .o In that way, I CAN COmpare t[:u:-,

- B.1 Local and global macros

Hy(;-u are familiar with lower-level programming languages, such as FORTRAN, €, or
Paseal, you may find Stata’s terminology for various obijects rather confusing. In thoge
languages, vou refer to a variable with statements such as x = 2, Although you might
have to declare x before using it—for instance, as integer or float the notion of &
wvariable in those languages refers to an entity that can be assigned one value, either
numeric or string. In contrast, the Stata variable refers to one column of the data matrix

that contams maxobs values, one per observation.

y

80 what correspouds Lo a FORTRAN or C variable in Stata’s command langusge?
E|t.her o Stata macro or a scalar, to be disenssed be low:® But that correspondence it
not one to one, since & Stata macro may contain multiple elements. In fact, & maer
may contain any combination of alphanumeric characters and can hold miore than 8,000
uhamum in all versions of Stata. The Stata macro is really an alias that lias both &
name and & value. When its name is dereferenced, it returns its value. That operation

§ may be carvied out at any time, Alternatively, the macro’s value may be modi

mﬂwx command. The following is an exaniple of the first concept:

. local country us Uk DE FR
.+ local q-.:rem 111 112 136 134

ﬂ-!plﬂw' i
UK CE FR

di.npln.r “'mw:od.-_
. 111 112 136 134

mand for defining the macro is local (see [P] macro). A
Miﬂ Its ﬂmpn, dﬂﬁning w]l.em its name. will be recd




ors in using macros nre caused by nat o
ro, correct punctuation is vital, 3,1 t.ha iy
the dereferenced macro in double. qummhl aplay

I,._Erg'umuul,-ar the value of & senlir expression such as. &ilu.

{n both cases, the local statement is written without an exu
s an oquals sign fallowing the macro’s name, but do not make
\unless it is required. The equals sign canses the rest of the expression
rather than merely aliased to the macro’s name: This behavior is a
of head-scratching, when a user will complain, “My do-file worked when T e eigh
egressors, but 1ot when [ had nine” Defining a macro. with an equals sign will cagse
Stata to evaluate the rest of the command as a numeric expression or a8 4 character
string. A character string, representing the contents of o string varlable, cannot contain
wiore than 244 characters.’ In evaluating local mybadstring = "This '1-5'&1"._1.5’-:'1! H
astring that will not all end up in the macro that it was intended to populate,
which clearly, definitively, and unambiguously indicates that writing short,
concise strings is a definite advantage to people who use macros in Stata",
where the quotation marks are now required, Stata will truncate the string W’HE
b it 34 characrers without error or waming, i

We should nse an equals sign in a local statement when we must evaluate the
macro’s value, In this example, we show a macro used 358 counter, which fails to do
what we had in minc:

« local count O
» local country US UK DE FR

«» Toreach c of local country {

2 local count “count’+l

4 diaplay “Country 'counz' : ‘g™

4.}
Gountry 0+1 : U3 . -
Country O+1+1 : UK i
Commtry +i+i+i : DE
Country O+1+1+1+41 : FR




I The corrected example’s local statement contains thie name of the macro twiee: first
without punctustion to define its name, and on the right-hand side of the equals sign
with its current value dereferenced by “count’. Tt is erucial to understand why the
“statement is written this way. Here we are rec
“and referencing its current value in the seconi,

At other times, we want to construct a macro within a loop,
its value, so we should always avoid the equals sign:

lefining the macro in the fisst instance

repeatedly redefining

. local eount 0
. local country US UK BE FR
. foroach ¢ of local country {

2. lecal count = ‘count’'+l
2 16cal ‘newliat *'newlist' “count’ ‘c

i 4. 3

| . display "‘newliag?"
| us 2 UK 3 DE 4 FR

[lie Local newlist statement 6 tnasial in that it defities the lpeal macro ewlish #50
sunt, space, value of . The

“giring containing its own current contents, space, varlue of
foreach statement defines the local macro ¢ with the value of each biliteral conutry
code in burn. The: ﬁ“ft time through the loop, newlist does not exist, 50 how ean W
current value? Easily: every Stata macro has a null value unless it his
- been given a nonmull value. Thus the value takes on the string " 1 the-
ont the second time through concatenates that string with the i
‘and =0 on. In this example, using the equals sign in the 1ndﬂl-ﬂ¢!‘!“'
= sewlist ot 244 characters, This truncation would not CAusE L

it would. be-a serious problem if we had a longer list o G255




. local country US UK DE FR

_ farench ¢ of local country { :
a. taline gdp 4f cty=msiigre 44 Py o o
podraw mi('ﬂ‘-'i'ﬂpliﬁ}l titlo("GBP for 'er=)

>
a} }
, graph combine 'country', ti("Gross fomeatic Product, 1671Q1-199504%)

{eing macros makes the do-file easier to maintain because chianges require ouly'a
the contents of the local macro. To produce these graphs for a different set of con
yau alter just one command: the list of codes. You ean this mahe:fuurdu-ﬁ}c

and you can easily reuse or adapt that set of Stata commands for use in similar l‘-ﬁ 3

gl.1 Global macros

Global macros are distinguished from local macros by the way they are created (with
the global statement ) and their weans of reference, We obtain the value of the gjﬁﬁa.]
macro george as $george, with the dollar sign taking the place of the punctuation
surrounding the local macra’s name when it is dereferenced. Global mui‘.:tbf are often
wsed to store items parametric to a program, such as a charscter string anutmmﬁg
today's date to be embedded in all filenames created by the program or the name of a
default direetory in which your datasets and do-files are to be accessed. ' '

Unless you really need a global macro—a symbol with global seope—you shonld use
& local macro. It is easy to forget that a global symbol was defined in do-file 4. By
the time vou run do-file  or H in that session of Stata, you may find that they
not behave as expected, since they now pick up the value of the global ol. Su
problems are difficult to debug. Authors of Fortran or C pmgﬂ}rx_u-i_hag
encouraged to “keep definitions local unless they must be visible outside the mo
That i good advice for Stata programmers as well.

