An Introduction to Modern Econometrics Using Stata **CHRISTOPHER F. BAUM** Stata Press WWW.TRADING-SOFTWARE-COLLECTION.COM # TRADING SOFTWARE # FOR SALE & EXCHANGE <u>www.trading-software-collection.com</u> ### **Mirrors**: <u>www.forex-warez.com</u> <u>www.traders-software.com</u> <u>www.trading-software-download.com</u> <u>Join My Mailing List</u> An Introduction to Modern Econometrics Using State # An Introduction to Modern Econometrics Using Stata CHARLES OF THE STATE T S. Stein, Print Publishers Standings S.F. Edding States, Toront I have incurred many intellectual debts during the creation of this book. Bill Gould. David Drukker, and Vince Wiggins of StataCorp have been enthusiastic about the need for such a book in the economics and finance community. David Drukker, Vince Wiggins, Gabe Waggoner, and Brian Poi have provided invaluable editorial comments throughout the process. My coauthors of various Stata routines—Nicholas J. Cox, Mark Schaffer, Steven Stillman, and Vince Wiggins—have contributed a great deal, as have many other members of the Stata user community via their own routines, advice, and Statalist inquiries. Dr. Chuck Chakraborty has been helpful in identifying topics of interest to the consulting community. Dr. Petia Petrova provided a thoughtful review of portions of the manuscript. At Boston College, I must thank Nadezhda Karamcheva for able research assistance in constructing example datasets, as well as colleagues in Research Services for many useful conversations on using statistical software. I am deeply thankful to Academic Vice President John Neuhauser and Dean Joseph Quinn of the College of Arts and Sciences for their acceptance of this project as a worthy use of my fall 2004 sabbatical term. I have adapted some materials in the book from course notes for undergraduate and graduate-level econometrics. I thank many generations of Boston College students who have pressed me to improve the clarity of those notes and helped me to understand the aspects of theoretical and applied econometrics that are the most difficult to master. Last but by no means least, I am most grateful to my wife Paula Arnold for graciously coping with a grumpy author day after day and offering encouragement (and occasionally grammar tips) throughout the creative process. Christopher F. Baum Oak Square School Brighton, Massachusetts July 2006 # Contents | | Illu | strations | | xv | |-------------------------|------|-----------|---|------| | | Pre | face | | xvii | | Notation and typography | | | | | | 1 | Intr | oduction | | 1 | | | 1.1 | An ove | rview of Stata's distinctive features | . 1 | | | 1.2 | Installi | ng the necessary software | . 4 | | | 1.3 | Installi | ing the support materials | . 5 | | 2 | Wor | king wi | th economic and financial data in Stata | 7 | | | 2.1 | The ba | sics | . 7 | | | | 2.1.1 | The use command | . 7 | | | | 2.1.2 | Variable types | . 8 | | | | 2.1.3 | _n and _N | . 9 | | | | 2.1.4 | generate and replace | . 10 | | | | 2.1.5 | sort and gsort | . 10 | | | | 2.1.6 | if exp and in range | . 11 | | | | 2.1.7 | Using if exp with indicator variables | . 13 | | | | 2.1.8 | Using if exp versus by varlist: with statistical commands | . 15 | | | | 2.1.9 | Labels and notes | . 17 | | | | 2.1.10 | The varlist | . 20 | | | | 2.1.11 | drop and keep | . 20 | | | | 2.1.12 | rename and renvars | . 21 | | | | 2.1.13 | The save command | | | | | 2.1.14 | insheet and infile | 21 | | | 2.2 | Comm | on data transformations | | |---|------|----------|---|-------| | | | 2.2.1 | The cond() function | 23 33 | | | | 2.2.2 | Recoding discrete and continuous variables | | | | | 2.2.3 | Handling missing data | . 2 | | | | | mvdecode and mvencode | | | | | 2.2.4 | String-to-numeric conversion and vice versa | . 2 | | | | 2.2.5 | Handling dates | 100 | | | | 2.2.6 | Some useful functions for generate or replace | | | | | 2.2.7 | The egen command | 000 | | | | | Official egen functions | | | | | | egen functions from the user community | | | | | 2.2.8 | Computation for by-groups | | | | | 2.2.9 | Local macros | | | | | 2.2.10 | Looping over variables: forvalues and foreach | | | | | 2.2.11 | Scalars and matrices | | | | | 2.2.12 | Command syntax and return values | | | 3 | Orga | nizing : | and handling economic data | 43 | | | 3.1 | | ectional data and identifier variables | | | | 3.2 | | eries data | | | | | 3.2.1 | | | | | 3.3 | | Time-series operators | | | | 3.4 | Panel d | cross-sectional time-series data | 46 | | | | 3.4.1 | Operating on sound to | 47 | | | 3.5 | Tools fo | Operating on panel data | 49 | | | | 3.5.1 | Unbalanced panel data | 50 | | | | 3.5.2 | Unbalanced panels and data screening | 53 | | | | 3.5.3 | Other transforms of panel data | 53 | | | 3.6 | | Moving-window summary statistics and correlations | 55 | | | 3.7 | Creatin | g long-format datasets with append | 56 | | | | 3.7.1 | Using merge to add average characteristic | 57 | | | | | | | | | | 3.7.2 | The dangers of many-to-many merges | 58 | |---|------|---------|---|-----| | | 3.8 | The re | shape command | 58 | | | | 3.8.1 | The xpose command | 62 | | | 3.9 | Using | Stata for reproducible research | 62 | | | | 3.9.1 | Using do-files | 62 | | | | 3.9.2 | Data validation: assert and duplicates | 63 | | 4 | Line | ar regr | | 69 | | | 4.1 | | uction | 69 | | | 4.2 | Compu | iting linear regression estimates | 70 | | | | 4.2.1 | Regression as a method-of-moments estimator | 72 | | | | 4.2.2 | The sampling distribution of regression estimates | 73 | | | | 4.2.3 | Efficiency of the regression estimator | 74 | | | | 4.2.4 | Numerical identification of the regression estimates | 75 | | | 4.3 | Interpr | eting regression estimates | 75 | | | | 4.3.1 | Research project: A study of single-family housing prices | 76 | | | | 4.3.2 | The ANOVA table: ANOVA F and R-squared | 77 | | | | 4.3.3 | Adjusted R-squared | 78 | | | | 4.3.4 | The coefficient estimates and beta coefficients | .80 | | | | 4.3.5 | Regression without a constant term | 81 | | | | 4.3.6 | Recovering estimation results | 82 | | | | 4.3.7 | Detecting collinearity in regression | 84 | | | 4.4 | Present | ing regression estimates | 87 | | | | 4.4.1 | Presenting summary statistics and correlations | 90 | | | 4.5 | Hypoth | esis tests, linear restrictions, and constrained least squares | 91 | | | | 4.5.1 | Wald tests with test | 94 | | | | 4.5.2 | Wald tests involving linear combinations of parameters | 96 | | | | 4.5.3 | Joint hypothesis tests | 98 | | | | 4.5.4 | Testing nonlinear restrictions and forming nonlinear combinations | 99 | | | | 455 | Testing competing (nonnested) models | 100 | | | 4.6 | Comp | outing residuals and predicted values | - 100 | |---|------|----------|--|-------| | | | 4.6.1 | Computing interval predictions | 166 | | | 4.7 | Comp | outing marginal effects | 104 | | | 4.A | Appe | ndix: Regression as a least-squares estimator | 2 116 | | | 4.B | Apper | ndix: The large-sample VCE for linear regression | 119 | | 1 | Spe | cifying | the functional form | 115 | | | 5.1 | Introd | luction | . 115 | | | 5.2 | Specif | ication error | - 115 | | | | 5.2.1 | Omitting relevant variables from the model | - 116 | | | | | Specifying dynamics in time-series regression models | . 117 | | | | 5.2.2 | Graphically analyzing regression data | | | | | 5.2.3 | Added-variable plots | | | | | 5.2.4 | Including irrelevant variables in the model | | | | | 5.2.5 | The asymmetry of specification error | | | | | 5.2.6 | Misspecification of the functional form | | | | | 5.2.7 | Ramsey's RESET | | | | | 5.2.8 | Specification plots | | | | | 5.2.9 | Specification and interaction terms | | | | | 5.2.10 | Outlier statistics and measures of leverage | | | | | | The DFITS statistic | | | | | | The DFBETA statistic | 130 | | | 5.3 | Endoge | neity and measurement error | 132 | | 6 | Regr | ession v | with non-i.i.d. errors | 133 | | | 6.1 | | neralized linear regression model | 134 | | | | 6.1.1 | Types of deviations from i.i.d. errors | 134 | | | | 6.1.2 | The robust estimator of the VCE | 136 | | | | 6.1.3 | The cluster estimator of the VCE | 138 | | | | 6.1.4 | The Newey-West estimator of the VCE | 139 | | | | 6.1.5 | The generalized least-squares estimator | 142 | | | | | The FGLS estimator | 143 | | contents. | | | | | | | |---------------|---|---|---|---|--|---| | E CHIEFFERING | | | • | | | , | | | " | п | | а | | ы | | | 6.2 | Heter | oskedasticity in the error distribution | 143 | |---|------------|----------|---|--------------| | | | 6.2.1 | Heteroskedasticity related to scale | 144 | | | | | Testing for heteroskedasticity related to scale | 145 | | | | | FGLS estimation | 147 | | | | 6.2.2 | Heteroskedasticity between groups of observations | 149 | | | | | Testing for heteroskedasticity between groups of observations . | 150 | | | | | FGLS estimation | 151 | | | | 6.2.3 | Heteroskedasticity in grouped data | 152 | | | | | FGLS estimation | 153 | | | 6.3 | Serial o | correlation in the error distribution | 154 | | | | 6.3.1 | Testing for serial correlation | 155 | | | | 6.3.2 | FGLS estimation with serial correlation | 159 | | 7 | Regi | ression | with indicator variables | 161 | | | 7.1 | Testing | for significance of a qualitative factor | 161 | | | | 7.1.1 | Regression with one qualitative measure | 162 | | | | 7.1.2 | Regression with two qualitative measures | 165 | | | | | Interaction effects | 167 | | | 7.2 | Regress | sion with qualitative and quantitative factors | 168 | | | | | Testing for slope differences | 170 | | | 7.3 | Seasona | al adjustment with indicator variables | 174 | | | 7.4 | Testing | for structural stability and structural change | 179 | | | | 7.4.1 | Constraints of continuity
and differentiability | 179 | | | | 7.4.2 | Structural change in a time-series model | 183 | | 3 | Instr | umenta | d-variables estimators | 185 | | | 8.1 | Introdu | ction | 185 | | | 8.2 | | neity in economic relationships | 185 | | | 8.3 | | | 188 | | | 8.4 | | eg command | 189 | | | 8.5 | | cation and tests of overidentifying restrictions | 190 | | | 8.6 | | ting IV estimates | 192 | | | CANCEL MAN | COMMENS | ing IV pstimates | - (B. 34" A) | | 8.7 | reg2 and GMM estimation | | | |--------|---|--|-------| | | .7.1 The GMM estimator | | | | | 7.2 GMM in a homoskedastic context . | | | | | 7.3 GMM and heteroskedasticity-consiste | nt standard errors | - 197 | | | .7.4 GMM and clustering | | - 198 | | | .7.5 GMM and HAC standard errors | | . 199 | | 8.8 | esting overidentifying restrictions in GMM | | - 200 | | | .8.1 Testing a subset of the overidentifyin | g restrictions in GMM . | 201 | | 8.9 | lesting for heteroskedasticity in the IV contex | ct | - 205 | | 8.10 | Sesting the relevance of instruments | | . 207 | | 8.11 | Durbin-Wu-Hausman tests for endogeneity in | IV estimation | . 211 | | 8.A | Appendix: Omitted-variables bias | | . 216 | | 8.B | Appendix: Measurement error | | . 216 | | | 3.B.1 Solving errors-in-variables problems | | 218 | | 9 Pane | data models | | 219 | | 9.1 | FE and RE models | | 220 | | | 9.1.1 One-way FE | | | | | 9.1.2 Time effects and two-way FE | | | | | 9.1.3 The between estimator | | | | | 9.1.4 One-way RE | | | | | 9.1.5 Testing the appropriateness of RE | | | | | 9.1.6 Prediction from one-way FE and RE | | 231 | | 9.2 | IV models for panel data | | 232 | | 9.3 | Dynamic panel-data models | | 232 | | 9.4 | Seemingly unrelated regression models | 22 | 236 | | | 9.4.1 SUR with identical regressors | | 241 | | 9.5 | Moving-window regression estimates | | 246 | | IU Mo | els of discrete and limited dependent veri | obles | 241 | | 10.1 | rogit and probit models | | 241 | | | 10.1.1 The latent-variable approach | | 240 | | | | | xiii | |-----|----------|--|---------| | Con | tents | | -950 | | | 10.1 | | 251 | | | | Binomial probit | 200 | | | | Binomial logit and grouped logit | | | | 10.1 | | 254 | | 10 | | ered logit and probit models | 256 | | 10 |).3 Tru | ncated regression and tobit models | 1000000 | | | 10.3 | .1 Truncation | | | | 10.3 | .2 Censoring | | | 10 | .4 Inci | dental truncation and sample-selection models | 266 | | 10 | .5 Biva | riate probit and probit with selection | 271 | | | 10.5 | .1 Binomial probit with selection | 272 | | A G | etting t | he data into Stata | 277 | | A. | 1 Inpu | itting data from ASCII text files and spreadsheets | . 277 | | | A.1. | 1 Handling text files | . 278 | | | | Free format versus fixed format | . 278 | | | | The insheet command | . 280 | | | A.1. | 2 Accessing data stored in spreadsheets | . 281 | | | A.1. | 3 Fixed-format data files | . 281 | | A. | 2 Imp | orting data from other package formats | . 286 | | ВТ | ne basic | s of Stata programming | 289 | | B. | I Loca | d and global macros | . 290 | | | B.1. | I Global macros | . 293 | | | B.1. | 2 Extended macro functions and list functions | . 293 | | В. | 2 Scal | ars | . 294 | | В. | | o constructs | | | | B.3. | | | | В. | | rices | | | В. | | rn and ereturn | | | | B.5 | | 90 | Red The program and necessarians to the programs of the Red State programs of the Red State State of the Red Sta # Illustrations | | - | ۰ | | |------|-----|----|---| | T | a b | ٠, | 0 | | W 87 | 1D | Ц | c | | | 4.1 | Models of median housing price | 90 | |------|-----|---|-----| | iguı | res | | | | | 2.1 | histogram of values from the recode() function | 24 | | | 3.1 | Graph of panel data collapsed to time series | 49 | | | 3.2 | Moving-window correlations | 55 | | | 4.1 | Conditional mean of single-family house price | 70 | | | 4.2 | Actual versus predicted values from regression model | 103 | | | 4.3 | Point and interval predictions from bivariate regression | 106 | | | 4.4 | Point and interval elasticities computed with \mathtt{mfx} | 111 | | | 5.1 | graph matrix of regression variables | 118 | | | 5.2 | Added-variable plots | 120 | | | 5.3 | $Residual-versus-predictor\ plot\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$ | 124 | | | 6.1 | Autocorrelogram of regression residuals | 158 | | | 7.1 | Seasonal adjustment of time series | 177 | | | 7.2 | Seasonal adjustment and detrending of time series | 178 | | | 7.3 | Piecewise wage-tenure profile | 181 | | | 7.4 | Piecewise linear wage-tenure profile | 183 | | | 9.1 | Moving-window regression estimates | 244 | ### Preface This book is a concise guide for applied researchers in economics and finance to learn basic econometrics and use Stata with examples using typical datasets analyzed in economics. Readers should be familiar with applied statistics at the level of a simple linear regression (ordinary least squares, or OLS) model and its algebraic representation, equivalent to the level of an undergraduate statistics/econometrics course sequence. The book also uses some multivariate calculus (partial derivatives) and linear algebra. I presume that the reader is familiar with Stata's windowed interface and with the basics of data input, data transformation, and descriptive statistics. Readers should consult the appropriate Getting Started with Stata manual if review is needed. Meanwhile, readers already comfortable interacting with Stata should feel free to skip to chapter 4, where the discussion of econometrics begins in earnest. In any research project, a great deal of the effort is involved with the preparation of the data specified as part of an econometric model. While the primary focus of the book is placed upon applied econometric practice, we must consider the considerable challenges that many researchers face in moving from their original data sources to the form needed in an econometric model—or even that needed to provide appropriate tabulations and graphs for the project. Accordingly, Chapter 2 focuses on the details of data management and several tools available in Stata to ensure that the appropriate transformations are accomplished accurately and efficiently. If you are familiar with these aspects of Stata usage, you should feel free to skim this material, perhaps returning to it to refresh your understanding of Stata usage. Likewise, Chapter 3 is devoted to a discussion of the organization of economic and financial data, and the Stata commands needed to reorganize data among the several forms of organization (cross section, time series, pooled, panel/longitudinal, etc.) If you are eager to begin with the econometrics of linear regression, skim this chapter, noting its content for future reference. Chapter 4 begins the econometric content of the book and presents the most widely used tool for econometric analysis: the multiple linear regression model applied to continuous variables. The chapter also discusses how to interpret and present regression estimates and discusses the logic of hypothesis tests and linear and nonlinear restrictions. The last section of the chapter considers residuals, predicted values, and marginal effects. Applying the regression model depends on some assumptions that real datasets often violate. Chapter 5 discusses how the crucial zero-conditional-mean assumption of the errors may be violated in the presence of specification error. The chapter also ^{1.} Two excellent texts at this level are Wooldridge (2006) and Stock and Watson (2006). discusses statistical and graphical techniques for detecting specification error. Chapter 6 discusses other assumptions that may be violated, such as the assumption of independent and identically distributed (i.i.d.) errors, and presents the generalized linear regression model. It also explains how to diagnose and correct the two most important departures from i.i.d., heteroskedasticity and serial correlation. Chapter 7 discusses using indicator variables or dummy variables in the linear regression models containing both quantitative and qualitative factors, models with interaction effects, and models of structural change. Many regression models in applied economics violate the zero-conditional-mean assumption of the errors because they simultaneously determine the response variable and one or more regressors or because of measurement error in the regressors. No matter the cause, OLS techniques will no longer generate unbiased and consistent estimates, so you must use instrumental-variables (IV) techniques instead. Chapter 8 presents the IV estimator and its generalized method-of-moments counterpart along with tests for determining the need for IV techniques. Chapter 9 applies models to panel or longitudinal data that have both cross-sectional and time-series dimensions. Extensions of the regression model allow you to take advantage of the rich information in panel data, accounting for the heterogeneity in both panel unit and time dimensions. Many econometric applications model categorical and limited dependent variables: a binary outcome, such as a purchase decision, or a constrained response such as the amount spent, which combines the decision whether to purchase with the decision of how much to spend, conditional on purchasing. Because linear regression techniques are generally not appropriate for modeling these outcomes, chapter 10 presents several limited-dependent-variable estimators available in Stata. The appendices discuss techniques for importing external data into Stata and explain basic Stata programming. Although you can use Stata without doing any programming, learning how to program in Stata can help you save a lot of time and effort. You should also learn to generate reproducible results by using do-files that