3,1.2 Extended macro functions and list functions
Stata has a versatile library of functions that you can

fmetins (e nelp extended.Len, or [F) macro)




s the word count and word # of extended functions, both of which operate.
We do not enclose the macro's value ( ‘eountry’) in double quotes, for it

Iﬂ-'.bu considered one word.® This do-fle will work for any definition of the

list in local country without the need to define a separate count variable.

~ Many extended macro functions (help extended_fcn) perform useful tasks, such as

' éxl;mtﬁng the variable label or value label from a variable or determining its data typeor
i) format; extracting the row or column names from a Statn matrix; or generating

4 list of the files in & particular directory that match a particular pattern (e.g., *.dtal.
The handy subinstr function allows you to substitute a particular pattern in & Macro,
pither the first time the patiern ig eneountered or always.

= held in local macros; see help macrolists

Other functions let you manipulate: list
lemenits of & list or the

or [P] macro lists. You can use them to identify the unique e
duplicate entries; Lo sort & list: and to combine lists with Boolean operators such’ il
and” (&) or “or” (]). Last functions allow une list's contents to be subtracted from
another, identifying thie elements of list A that are not duplicated in list £ You can
test lists for equality, defined for lists as containing the identical clements in the same
order, or for weak equality, which does not consider ordering. A list macrolist.directive
(poscf) may he used to determine whether a particular entry axists in a list, and i£30
in which position in the list. An excellent discussion of many of these jssues may be

| found in Cox (2003).

between macros and Stata’s scalars is no longer pumeric content alnes
. and scalars may contain string values, However, the length of B.ﬁ.‘ﬁ“g'm-‘
a string variable (244 bytes: see help limits), Whers=
purposes unlimited.” Stata’s scalars are 1
quantity is stored in a macro it must
ion into a printable form. That ¢




. sealar root2 = sqre(2.0)
. generate double TootdDP = gaperoota

[he difference between a macro and a scalar & .
qust be dereferenced to refer to its value, whereus the sealar js |
svor, & scalar can appear only in an expression where
expression could be used. For instance, you eannot spee
range qualifier since its value will not be extracted. It may be
nee that contains a numeric expression. sk

Stata’s scalars may play & useful role in a complicated do-file. By defining scalars
at the beginning of the program and referring to them throughout thmmﬂh.?ﬂﬁﬂﬂnﬂ "y
the program parametric, Doing so avoids the difficulties of changing various con stants
in the program’s statements everywhere they appear. You may often need to !apm
a complex data transformation task for a different category, such as when you want ‘
to work with 18- to 24-year-old subjects rather than 25 o 39-yﬁnbn]ﬂ-_-mihjm Your
doefiles contain the qualifiers for minimum and maximum age thl'ﬂugh-_tmt; thﬂmgfhm.
If you define those age limiis as scalars at the program’s UU{:B-El-, the do-file bec ‘-
much simpler to modify and maintain. e

B.3 Loop constructs

One of Stata’s most powerful features is that it lets yon write a versatile Stata pro-
gram without many repetitive statements. Many Stata commands contribute 5
flexibility. As diseussed in section 2.2.8, using egen with a by prefix makes it possi-
ble to avoid many explicit statements such as compute mean of age for :
compute mean of age for race==2, Two of Stata’s mmtumﬁﬂmmmnﬂﬂfr&gi
it the Stata Programming Reference Mamal: forvalues and.-:ﬁﬂm L fr
tools have essentially supplanted other mechanisms in Stata for looping. You

uhile to constrict a loop, but you must furnish the counter-as.a io
command is now obsolete and is no longer deseribed in the manuals.
Mlowed only one command to be included ina lnﬂpétsmumpm._[ms
With o tortuous syntax) and rendered nested hupgn_'[mgm osil

e or more following command lines, and &




e imgter = gl
AT 12 IIW!. & .

Mean  Std. Dev.. Min Max

7.931661 ,§0451 5.794211 8.768936

Mean  Std. Dev. Min Max

T.042132 .GB28793 4.802062  B.TGO156

Meéan Std. Dav. Hin Max

T.987085 .537941 £.327221 8.736869

Obs Hean Btd. Dav. Min Max

ingdpd l 400  T7.886774  .5983831 5.665083  B.729272

Here the local macro 1 is defined as the loop index. Following an equals sign, we aive
the range of values that i is to take on as & Stata numlist. A range may be as simple
as 1/4; or 10(8)50, indicating 10 to 50 in steps of 5; or 100(-10)20, from 100 to 20
counting down by 108, Other syntaxes for the range are available. See (] forvalues
This example provides one of the most important uses of forvalues: looping Over
variables where the variables have been given names with an integer component 5o that
you do not need separate stalements to tramsform each of the variables. The integer
component need not be a suffix. We could loop over variables named cty Ngdp just 85
readily, Or, say that we have variable names with mote than one integer component:

- forvalues y = 1995(2)1939 {

2. forvalues 1 = 1/4 {
i 3.  summarize gdp'i’_‘y!
Ay i g




B.3.1 foreach

gap1_1997 00 3597.038

‘Variable : Mean

gdpa_1987 00 3618.478  1677.353  153.0657

Variable Obs Mean  Std. Day. " Kin

gdp3_1997 400 3710.242  1603.25  6&T.2679 .
Varinbla Obs Kean  Std. Dav, W
gdpd_1997 400  34B4.322  1630.356 3482078

Variable Oba Mann Std. Dav. Mini

gdp1_1989 400  3388.038  1609.122  344.8127

Variable Obs Mean Std. Dew. Min
gdp2_1999 400 3404.27  1602.077  139.8895

Yariable (bs Hean Std. Dav. Min 3
gdp3.1958 400  3495.006  1530.602 587.5793  6539.TAT
Variable Obs Hean Std. Dav. Min Max
gdpd_1999 400  324B8.467  1565.178 303.3155  6490.291 |

As we see here, a nested loop is readily constructed with two forvalues statements.

As useful as forvalues may be. the foreach command is even mor

structing efficient do-files. This command inferacts perf&(!l‘-h' with
common constructs: the macro, the varlist, and the numlist. Like 1u
macro is defined as the loop index. Rather than cycling through ﬂ?ﬂﬂﬁﬂ T
foreach specifies that the loop index iterate tl'u:t:-ugh_thﬂ |
macro, the variable names of a varlist, or the elements
be an arbitrary list of elements on the command line or
ﬁﬂﬂ.blﬁ not present in thB dat.aset



r— 5
" goppe | -0.3830 1.0000

Varisble Obs Mean  Std. Dew. Min Max
n.tlmu' 40 T6.1 17.88112 28 100
{obz=40)

popgro-h safeva-r

“popgrowth | 1.0000
safauster =0:4280  1.0000

lowin _fmmlﬂﬂ automates the construction of a recode statement. The resulting
nt tapuid just be typed out for four elements, but imagine its construction if we
‘eountry codes! local ++i is a shorthand way of incrementing the counter

) ,_withinthelmp“



11t LCD 25.00
112 100 25,60
134 100 2500

136

—

Total 400 100, 00

you can also use the foreach statement with nested lo6ips; You can combine:
and forvalues in a nested loop structure, as ill Vetratad hen i

. lecal country US UK DE FR
. lecal yrlist 1895 19859
cfervalues 1 = 1/4

a. local conama: word ‘4% of *country!

q: foreach ¥ of loeal yrlist {

4, Tename gdp'i'_'y' gdptename! iyt

g. F

g
. Bums gdpliss

Variable | Oba Mean Std. Dav. Min Max

gdplis_ 1995 400 B226.703 1532.497 328,393 6431.308
gdpUs_1935 | 400 3288.038  1609.122  344,8127  6752.894

It is & good idea to use indentation—either spaces or tabs—ta align the loop ody
statements as shown here. Stata does not care, as long as the braces appear a5 required,
but it makes the do-file much more readable and easier to revise later.

In summary, the foreach and forvalues statements are essential com
any do-file writer's toolkit. Whenever you see a set of repehtwe stat
do-file, it probably means that its author did not understand hnw
tonstructs could have made the program, its upkeep, and her
excellent discussion of the loop commands, see Cox (2002a).

Matnces




an create a Stata matrix from a varlist of
or 0 v that may be used is limited to 800 in f
ou do not plan to use Mata, two points should be made. First, Stata
) spe 1 operators, such as matrix aceum, that can compute cross-product
vices from any number of observations. A regression of 10,000 observations on five
i udhlg constant) involves a 5 x 5 cross-products matrix, regardless of ¥,
ns on this command such as matrix glsaccum, matrix vecaccum, and matrix
E enerate other useful summaries. In that sense, the limitation on matrix di-
mension is not binding. The matrix accum pommand and corr() matrix funetion are
ﬂm useful for generating correlation matrices from the data. For instance, mat accun
o= wvarlist, dev nocons will compute a covariance matriz, and mat Corr = corr(C)
_will transform it into a correlation matrix. The correlate command can display a
correlation matrix but cannot be used to save its elements.

Goeond. the brute-force approach is rarely appropriate when working with eomyplex
matrix expressions. For example, the SUR estimator discussed in section 9.4) s pre-
sented in textbooks as a GLS estimator involving large block-diagonal X and large
matrices of enormous dimension. Given the algebra of partitioned matrices, every statis-
tical package that perforins SUR writes this expression as the product of several terms,
one per equation in the system. In that expression, each term is no more than one
equation’s regression. A huge matrix computation can be simplified to a loop over the
individual equations. Although you might be tempted to copy the matrix expressio
“straight from the textbook or journal article into code, that method will usually not

work—not only in Stata's traditional matrix commands or in Mata but in any matrix
language, as limited by the computer’s available memory. It may take some effort whes
implementing complicated matrix expressions to reduce the problem to & workable size.

If you are not developing your own programs (ado-files) or learning to tse ”ﬂ.“’*
Stata matrices are likely to be useful with saved results and as a Wway of organiziis
information for presentation. Many of Stata’s statistical commands and all estmE
tion commands generate one or more matrices behind the scenes. As discussed 10
‘section 4.3.6, regress—like all Stata estimation commands—produces matrices e(?
“und e(V) as the row veetor of estimated coefficients (a 1 x k matrix) and the estimitt
vari covariance matrix of the coefficients (a & x k symmetrie matrix), respectiv fm.'

ne those matrices with the matrix list command or copy ghem 1=
the matrix statement. The command matrix beta
in your program as a copy of the last estimation comBATES

= ﬂ{'_ .

appear in square brackets. Since ¢
-subseripts, and both subscripts



' oes are often ys he
it that are to be presented in tabular

ecriptive statistics for a set of by-groups, Li
goum, available from ssc) to generate a matrix
asiables or for one variable over by-groups. You can then
surtable to generate a IXTEX table. You can use Michaol B
(ab-delimited output. You can change Stata matrices’
satrix rowmames, matrix colnames, and several macro
i section B.1.2), which allow vou to control the row uﬁ-:m:
autput- Stata’s traditional matrix operators make it pmai.hh

from several submatrices. For instance, you may have one mm:ﬁ:k
in & multicountry dataset. In SUIMmary, judinin{as-m ui'.ﬁ[’:gh‘,’;' raditio

commands ease the burden of many housekeeping tasks and make it
material in tabular form without retyping.. - . |

g5 return and ereturn

Fach of Stata’s commands reports its results, sometimes noisily, a5 when a
return code is accompanied by an error message (help rc), but usually silently.
results from Stata commands can be useful. Using stored results can greatly
your work with Stata, since you can create a do-file to use the results of
gtatement in a computation, title, gm]}h |&li}lu‘]._. Or even a Cﬂﬂ-&itmﬂﬁl M

Fach Stata command belongs to a class—r-class, e-class, or less commo
These classes apply both to those commands that are built in (such as sussa
to the 80% of official Stata commands that are implemented in the ado-file I
The s-class commands are estimation commands, which return (b
estimated parameter vector and its variance-covariance MALTIX, ] \
calling program, as well as other information (see help ereturn). Almos
vial Stata commands are r-class commands, which return results to th
{help return). Let us deal first with the simpler r-class commands.

Virtually every Stata command—including thos
ating results—places items in the return list that
the same name.'® For instance, consider describe:




variable label

e .0g
%9.0g
%e.0g
%9.0g
Wa.0g
Yo . 0g
wa.og
%a9.0g

8.0
%9.0g
HB.0g
%a.0g
¥a.0g
W8 0g
%8.0g
%8.0g
8.0g
hE-0g

yanr==
yoar=s
yoprss
yonr==
yoar==
yaar==s
yopre=
yoar=s

19760000
1977 . 0000
1978. 0000
1979 . DO00
1980, 0000
taEt. 0000
1982 . 0000
1983, 0000

1984 ﬁbﬂu___-_-_______




Percentiles Smallest
1% 142 .104
i 431 <122 ,
10% - 665 123 tbs
a8y 1.18 +136 Su= of Wgt.
B0 2.287 Huun.

Largest Std. Dev.
7E% T.038 101.04

a0% 17.519 103.129 Varimnce
a5 32.4 106. 665 Skewnesa
G 89.2 108,562 Kurtesis

. return 1list

scalars:
r{H)
r{sun_u)
r(mean)
ri{Var)
riad)
r({skewnena)
rikurtosis)
r(sum)
r{min)
r{max)
r{pl)
r(p5)
r{pl0)
r(p26)
r (ps0)
r{pT5)
T{pa0}
T (pB&)
r{p99)

. soalar igqr = r{pTh}
. display "IQR =" digr
10R = 5.B559998 .
. scalar semean = r{sd)/sqrt{c(l))
. display “Mean = * r(msean) " S.E. ="
Mean = 7.891677 S.E. = .49627295

1031
1031
7.891677013539667
253.921T3T1514514
15,93492193741317
3,922751923643387
19, 46982480250623
8136, 319000959396
. 1040000021457T672
108, 5619964599609
. 1420000046491623
.4309999942779641
. 6B500002145T6721
1.179999947547913
2.2B6999940872192
7.,035999774932861
17.91800062561035
32.40000152587891
§9.19999694824219
r(p25)




\ time-serios or panel data, you will often noed to

and if so, what variable is serving as the calenddr
.. qﬁthﬂ PBTIEI mﬂb}ﬂ' (H ﬂﬂﬁ“Ed}, Fﬂ‘r iﬂﬁtﬁﬂml y : &

. use http://wwu.stata-press ccomfdata/imeus abdats, clear

. taset
panel yariable:  id, 1 to 140
time variable: woar, 1976 to 1884

. raturn list

scalars:
ritoax) = 1984
rltain) = 1976
riimax) = 140
rlimin} = 1
mACEOR T

ripanalwar) : "id"
ritisevar) : "year”
rlunitl) %"
ritafmt) @ "%9.0g"
ri{umaxs) 1 “1884"
ri{toina) @ M1978"

Here the returned scalars include the first and last periods in this panel dataset {_19?.1‘5
and 1984) and the range of the id variable, which is designated as r (panelvar). The
macros alsa include the time-series ealendar variable r(timevar) and the rzmge_-af thnk
sariable in & form that can be readily manipulated, for instance, for graph titles.