you can document, archive, and rerun. Following Stata's guidelines will make your do-files shorter and easier to maintain and modify. # Notation and typography I designed this book for you to learn by doing, so I expect you to read this book while sitting at a computer so that you can try the commands in the book to replicate my results. You can then generalize the commands to suit your own needs. Generally, I use the typewriter font command to refer to Stata commands, syntax, and variables. A "dot" prompt followed by a command indicates that you can type what is displayed after the dot (in context) to replicate the results in the book. I follow some conventions in my mathematical notation to clarify what I mean: - Matrices are bold, capital letters, such as X. - Vectors are bold, lowercase letters, such as x. - Scalars are lowercase letters in standard font, such as x. - Data vectors (x_i) are 1 × k; think of them as being rows from the data matrix. - Coefficient vectors (β) are k × 1 column vectors. The ubiquitous use of N instead of n to denote the sample size forced me to make an exception to convention and let N be the sample size. Similarly, T denotes the number of time-series observations, M is the number of clusters, and L is the maximum lag length. I also follow the universal convention that the Ljung-Box statistic is denoted by Q and similarly denote the difference-in-Sargan test by C. To simplify the notation, I do not use different fonts to distinguish random variables from their realizations. When one models the dependent variable y, y is the random variable. Observations on y are realizations of this random variable, and I refer to the ith observations on y as y_i and all the observations as y. Similarly, regressors x are random variables in the population, and I denote the ith observation on this vector of random variables as x_i , which is the ith row of the data matrix X. This text complements but does not replace the material in the Stata manuals, so I often refer to the Stata manuals by using [R], [P], etc. For example, [R] xi refers to the Stata Base Reference Manual entry for xi, and [P] syntax refers to the entry for syntax in the Stata Programming Reference Manual. # 1 Introduction This book focuses on the tools needed to carry out applied econometric research in economics and finance. These include both the theoretical foundations of econometrics and a solid understanding of how to use those econometric tools in the research process. That understanding is motivated in this book through an integration of theory with practice, using Stata on research datasets to illustrate how those data may be organized, transformed, and used in empirical estimation. My experience in working with students of econometrics and doctoral candidates using econometric tools in their research has been that you learn to use econometrics only by doing econometrics with realistic datasets. Thankfully, a growing number of introductory econometrics textbooks¹ follow this approach and focus on the theoretical aspects that are likely to be encountered in empirical work. This book is meant to complement those textbooks and provide hands-on experience with a broad set of econometric tools using Stata. The rest of this chapter presents my "top 11" list of Stata's distinctive features: aspects of Stata's design and capabilities that make the program an excellent tool for applied econometric research. Sections 1.2 and 1.3 provide essential information for those who want to execute the examples used in the text. Many of those examples use user-written Stata commands that must be installed in your copy of Stata. A convenience program described in that section, itmeus, will make doing so a painless task. ### 1.1 An overview of Stata's distinctive features Stata is a powerful tool for researchers in applied economics. Stata can help you analyze research easily and efficiently—no matter what kind of data you are working with—whether time-series, panel, or cross-sectional data. Stata gives you the tools you need to organize and manage your data and then to obtain and analyze statistical results. For many users, Stata is a statistical package with menus that allow users to read data, generate new variables, compute statistical analyses, and draw graphs. To others, Stata is a command line–driven package, commonly executed from a do-file of stored commands that will perform all the steps above without intervention. Some consider Stata to be a programming language for developing ado-files that define programs or new Stata commands that extend Stata by adding data-management, statistics, or graphics capabilities. E.g., Wooldridge (2006) and Stock and Watson (2006). Understanding some of Stata's distinctive features will help you use Stata more effectively and efficiently. You will be able to avoid typing (or copying and pasting) effectively and efficiently. You will be able to avoid typing (or copying and pasting) repetitive commands and constantly reinventing the wheel. Learning to write computationally efficient do-files (say, one that runs in 10 seconds rather than in 2 minutes) tationally efficient do-files (say, one that runs in 10 seconds rather than in 2 minutes) is helpful, but more importantly you need to be able to write do-files that can be easily understood and modified. This book will save you time by teaching you to generate comprehensible and extensible do-files that you can rerun with one command. Consider several of Stata's distinctive features, which I discuss in more detail later: You can easily learn Stata commands, even if you do not know the syntax. Stata has a dialog for almost every official command, and when you execute a command with a dialog, the Review window displays the command syntax, just as if you had typed it. Although you can submit a command without closing the dialog, you will often want to execute several commands in succession (for instance, generating a new variable and then summarizing its values). Even if you are using Stata dialogs, you can reissue, modify, and resubmit commands by using the Review and Command windows. You can save the contents of the Review window to a file or copy them into the Do-file Editor window so that you can modify and resubmit them. To use these options, control-click or right-click on the Review window. You can use Stata's Do-file Editor to save time developing your analysis. Once you are familiar with common commands, you will find it easier to place them in a do-file and execute that file rather than entering them interactively (using dialogs of the Command window). Using your mouse, you can select any subset of the commands appearing in the Do-file Editor and execute only those commands. That ability makes it easy to test whether these commands will perform the desired analysis. If your do-file does the entire analysis, it provides a straightforward, reproducible, and documented record of your research strategy (especially if you add comments to describe what is being done, by whom, on what date, etc.). A simple command performs all computations for all the desired observations. Stata differs from several other statistical packages in its approach to variables. When you read in a Stata dataset, Stata puts in memory a matrix with rows corresponding to the observations and columns representing the variables. You can see this matrix by clicking the Data Viewer or Data Editor icon on Stata's toolbar. Most Stata commands do not require you to explicitly specify observations. Unlike with other statistical package languages, few circumstances in Stata require you to refer to the specific observation, and Stata will run much faster if you avoid doing so. When you must explicitly refer to the prior observation's value—for instance, when you are generating a lagged value in time-series data—always use Stata's time-series operators, such as L.X for the lagged value of x or D.x for the first difference. Looping over variables saves time and effort. One of Stata's most valuable features is the ability to repeat steps (data transformations, estimation, or creating graphics) over several variables. The relevant commands are documented in [P] for values, [P] foreach, and [P] macro; see the online help (e.g., help forvalues) and # TRADING SOFTWARE # FOR SALE & EXCHANGE <u>www.trading-software-collection.com</u> ### **Mirrors**: <u>www.forex-warez.com</u> <u>www.traders-software.com</u> <u>www.trading-software-download.com</u> <u>Join My Mailing List</u> appendix B for more details. Using these commands can help you produce a do-file that will loop over variables rather than issuing a separate command for each one; you can easily modify your file later if you need a different list of variables; see chapter 2. Stata's by-groups reduce the need for programming. Stata lets you define by-groups from one or more categorical (integer valued) variables, so you can do sophisticated data transformations with short, simple commands; see chapter 2. Stata has many statistical features that make it uniquely powerful. Stata can calculate robust and cluster-robust estimates of the variance-covariance matrix of the estimator for nearly all the estimation commands.² The mfx command estimates marginal effects after estimation. test, testnl, lincom, and nlcom provide Wald tests of linear and nonlinear restrictions and confidence intervals for linear and nonlinear functions of the estimated parameters. You can avoid problems by keeping Stata up to date. If you have an Internet connection, Stata's [R] update facility periodically updates Stata's executable and adofiles, free of charge. Most updates contain bug fixes and enhancements to existing commands (and sometimes brand-new commands). To find available updates, use the command update query and follow its recommendations. Many problems identified by Stata users have already been addressed by updates, so you should always update your Stata
executable and ado-files before reporting any apparent error in the program. Be sure to update your copy of Stata when you reinstall the program on a new computer or hard disk since the installation CD contains the original code (i.e., version 9.0 without updates versus version 9.2 with updates, which is available at this writing). Stata is infinitely extensible. You can create your own commands that are indistinguishable from official Stata commands. You can add a new command to Stata, whether you or someone else developed it, by writing an ado-file and help file. Any properly constructed ado-files on the adopath will define new commands with those names, so Stata's capabilities are open ended (see [P] sysdir). Since most Stata commands are written in the do-file language, they are available for viewing and modification, and they demonstrate good programming practice. Stata's user community provides a wealth of useful additions to Stata. StataCorp's development strategy gives users the same development tools used by the company's own professional programmers. This practice has encouraged a vibrant user community of Stata developers who freely share their contributions. Although any Stata developers may set up their own net from sites, most user-written programs are available from the Statistical Software Components (SSC) archive that I maintain at Boston College, which you can access by using Stata's sac command; see [R] ssc. You can use a web browser to search the SSC archive, but you should use the ssc command to download any of its contents to ensure that the files are handled properly and installed in the appropriate directory. Typing ssc whatsnew lists recent additions and updates in the SSC archive. Typing adoupdate updates the packages you have installed from the SSC archive, the Stata Journal, or individual users' sites as needed. ^{2.} Don't worry if you do not know what these are; I discuss them in detail in the text. 1 Stata is cross-platform compatible. Unlike many statistical packages, Stata's feature set does not differ across the platforms (Windows, Macintosh, Linux, and Unix) on which it runs. The Stata documentation is not platform specific (with the exception of the Getting Started with Stata manuals). A do-file that runs on one platform will run on another (as long as each system has enough memory). This compatibility allows you to move binary data files easily among platforms: that is, all Stata .dta files have the same binary data format, so any machine running the same version of Stata Can read and write to those files. Stata can also read a data file stored on a web server with the command use http://... regardless of platform. Stata can be fun. Although empirical research is serious business, you need only follow a few threads in Statalist3 discussions to learn that many users greatly enjoy using Stata and participating in the Stata user community. Although learning to use Stata effectively—like learning to speak a foreign language—is hard work, learning to solve data-management and statistical analysis problems is rewarding. Who knows? Someday your colleagues may turn to you, asking for help with Stata. ### Installing the necessary software This book uses Stata to illustrate many aspects of applied econometric research. As mentioned, Stata's capabilities are not limited to the commands of official Stata documented in the manuals and in online help but include a wealth of commands documented in the Stata Journal, Stata Technical Bulletin, and the SSC archive. 4 Those commands will not be available in your copy of Stata unless you have installed them. Because the book uses several of those user-written commands to illustrate the full set of tools available to the Stata user, I have provided a utility command, itmeus, that will install all the unofficial commands used in the book's examples. To install that command, you must be connected to the Internet and type ssc install itmeus which will retrieve the command from the SSC archive. When the ssc command succeeds, you may type help itmeus as you would with any Stata command, or just itmeus to start the download procedure. All necessary commands will be installed in your copy of Stata. Any example in the book (see the next section to obtain the do-files and datasets used to produce the examples) may then be executed. ^{3.} See http://www.stata.com/statalist/ ^{4.} Type help sac for information on the SSC ("Boston College") archive. Newer versions of the user-written commands that you install today may become available. The official Stata command adoupdate, which you may give at any time, will check to see whether newer versions of these user-written commands are available. Just as the command update query will determine whether your Stata executable and official ado-files are up to date, adoupdate will perform the same check for user-written commands installed in your copy of Stata. ### 1.3 Installing the support materials Except for some small expository datasets, all the data I use in this book are freely available for you to download from the Stata Press web site, http://www.stata-press.com. In fact, when I introduce new datasets, I merely load them into Stata the same way that you would. For example, . use http://www.stata-press.com/data/imeus/tablef7-1.dta, clear Try it. To download the datasets and do-files for this book, type - . net from http://www.stata-press.com/data/imeus/ - , net describe imeus - . net get imeus-dta - . net get imeus-do The materials will be downloaded to your current working directory. I suggest that you create a new directory and copy the materials there. # 2 Working with economic and financial data in Stata Economic research always involves several data-management tasks, such as data input, validation, and transformation, which are crucial for drawing valid conclusions from statistical analysis of the data. These tasks often take more time than the statistical analyses themselves, so learning to use Stata efficiently can help you perform these tasks and produce a well-documented Stata dataset supporting your research project. The first section of this chapter discusses the basics of working with data in Stata. Section 2 discusses common data transformations. The third section discusses the types of data commonly used in microeconomic analysis: cross-sectional, time-series, pooled cross-section time-series, and panel (longitudinal) data. Section 4 discusses using do-files to create reproducible research and perform automated data-validation tasks. ### 2.1 The basics To effectively manage data with Stata, you will need to understand some of Stata's basic features. A small Stata dataset will illustrate, ### 2.1.1 The use command Open an existing Stata data (.dta) file with the use command. You can specify just the name of the dataset, such as use census2c, or give the complete path to the dataset, such as . use "/Users/baum/doc/SFAME/stbook.5725/dof/census2c.dta" depending on your operating system. With the use command, you can also open a file on a web server, such as . use http://www.stata-press.com/data/r9/census2 In either of these formats, the quotation marks are required if there are spaces in the directory or filenames. If you are using Stata's menus, specify a filename by selecting File > Open.... You can obtain the full file path from the Review window and store it in a do-file. Let's use a Stata data file and list its contents: . use http://www.stata-press.com/data/ineus/census2c, clear (1980 Census data for NE and NC states) , list, sep(0) | state | region | pop | popurb | nedage | marr | div | |---------------|---------|---------|---------|--------|-------|------| | Connecticut | NE | 3107.6 | 2449.8 | 32.00 | 26.0 | 13.5 | | Illinois | N Cntrl | 11426.5 | 9518.0 | 29.90 | 109.8 | 51.1 | | Indiana | N Catrl | 5490.2 | 3525.3 | 29.20 | 57.9 | 40.0 | | Iova | N Cotrl | 2913.8 | 1708.2 | 30.00 | 27.5 | 11.5 | | Kansas | N Catrl | 2363.7 | 1575.9 | 30.10 | 24.8 | 13. | | Maine | NE | 1124.7 | 534.1 | 30.40 | 12.0 | 6.3 | | Massachusetts | NE | 5737.0 | 4808.3 | 31.20 | 46.3 | 17.3 | | Michigan | N Cntrl | 9262.1 | 6551.6 | 28.80 | 86.9 | 45.1 | | Minnesota | N Cntrl | 4076.0 | 2725.2 | 29.20 | 37.6 | 15. | | Missouri | N Cntrl | 4916.7 | 3349.6 | 30.90 | 54.6 | 27.4 | | Nebraska | N Cntrl | 1569.8 | 987.9 | 29.70 | 19.2 | 6.4 | | New Hampshire | NE | 920.6 | 480.3 | 30.10 | 9.3 | 5.3 | | New Jarsey | NE | 7364.8 | 6557.4 | 32.20 | 55.8 | 27.8 | | New York | NE | 17558.1 | 14858.1 | 31.90 | 144.5 | 62.0 | | N. Dakota | N Cotrl | 652.7 | 318.3 | 28.30 | 6.1 | 2.1 | | Ohio | N Chtrl | 10797.6 | 7918.3 | 29.90 | 99.8 | 58.8 | | Pennsylvania | NE | 11863.9 | 8220.9 | 32.10 | 93.7 | 34.9 | | Rhode Island | NE | 947.2 | 824.0 | 31.80 | 7.5 | 3.6 | | S. Dakota | N Cntrl | 690.8 | 320.8 | 28.90 | 8.8 | 2.8 | | Vermont | NE | 511.5 | 172.7 | 29.40 | 5.2 | 2.6 | | Wisconsin | W Cntrl | 4705.8 | 3020.7 | 29.40 | 41.1 | 17.8 | The contents of this dataset, census2c, are arranged in tabular format, similar appreadsheet. The rows of the table are the observations, or cases, and the columns at the variables. There are 21 rows, each corresponding to a U.S. state in the Northest North Central regions, and seven columns, or variables: state, region, pop. populated medage, marr, and divr. Variable names must be unique and follow certain rules syntax. For instance, they cannot contain spaces or hyphens (-) or nonalphabetic nonnumeric characters, and they must start with a letter. Stata is case sensiting STATE, State, and state are three different variables to Stata. Stata recommends by you use lowercase names for all variables. ## 2.1.2 Variable types Unlike some statistical packages, Stata supports a full range of variable types. Mark the data econometricians use are integer values. They are often very small integers as $\{0,1\}$ for indicator (dummy) variables or values restricted to a single-digit range as needed.