Many statistical commands are r-class since they do not fit & model. cmjralat.a ?:;E
Cpeturn ane estirented correlation coefficient, irrespective of the number of *’:Tﬂhl@ i ﬂt
commind’s parlist the correlation of the last and next-to-last variables.™ TMIE;“

command is also T-class, so we can access its return list to vetrisee all the quant

computes:




. tteat omp, by{lowind)
‘Two-sample t Test with equal variances

Group Oba Memn  Std. Err,
a 434 8.858040 . 95404085
1 BO7 711799 5019414
combined 1031 T.BO1G6TT LABE2T3
diff 1.837852  1.004043

diff = mean{(0} - mean(1})

Ho: diff = (1]
Ha: diff <0 Ha: diff |=0
Pri{T < t) = D.96B3 FriTl = |el) = 0. 087C

. return 1ist

sealars:
ri{sd) = 15.83492193741317
risd_2) = 12 264336184 78487
risd_1) = 19,8752084T697869
ri{sa) = 1,004042603732077
rip_u} = .0337282628026395
rip_1) = .S662T1T3T1073606
rip} = .06T456525TREITHL
r{t) = 1.83055208312211
ridf _t) = 1023
rimu_2) = 7T.117988358378378
r(N_2) = 597
rimu_1) = 8.955942384452314
r{N_1) = 434

The return list contains scalars representing each of the l:hsp]&}tﬂ” t

standard errors of the group means, and the confidence inte

jl'_ié-'i...l ereturn list




-.4185008 _
2.018417  2.191349
8.000657  12,71808

ofdf.m) = 2
afdf_r) = 1028
a(F} 1160, 711019312048
elr2) JGO30B1ATEIAZIS42
alrmes) 8, B3666TEITATTAY
almsn) {1268 . 08004 TEETT
efrasl s0a71 . 30521843699
elrZ_a) L B9Z4842690385798
e8l(ll) =3707T , BETBAZE9600
el(11_0) —4316. 762338668647

altitle) = "Linear regression®
eldepvar] : “omp!
a(emd) : "regrass”
wlpropertiss) « "B V"
elpredict] : "regres_p*
almodal) ¢ “ols!
-atontat_cmd) : “regrass_ostat”
mATricas:
atbl :
alVy :
|[:I|.|‘p1|]

g

! jﬂﬂj@{b‘m this list are e{df .m) and a(di_r}l. vhe Mﬂ#’
Spe vely—the numerator and n:lmt.‘lmi’u.utm‘
 the Root MSE of the equaﬁum




(e the estimated pmmm’«mwm -
,column names of that matrix.

Many official Statn mrnmmdu, mm,wm
raﬂuntiml pvailable from ereturn liss, =
(8] regress postestimation), as dwm
.-qu.nli'ﬁezi after regress? It can retrieve all |
pegTEsSOTS , dependent variable, and the net Eﬂ’ecl. of
(from n{sampluij—-frﬂm the results left behind as e-class -
functions by the e-class command. Any do-file vou write ikt pep
if you use ereturn 1ist to find the names of each qu;ﬂw
and store the results you need in local macros or scalars o
c::!mn.lml As noted above, retaining sealars as scalars h‘ﬂpﬁ to main
Youl shiontld not store scalar quantities in Stata varinbles 1l pss; ﬁlﬁf&i&l
|Iﬂ Al

The e-class commands may be followed by ooy of the Bﬂtmmﬂﬁllitﬁ
deseribed in section 4.3.6.  Estimates may be saved in-sets, mtmil:-:lﬂ.h
hined in tabular form, as described in section 4.4, Most estimation
be followed by any of the estat commands; which generate [:ml-ﬁh_
For instance, estat vee will display the variance-covariance matrix D the
pirnmeters (e(V)) with Hexibility over its formatting. estat ic comy
information criterion (A1C) and Schwarz's Bayesian information: criteria
timmation command docnments the commands that may be UHEt] i 'lnwi
For example, [k] regress pmtﬂhtlmﬁl.mn {!l‘ﬂ"rlhm ::mmnm'-rls that )
ter regrass. Some of these commands are types of estat, wheress of
pastestimation commands, such as predict, test, and mfzx.

n.r#

B.6 The program and syntax statements

an ado-file ia tlml if ;.-uu have written m}"pIﬂE d‘“ ou run it
do myprog. But if you have written myrealprog.ace
command myrealprog as long a8 your oew 'ﬂﬂ [l

There are more prufuu:ld d

.‘huincmurwmﬁﬂ, if




r(sd () _

jenn of 'varlist' = = r{mesn) " SiE. = " sesean
scalar sempan = gemesn
scalar mean = ri{mean)

rﬂm‘.‘n local var ‘varlist’

. use mgh:?!ﬁu;mltn-pmu.cmm“ﬂ imeus/abdata, clear
. semean emp

‘Maon of emp = 7.891677 S.E.
. return list

scalars:

= 49627295

rlmoan) = T BOAETTO136306EY
r{gemonn) = AOERTIO540865196

BAECTO5]
rlvar) i "emp®
dand. Once a program has heen

We start with a capture programn drop prognaie comi
o duration of the session. S

loaded into Stata’s memory, it is usually retained for th

we will be repeatedly defining our prograti during its de we want Lo make

sure that we're working with the latest version.  The following comment line starting
ut that will show up in the file

with =1 (termed star-bangin geekish) is a special comme
command. It is always u good idea to document an ado-file with a BEqUEnce pumbir.
anthor namie, and date.