There are three integer data types: byte for one- or two-digit signed and antifor integers up to $\pm 32,740$, and long for integers up to ± 2.14 billion. Two real ^{1.} A variable name may start with an underscore (.), but doing so is not a good idea state programs create temporary variables with names beginning with an underscore types are available for decimal values: float and double. Variables stored as floats have seven digits of precision; double variables have 15 digits of precision. Numeric variables are stored as floats, unless you specify otherwise. For more details, see data types. String variables may optionally be declared as having a specific length, from str1 to str244 characters. If you store a string longer than the specified length, Stata automatically increases the storage size of the variable to accommodate that string, up to a maximum of 244 characters. Typing the describe command displays the contents of a dataset, including the data type of each variable. For example, | Contains data
obs: | from cen
21 | sus2c.dta | | 1980 Census data for NE and I | |--|--|--|----------------|--| | vars:
size: | 1,134 (| 99.9% of m | emory free) | 9 Jun 2006 14:50 | | variable name | | display
format | value
label | variable label | | state
region
pop
popurb
medage
marr
divr | str13
byte
double
double
float
double
double | %-8.0g
%8.1f
%8.1f
%9.2f
%8.1f | cenreg | State Census region 1980 Population, '000 1980 Urban population, '000 Median age, years Marriages, '000 Divorces, '000 | Sorted by: Stata indicates that the dataset contains 21 observations (obs) and 7 variables (vars). The variable state is a str13, so no state names in the dataset exceed 13 characters, pop, popurb, and divr are stored as doubles, not as integers, because they are expressed in thousands of residents and therefore contain fractional parts if any of their values are not multiples of 1,000, medage is stored as a float, whereas region is stored as a byte, although it appears to have values of NE and N Cntr1; however, these are not the true contents of region but rather its value label, as described below. ### 2.1.3 _n and _N The observations in the dataset are numbered 1, 2, ..., 21 in the list above, so you can refer to an observation by number. Or you can use N to refer to the highest observation number—the total number of observations—and in to refer to the current observation number, although these notations can vary over subgroups in the data; see section 2.2.8. The observation numbers will change if a sort command (see section 2.1.5) changes the order of the dataset in memory. ## 2.1.4 generate and replace Stata's basic commands for data transformation are generate and replace, which was similarly, but with some important differences. generate creates a new variable with a name not currently in use. replace modifies an existing variable, and unlike other Stata commands, replace may not be abbreviated. To illustrate generate, let's create a new variable in our dataset that measures the fraction of each state's population living in urban areas in 1980. We need only specify the appropriate formula and Stata will automatically apply it to every observation specified by the generate command according to the rules of algebra. For instance, if the formula would result in a division by zero for a given state, the result for the state would be flagged as missing. We generate the fraction, urbanized, and use the summarize command to display its descriptive statistics: - . generate urbanized = popurb/pop - . summarize urbanized | Variable | Obs | Mean | Std. Dev. | Min | Max | |-----------|-----|----------|-----------|----------|----------| | urbanized | 21 | .6667691 | -1500842 | .3377319 | .8903645 | The average state in this part of the United States is 66.7% urbanized, with the fraction ranging from 34% to 89%. If the urbanized variable had already existed, but we wanted to express it so percentage rather than a decimal fraction, we would use replace: - replace urbanized = 100*urbanized (21 real changes made) . sunmarize urbanized | Variable | Obs | Mean | Std. Dev. | Min | Max | |-----------|-----|----------|---|----------|----------| | urbanized | 91 | 160 mm | 200000000000000000000000000000000000000 | (21,844 | | | | *** | 66.67691 | 15.00843 | 33 77210 | PO 03645 | replace reports the number of changes it made—all 21 observations- You should write the data transformations as a simple, succinct set of command that you can easily modify as needed. There are usually several ways to create the substance statements. ### 2.1.5 sort and gsort The sort command puts observations in the dataset into a certain order; see [0] sort if your sort command includes a single variable name, Stata sorts the data in asception or more variables, whether numeric or string. If you indicate a variable by the first variable, and then, for observations with equal values for the first variable. 2.1.6 ERS A nta Stata comm of the > To followe be liste the last Stata orders those observations by the second variable, and so on. After the sort, the dataset will be marked as sorted by those variables, but you must save the dataset to disk if you want to keep the new sort order. You can use the gsort command (see [D] gsort) to sort data in descending or ascending order, such as when you have quiz scores or patients' blood pressure readings. A minus sign (-) preceding the variable indicates a descending-order sort on that variable, whereas a plus sign (+) indicates an ascending-order sort. For instance, to sort the states by region and, within region, by population from largest to smallest, type - . gaort region -pop - . list region state pop, sepby(region) | | region | state | pop | |-----|---------|---------------|---------| | 10 | NE | New York | 17558.1 | | 2. | NE | Pennsylvania | 11863.9 | | 3. | NE | New Jersey | 7364.8 | | 4. | NE | Massachusetts | 5737.0 | | 5. | NE | Connecticut | 3107.6 | | 6. | NE | Maine | 1124.7 | | 73 | NE | Rhode Island | 947.2 | | 8. | NE | New Hampshire | 920.6 | | 9. | NE | Vermont | 511.5 | | 5. | N Cntrl | Illinois | 11426.5 | | | N Cntrl | Ghio | 10797.6 | | 2. | N Cotrl | Michigan | 9262.1 | | 3. | N Cntrl | Indiana | 5490.2 | | | N Cntrl | Missouri | 4916.7 | | | N Chtrl | Wisconsin | 4705.8 | | 200 | N Cutrl | Minnesota | 4076.0 | | | N Cutrl | Iowa | 2913.8 | | | N Cntrl | Kansas | 2363.7 | | 8 | N Cntrl | Nebraska | 1569.8 | | | N Cntrl | S. Dakota | 690.8 | | | N Cntrl | N. Dakota | 652.7 | ### 2.1.6 if exp and in range Stata commands operate on all observations in memory by default. Almost all Stata commands accept if exp and in range clauses, which restrict the command to a subset of the observations. To list the five U.S. states with the smallest populations, type the sort command, followed by list with an in range qualifier specifying the first and last observations to be listed. The range 1/5 refers to the first 5 observations, and the range -5/1 refers to the last 5 observations (fifth from last, fourth from last, ..., last). To illustrate, ### . sort pop list state region pop in 1/5 | state | region | pop | |--|--------------------------------------|---| | Vermont N. Dakota S. Dakota New Hampshire Rhode Island | NE
N Cntrl
N Cntrl
NE
NE | 511.5
652.7
690.8
920.6
947.2 | ### . list state region pop in -5/1 | | state | region | pop | |-----|--------------|---------|---------| | 17. | Michigan | N Cntrl | 9262.1 | | 18. | Ohio | N Cntrl | 10797.6 | | 19. | Illinois | N Cntrl | 11426.5 | | 20. | Pennsylvania | NE | 11863.9 | | 21. | New York | NE | 17558.1 | These two lists give us the five smallest and five largest states, but the latter table? in ascending rather than descending order. Since the sort command performs only ascending-order sorts, to list the largest states in decreasing order, type - . gsort -pop - . list state region pop in 1/5 | state | region | pop | |--|-------------------------------|--| | New York
Pennsylvania
Illinois
Ohio
Michigan | NE NE N Cntrl N Cntrl N Cntrl | 17558.1
11863.9
11426.5
10797.6
9262.1 | To restrict an operation to observations that meet some logical condition, use the if cxp qualifier. For example, to generate a new medage variable, medage1, defined for states with populations of more than 5 million, we could specify . generate medagel = medage if pop > 5000 (13 missing values generated) . mort state . list state region pop medagel, sep(0) | state | region | pop | nedagel | |---------------|---------|---------|---------| | Connecticut | ME | 3107.6 | 130 | | Illinois | N Cntrl | 11426.5 | 29.8 | | Indiana | N Catrl | 8490.2 | 29.2 | | Iova | N Cutrl | 2913.8 | , | | Kansas | N Cntrl | 2363.7 | | | Maine | NE | 1124.7 | | | Massachusetts | ME | 5737.0 | 31.7 | | Michigan | N Cutrl | 9262.1 | 28.8 | | Minnesota | N Catrl | 4076-0 | | | Minpouri | N Chtrl | 4916.7 | | | N. Dakota | N Cotrl | 652.7 | | | Nebraska | N Cntrl | 1569.8 | | | New Hampshire | NE | 920.6 | | | New Jersey | NE | 7364.8 | 32.5 | | New York | NE | 17558.1 | 31.5 | | Ohio | N Catrl | | 29.1 | | Pennsylvania | NE | 11863.9 | 32. | | Rhode Island | NE | 947.2 | | | S. Dakota | N Cntrl | 690.8 | | | Vermont | NE | 511.5 | | | Wisconsin | N Cntrl | 4705.8 | | medagel is defined for the states that meet this condition and set to missing for all other states (the value . is Stata's
missing-value indicator). When you use an if exp clause with generate, observations not meeting the logical condition are set to missing. To calculate summary statistics for medage for the larger states, we could either summarize the new variable, medagel, or apply an if exp to the original variable: | 13 | sunnarize meda, | gel | | | | | |----|-----------------|-------------|-------|-----------|------|------| | | Variable | Obs | Mean | Std. Dev. | Min | Max | | | medagel | 8 | 30.65 | 1.363818 | 28.8 | 32.2 | | 1 | summarize meda, | ge if pop > | 5000 | | | | | | Variable | Obs | Hean | Std. Dev. | Min | Max | | | nedage | 8 | 30.65 | 1.363818 | 28.8 | 32.2 | Either method will produce the same statistics for the eight states that meet the logical condition. ### 2.1.7 Using if exp with indicator variables Many empirical research projects in economics require an $indicator\ variable$, which takes on values $\{0,1\}$ to indicate whether a particular condition is satisfied. These variables are commonly known as dummy variables or Boolean variables. To create indicate, are commonly known as dummy variable, which evaluates to true or false for the dummy) variables, use a Boolean condition, which evaluates to true or false for the fact of the state (dummy) variables, use a Boolean today of exp qualifier. Using our dataset, you come observation. You also need to use the if exp qualifier with generate indicator variables for small and large states with ``` - generate smallpop = 0 . replace smallpop = 1 if pop <= 5000 (13 real changes made) . generate largepop = 0 . replace largepop = 1 if pop > 5000 (8 real changes made) . list state pop smallpop largepop, sep(0) ``` | state | pop | smallpop | largepop | |--|---------|----------|----------| | ACCOUNT OF THE PARTY PAR | 3107.6 | 1 | 0 | | Connecticut | 11426.5 | 0 | 1 | | Illinois | 5490.2 | 0 | 1 | | Indiana | 2913.8 | 1 | 0 | | Iowa | 2363.7 | 1 | 0 | | Kansas | 1124.7 | 1 | 0 | | Maine | 5737.0 | 0 | 1 | | Massachusetts | 9262.1 | 0 | 1 | | Michigan | 4076.0 | 1 | 0 | | Minnesota | 4916.7 | î | C | | Missouri | 652.7 | 1 | C | | N. Dakota | 1569.8 | | | | Nebraska | | 1 | | | New Hampshire | 920.6 | | 9 | | New Jersey | 7364.8 | 0 | | | New York | 17558.1 | 0 | 3 | | Ohio | 10797.6 | 0 | | | Pennsylvania | 11863.9 | 0 | | | Rhode Island | 947.2 | 1 | | | S. Dakota | 690.8 | 1 | | | Vermont. | 511.5 | 1 | | | Wisconsin | 4705.8 | 1 | | You need to use both generate and replace to define both the 0 and 1 values Typing generate smallpop = 1 if pop <= 5000 would set the variable smallpop to missing, not zero, for all observations that did not meet the if exp. Using a Bookst condition is easier: ``` generate smallpop * (pop <= 5000) . generate largepop = (pop > 5000) ``` But if you use this approach, any values of pop that are missing ([U] 12.2.1 Missing ues) will be coded as 1 in the project to values) will be coded as 1 in the variable largepop and 0 in the variable smallpop small Stata's missing-value codes are all Stata's missing-value codes are represented as the largest positive number. To result this problem, add an if exp. if property of the largest positive number. this problem, add an if exp: if pop < . statement to the generate statements that measurable values are less than the missing value: ``` . generate smallpop = (pop <= 5000) if pop < . generate largepop = (pop > 5000) if pop < . ``` Even if you think your data do not contain missing values, you should account for any missing values by using if exp qualifiers. Make sure that you use the if exp in the example outside the Boolean expression; placing the if exp inside the Boolean expression (e.g., (pop > 5000 & pop < .)) would assign a value of 0 to largepop for missing values of pop. Properly used, the if exp qualifier will cause any missing values of pop to be correctly reflected in largepop.² ## 2.1.8 Using if exp versus by varlist: with statistical commands You can also use the if exp qualifier to perform a statistical analysis on a subset of the data. You can summarize the data for each region, where NE is coded as region 1 and N Cntrl is coded as region 2, by using an if exp: | Variable | Obs | Mean | Std. Dev. | Min | Max | |------------------------|-------------------|----------------------------------|----------------------------------|------------------------|---------------------------| | medage
marr
divr | 9 9 | 31.23333
44.47922
19.30433 | 1.023474
47.56717
19.57721 | 29.4
5.226
2.623 | 32.2
144.518
61.972 | | | NO DECKE OF | | | | | | ummarize meda | ge marr di | AL II LEGIOU | | | | | Variable | ge marr di
Obs | Mean Mean | Std. Dev. | Min | Max | If your data have discrete categories, you can use Stata's by varlist: prefix instead of the if exp qualifier. If you use by varlist: with one or more categorical variables, the command is repeated automatically for each value of the by varlist:, no matter how many subsets are expressed by the by varlist:. However, by varlist: can execute only one command. To illustrate how to use by varlist:, let's generate the same summary statistics for the two census regions: ^{2.} An even simpler approach would be to type generate largepop = 1 - smallpop. If you properly define smallpop to handle missing values, the algebra of the generate statement will ensure that they are handled in largepop, since any function of missing data produces missing data. | -> region = NE
Variable | Obs | Mean | Std. Dev. | Min | Max | | |----------------------------|-----------|----------------------|--------------------|----------------|-------------------|--| | nedage | 9 | 31.23333 | 1.023474 | 29.4
5.226 | 32.2
144.518 | | | marr
divr | 9 | 44.47922
19.30433 | 44.47922 41.00721 | | | | | Variable | rl
Obs | Mean | Std. Dev. | Min | Max | | | nedage | 12 | 29.525 | .7008113 | 28.3 | 30.9 | | | marr
divr | 12
12 | 47.43642
24.33583 | 35.29558
19.684 | 6.094
2.142 | 109.823
58.809 | | Here we needed to sort by region with the by varlist: prefix. The statistics indicate that Northeasterners are slightly older than those in North Central states, although the means do not appear to be statistically distinguishable. Do not confuse the by varlist: prefix with the by() option available on some Stata commands. For instance, we could produce the summary statistics for medage by using the tabstat command, which also generates statistics for the entire sample: tabstat medage, by(region) statistics(N mean sd min max) Summary for variables: medage by categories of: region (Census region) region | N | region | N | nean | sd | min | | |---|----|----------|----------|------|------| | NE
N Cntrl | 9 | 31.23333 | 1.023474 | 29.4 | max | | Total | 12 | 29.525 | .7008113 | 28.3 | 32.2 | | | 21 | 30.25714 | 1.199821 | 28.3 | 32.2 | | T-1-1-00-00-00-00-00-00-00-00-00-00-00-00 | | | | - | | Using by() as an option modifies the command, telling Stata that we want to compute a table with summary statistics for each region. On the other hand, the by variet: prefix used above repeats the entire command for each value of the by-group. 2. The by varist: prefix may include more than one variable, so all combinations of that we combine smallpop and largepop into one categorical variable, popsize, which for small and large states in each region: - , generate popsize = smallpop + 2*largepop - , by region populze, mort: summarize medage marr divr | -> region = NE, p | popsize = 1
Obs | Mean | Std. Dev. | Min | Hax | |---|-----------------------------------|---|---|-------------------------------|---------------------------------| | | 5 | 30.74 | 1.121606 | 29.4 | 32 | | medage | 5 | 12,011 | 8.233035 | 5.226 | 26.048 | | divr | 5 | 6.2352 | 4.287408 |
2.623 | 13.488 | | > region = NE, p | oopsize = 2 | | | 1222-1 | 100000 | | Variable | Obs | Mean | Std. Dev. | Min | Max | | | 4 | 31.85 | 4509245 | 31.2 | 32.2 | | nedage | 4 | 85.0645 | 44.61079 | 46.273 | 144.518 | | marr
divr | 4 | 35.64075 | 18.89519 | 17.873 | 61.972 | | | | | | | | | > region = N Cnt | rl, popsiz | e = 1 | | | | | > region = N Cnt
Variable | rl, popsiz | e = 1
Mean | Std. Dev. | Min | Max | | Variable | Obs | Mean | Std. Dev. | Min 28.3 | Max 30.9 | | Variable
medage | Obs
8 | Mean
29.5625 | | | 100000 | | Variable | Obs | Mean | .7998885 | 28.3 | 30.9 | | Variable
medage
marr
divr | 0bs
8
8 | Mean
29.5625
26.85387
12.14637 | .7998885
16.95087 | 28.3
6.094 | 30.9
54.625 | | Variable
medage
marr
divr | 0bs
8
8 | Mean
29.5625
26.85387
12.14637 | .7998885
16.95087 | 28.3
6.094 | 30.9
54.625 | | Variable medage marr divr region = N Cnt Variable | 0bs
6
8
8
2rl, popsiz | Mean 29.5625 26.85387 12.14637 | .7998885
16.95087
8.448779 | 28.3
6.094
2.142 | 30.9
54.625
27.595 | | medage
marr
divr | Obs 8 8 8 8 crl, popsiz | Mean 29.5625 26.85387 12.14637 e = 2 Hean | .7998885
16.95087
8.448779
Std. Dev. | 28.3
6.094
2.142
Min | 30.9
54.625
27.595
Max | The youngest population is found in large North Central states. Remember that large states have popsize = 2. We will see below how to better present the results. #### 2.1.9 Labels and notes Stata makes it easy to provide labels for the dataset, for each variable, and for each value of a categorical variable, which will help readers understand the data. To label the dataset, use the label command: . label data "1980 US Census data with population size indicators" The new label overwrites any previous dataset label. Say that we want to define labels for the urbanized, smallpop, largepop, and popsize variables: - . label variable urbanized "Population in urban areas, X" - . label variable smallpop "States with <= 5 million pop, 1980" - . label variable largepop "States with > 5 million pop, 1980". - . label variable popsize "Population size code" describe non smallpop largepop popsize urbanized | variable name | storage | display
format | value
label | variable label | |----------------------|-----------------|-------------------|----------------|--| | pop
smallpop | double
float | %8.1f
%9.0g | | 1980 Population, '000
States with <= 5 million pop,
1980 | | largepop | float | %9.0g | | States with > 5 million pop,
1980 | | popsize
urbanized | float | %9.0g
%9.0g | | Population size code
Population in urban areas, % | Now if we give this dataset to another researcher, the researcher will know how we defined smallpop and largepop. Last, consider value labels, such as the one associated with the region variable: describe region | variable name | The state of s | display
format | value
label | variable label | | |---------------|--|-------------------|----------------|----------------|--| | region | byte | %-8.0g | cenreg | Census region | | region is a byte (integer) variable with the variable label Census region and the value label cenreg. Unlike other statistical packages, Stata's value labels are not specific to a particular variable. Once you define a label, you can assign it to any number of variables that share the same coding scheme. Let's examine the cenreg value label: . label list cenreg cenreg: 1 NE 2 N Cntrl 3 South 4 West cenreg contains codes for four Census regions, only two of which are represented in our dataset. Because popaize is also an integer code, we should document its categories with a value label: . label define popsize 1 "<= 5 million" 2 "> 5 million" 2 "> 5 million" We can confirm that the value label was added to popsize by typing the following . describe popsize | variable name | storage
type | display
format | value
label | | |---------------|-----------------|-------------------|----------------|----------------------| | popsize | float | %12.0g | | Variable label | | | | 412.0g | Popsize | Population size code | ### 2.1.9 Labels and notes To view the mean for each of the values of popsize, type | by popsize, sor | tt | summarize | medage | |-----------------|----|-----------|--------| |-----------------|----|-----------|--------| | . by bohures, | | | | | | |------------------------------|------------------|----------|-----------|------|------| | -> popsize = <=
Variable | 5 million
Obs | Mean | Std. Dev. | Min | Max | | medage | 13 | 30,01538 | 1.071483 | 28.3 | 32 | | -> popsize = > 5
Variable | million
Obs | Hean | Std. Dev. | Min | Max | | medage | 8 | 30.65 | 1.363818 | 28.8 | 32.2 | The smaller states have slightly younger populations. You can use the notes command to add notes to a dataset and individual variables (think of sticky notes, real or electronic): - . notes: Subset of Census data, prepared on TS for Chapter 2 - , notes medagel: median age for large states only - . notes populate: variable separating states by population size - . notes popsize: value label popsize defined for this variable - . describe Contains data from census2c.dta obs: 21 vars: 12 size: 1,554 (99.9% of memory free) 1980 US Census data with population size indicators 9 Jun 2006 14:50 (_dta has notes) | 0440 | 41004 (| DUI ON OR IN | emory receiv | (2404 000 0000) | |---|---|---|----------------|--| | variable name | storage
type | display
format | value
label | variable label | | state region pop popurb medage marr divx urbanized medage1 smallpop | str13
byte
double
double
float
double
float
float
float | %-8.0g
%8.1f
%8.1f
%9.2f
%8.1f
%8.1f
%9.0g
%9.0g | cenreg | State Census region 1980 Population, '000 1980 Urban population, '000 Median age, years Marriages, '000 Divorces, '000 Population in urban areas, % States with <= 5 million pop. | | largepop | float | %9.0g | | 1980
States with > 5 million pop,
1980 | | popuize | float | %12.0g | popsize | Population size code indicated variables have notes | Sorted by: popsize Note: dataset has changed since last saved 2. 2. . potes 1. Subset of Census data, prepared on 9 Jun 2006 14:50 for Chapter 2 dtar 1. median age for large states only popsize: 1. variable separating states by population size 2. value label popsize defined for this variable The string TS in the first note is automatically replaced with a time stamp, #### 2.1.10 The varlist Many Stata commands accept a variist, a list of one or more variables to be used A varlist may contain the variable names or a wildcard (*), such as *pop in the variation meaning any variable name ending in "pop". In the census2c dataset, *pop will refer to pop, smallpop, and largepop. A varlist may also contain a hyphenated list, such as cat1-cat4, which refers to all variables in the dataset between cat1 and cat4, inclusive, in the same order as in the dataset. The order of the variables is that provided by describe, or that shown in the Variables window. You can modify the order by using the order command. #### 2.1.11 drop and keep To discard variables you have created, you can use the drop command with a varlist !! you have many variables and want to keep only some of them, use the keep command with a variast specifying which variables you want to keep, drop and keep follow the syntax. drop narlist keep varlist To remove or retain
observations, use the syntax drop if exp drop in range keep if exp keep in range With our Census dataset, we could use either drop if largepop or keep if smallpof to leave only the smaller states' observed and the smaller states' observed to leave only states of smalle to leave only the smaller states' observations. ### 2.1.12 rename and renvars To rename a variable, you could generate a new variable equivalent to the old variable and drop the old variable, but a cleaner solution is to use rename. Using the syntax renane old varname new varname you can rename a variable. To change several variables' prefixes (e.g., income80, income81 to inc80, inc81), use renpfix: . renpfix income inc where income is the common prefix of the original variables. For a more general solution to renaming variables, see the renvers command of Cox and Weesie (2005). #### The save command 2.1.13 To save a dataset for later use, use the save filename command. We could save the census2c dataset to a different file with save census2d. To save it with the original name, we would use the replace option, which like the replace command must be spelled out. However, if you save, replace, you cannot restore the contents of the original dataset. Saving to a new filename is generally a better idea. You can save Stata data to a text file by using the outsheet command. Despite its name, this command does not write a spreadsheet file. It writes an ASCH text file that can be read by a spreadsheet or any program that can read tab-delimited or commadelimited files. Unless you need to transfer the data to another statistical package, you should just save the data. If you save a file in a format other than Stata's binary format (a .dta file), you may lose some information from your dataset, including labels, notes, value labels, and formats. If you need to move the data to another package, consider using Stat/Transfer (see appendix A), a third-party application available from StataCorp. The use command reads files into Stata much faster than any of Stata's data input commands (insheet, infile, infix) since it does not have to convert text to binary format. Once you bring the data file into Stata, save it as a .dta file and work with #### 2.1.14 insheet and infile The examples above used an existing Stata data file, census2c.dta. But researchers often need to bring data into Stata from an external source: a spreadsheet, a web page, a dataset stored as a text file, or a dataset from another statistics package. Stata provides many options for inputting external data. You could use the input command or the Data Editor, but Stata has specialized commands for large datasets. 2.2 How do you determine which data input command to use? If your data are in How do you determine which trace and the characters—the insheet command and delimited format—separated by command delimited, use infile or the more command is delimited format—separated by command a delimited, use infile or the more specialized usually your best bet. If the data are not delimited, use infile or the more specialized usually your best bet. If the data are run together, as the usually your best bet. If the data are like the data are run together, as they are in adjacent columns. These commands work best if data are run together, as they are in infix command. These commands would be values are in adjacent columns, and you many surveys: that is, successive variables' values are in adjacent columns, and you many surveys: that is, successive to separate them. Finally, if the data have the formal must use the survey's codebook to separate them. Finally, if the data have the formal must use the survey's conceded with a survey want to use Stat/Transfer to translate the data of another statistical package, you may want to use Stat/Transfer to translate the data to Stata format .dta. See appendix A for more information about data input. ## Common data transformations This section discusses data transformations, specifically, the cond() and recode() functions, missing-data handling, conversion between string and numeric forms, and date handling. The section highlights some useful functions for generate and discusses Stata's extended generate command, egen. The last two subsections describe by-groups and looping over variables with forvalues and foreach. #### 2.2.1The cond() function You can code a result variable as x_T when the logical expression C is true and x_F when it is false by using the cond(C, x_T , x_F) function. To separate states having a ratio of marriages to divorces (the net marriage rate) greater than and less than 2, you could define netmarr2x as having values 1 and 2 and attach value labels. You could then use the variable in tabstat: - generate netmarr2x = cond(marr/divr > 2, 1, 2) - . label define netmarr2xc 1 "marr > 2 divr" 2 "marr <= '2 divr" - . label values netmarr2x netmarr2xc - . tabstat pop medage, by(metmarr2x) Summary statistics: mean by categories of: netmarr2x | netmarr2x | pop | medage | |---------------|----------------------|----------| | marr > 2 divr | 5792.196
4277.178 | 30.38333 | | Total | 5142.903 | 30.25714 | States with a high net marriage rate are larger and have slightly older populations. You can nest the cond() function: that is, you can use other cond() functions as second and third arguments. But we wou might its second and third arguments. But using this syntax can be unwieldy, so you might want to use multiple commands. ## 2.2.2 Recoding discrete and continuous variables You can use Stata to create a new variable based on the coding of an existing discrete variable. You could write many similar transformation statements such as ``` replace newcode = 5 if oldcode == 2 . replace newcode = 8 if oldcode == 3 . replace newcode = 12 if oldcode == 5 | oldcode == 6 | oldcode == 7 ``` where the vertical bar (1) is Stata's "or" operator. But performing transformations this way is inefficient, and copying and pasting to construct these statements will probably lead to typing errors. Using Stata's recode command usually produces more efficient and readable code.3 For instance, ``` . recode oldcode (2 = 5) (3 = 8) (5/7 = 12), generate(newcode) ``` will perform the above transformation. The equal sign is an assignment operator (oldvalue(s) -- newvalue). Unlike in the line-by-line approach above using replace, you can apply recode to an entire varlist. This approach is handy when a questionnairebased dataset contains several similar questions with the same coding; you can use the prefix() option to define the variable name stub. You can account for missing-data codes, map all unspecified values to one outcome, and specify value labels for the values of the new variables. In fact, you can use recode, modifying the existing variables rather than creating new ones, but you should avoid doing this in case any further modifications to the mapping arise. You can use generate and Stata's recode() function (not to be confused with the recode command discussed above) to map a continuous variable to a new categorical variable. To generate a histogram of states' median age in whole years, 4 you can use recode() to define brackets for medage as - generate medagebrack = recode(medage, 28, 29, 30, 31, 32, 33) - . tabulate medagebrack | nedagebrack | Freq. | Percent | Cum. | |-------------|-------|---------|--------| | 29 | 3 | 14.29 | 14.29 | | 30 | 8 | 38.10 | 52,38 | | 31 | 4 | 19.05 | 71.43 | | 32 | 4 | 19.05 | 90.48 | | 33 | 2 | 9.52 | 100.00 | | Total | 21 | 100.00 | 1 | ^{3.} Sometimes an algebraic expression offers a one-line solution using generate. ^{4.} I present various examples of Stata graphics in this text without explaining the full syntax of Stata's graphics language. For an introduction to Stata graphics, please see help graph intro and [G] graph intro. For an in-depth presentation of Stata's graphics capabilities, please see A Visual Guide to Stata The numeric values (which could be decimal values) label the brackets: e.g., states The numeric values (which totals are coded as 28, those greater than 28 but less than or with medage up to 28 years are coded as 28, those greater than 28 but less than or with medage up to 28 years are took. If we draw a histogram of medagebrack, we can equal to 29 are coded as 29, and so on. If we draw a histogram of medagebrack, we can equal to 29 are coded as 25, and 55 specify that the variable is discrete, and the bars will correspond to the breakpoints specified in the recode() function:5 - . histogram medagebrack, discrete frequency - > lcolor(black) fcolor(gs15) addlabels > addlabopts(mlabposition(6)) xtitle(Upper limits of median age) - > title(Northeast and North Central States: Median Age) - (start=29, width=1) Figure 2.1: histogram of values from the recode() function If you do not need specific (or unequally spaced) bracket endpoints, you can use $\operatorname{autocode}(n)$, which generates n equally spaced intervals between a minimum and max imum value of the variable; see help programming functions. #### 2.2.3 Handling missing data missing values as large positive values and sorts them in that order, so that the system missing-value code; see ful 12.2 system missing-value code; see [u] 12.2.1 Missing values) is the smallest missing value. Qualifiers such as if r < values. Doing so in versions 8 and later will capture only the . missing-data code. If any other missing formal), we are instance, if you used $S_{\rm COM}$, the . missing-data code. If any other missing dataset is codes are in the data (for matance, if you used Stat/Transfer to convert an SPSS or SAS dataset value. Qualifiers such as if $x < \frac{1}{2}$. can thus exclude all possible missing values. 5. For an excellent presentation of the many styles of graphs supported by State, see Mitchell (2001) sales. Dring so in the serious 8 often most supported by State, see Mitchell (2001) sales of graphs supported by State, see Mitchell
(2001) sales of graphs supported by State, see Mitchell (2001) sales of graphs supported by State, 6. Stata user code earlier than version 8 often used qualifiers such as if x != . to rule out masses are no the description of an experience of the such as if x != . to rule out masses are not be described. By default, Stata omits missing observations from any computation. For generate or replace, missing values are propagated; any function of missing data produces missing data. Univariate statistical computations (such as summarize computing a mean or standard deviation) consider only nonmissing observations. For multivariate statistical commands, Stata generally practices casewise deletion by dropping from the sample observations in which any variable is missing. Several Stata commands handle missing data in nonstandard ways. For instance, although correlate varlist uses casewise deletion to exclude any observations containing missing values in any variables of the varlist in computing the correlation matrix, the alternative command pwcorr computes pairwise correlations using all available data for each pair of variables. The missing (x1, x2, ..., xn) function (see [D] functions) returns 1 if any argument is missing and 0 otherwise; that is, it provides the user with a casewise deletion indicator. The egen rowwise functions (rowmax(), rowmean(), rowmin(), rowsd(), rowtotal()) each ignore missing values (see section 2.2.7). For example, rowmean(x1,x2,x3) computes the mean of three, two, or one of the variables, returning missing only if all three variables' values are missing for that observation. The egen functions rownommiss() and rowmiss() return, respectively, the number of nonmissing and missing elements in their varlists. #### mydecode and myencode Other statistical packages, spreadsheets, or databases may treat missing data differently from how Stata does. Likewise, if the data are to be used in another program that does not use the . notation for missing-data codes, you may need to use an alternate representation of Stata's missing data by using the mvdecode and mvencode commands (see [D] mvencode). mvdecode allows you to recode numeric values to missing, such as when missing data have been represented as -99, -999, 0.001, and so on. You can use all of Stata's 27 numeric missing-data codes, so you could map -9 to .a, -99 to .b, and so on. The mvencode command provides the inverse function, allowing you to change Stata's missing values to numeric form. Like mvdecode, mvencode can map each of the 27 numeric missing data codes to a different numeric value. To transfer missing data values between packages, you may want to use Stat/Transfer (see appendix A). Because this third-party application (distributed by StataCorp) can also transfer variable and value labels between major statistical packages and create subsets of files' contents (e.g., only selected variables are translated into the target format) using Stat/Transfer is well worth the cost for those researchers who often import or export datasets. 2.2.4 ## String-to-numeric conversion and vice versa Stata has two types of variables: string and numeric. Often a variable imported from an extring rather than numeric. For in-Stata has two types of variables. Satisfy external source will be misclassified as string rather than numeric. For instance, if the external source will be inistraction. If the first value read by insheet is NA, that variable is classified as a string variable. State first value read by Insheet is an provides several methods for converting string variables to numeric. If the variable has provides several methods to the real () function—e.g., generate haid merely been misclassified as straight and make the missing values for any observations that cannot be real (househld), which creates missing values for any observations that cannot be interpreted as numeric. The destring command can transform variables in place (with the replace option)—although generating a new variable is safer—and may be used with a varlist to apply the same transformation to an entire set of variables with one command. If the variable really has string content, and you need a numeric equivalent you can use the encode command. Do not apply encode to a string variable that has purely numeric content (for instance, one that has been misclassified as a string variable) because encode will attempt to create a value label for each distinct value of the variable. Why might you need to encode a variable? Consider the region identifier in a different U.S. Census dataset, census2a: . use http://www.stata-press.com/data/imeus/census2a. (Extracted from http://www.stata-press.com/data/r9/census2.dta) . describe region | variable name | | display
format | value
label | variable label | | |---------------|------|-------------------|----------------|----------------|--| | region | str7 | You. | | | | tabulate region | region | Freq. | Percent | Cum. | |--------------------------------|---------------------|----------------------------------|-----------------------------------| | N Cntrl
NE
South
West | 12
9
16
13 | 24.00
18.00
32.00
26.00 | 24.00
42.00
74.00