_ The program statement identifies the progriun name is semean. We have checked 10
see that semean is not the name of an existing Stata command. Since findit semean
locates na prograu by that name, the name is not used by an official Stata command;
a‘mutme in the Stata Technical Bulletin or Stata Yournal, or by any 8¢ routing:
Idu.ﬁne the program as rclass. Unless a progeam is defined as rclass o eclass it

eannot return values, The following version line states that the ado-file requires 3
1 by Stata 10007

Mfmmﬁthat the progrism will obey Stata O syntax when pxectted by

' . ].l v Stabs D o it udtt‘lil-"r.'ll'm& Iﬁjﬁﬂd
nts for use within the program. In this simpl -

it of syntax: specifying that the program his £ ¢

velopmert,

il



6 The program and synitax g

Lthont printed output. We could alw ok T
gutput would be useful. Not much work fs need E
pograli. The definition of if erp and in e
jandied by the syntax statement. In the im e
{hat ench of these qualifiers may be used. .! vt
ﬂpﬁnnfﬂ component _ul' the eommane, Thia Lo raterae :
jas @ “noprint” option and that it is truly qusinni_ lllu{mﬂm
mi‘li""l aptions on a Stata command). Here {5 the Teviad. . .

. capture program drop semean
. «| gemann v1.0-2  CFBamm Ddmug 2006
. progra= define sesean, relass

1; varsion 5.0
syntax varlist{zax=1 numeric) [if] [in] [, noFRInt] -
marksaople touse e
quietly summarize 'varlist' 4f 'touse’
scalar semesn = ¥ (sd)/agre(r(N))
if ("‘print'® = Vnopringdy {

display _n "Hean of ‘varlist! = " r{msan)

=l N L R

) ¥ 8.E. =" samean

B. ¥

9. return scalar semesn = gemean
10. returs scalar mean = r{mean)
11 raturn scalar H = z(i)

12. return local var “varlist’
13, end

Since with an if ezp or in range qualifier, something less than the
analyzed, we have returned r(¥) to indicate the sample size '
The marksample touse command makes the if exp or -
if one was given on the command line. The command r
should enter the computations in an indicator variable touse, ¢
observations. The touse variable is a fempuar, or temp b
macro will disappear when the a:l':!-ﬁk-"'{‘mﬂ?*' E‘““m '
vasiables with the tempvar command, When you need &
& tempvar to avoid possible name col o
variable is temporary, we refer to it as\
lias 1o its internal (arbitrazy) name.




an omp if year < 1982, noprint

e() = T8
r(maan) = 8.67967986067I757
ri{semean) = LB023535044792725

I mecros:
i r{var) : "emp"

to suppress the printed output.

The it exp qualifier works, and we can use nopr int
First, we would like it to be

Eran.

Two other features would be useful in this pro
h}mb]e: to perimit its use with a by varlist: prefix. Since we are creal IngE no new variables
with this program, we can make the program byable just by adding b;,rable{recall) to
t-h&'.gr.pg"aﬁ statement (see [P| byable for details). Second, we might like to use Lme
series operators (L.. D, F. ) with our program. Adding the ts specifier to varlist
enable that, The improved program becomes

. cappure Program drop Semean

ol gemuan v1.0.3 CFBaum Qdaup2005
iua sesean, relass byable{racall) sortpreserss

. progra= def
Si version 9.0
L ayntax varlist(max=l ts numeric) [if] [in] [ noPRInE]

3 marksample touse

4. quistly summarize ‘varlist’ if 'touse’

5. scalar semean = risd)/agrt(r(¥))

1f (M 'pringt” t= "noprint") {
: ! v rigean)

disp. _n "Mean' of ‘warlist' =
" 5.E. = " pemaan

3 _
‘return scalar sedean = semean
return scalar mean = ¥(=mean)
‘return scalar H = ol)

n local var ‘varlisc’




1'_,;,. ”lr — 1“?’-
Mean of emp = 9.B449251 S.E. = 2.1021706

=> your = 1977
Hean of emp = B8.6361180 5.E. = 1.393463

I =3 yEar = 1978
Moan of emp = B.6443428 8.E. = 13930028

-> yoar = 1978
Hean of emp = B.T162357 5. E. » 1.4311206

=» year = 1980
Moan of emp = 8.65TET16 S.E. = 1,461188% -

=» yuar = 1981
Mean of emp = 7.7214 G.E. = 1.,3467025

=3 yoar = [982
Mesn of omp = 6.0304B5T 5.E. = 1.2245105

=> year = 1583 y
Hean of esp = 5,20092664 5.E. = 1.3286037T

=3 yoar = 1684
Hean of emp = 2.2206143 8.E. = 48380781

Finally, for pedagogical purposes, 1 demonstrate huwmnd!lm L
to the program: the ability to operate on a transformation of the
generating that variable,'” We use the tempvar statement to all
‘variable, target, which will be equated Lo the varlist in the

- i
argument or that function of varlist if function() w Th
is Mﬂ to store the ﬁarg&t. nl.' the 1:m_tuna._:i':1 and _11% 0 il




iy local tEE wigynetion! {fvarlist’)"
o
captura tsset
capture genarate deutile ‘target' = ‘tg! af ‘touse’
if re > 01
display as err WError: bad fumctiom ‘tgt’”
error 198
}
quietly summarize ftarget’
scalar Sem@an = ri{md) fsqreiriil)
{¥ ("lprine?" 1= *poprint”) {
display _n "Hean of ttgt' = * rimean)

> " 5 E. = " memean

2. }

2. return Scalar Semean = Samean
25, return scalar =mean = r(mean)
24 return scalar N = r(K)

25. roturn local var ‘tgt’

296, and

‘As the example below demonstrates, the program operates properly when applying &
transformation that reduces the sample size. The log of D. emp i5 defined only fior IJ'li'ﬁ“'I""E
changes in employment, and most of the 140 firms in this sample suffered declings in
employment in 1982.