100.00 | | Total | 50 | 100.00 | | Typing describe reveals that region is a string variable with a maximum length of characters. You could need to of 7 characters. You could use this variable in a tabulate command to compute the frequencies of U.S. states in each variable in a tabulate command to compute the frequencies of U.S. states in each region or (using tabulate's generate() option) to create a set of indicator variables. create a set of indicator variables, one per region, but you cannot use it in statistical commands. Say that you wanted to retain the commands of the control contro commands. Say that you wanted to retain the readable values of region for display but use the variable in statistical commands. use the variable in statistical commands. You could use the encode command: encode region, generate (cenreg) to creat. region, generate(cenreg) to create a new variable cenreg (Census region) and value label (by default, also named value label (by default, also named cenreg) that takes on the values of region. The new variable has integer type (long) new variable has integer type (long), with values assigned from one to the number of distinct values of region: | . describe ce | | display | Va | lue | | | | |---------------|------|---------|------|------|--------|----------|-----| | variable name | type | format | | bel | variab | le label | | | cenreg | long | %8.0g | ce | nreg | | | | | . summarize c | | be | Mean | Std. | Dev. | Min | Max | | cenreg | | 50 | 2.6 | 1.12 | 4858 | 1 | 4 | The new variable takes on values 1, 2, 3, or 4. The tabulate cenreg command generates the same display as tabulate region. However, you can now do statistical analyses by using cenreg, such as in a summarize command or to define a grouping variable (see section 3.2) for the tsset command. Some string variables may have numeric content but should be stored as strings. For example the U.S. ZIP code, or postal code, is a five-digit integer that may begin with a leading zero. If you need to match household data to, say, Census data, you will want to retain those leading zeros, and you could encode a ZIP code variable (assuming that there are not too many of them to create value labels; see help limits). You may also need to generate the string equivalent of a numeric variable. Sometimes it is easier to parse the contents of string variables and extract significant substrings. You can apply such transformations to integer numeric variables through integer division and remainders, but these methods are generally cumbersome and error prone. You can also convert numeric values to string to get around the limits of exact representation of numeric values such as integers with many digits; see Cox (2002b). We have discussed three methods for string-to-numeric conversion. For each method, the inverse function is available. string() lets you use a numeric display format (see [D] format), such as a variable with leading zeros used in some ID-number schemes, tostring prevents you from losing information while converting variables and can be used with a specific display format. Like destring, tostring can modify variables specified in a varlist. #### 2.2.5 Handling dates Stata does not have a special data type for date variables. It understands one date format: elapsed dates, representing the number of days since 1 January 1960. Dates before that date (including BCE) are coded as negative integers. Since most of us cannot readily translate 27 July 2005 into the number 16,644, Stata provides several functions for handling dates. If you have month, day, and year values stored as separate numeric variables mon, day, and year, you can use Stata's mdy() function,
which takes those three arguments. This system is similar to Excel's handling of dates, with a base date of 1 January 1900 or 1 January 1904, depending on the operating system. If your year is coded as two digits, you should convert it to a four-digit year before using If the date is coded as a string, such as 7/27/2005, 27ju12005, 2005-07-27, or If the date is coded as a string 27.7.2005, you can use Stata's date() function to generate an integer date variable 27.7.2005, you can use Status day. The date() function takes two arguments: the name of a string variable containing the the date() function takes two arguments, date, and a literal such as "mdy", "ymd", or "dmy", specifying the order of the arguments The literal allows Stata to tell whether the date 02/03/1996 refers to the third day of February or the second day of March, in European style. You can also use an optional third argument to deal with two-digit years. It is best, though, to generate four-digit years whenever you prepare data for use in Stata. If you are exporting data from Excel apply a four-digit year format before saving the data in .csv or tab-delimited text Once you have defined an integer date variable with mdy() or date(), use the format command to give it a date format for display. format varname %td displays the variable in Stata's default date format, e.g., 27 jul 2005; see [U] 12.5.3 Date formats for other date formats. You can also display only part of the date, e.g., 27 July or July 2005. Formatting the display of Stata variables never changes their content, so you cannot use this method to group observations by month or year. The observations' values remain the underlying integer (clapsed date). To group observations—for example, by month—you can use one of Stata's many date functions. Starting with a daily variable transdate, you can use generate my = mofd(transdate) to generate a new variable mmyy, which is the elapsed month in integer form. To put this date in readable form, apply a format: format mmyy "tm where %tm is Stata's monthly format. The default format will produce 2005m7 for this Stata supports yearly %ty, half-yearly %th, quarterly %tq, monthly %tm, and daily %td date types. Stata does not support business-daily data. You can use any of several functions to extract the number of the year, quarter, month, week, day, day of week or day of year from an elapsed-date variable. Another set of functions, such as modd() lets you translate elapsed days into other elapsed units of time. To define run-together dates, such as 20050727, you can either extract the components yourself or use Nicholas Cox's todate command, available from ssc. The command can also handle other sorts of run-together dates, such as yyyyww, where we refers to the week of the year ways. Since Stata's dates—whether stored as elapsed dates, or elapsed months, quarters, and so on—are integer variable. years, and so on—are integer variables, you can use standard arithmetic to general elapsed time, measured in whatever time. elapsed time, measured in whatever time unit you prefer. Stata does not support in measurements, such as the time day time measurements, such as the time at which a patient receives a dose of medicine. However, several egen functions describe to However, several egen functions described in section 2.2.7 have been developed for the ## 2.2.6 Some useful functions for generate or replace Stata provides a useful set of "programming" functions (see [D] functions or type help programming functions), many of which require no programming. For instance, instead of binning observations by their values relative to breakpoints defined by recode(), or autocode(), you might want to bin the data into equally sized groups: quartiles, quartiles, or deciles. The group(n) function provides this capability, creating q groups of approximately equal size, with the result variable taking on values q, q, q, q. The q-could modify by issuing a sort command). You could replace several replace statements with one call to the inlist() or inrange() function. The former lets you specify a variable and a list of values; it returns 1 for each observation if the variable matches one of the elements of the list and 0 otherwise. You can use the function with either numeric or string variables. For string variables, you can specify up to 10 string values in the list. The inrange() function lets you specify a variable and an interval on the real line and returns 1 or 0 to indicate whether the variable's values fall within the interval (which may be open; i.e., one limit may be $\pm \infty$). Some data transformations involve integer division, that is, truncating the remainder. For instance, four-digit SIC (industry) codes 3211-3299 divided by 100 must all-yield 32. You can do this transformation with the int() function (defined in help math functions). A common task involves extracting one or more digits from an integer code; for instance, the tens and units digits of the codes above can be defined as ``` . gen digit34 = SIC - int(SIC/100)*100 ``` or . gen mod34 = mod(SIC,100) where the second construct uses the modulo (mod()) function. You could extract the tens digit alone by using ``` , gen digit3 = int((SIC - int(SIC/100)*100)/10) ``` OI - gen mod3 = (mod(SIC,100) - mod(SIC,10))/10 This method is not useful for long integers such as U.S. Social Security numbers of nine digits or ID codes of 10 or 12 digits. You can use the functions maxbyte(), maxint(), and maxlong() instead. Because 27 values are reserved for missing-value codes, the maximum value that can be stored in a byte variable is 100, instead of 127. An int variable can hold values up to 32,740, which is insufficient for five-digit U.S. ZIP codes. The long data type can hold integers up to 2.147 billion (a 10-digit number).8 Thus at The long data type can note integers at the long to digits cannot be uniquely represented in Stata, but only a subset of 10-des nine-digit numbers can be unique. Integers with more than 10 digits cannot be represented exacts. numbers win be unique. Integers and because of the mechanics of binary representation and finite-precision arithmetand because of the mechanics of binary representation and finite-precision arithmetand and because of the inectanate representing those values as floats (floating-point numbers) will be problematic if you representing those values as 12000 need exact values. Thus you should store very large integers as string variables if you need their precise values (for example, in matching by patient ID). In other cases, statistical data are reported as very large integers (e.g., the World Bank's World Development Indicators database contains gross domestic product in local currency units, rather than millions, billions, or trillions) and should be stored using a double data type since a float data type can retain only about seven digits of precision (per epsfloat()); se Cox (2002b). One exceedingly useful function for generate is the sum() function, which provides a running sum over the specified observations. This function is useful with time-series data in converting a flow variable into a stock variable. If you have an initial capital stock value and a net investment series, the sum() of investment plus the initial capital stock defines the capital stock at each point in time. #### 2.2.7 The egen command Whereas the functions available in generate or replace are limited to those listed in [D] functions (see also help functions). Stata's egen command provides an openended list of capabilities. Just as you can extend Stata's command set by placing other .ado and .hlp files on the adopath, you can invoke egen functions that am defined by ado-files with names starting with _g, stored on the adopath. Many of these functions are part of official Stata (see [b] egen and help egen), but your copy of Stata may include other egen functions that you have written or that you have downloaded from the SSC archive ([R] SSC) or another Stata user's net site. This section discusses several official Stata functions and several useful additions developed by the Stata u Although egen's syntax is similar to that of generate, there are several differences tall egen functions allow a by models. Not all egen functions allow a by varlist: (see the documentation to determine whether a function is byable). Similarly would be specified to the second state of generate, there are several due to the second state of generate, there are several due to the second state of generate, there are several due to the second state of generate, there are several due to the second state of generate, there are several due to the second state of generate, there are several due to the second state of generate and g a function is byable). Similarly, you cannot use _n and _N explicitly with egen. Since you cannot specify that a variable great decimentation to determine when you cannot specify that a variable great deciment and _N explicitly with egen. you cannot specify that a variable created with a nonbyable egen function should use the logic of replace, you may need to the logic of replace, you may need to use a temporary variable as the egen result and then use replace to combine those values over groups. #### Official egen functions To get spreadsheetlike functionality in Stata's data transformations, you will need be understand the rowwise egen functions, which is approximately approximately the state of o understand the rowwise egen functions, which allow you to calculate sums, average ^{8.} For each of these data types, negative numbers of similar magnitudes may be stored. For #selfs. point numbers, see the maxfloat() and maxdouble() functions. standard deviations, extrema, and counts across several Stata variables. You can also use wildcards. With a list of state-level U.S. Census variables pop1890, pop1900, ..., pop2000, you may use egen nrCensus = rowmean(pop*) to compute the average
population of each state over those decennial censuses. As discussed in section 2.2.3, the rowwise functions can work with missing values. The mean will be computed for all 50 states, although several were not part of the United States in 1890. You can compute the number of nonmissing elements in the rowwise list with rownonmiss(), with rowmiss() as the complementary value. Other official rowwise functions include rowmax(), rowmin(), rowtotal(), and rowsd() (row standard deviation). Official egen also provides statistical functions for computing a statistic for specified observations of a variable and placing that constant value in each observation of the new variable. Since these functions generally let you use by varlist:, you can use them to compute statistics for each by-group of the data, as discussed in section 2.2.8. Using by varlist: makes it easier to compute statistics for each household for individual-level data or each industry for firm-level data. The count(), mean(), min(), max(), and total() functions are especially useful.⁹ Other functions in this statistical category include iqr() (interquartile range), kurt() (kurtosis), mad() (median absolute deviation), mdev() (mean absolute deviation), median(), mode(), pc() (percent or proportion of total), pctile(), p(n) (nth percentile), rank(), sd() (standard deviation), skew() (skewness), and std() (z-score). #### egen functions from the user community The most comprehensive collection of additional egen functions is Nicholas J. Cox's egenmore package, available with the ssc command. The egenmore package contains routines by Cox and others (including me). Some of these routines extend the functionality of official egen routines, whereas others provide capabilities lacking in official Stata. Many of the routines require Stata version 8 or later. For example, extensions have been made to improve the way Stata handles dates. Stata's date variables are stored internally as floating-point values. For a date variable measuring days (rather than weeks, months, quarters, half-years, or years), the integer part records the number of days elapsed since an arbitrary day zero of 1 January 1960. Although you could use the decimal part of a date to represent an elapsed fraction of a day (e.g., 0.25 as 6:00 a.m.), Stata does not support intraday values or time arithmetic. The egenmore package contains functions that provide such support. The dhms() function creates a date variable with the fractional part reflecting hours, minutes, and seconds, whereas hms() computes the number of seconds past midnight for time comparisons (e.g., such as stock-market tick data, which are recorded to the sec- ^{9.} Before Stata 9, egen total() was called egen sum(), but the name was changed because it was often confused with generate's sum() function. ^{10.} The package is labeled egenmore since it further extends egenodd, which appeared in the Stata Technical Bulletin (Cox 1999, 2000). Most of the egenodd functions now appear in official Stata, so they will not be discussed here. ond). The companion function elap2() displays an elapsed time between two fractional ond). The companion function elap2() displays an elapsed time between two fractional ond). ond). The companion function exapt () the companion function exact companio date variables in days, hours, minutes, and hmm() and hmmss() display fractional days function for a number of seconds. Functions hmm() and seconds. as hours and minutes, or hours, minutes, and seconds. Several egenmore functions work with standard Stata dates, expressed as integer Several egenmore functions work days. The bom() and eom() functions create date variables corresponding to the first days. The bom() and com() indicates the offset for day or last day of a given calendar month. They can be used to generate the offset for day or last day of a given calculated as the last day of the third month from now). If you use the any number of months (e.g., the first (last) nonweekend day of the month (although this function does not support holidays). You can also use the functions bomd() and eomd() to find the first (last) day of a month in which their date-variable argument falls, which is useful if you wish to aggregate observations by calendar month. Several egenmore functions extend egen's statistical capabilities. The corr() function computes correlations (optionally covariances) between two variables; gmean() and hmean() compute geometric and harmonic means; rndint() computes random integers from a specified uniform distribution; semean() computes the standard error of the mean; and var() computes the variance. The filter() function generalizes egen's ma() function, which can produce only two-sided moving averages of an odd number of terms. In contrast, filter() can apply any linear filter to data that you have declared to be time-series data by using tsset, including panel data, for which the filter is applied separately to each panel (see section 3.4.1). You can use the companion function ewma() to apply an exponentially weighted moving average to time-series data. Useful data-management functions include rall(), rany(), and rcount(). These rowwise functions, working from a varlist, evaluate a specified condition and indicate whether all (any) of the variables satisfy the condition or how many variables satisfy the condition. For instance, typing ``` . egen allpos = rall(var1 var2 var3), cond(0 > 0 & 0 < .) egen anyneg = rany(var1 var2 var3), cond(0 < 0) egen countpos = rcount(dus*), cond(0 > 0 & 0 < .) ``` would create allpos with a value of 1 for each observation in which all three variables are positive and nonmissions and the state of t are positive and nonmissing and 0 otherwise; anyneg with a value of 1 where any of the three variables were negative and 0 otherwise; any neg with a value of 1 where any of nonmissing dummy variables. of nonmissing dummy variables that are positive. You could use countpos to ensure that a set of dummies is mutual. that a set of dummies is mutually exclusive and exhaustive, since it should return for each observation (countries by for each observation (countries has other uses as well). The © symbol is a placeholder standing for the value of the world. standing for the value of the variable in that observation. You can also apply functions to string variables Another useful data-management function is the record() function (the name and to evoke "setting a record"). You meant to evoke "setting a record"). You can use this function to compute the record value, such as the highest wage carried to value, such as the highest wage earned to date by each employee or the lowest stock price encountered to date. If the data countered to date is the data countered to date is the data countered to date. price encountered to date. If the data contain annual wage rates for several employees 2.2.8 Computation for by-groups . egen hiwage = record(wage), by(empid) order(year) will compute for each employee (as specified with by(empid)) the highest wage earned to date, allowing you to evaluate conditions when wages have fallen because of a job change, etc. 11 Several other egen functions are available in the egenmore package on the SSC archive. In summary, egen functions handle several common data-management tasks. The open-ended nature of this command implies that new functions often become available, either through ado-file updates to official Stata or through contributions from the user community. The latter will generally be announced on Statalist (with past messages accessible in the Statalist archives), and recent contributions will be highlighted in sac whatsney. #### 2.2.8 Computation for by-groups One of Stata's most useful features is the ability to transform variables or compute statistics over by-groups, which are defined with the by varlist: prefix introduced in section 2.1.8. There, we discussed how to use by-groups in statistical commands. We now discuss how to use them with generate, replace, and egen in data transformations. If you use a by-group, in and in have alternative meanings (they usually refer to the current observation and last defined observation in the dataset, respectively). Within a by-group, in is the current observation of the group and in it is the last observation of the group. Here we grout the state-level data by region and descending order of population. We then use generate's running sum() function, by region:, to display the total population in each region that lives in the largest, two largest, three largest, ..., states: - . use http://www.state-press.com/data/ineum/census2d, clear (1880 US Census data with population size indicators) - . geort region -pop - by region: generate totpop = sum(pop) ^{11.} I am grateful to Nicholas J. Cox for his thorough documentation of help egennore. | | | hw(region) | |-----|---------|---------------| | non | totpop. | sepby(region) | | | ate pop to-1 | pop | totpop | |------------|---------------
--|----------| | region | state | THE STATE OF S | 17558.07 | | | New York | 17558.1 | 29421.97 | | NE | Pennsylvania | 11863.9 | 36786.79 | | NE | New Jersey | 7364.8 | 42523.83 | | NE | Massachusetts | 5737.0 | 45631.4 | | NE | Connecticut | 3107.6 | 46756.06 | | NE | Maine | 1124.7 | | | NE | Rhode Island | 947.2 | 47703.22 | | NE | New Hampshire | 920.6 | 48623.83 | | NE
NE | Vermont | 511.5 | 49135.28 | | OF SECTION | Illinois | 11426.5 | 11426.52 | | N Cntrl | Ohio | 10797.6 | 22224.15 | | N Catrl | Michigan | 9262.1 | 31486.23 | | N Cutri | Indiana | 5490.2 | 36976.48 | | N Cotrl | Missouri | 4916.7 | 41893.14 | | N Catrl | Wisconsin | 4705.8 | 46598.9 | | N Cntrl | Minnesota | 4076.0 | 50674.87 | | N Cotrl | Iowa | 2913.8 | 53588.68 | | N Cntrl | Kansas | 2363.7 | 55952.36 | | N Cntrl | Nebraska | 1569.8 | 57522.18 | | N Cntrl | S. Dakota | 690.8 | 58212.95 | | N Cntrl | N. Dakota | 652.7 | 58865.67 | We can use $\underline{\ \ }n$ and $\underline{\ \ \ }N$ in this context. They will be equal in the last observation of each by-group: by region: list region totpop if _n == _N region = NE region totpop 9. NE 49135.28 -> region = N Cntrl region totpop 12. N Cntrl 58865.67 We could have computed the total population by region, stored as a new variable, by population by region: We might instead want to compute states' average . by region: egen meanpop = mean(pop) | | | | | | sanhy(region) | | |---|------|--------|-----------|----------|---------------|--| | ۰ | list | region | state pop | meanpop, | sepby(region) | | | region | state | pop | meanpop | |---------|---------------|---------|----------| | NE | New York | 17558.1 | 5459.476 | | NE | Pennsylvania | 11863.9 | 5459.476 | | NE | New Jersey | 7364.8 | 5459.476 | | NE | Massachusetts | 5737.0 | 5459.476 | | NE | Connecticut | 3107.6 | 5459.476 | | NE | Maine | 1124.7 | 5459.476 | | NE | Rhode Island | 947.2 | 5459.476 | | NE | New Hampshire | 920.6 | 5459.476 | | NE | Vermont | 511.5 | 5459.476 | | N Cntrl | Illinois | 11426.5 | 4905.473 | | N Cntrl | Ohio | 10797.6 | 4905.473 | | N Cntrl | Michigan | 9262.1 | 4905.473 | | N Cntrl | Indiana | 5490.2 | 4905.473 | | N Cntrl | Missouri | 4916.7 | 4905.473 | | N Cntrl | Wisconsin | 4705.8 | 4905.473 | | N Cntrl | Minnesota | 4076.0 | 4905.473 | | N Cntrl | Towa | 2913.8 | 4905.473 | | N Cntrl | Kansas | 2363.7 | 4905.473 | | N Cntrl | Nebraska | 1569.8 | 4905.473 | | N Cotrl | S. Dakota | 690.8 | 4905.473 | | N Cotrl | N. Dakota | 652.7 | 4905.473 | We could do this same calculation over a by varlist: with more than one variable: . by region popsize, sort: egen meanpop2 = mean(pop) . list region popsize state pop meanpop2, sepby(region) | region | popsize | state | pop | neanpop2 | |---------|--------------|---------------|---------|----------| | NE | <= 5 million | Rhode Island | 947.2 | 1322.291 | | NE | <= 5 million | New Hampshire | 920.6 | 1322.291 | | NE | <= 5 million | Vermont | 511.5 | 1322.291 | | NE | <= 5 million | Connecticut | 3107.6 | 1322.291 | | NE | <∞ 5 million | Maine | 1124.7 | 1322.291 | | NE | > 5 million | New York | 17558.1 | 10630.96 | | NE | > 6 million | New Jersey | 7364.8 | 10630.96 | | NE | > 5 million | Massachusetts | 5737.0 | 10630.96 | | NE | > 5 million | Pennsylvania | 11863.9 | 10630.96 | | N Cotrl | <= 5 million | N. Dakota | 652.7 | 2736.153 | | N Cntrl | <= 5 million | Kansas | 2363.7 | 2736.153 | | N Cntrl | <= 5 million | Missouri | 4916.7 | 2736.153 | | N Cntrl | <= 5 million | Minnesota | 4076.0 | 2736.153 | | N Cntrl | <= 5 million | Iowa | 2913.8 | 2736.153 | | N Cntrl | <= 5 million | S. Dakota | 690.8 | 2736.163 | | N Cntrl | <= 5 million | Wisconsin | 4705.8 | 2736.153 | | N Cntrl | <= 5 million | Nebraska | 1569.8 | 2736.153 | | N Cntrl | > 5 million | Illinois | 11426.5 | 9244.113 | | N Cutrl | > 5 million | Indiana | 5490.2 | 9244.113 | | N Cutrl | > 5 million | Michigan | 9262.1 | 9244.113 | | N Cntrl | > 5 million | Ohio | 10797.6 | 9244.11 | We can now compare each state's population with the average population of states of its size class (large or small) in its region. Although egen's statistical functions can be handy, creating variables with constant Although egen's statistical functions a large dataset will consume much of Statistical values or constant values over by-groups in a large dataset will consume much of Statistical values or constant values over by-groups in a large dataset will consume much of Statistical values or constant values over by-groups in a large dataset will consume much of Statistical values or constant values over by-groups in a large dataset will consume much of Statistical values or constant values over by-groups in a large dataset will consume much of Statistical values or constant values over by-groups in a large dataset will consume much of Statistical values or constant values over by-groups in a large dataset will consume much of Statistical values or constant values over by-groups in a large dataset will consume much of Statistical values or constant values over by-groups in a large dataset will consume much of Statistical values or constant values over by-groups in a large dataset will consume much of Statistical values or constant values over by-groups in a large dataset will consume much of Statistical values or constant value values or constant values over by-group. It values only for a subsequent transformation available memory. If you need the constant values only for a subsequent transformation available memory. available memory. If you need the tolk such as computing each state population's deviation from average size, and will not us such as computing each state population them in later analyses, drop those variables at the earliest opportunity. Or consider them in later analyses, drop those other Stata commands such as center, which transforms a variable into deviation from mean form and works with by-groups. egen can be considerably slower than built-in functions or special-purpose conmands. You can use egen functions to generate constant values for each element of a by-group: total household income or average industry output, but egen is an inefficient tool. Stata's collapse command is especially tailored to perform that very functive and will generate one summary statistic for each by-group. #### 2.2.9 Local macros Using Stata's local macros can help you work much more efficiently. In Stata, a local macro is a container that can hold one object—such as a number or variable name—or set of objects. A local macro may contain any combination of alphanumeric character and can hold more than 8,000 characters in all versions of Stata. A Stata macro is really an alias that has both a name and a value. You can return a macro's value at any time by dereferencing its name: . local country US UK DE FR . local ctycode 111 112 136 134 . display "'country'" US UK DE FR . display "'ctycode'" 111 112 136 134 The Stata command to define the macro is local (see [P] macro). A local macro is ated within a do-file or in an all of created within a do-file or in an ado-file and ceases to exist when that do-file terminates The first local command names the macro—as country—and then defines its to be the list of four two letters. to be the list of four two-letter country codes. The next local statement does be same for macro ctycode. To same for macro ctycode. To access the value of the macro, we must dereference macroname refers to the local seasons the value of the macro, we must dereference to the macro. macroname refers to the local macro name. To obtain its value, the name of the mast be preceded by the left tiel of must be preceded by the left tick character (') and followed by the apostrophe (') avoid errors, be careful to use the control of the careful to use the control of the careful to use the control of the careful to use c avoid errors, be careful to use the correct punctuation. In the example's display
ments, we must wrap the dereferenced ments, we must wrap the dereferenced macro in double quotes since display experiments a double-quoted string argument or the collection of the collection of the collection of the collection. a double-quoted string argument or the value of a scalar expression, such as display log(14). You will need to understand local macros before you work with Stata's joolest astructs, as we will now discuss. See constructs, as we will now discuss. See section B.1 for more detail on macros- ## 2.2.10 Looping over variables: forvalues and foreach In discussing recode in section 2.2.2, we stressed the importance of using one command rather than several similar commands to change the values stored in a variable. Likewise, if your dataset contains several variables with similar contents, you would rather loop over those variables than write a line to handle each one. The most powerful loop constructs available in Stata are forvalues and foreach; see section B.3. Say that we have a set of variables, gdp1, gdp2, gdp3, and gdp4, containing gross domestic product (GDP) values for four countries. Using [P] forvalues, we can take advantage of the similarity of their names to perform [D] generate and [R] summarize statements: | |) | = log(gdp'i' | le lngdp'i'
dp'i' | 1/4 {
enerate doub
emarize lng | 3. sum | |----------|----------|--------------|----------------------|--------------------------------------|------------------| | Max | Min | Std. Dev. | Mean | Obs | 4. }
Variable | | 8.768936 | 5.794211 | .59451 | 7.931661 | 400 | lngdp1 | | Max | Min | Std. Dev. | Mean | Obs | Variable | | 8.760156 | 4.892062 | .5828793 | 7.942132 | 400 | lngdp2 | | Max | Min | Std. Dev. | Mean | Obs | Variable | | 8.736859 | 6.327221 | .537941 | 7,987095 | 400 | lngdp3 | | Max | Min | Std. Dev. | Mean | Obs | Variable | | 8.729272 | 5.665983 | .5983831 | 7.886774 | 400 | lngdp4 | In the forvalues command, we define the local macro i as the loop index. Following an equal sign is the range of values that i will take on as a numlist, such as 1/4, as here, or 10(5)50, indicating 10 to 50 in steps of 5. The body of the loop contains one or more statements to be executed for each value in the list. Each time through the loop, the local macro contains the subsequent value in the list. This example shows an important use of forvalues: if you loop over variables with names that have an integer component, you do not need a separate statement for each variable. The integer component need not be a suffix; we could loop over variables named ctyNgdp just as easily. But variable names may not have a common numeric component or contain numbers that are not consecutive; for example, instead of gdp1, gdp2, gdp3, and gdp4, we might have UKgdp, USgdp, DEgdp, and FRgdp. Here we use foreach to handle several different specifications of the variable list. We may perform the same generate and summarize steps by listing the variables to be manipulated: 2. | . foreach c in US | UK DE FR
srate doub
marize lng | {
le lngdp'c'
dp'c' | = log('c'gdp | | | |---------------------|--------------------------------------|---------------------------|--------------|----------|----------| | 2.
3.
4.) | | Mean | Std. Dev. | Min | Max | | Variable | Obs | | .59451 | 5.794211 | 8.768936 | | lagdpUS | 400
0bs | 7.931661
Mean | Std. Dev. | Min | Max | | Variable | 000 | | .5828793 | 4.892062 | 8.760156 | | lngdpUK | 400
0bs | 7.942132
Mean | Std. Dev. | Min | Max | | Variable | 1 200 | * ****** | .537941 | 6.327221 | 8.736859 | | lngdpDE
Variable | 400
Obs | 7.987095
Mean | Std. Dev. | Min | Max | | lngdpFR | 400 | 7.886774 | .5983831 | 5.665983 | 8.729272 | Like forvalues, the block of code is repeated, with the local macro taking on each of the values in the list in turn. We may also place the values in a local macro and us the name of that macro in the foreach command. In this syntax, we do not dereference the macro in the foreach command. ``` . local country US UK DE FR . foreach c of local country { ``` The foreach command can have a varlist, a newvarlist of variables to be created, a explicit list of elements, or a numlist. Since a varlist may contain wildcards, we could have used foreach c of varlist *gdp in the example above. These examples have used forvalues and foreach to loop over a set of variables. Sometimes we want to loop over a set of variables and store the result in one variable. Within a loop, you may use only replace to accumulate results in one series sint trying to generate the series twice will fail. But for replace to function the first time through the loop, the variable must have been generated previously: | Variable | Obs | | | | | | |-----------------------------------|--------------------------|--|--|---|--|--| | USgdp | 400 | Mean | Std. Dev. | Min | Max | | | UKgdp
DEgdp
FRgdp
gdptot | 400
400
400
400 | 3226,703
3242,162
3328,577
3093,778
12891,22 | 1532,497
1525,788
1457,716
1490,646
3291,412 | 328.393
133.2281
559.5993
288.8719
4294.267 | 6431.328
6375.105
6228.302
6181.229
21133.94 | | used a loop to illustrate the concept. The summand must be initialized to zero of the loop. #### 2.2.11 Scalars and matrices Stata also lets you use scalars and matrices with analysis commands. Scalars, like local macros, can hold both numeric and string values, but a numeric scalar can hold only one numeric value. Most analysis commands return one or more results as numeric scalars. For instance, describe returns the scalars $\mathbf{r}(\mathbf{N})$ and $\mathbf{r}(\mathbf{k})$, corresponding to the number of observations and variables in the dataset. A scalar is also much more useful for storing one numeric result—such as the mean of a variable—than for storing that value in a Stata variable containing maxobs copies of the same number. A scalar may be referred to in any subsequent Stata command by its name: - . scalar root2 = sqrt(2.0) - . generate double rootGDP = gdp*root2 Unlike a macro, a scalar's name gives its value, so it does not have to be dereferenced; see section B.2 for more information about scalars. Stata's estimation commands create both scalars and Stata matrices: in particular, the matrix e(b), containing the set of estimated parameters, and the matrix e(V), containing the estimated variance—covariance matrix of the estimates (VCE). You can use Stata's matrix commands to modify matrices and use their contents in later commands; see section B.4 for more information about Stata's matrices. #### 2.2.12 Command syntax and return values Stata's analysis commands follow a regular syntax: $${\tt cmdname} \ \ varlist \ \big[\ if \ \big] \ \big[\ in \ \big] \ \big[\ , \ \ options \big]$$ As discussed in section 2.1.6, most Stata analysis commands let you specify if exp and in range clauses. Many analysis commands have options that modify their behavior. Stata analysis commands can be either e-class commands (estimation commands) or r-class commands (all other analysis commands). The command's class determines whether its saved results are returned in r() or e(). The r-class commands return those elements in r(), which you can view by typing return list. Using the census data, we summarize the pop variable: . use http://www.stata-press.com/data/imeus/census2c, clear (1980 Census data for NE and NC states) | , summarize pop
Variable | Obs | Hean | Std. Dev. | | Min | Max | |-----------------------------|-----|----------|-----------|------|---------|----------| | pop | 21 | 5142.903 | 4675 | .152 | 511.456 | 17558.07 | ^{12.} The length of a string scalar is limited to the length of a string variable (244 characters). ``` return list r(N) = 21 r(sun_v) = 21 r(mean) = 5142.902523809524 r(war) = 21857049.56321066 r(sd) = 4675.152357219031 r(min) = 511.456 r(max) = 17568.072 r(sun) = 108000.953 ``` Typing return list displays the saved results for summarize, which include seem scalars, including some not displayed in the output, such as r(sum_w), r(Var), and r(sum). We can access these values and use them in later computations, for instance ``` display "The standardized mean is 'r(mean)'/'r(sd)'" The standardized mean is 5142.902523809524/4675.152357219031 ``` In contrast, if we use an estimation command, such as mean, we can display the saved results by using ereturn list: ``` . mean pop popurb Mean estimation Number of obs Std. Err. Mean [95% Conf. Interval] pop 5142.903 1020:202 3014.799 popurb 7271.006 3829.776 840.457 2076.613 5582.938 . ereturn list scalars: e(df_r) = 20 e(N_over) = 1 e(N) - 21 e(k_eq) = 1 e(k_eform) = 0 macros: e(cmd) : "mean" e(title) : "Mean estimation" e(estat_cmd) : "estat_vce_only" e(varlist) : "pop popurb" e(predict) : "_no_predict" e(properties) : "b y" natrices: *(b): 1 x 2 e(x): 2 x 2 e(x): 1 x 2 e(xror): 1 x 2 functions: e(mample) ``` ^{13.} We may suggested any number of variables, but the results of return list report only design. . matrix list e(b) e(b)[1,2] pop popurb y1 5142.9025 3829.7758 . matrix list e(V) symmetric e(V)[2,2] pop popurb pop 1040811.9 popurb 849907.5 706367.96 The mean command saves several items in e(), including the matrices e(b) and e(V). Matrix e(b) contains the means of both pop and popurb, whereas e(V) contains the estimated VCE ereturn list also displays several scalars (such as e(N), the number of observations), macros (such as e(varlist) of the command), matrices, and the function e(sample). Section 4.3.6 discusses how to use estimation results in more detail. #### Exercises Cral - Using the cigconsump dataset, generate a list of the stateids corresponding to the far western states: Washington, Oregon, California, Nevada, Utah,