. semean emp
Mean of emp = 7:891677 S.E. = .39627295
-; Wmﬂp. fync(egrt)
of sqrt(emp) = 2.1652401 §.E. = .0SSTEB35
semenn emp if year==1982, func(log)
.= .92474464 S.E. = .11333951




. peturn 1list

.#1.:1:
;:F;'- 2
Faoan) = <2 rrsssaseer
rlsomean) = .3094465211388764
macros! Sk

rivar) : "lag(n. -P,}'n

The progran can now emulate many of the features of an. i
pemsnining briel. We have only scratched the surfiuca of what
aido-file. For instance, many user-writton pro 5 il
computations based on the values of options, which miay have the
IWr,wril-lun programs may alsae be used to define ad.ditln'nﬂ m

pames (and the file in which they reside) will start with it s
define the fool) unetion to egen. & that ]..H,

Although many Stata users may become familiar with the progeam and its:
ities without ever writing an ado-file program, others will find thatthe}*aﬁ 2
rewriting quick-and-dirty code that gets the job done today, with minor varia
perform a similar task tomorrow. With that epiphany, knowledgeable Smwm:ﬂfﬁl
recognize that it is o short leap to becoming more productive by learning how to write
their own ado-files, whether or not those programs are of general use or wh
shared with other Stata users. As Hilggﬂﬁl.ﬂl Eﬂtﬁﬁ[‘_l the would-be PrOZTATHET: il
investagate Statal '.1r]1.‘:< NetCourses to FI}TIIIEI]L}“ learn these shills.

B.7 Using Mata functions in Stata programs

This last section briefly introduces the Mata matrix programming
Statu in verston 9.'% As Mata's online documentation indicates,
a purely interactive mode like other matrix languages, such 45 G
However, the greatest benefit of Mata for applied economists is that it
programs that take advantage of its facilities by executing comp
interpreted commands of an ado-file. There is no difference

extenting commands in a do-file and the same commands in g
functions can be compiled—a one-time task—and the:
many times faster than similar commands in the interpre
SC routinies contributed by Stata users—Leu X
Sore matching'! and Roodman’s xtabend2 fo




o sy i

ke o Stata program stored in an ado-file obsolete. Most new fea-

ata as ado-file programs serving as wrappers for one or more Mata

use each language —ado-file code and Mata—for what it does best,

functions available with the syntax statement provide important

creating Stata commands with an elegant user interface, error checking, and

the ﬂnml:het-uak'[& assembled in ado-file code, it can then be passed to Mata for

rapid processing. As we shall see, Mata can both access Stata's variables, magros, and
sealars and place results back into those objects.

‘We now construct o Mata functicn that solves a data transformation problem posed
by a Statalist contributor.?! This user had a set of variables, each containing N ob-
servations, and wanted to create & new set of varinbles in the same dataset. Each new
variable's observations are the average of two consecutive observations. Thus the aver-
age of observations 1 anel 2 of ¢ beeconu=s observarion | of tho new varinble, the average
af abservations 4 and 4 becomes observation 2, and so on If this transformation could
be done, discarding the original data, the collapse statement o sarld e wsed after defin-
ing an indicator variable that identifies the subgroups. Alternatively, the egen groupl)
function would generate the averages but would align: them with the even-numbered
abservations with missing values interspersed.

In contrast, the Mata function we construct will perform this task ns originally
specified. Sinee there may be limited use for such a specific tool, the function i designied
to solve a8 more general problem. When working with time-series data, we often want
1o construet averages of p consecutive values of o variable as consecutive ohservations
We may want Lo juxtapose quarterly national income data with the average inflation
Fﬂdﬂﬂﬁﬁm& quarter, with inflation reported monthly. Likewise, we may warl 10
ﬁ? monthly data to annual format, quarterly data to annual format, of husiness
daily data to weekly data. Any of these tasks is generically similar to the more specific

“'ﬁ“ i Mata function named averageper(), which 15 mnﬂl.
e the nami& of in/Stata variable, the number of consecative Per
“and the name of a touse variable. As discussed in section B.G: 0
: iy cify which observations to include in computations
nge conditions. Here is the averagaper() function:




3 4/ detine objects used in function
I'ﬂ'iﬁ 'IFIIA.'I.‘M =S ol e

>

% Tonl scalar diviscr
> rasl scalar ﬂﬂﬂh
> real satrix vl

real matrix v3

>
» // construct the new variable nnme from original nass I.Iﬂ )
» view = voame + "A" + strofreal(per) e

> // sccese the Stata variable, honering any if or in Eﬂﬁd.itiliﬁl-
> vi=st_data(. .vname,toune) »
> fi verify that psr i% approprinte
> if (per<=0 | per > rows(wild) {
» im‘l:l:l-:.'l.' "per must be > 0 and < noba. ")
>
> /f verify that nobs is a miltiple of per
> if (mod{rows(vi) per) 1= 03 {
5 _Fer:ru:r( nobs must be a oultiple of per.®)
>
»ff reshape the column Yector ints nobs/per: rows and por columns
>/ postaultiply by a per-element row vactor with values Ubn-
> divisor = 1/par
» vd = colghape{vl® perl = Jipor,1,diviscr) [~
> ff odd the new variable to the current Statd data aat
> regindex = at_addvar({*float", vnow)
» [/ store the calcolated values in the new Stata variabla
> st_storel(1,rovs(vd)})  resindex, v3)
3
and I

The mata: command invokes Mata, allowing us to give Mata l;:ummm'lﬂli.