Idaho, and Arizona. Use this list to keep observations from only those states. Drop the state variable, and create a new string variable, state, that contains the full name of the state. save the dataset as cigconsumpw. - 2. Using the cigconsumpW dataset, generate a list of the unique values of stateid and state (with levelsof) as local macros. Use reshape to make a wide-format dataset of the packpc, avgprs, and incpc variables. Using foreach, create a set of tables for each state (labeled by the full state name) listing these three variables by year. Compute correlations of the states' packpc variables. # 3 Organizing and handling economic data This chapter discusses four organizational schemes for economic data: the cross section, the time series, the pooled cross section/time series, and the panel dataset. Section 5 presents some tools for manipulating and summarizing panel data. Sections 6-8 present several Stata commands for combining and transforming datasets: append, merge, joinby, and reshape. The last section discusses using do-files to produce reproducible research and automatically validate data. #### 3.1 Cross-sectional data and identifier variables A common type of data encountered in applied economics and finance is known as cross-sectional data, which contain measurements on distinct individuals at a given point in time. Those observations (rows in the Data Editor) vary over the units, such as individuals, households, firms, industries, cities, states, or countries. The variables (columns in the Data Editor) are generally measurements taken in a given period, such as household income for 2003, firms' reported profits for the first quarter of 2004, or cities' population in the 2000 Census. However, variables may contain measurements from other periods. For instance, a cross-sectional dataset of cities might contain variables named pop1970, pop1980, pop1990, and pop2000 containing the cities' populations for those four decennial censuses. But unlike in time-series data, the observations in a cross-sectional dataset are indexed with an i subscript, without reference to t (the time). In a cross-sectional dataset, the order of the observations in the dataset is arbitrary. We could sort the dataset on any of its variables to display or analyze extreme values of that variable without changing the results of statistical analyses, which implies that we can use Stata's by varlist: prefix. As discussed in section 2.1.8, using a by varlist: prefix requires that the data be sorted on the defined by-group, which you can do easily by using the sort option of the by varlist: prefix; that is, type by varlist, sort:. Time series, on the other hand, must follow a chronological order to be analyzed meaningfully. Cross-sectional datasets usually have an identifier variable, such as a survey ID assigned to each individual or household, a firm-level identifier (e.g., a CUSIP code), industry-level identifier (e.g., a two-digit Standard Industrial Classification [SIC]) code, or a state or country identifier (e.g., MA, CT, US, UK, FRA, GER). Often there will be more than one identifier per observation. For instance, a survey might contain both a household in variable and a state identifier. Since Stata's variables may be declared a household ID variable and a state identifier and identifier available in an external either numeric or string data types, practically any identifier variable in Stata. data file may be used to define an identifier variable in Stata. #### Time-series data 3.2 Cross-sectional datasets are found most often in applied microeconomic analysis, For Cross-sectional datasets as example, a dataset might contain the share prices of the Standard and Poor's (S&P) 30 firms at the market close on a given day: a pure cross section. But we might also have a dataset that tracks a particular firm's share price, or that share price and the Skp index, daily for 2000-2003. The latter is a time-series dataset, and each observation would be subscripted by t rather than i. A time series is a sequence of observation on a given characteristic observed at a regular interval, such as x_t , x_{t+1} , $x_{t+\tau}$, with each period having the same length (though not necessarily an equal interval of clock time). The share price on the last trading day of each month may be between 26 and 31 days later than its predecessor (given holidays). For business-daily data, such as stock market prices, Friday is (usually) followed by Monday. But say that you had a list of dates and workers' wage rates, which records the successive jobs held and wages cannot at the arbitrary intervals when workers received raises or took a new job. Those data could be placed on a time-series calendar, but they are not time-series data. Periods in time-series data are identified by a Stata date variable, which can be fine annual, semiannual, quarterly, monthly, weekly, daily, or generic (undated) time intervals. You can use tsset to indicate that this date variable defines the time-scie calendar for the dataset. A nongeneric date variable should have one of the date formation (e.g., %tq for quarterly or %td for daily) so that dates will be reported as calendar unit rather than as integers. A few of Stata's time-series commands cannot handle gaps, or missing values, in the sequence of dates. Although an annual, quarterly, monthly, or weekly series might go contain gaps, daily and business-daily series often have gaps for weekends and holidays You need to define such series in business days; for example, you could define a variable equal to the observation number (_n) as the date variable. You must define a time-series calendar with taset before you can use Stata's not commands (and some function). series commands (and some functions). But even if you do not need a time-series cale dar, you should define such a cale of dar, you should define such a calendar when you transform data so that you can religiously in doing statistical analysis. to dates in doing statistical analysis: for instance, you may use generate, summarized analysis or regress with the qualifier 15 target and the statistical analysis. or regress with the qualifier if tin(firstdate, lastdate). This function—which should be read as "t in"—lets you specify. be read as ** in lets you specify a range of dates, rather than observation number using a more cumbersome in range. The using a more cumbersome in range of dates, rather than observation numbers date or from a date to the end of the same interval from the beginning to a specific limiting to the end of the same interval from the beginning to a specific limiting to the end of the same interval from the beginning to a specific limiting to the end of the same interval from the beginning to a specific limiting to the end of the same interval from the beginning to a specific limiting to the end of the same interval from the beginning to a specific limiting the same interval from the beginning to a specific limiting the same interval from the beginning to a specific limiting the same interval from the beginning to a specific limiting the same interval from the beginning to a specific limiting the same interval from the beginning to a specific limiting the same interval from the beginning to a specific limiting the same interval from the beginning to a specific limiting the same interval from the beginning to a specific limiting the same interval from the beginning to a specific limiting the same interval from the beginning to a specific limiting the same interval from the beginning the same interval from date or from a date to the end of the sample may be given as if tin(, lastdatr) or in tin(firstdate,), respectively. I Defining the observation number (.n) as the date variable is the most often used general #### 3.2.1 Time-series operators Stata provides time-series operators—L., F., D., S.—which let you specify lags, leads (forward values), differences, and seasonal differences, respectively. The time-series operators make it unnecessary to create a new variable to use a lag, difference, or lead. When combined with a numlist, they let you specify a set of these constructs in one expression. Consider the lag operator, L., which when prepended to a variable name refers to the (first-) lagged value of that variable: L.x. A number may follow the operator so that L4.x would refer to the fourth lag of x—but more generally, a numlist may be used so that L(1/4).x refers to the first through fourth lags of x and L(1/4).(x y z) defines a list of the first through fourth lagged values of each of the variables x, y, and z. These expressions may be used anywhere that a varlist is required. Like the lag operator, the lead operator F. lets you specify future values of one or more variables. The lead operator is unnecessary, since a lead is a negative lag, and an expression such as L(-4/4).x will work, labeling the negative lags as leads. The difference operator, D., generates differences of any order. The first difference, D.x, is Δx or $x_t - x_{t-1}$. The second difference, D2.x, is not $x_t - x_{t-2}$, but rather $\Delta(\Delta x_t)$: that is, $\Delta(x_t - x_{t-1})$ or $x_t - 2x_{t-1} + x_{t-2}$. You can also combine the time-series operators so that LD.x is the lag of the first difference of x (that is, $x_{t-1} - x_{t-2}$) and refers to the same expression, as does DL.x. The seasonal difference S. computes the difference between the value in the current period and the period 1 year ago. For quarterly data, S.x generates $x_t - x_{t-4}$, and S2.x generates $x_t - x_t - 8$. In addition to being easy to use, time-series operators will also never misclassify an observation. You could refer to a lagged value as x[_n-1] or a first difference as x[_n] - x[_n-1], but that construction is not only cumbersome but also dangerous. Consider an annual time-series dataset in which the 1981 and 1982 data are followed by the data for 1984, 1985,
..., with the 1983 data not appearing in the dataset (i.e., not recorded as missing values, but physically absent). The observation-number constructs above will misinterpret the lagged value of 1984 to be 1982, and the first difference for 1984 will incorrectly span the 2-year gap. The time-series operators will not make this mistake. Since tsset has been used to define year as the time-series calendar variable, the lagged value or first difference for 1984 will be properly coded as missing, whether or not the 1983 data are stored as missing in the dataset. Thus you should always use time-series operators when referring to past or future values or computing differences in a time-series dataset. #### 3.3 Pooled cross-sectional time-series data Microeconomic data can also be organized into pooled cross-section time series, in which every observation has both an i and t subscript.³ For example, we might have the responses from 3 weeks' presidential popularity polls in which each poll contains 400 ^{2.} The time-series operators also provide a similar benefit in panel data, as discussed below. Econometricians often call data with this structure pseudopanel data; see Baltagi (2001). randomly selected respondents. But the randomly sampled individuals who responds randomly selected respondents. But the following poll or in any other poll the poll one week will probably not appear in the following poll or in any other pollowing poll or in any other pollowing the poll one week will proparty hot opportunity office poll the poll one week will proparty hot opportunity office poll drawn from a national sample before the election. These data are pooled cross sections drawn from a national sample before the election. These data are pooled cross sections are possible to the poll of drawn from a national sample octor over time 1 has no relation to observation j at time 2 over time such that observation j at time 2 over time such that observation just compute summary statistics for each cross section or time 3. We may use collapse to compute summary statistics for each cross section or time 3. We may use corrapse over time. For instance, if we have annual data for several random samples of U.S. cities for 1998-2004, we could use . collapse (mean) income (median) mediac=income (sum) population, by(year) which would create a new dataset with 1 observation per year, containing the year average income, median income, and total population of cities sampled in that year. Although pooled cross-section/time-series data allow us to examine both the individual and time dimensions of economic behavior, they cannot be used to trace individual over time. In that sense, they are much less useful than panel or longitudinal data which I will now describe. #### 3.4 Panel data A common form of data organization in microeconomics, macroeconomics, and finance a type of pooled cross-sectional time-series data called panel or longitudinal data. Panel data contain measurements on the same individuals over several periods. 5 Perhaps the most celebrated longitudinal study of households is the University of Michigan's Pare Study of Income Dynamics (PSID), an annual survey of (originally) 5,000 household carried out since 1968. On the financial side, S&P COMPUSTAT databases of firm-level characteristics are one of the most important sources of panel data for financial research In this form of data organization, each individual's observations are identified, allowed ing you to generate microlevel measures not present in the original data. For example, if we have a pooled cross-sectional time-series dataset gathered from repeated and surveys of randomly sampled individuals that measure their financial wealth along with demographics, we may calculate only an average net savings rate (the rate at which wealth is being accumulated or decumulated) or an average for subsamples of the deligation as the savings rate of Art. (such as the savings rate of African American respondents or of women under 35). We cannot monitor individual but cannot monitor individual behavior, but if we have panel data on a group of individuals who have responded to arrival. als who have responded to annual surveys over the same time span, we can calculate individual savings rates and colors. individual savings rates and cohort measures for subsamples. A panel dataset may be either balanced or unbalanced. In a balanced panel, estimated units, $i = 1, \dots, G$, is observed to of the units, $i=1,\ldots,G$, is observed in every period $t=1,\ldots,T$, resulting in G^{*} observations in the dataset. Such a new period $t=1,\ldots,T$, resulting in G^{*} observations in the dataset. Such a panel is easy to work with because the first 4. The full symmetric T The full syntax of collapse is described in section 3.4. ^{5.} Panel data are so called because the first examples of these data were the time series of response data are also because the first examples of these data were the time series of response data are also because the first examples of these data were the time series of response data are also because the first examples of these data were the time series of response data are also because the first examples of these data were the time series of response data are also because the first examples of these data were the time series of response data are also because the first examples of these data were the time series of response data are also because the first examples of these data were the time series of response data are also because the first examples of these data were the time series of response data are also because the first examples of these data were the time series of response data are also because the first examples of these data were the time series of response data are also because the first examples of these data were the time series of response data are also because the first examples of these data were the time series of response data are also because the first examples of these data were the time series of response data are also because the first examples of the series of a panel of experts, such as economic forecasters predicting next year's GDP growth or inflational data since the first examples of these data were the time series of religional data are also known as longitudinal data since the first examples are the first examples of households. Panel data are also known as longitudinal data since they allow you to longitudinally analyze a countries. observations will correspond to unit 1, the second T to unit 2, and so on. However, economic and financial data are often not available in balanced form because some individuals drop out of a multiyear survey. Furthermore, if we constrain analysis to a balanced panel, we create survivorship bias. For example, the S&P COMPUSTAT database of U.S. firms contains 20 years of annual financial statement data—but only for those firms that have existed for the entire period. The set of firms is thus unrepresentative in omitting startups (even those of age 19) and firms that were taken over during that time. Although the algebra of panel-data transformations and estimators is simplified with a balanced panel, I often prefer to work with an unbalanced panel to avoid such biases and mitigate the loss of sample size that may result from insisting on balanced-panel data. Stata's tools for panel data make it easy to work with any set of observations, balanced or unbalanced, that can be uniquely identified by i and t. Unlike Stata, many statistical packages and matrix languages require a balanced structure with T observations on each of G units, even if some of them are wholly missing. You can use tsset to indicate that the data are panel data. The same command that defines a time-series calendar for a time series may specify the panel variable as well: #### tsset panelvar timevar The timevar must be a date variable, whereas panelvar may be any integer variable that uniquely identifies the observations belonging to a given unit. The integer values need not be sequential: that is, we could use three-digit SIC codes 321, 326, 331, and 342 as the panelvar. But if the units of the data are identified by a string variable, such as a two-letter state abbreviation, we must encode that variable to create a panelvar identifier, taset will report the ranges of panelvar and timevar. #### 3.4.1 Operating on panel data Stata contains a thorough set of tools for transforming panel data and estimating the parameters of econometric models that take account of the nature of the data. Any generate or egen functions that support a by varlist: may be applied to panel data by using the panelvar as the by-variable. Descriptive data analysis on panel data often involves generating summary statistics that remove one of the dimensions of the data. You may want to compute average tax rates across states for each year or average tax rates over years for each state. You can compute these sets of summary statistics by using the collapse command, which produces a dataset of summary statistics over the elements of its by (varlist) option. The command syntax is ^{6.} You can use Stata's tafill command to generate such a structure from an unbalanced panel. collapse clist [if] [in] [weight] [, options] where the clist is a list of [(stat)] varlist pairs or a list of [(stat)] target varevances where the clist is a list of [(stat)] that may be any of the descriptive statistics available appairs. In the first format, the stat may be and additions: e.g., all 100 percentages pairs. In the first format, the stat most some additions: e.g., all 100 percentiles assumarize (see [R] summarize), with some additions: e.g., all 100 percentiles as be computed. If not specified, the default stat is mean. To compute more than to be computed. If not specimes, the speciment is the second form of the command, where the summary statistic for a given variable, use the second form
of the command, where command is the second form of the command for the command is the second form of second form of the second form summary statistic for a given variable to be created. The by (varlist) option specifies to target var names the new that observation for each unique value of the by (varlist). For collapse generate one result observation for each unique value of the by (varlist). more information on the collapse syntax, see [D] collapse. The grunfeld dataset contains annual firm-level data for 10 U.S. firms over 20 years as the output from taset shows. We first summarize three variables over the erpanel: - . use http://www.stata-press.com/data/imeus/grunfeld, clear panel variable: company, 1 to 10 time variable: year, 1935 to 1954 summarize mvalue invest kstock | Variable | Obs | Mean | Std. Dev. | Min | Max | |----------|------------|----------------------|----------------------|-------|--------| | svalue | 200 | 1081.681 | 1314.47 | 58.12 | 6241.7 | | kstock | 200
200 | 145.9583
276.0172 | 216.8753