Bnd the 1.':|qu' of per concatenated. Thus, if we specify variable pﬁ&‘
the new variable name (vnew) will he priceA3.

We then use Erinba"ﬁ st.data() function to uccms tha 5-_;: t

allow us to create & view of that variable, urﬁw
function, we must use st data(). This function wﬂl?

Wndmc:-na that have been stored in touse.




S

We then transpose the reshaped matrix and postmultiply by o per-

*2per i

Tpor.1 Tpar2 77 Lpar iy
4 Zparti
& Fpar+

\ &/
ploment: columin

yoetor to construct the per-period average:

. L
Ty Tz v Bpar 'PF xy
Tyg Epg e Tpar s e g

\ LYy Ty vt Tpery e

vector #‘ lkbalqd ¥3 in the Mata function, contains the svernges ©
at w to add the variable vnew, declared as a f10a%, 10 the Statt.

avar(), This attempt will fail if this variable name
of v3 in the vummrahm:_
3

f ench



{file aversagepor.mo craj Pl

Now that our Mata function hag htﬁn
poutine. Strictly speaking, this task js J;“
directly from Stata 4s mata: average per
syntax and other features of the ado-file la h’gi- tnge
defining the averageper command to Stata is.
varname must be provided, as well as the required per () optic
We use marksample to handle if emp or in range eons
required by the Mata function are passeq: thﬂvmﬁﬂ:.-a'ﬁﬂ. i
the per is passed a5 a8 numeric value, fatits

. = define the Stata aversgepor wrapper osmand
. #! wverageper 1.0.0 05aug2005 CFRaum I
Progran AVErAgeper, rcliss
1. varsion 9

2, ayntax varlint(max=1 numeric) [1f] [in] T i
3. /) honer if and in conditions if provided ; F'L'f. -.II.F-.%

margaasple touse

4. // pass the variable name, per, and ‘“““'M'.thi'ﬂltl_im lbq-: F
mata: aversgeper(”'varlist'", ‘per’,"itousa’"). T I
6. end -

Or we could have placed the Mata function definition mumaﬂneﬁﬂ
placing it in a separate .mata file and creating a .mo object file: Ifl]!-
the ado-file, the Mata code will be compiled the first time that the
file is called in your Stata session. Subsequent calls to the ad
compilation of the Mata function (or functions). An exchange ¢
that if the Mata funetions amount to fewer than 2,000 lines of ¢
in ado-files will vield acceptable performance. However, if your
be called by several different ado-files, you will want to store the
object files rather than duplicating the Mata code.

We now are ready to test the averageper con
Reference Manual dataset urates, con

ment rate—using both per(3) nmi
respectively,




/I calculata quarterly averages
2) // calculate annual averages

Hean grd. Dev. Hin Hax

§.333744  2.0TE30E 3.7 12.8
. 339744  2.078565  3.768667 12 .GEE6T
6 asg7ed  2.078075 3.908333 11 ,B3333

arize command shows that the original series and two new series have identical

hich they must. To display how the new variables appear in the Stata data
> truct two date variables with the tsmktim command (Baum and Wiggios
and list the first 12 abservations of Tennessee's data. You can verify that the
i& computing the correct guarterly and annual averages.

t.nrtin quarter, start(1978ql) // creats quarterly calendar var
) ‘time variabla: guarter, 1978g1 to 206504

. teaktim year, start(1978) // create pnoual calendar VAT
time variable: yesr, 1878 to 2289

. st t temn querter temnkd yoir tennAl2 in 1/12, sep(d)

I t temn quarter tenpid  yoar gennil2

: b et
1978mL
197822
1978a3

i978q1 5.986687 1978 5.8
1878q2 5.766667 1979 5. 791667
19783 5.733333 1980 T

D

Seabie W )
1678q4 5.733333 te8L & pa3a3l

i979q1 5.73sza3 1082 11 .63333
1979q2 5.7 1983 11.45833

P —

o g o
o

3

1979q3 5, 733333 1 g.56

19794 & 1985 T ;583334

188091  6.166667 qo88  B.041667
e

] an e s
s | NN [

e

198Dqz  7.086867 1987 6,591667
198093 iy o 1988 5.776
198004  7.986667 5.108333
— = ___—-——-""




J " Yariable | Obs

{llinois 312  6.88E084
{11inoisAl 104 6. BEE064

Although we could do much to improve this mntmnﬂtgénr
This short excursion into the new world of Mata pmgrmdﬁg
idea of the powerful capabilities added to Stata by this v

you are going to write Mata functions, you should have u copy uﬁhﬁ:
Manual.
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