301.1039 | .93 | 1486.7 | After using preserve to retain the original data, we use collapse by year to general the mean market value, sum of investment expenditures, and mean of firms' capel stock for each year. - preserve - . collapse (mean) svalue (sum) totinvYr=invest (mean) kstock, by(year) - graph twoway tsline mvalue totinvYr kstock I plot these time-series data in figure 3.1 to illustrate that the cross-sectional summer statistics trend upward on cross-section and the cross-section and the cross-section at cross-secti statistics trend upward over these two decades.7 ^{7.1} present Stata graphics in this text without explaining the syntax of Stata's graphics and introduction to Stata's graphics, see here. For an introduction to Stata graphics, as help graph intro and [G] graph intro. For an introduction of Stata's graphics, as help graph intro and [G] graph intro. presentation of Stata's graphics, see help graph intro and [G] graph intro. For all graph intro. For all graph intro and [G] graph intro. Figure 3.1: Graph of panel data collapsed to time series When performing data transformations on panel data, you should take advantage of the time-series operators' housekeeping facilities. Consider the dataset above. If the lagged value of mvalue is generated with mvalue [n-1], you must explicitly exclude the first observation of each firm from the computation. Otherwise its lagged value would refer to the last observation of the prior firm for firms 2, ..., 10. In contrast, you can use . generate lagnvalue = L.mvalue without considering the panel nature of the data. Each firm's first observation of lagmvalue will be defined as missing. Stata's commands for panel data are described in [XT] xt and [XT] intro. Each command's name begins with xt. Chapter 9 introduces some estimation techniques for panel data in economic analysis. ## 3.5 Tools for manipulating panel data Section 3.4 introduces balanced and unbalanced panel (longitudinal) data and shows how to use the collapse command to create a pure time series or a pure cross section from panel data. As described in section 3.4, you should always use tsset to set up panel data so that you can use Stata's time-series operators and xt commands. Sometimes translating an external date format into Stata's date variables is cumbersome. Say that you import a time series, perhaps with a spreadsheet-formatted date variable, and want to establish a time-series calendar for these data. You must work with the existing date to make it a Stata date variable by using the date() or mdy() functions, assign a format to the variable (e.g., %ty for annual, %tm for monthly), and then use tsset to deto the variable (e.g., %ty for annual, we that formatted date variable. You can use the tage, the time-series calendar with that formatted date variable. You can use the tage, the time-series calendar with that formatted date variable. You need only the stage together (Baum and Wiggins 2000). You need only the stage together (Baum and Wiggins 2000). the time-series calendar with that the time-series calendar variable and its start date: the name of a new time-series calendar variable and its start date; . tanktin dalever, start(1970) A new version of the routine (available from ssc) allows you to generate a devariable for each unit within a panel; . temktim datecer, start(1970q3) i(company) Each unit's series must start (but need not end) in the same period. ### Unbalanced panels and data screening Researchers organizing panel data often apply particular conditions to screen data is instance, unbalanced firm-level panel data may have only one or two annual observation available for particular firms rather than the 20 years available for more-established imin the sample. Here I discuss several commands that you can use before estimation manipulate panel data organized in the long format (see section 3.6). You can use the xtdes command to describe the pattern of panel data, particular to determine whether the panel is balanced or unbalanced.8 This command less scalars in r(); r(N) gives the number of panel units, with r(min) and r(max) go the minimum and maximum number of observations available per unit. If these items are equal, the panel is balanced. As discussed earlier, you could use tsfill to "rectangularize" an unbalanced panel by filling in missing observations with missing values. But what if you wanted to remove any panel units with fewer than the maximumber of number of observations? You could create a new variable counting observations with each unit as a large state of the counting observations with the counting observations with the counting observations. each unit as a by-group and use that variable to flag units with missing observations . xtden . local maxobs = r(max) . by company: generate obs = _N . drop if obs < 'maxobs' Often an unbalanced panel is preferable, but we may want to screen out units the fewer than m observations: if have fewer than m observations; if m=10, for instance, drop if obs $< 10^{-90}$ remove units failing to pass that remove units failing to pass that screen. Using this logic will ensure that each firm has the minimum number of observation and guarantee that they are the series series and the series series are the series and the series are the series and the series are th but it cannot guarantee that each firm has the minimum number of observe mation and testing routines do not all. mation and testing routines do not allow gaps within time series, although the table any unit of the macros r(tming) and command saves macros r(tmins) and r(tmaxs) to signal the first and last periods ^{8.} It is tempting to imagine that this command is named xtdesc, but it is not Nicholas Cox's routine tsspell (available from ssc) identifies complete runs of data, or "spells", within a time series or within a panel of time series. A gap terminates the spell and starts a new spell following the gap. Thus obs == 'maxobs' would correspond to a unit with a spell of 'maxobs'. The routine is general and may be used to identify spells on the basis of a logical condition (for instance, the sign of a variable such as GDP growth changing from positive to negative or a variable identifying the party in power changing). We will use a simpler aspect of the routine to identify gaps in the time series as shown by the calendar variable. Consider the missing data in a modified version of the Stata Longitudinal/Panel Data Reference Manual grunfeld dataset. The original dataset contains a balanced panel of 20 years of annual data on 10 firms. In the modified version, five of those firms lack one or more observations: one firm "starts late", one firm "ends early", and three firms' series have embedded gaps: ``` . use http://www.stata-press.com/data/ineus/grunfeldGaps, clear xtdes 10 n = 1, 2, ..., 10 company: 1935, 1936, ..., 1954 year: Delta(year) = 1; (1954-1935)+1 = 20 (company*year uniquely identifies each observation) 95% max 5% Distribution of T_i: min 20 20 20 17 18 Pattern Freq. Percent Cum. 50.00 111111111111111111111111 5 50.00 60.00 13 11111111111111...11111 80.00 10.00 111111111111111.111111 90.00 10.00 100.00 XXXXXXXXXXXXXXXXXX 100.00 ``` We identify these conditions by using tsspell with the condition D.year == 1.9 For series with gaps, that condition will fail. The tsspell routine creates three new variables, spell, seq, and end, and we are concerned with spell, which numbers the spells in each firm's time series. A firm with one unbroken spell (regardless of starting and ending dates) will have spell = 1. A firm with one gap will have later observations identified by spell = 2, and so on. To remove all firms with embedded gaps, we may apply similar logic to that above to drop firms with more than one reported spell: ``` . taspell year, cond(D.year == 1) . egen nspell = max(_spell), by(company) . drop if nspell > 1 (54 observations deleted) ``` This condition would work for any other Stata data frequency, since half-years, quarters, months, weeks, and days are also stored as successive integers. | company:
year: | 2, 3,
1935, 193
Delta(yea | 16 | (954
(1954-193 | 35)+1 = 2
entifies | 0
each obser | | | 7 20 | |-------------------|---------------------------------|--------------------------|--------------------|---|-----------------|-----------|-----------|--------| | Distributi | | | 5%
18
Patter | 18 | 50%
20 | 75%
20 | 95%
20 | 20 max | | 5 1 1 | 71.43
14.29
14.29 | 71.43
85.71
100.00 | 1111 | 111111111111111111111111111111111111111 | 111111 | | | | | 7. | 100.00 | | XXXXXX | XXXXXXXX | XXXXX | | | | Or if we were willing to retain firms with gaps but did not want to keep any spel shorter than a certain length (say, 5 years) we could use the _seq variable, which could the length of each spell, and include _spell in the egen command that computes the maximum over each
firm and spell within the firm's observations: ``` . use http://www.stata-press.com/data/imeus/grunfeldGaps, clear . tsspell year, cond(D.year == 1) . replace _spell = F._spell if _spell == 0 (14 real changes made) . egen maxspell = max(_seq+1), by(company _spell) . drop if maxspell < 5 (4 observations deleted) - xtden company: 1, 2, ..., 10 year: 1935, 1936, ..., 1954 n = Delta(year) = 1; (1954-1935)+1 = 20 20 (company*year uniquely identifies each observation) Distribution of T_i: 5% 25% max 75% 95% Freq. Percent 14 18 20 20 Cum. Pattern 50.00 50.00 10.00 11111111111111111111111 60.00 10.00 -.1111111111111111111111 70.00 1111111111.....11111 10.00 80.00 1111111111111...11111 10.00 90.00 10.00 11111111111111.111111 100.00 100.00 ``` The resulting dataset includes firms' spells of 5 years or more. The spell wards is recoded from 0 to its following value; by default, tsspell places a zero in the first because the seq variable starts counting from zero, we consider the maximum usefulness in enforcing this type of constraint. Experimenting with tsspell will reveal #### 3.5.2 Other transforms of panel data Some analyses require smoothing the data in each panel; tssmooth (see [TS] tssmooth) provides the most widely used smoothers, all of which can be applied to the data in each panel. For example, we might want a weighted moving average of four prior values, with arithmetic weights 0.4(0.1)0.1. That construct can be viewed as a filter applied to a series in the time domain and computed with tssmooth ma: ``` . tssmooth ma wtavg = invest, weights(0.1(0.1)0.4 <0>) ``` The weights are applied to the fourth, third, second, and first lags of invest, respectively, to generate the variable wtavg. The <0> is a placeholder to instruct Stata that the zero-lag term should be given a weight of zero. This command can also be used to impose a two-sided filter with varying weights: ``` . tssmooth ma wtavg = invest, weights(1 4 <6> 4 1) ``` This command specifies that a two-sided centered moving average be computed, with weights 1/16, 4/16, 6/16, 4/16, and 1/16. You can apply the tssmooth ma command to panel data because the filter is automatically applied separately to each time series within the panel. Other analyses use functions of the extreme values in each series. For example, the record() egen part of Nicholas Cox's egenmore package (available from ssc) provides one solution. For example, ``` . egen martodate = record(wage), by(id) order(year) . egen hiprice = record(share_price), by(firm) order(quote_date) ``` The first example identifies the highest wage to date in a worker's career, whereas the second identifies the highest price received to date for each firm's shares. #### 3.5.3 Moving-window summary statistics and correlations When working with panel data, you often want to calculate summary statistics for subperiods of the time span defined by the panel calendar. For instance, if you have 20 years' data on each of 100 firms, you may want to calculate 5-year averages of their financial ratios. You can calculate these averages with the tabstat (see [R] tabstat) command. You need only define the 5-year periods as the elements of a by-group and specify that selector variable as the arguments to tabstat's by() option, while prefixing the command with by firmid:. However, to retrieve the computed statistics, you will need to use the save option, which stores them in several matrices. Or you could use several egen statements to generate these statistics as new variables, using the same by-group strategy. To compute summary statistics from overlapping subsamples, we could define a by-group, but here Stata's by capabilities cannot compute statistics from a sequence of by-groups that are formed by a "moving window" with, for example, 11 months' 3 overlap. The mysumm routine of Baum and Cox (available from [R] ssc) computes a to of the univariate statistics available from summarize, detail and generates a to series containing that statistic over the defined time-series sample. You can species containing that statistic over the defined time statistic's computation the window width (the number of periods included in the statistic's computation an option, as well as the alignment of the resulting statistic with the original series routine is especially handy for financial research, in which some measure of reperformance—the average share price over the last 12 months or the standard deviate performance—the average share price over that interval—is needed as a regressor. The structure will operate separately on each time series of a panel, as long as a panel calculation has been defined with tsset. Another way to generate moving-window results is to use Stata's rolling put which can execute any statistical command over moving windows of any design. He ever, rolling is more cumbersome than mysumm, since it creates a new dataset common the results, which then must be merged with the original dataset. To calculate a moving correlation between two time series for each unit of a peryou can use Baum and Cox's mvcorr routine (available from ssc). This computation useful in finance, where computing an optimal hedge ratio involves computing just at a correlation, for instance, between spot and futures prices of a particular commoity. Since the mvcorr routine supports time-series operators, it allows you to compomoving autocorrelations. For example, . mycorr invest L.invest, win(5) gen(acf) end specifies that the first sample autocorrelation of an investment series be computed in a five-period window, aligned with the last period of the window (via option end). placed in the new variable acf. Like mvsumm, the mvcorr command operates automotically on each time series of a panel-10 - . use http://www.stata-press.com/data/imeus/grunfeld, clear . drop if company>4 (120 observations deleted) - mvcorr invest mvalue, window(5) generate(rho) xtline rho, yline(0) yscale(range(-1 1)) > byopts(title(Investment vs. Market Value: Moving Correlations by Firm)) Figure 3.2 shows the resulting graph of four firms' investment-market value correlation ^{10.} For a thorough presentation of the many styles of graphs supported by Stata, see Mandell (2) Figure 3.2: Moving-window correlations #### 3.6 Combining cross-sectional and time-series datasets Applied economic analysis often involves combining datasets. You may want to pool the data over different cross-sectional units or build a dataset with both cross-sectional and time-series characteristics. In the former case, you may have 200 observations that reflect probable voters' responses to a telephone survey carried out in Philadelphia, 300 observations from that same survey administered in Chicago, and 250 observations from voters in Kansas City. In the latter case, you may have a dataset for each of the six New England states containing annual state disposable personal income and population for 1981-2000. You may want to combine those six datasets into one dataset. How you combine them—over cross sections or over the cross-section and time-series dimensions depends on the type of analysis you want to do. We may want to work with data in what Stata calls wide format, in which measurements on the same variable at different points in time appear as separate variables. For instance, we might have time series of population for each of the New England states, with variables named CTpop, MApop, MEpop, In contrast, you may find it easier to work with long-format data, in which those same data are stacked, so that you have one variable, pop, with sets of observations associated with each state. You then must define another variable that identifies the unit (here the state). Stata has commands for each type of combination, as well a for transforming data between the wide and long form unit (here the state). Stata has common data between the wide and long formats, in the reshape command for transforming datasets to produce a pooled dataset. the reshape command for transformed datasets to produce a pooled dataset in the los format. ## 3.7 Creating long-format datasets with append If we have the three voter survey datasets for Philadelphia, Chicago, and Kansas (% mentioned above and want to combine them into one pooled dataset, we must first ensured the combine them into one pooled dataset, we must first ensured the combine them into one pooled dataset, we must first ensured the combine them into one pooled dataset, we must first ensured the combine them into one pooled dataset. that each dataset's variable names are identical. We will use the append command, an since prefBush and prefBUSH are different variables to Stata, we cannot combine fine containing those variables and expect them to properly align. We can use remains ensure that variable names match. We will also want to be able to recover the conidentifier from the combined dataset, even if it is not present in the individual dataset We could remember that the first 200 observations come from Philadelphia, the per 300 from Chicago, and so on, but if the dataset is ever sorted into a different order, w will lose this identifier. Thus we should insert a new variable, city, into each dataset which could be either a numeric variable with a value label of the city's name or a stim variable that can be encoded into numeric form for use in a by varlist:. We can the use append to combine them: - . use philadelphia, clear - . append using chicago - . append using kcity - . save vote3cities, replace If we have a string variable, city, containing the city name, we can use . encode city, gen(citycode) to create a numeric city identifier. We could then use the citycode variable in a straight tistical command or to tistical command or to create a set of city-specific dummy variables with the tabulate command's generate() option; see [R] tabulate oneway. Although our example trates how three datasets can be combined, any number of datasets could be combined in this
manner. This dataset is in Stata's long format; for each variable, the measurements for each within the panel are stored in unit within the panel are stored in separate observations. Since we have combined the pure cross sections, each of arbitrary pure cross sections, each of arbitrary order, there is no relationship among respondent #1 in Philadelphia, respondent #1 in City. #1 in Philadelphia, respondent #1 in Chicago, and respondent #1 in Kansas City. this long format makes it easy to do many computations that would be cumbersoned the data were combined any other many computations that would be cumbersoned by the computations that would be cumbersoned by the computations are considered by the computations are computations. the data were combined any other way. For instance, you can easily compute when preffush is mean of preffush is mean of preffush is a stance. Philadelphia's mean of prefBush is equal to Chicago's or whether all three prefBush are statistically distinguished to Chicago's or whether all three prefBush datasets. prefBush are statistically distinguishable. That would not be the case if the the datasets' variables were recombined horizontally rather than vertically. # 3.7.1 Using merge to add aggregate characteristics The long-format dataset we constructed above is useful if we want to add aggregated information to individual records. For instance, imagine that the voter survey data contain each individual's five-digit ZIP code (zipcode) along with his or her preferences for the presidential candidates, and we want to evaluate whether the voter's income level as proxied by the average income in her ZIP code affects her voting preferences. How may we append the income information to each record? We could use a sequence of replace statements or a complicated nested cond() function. But you can easily create a new dataset containing ZIP codes (in the same five-digit integer form) and average income levels. If these data are acquired from the U.S. Census, you should have records for every Philadelphia (or Chicago, or Kansas City) ZIP code or for the entire state in which each city is located. But you will be using this file merely as a lookup table. We can then sort the dataset by ZIP code and save it as incbyzip.dta. We can combine this information with the original file by using the following commands: - . use vote3cities, clear - . sort zipcode - . merge zipcode using incbyzip, nokeep Using merge in this way is known as a one-to-many match-merge where the income for each ZIP code is added to each voter record in that ZIP code. The zipcode variable is the merge key. Both the master file (vote3cities.dta) and the using file (incbyzip.dta) must be sorted by the merge key. By default, merge creates a new variable, merge, which takes on an integer value of 1 if that observation was found only in the master dataset, 2 if it was found only in the using dataset, or 3 if it was found in both datasets. Here we expect tab merge to reveal that all values equal 3. Each voter's ZIP code should be mapped to a known value in the using file. Although many ZIP codes in the using file may not be associated with any voter in the sample, which would yield a merge of 2, we specified the nokeep option to drop the unneeded entries in the using file from the merged file. We could then use - . assert _merge == 3 - drop _merge to verify that the match was successful. Using merge is much easier than using a long and complicated do-file that uses replace. By merely modifying the using file, we can correct any problems in the one-to-many merge. If we had several ZIP code-specific variables to add to the record, such as average family size, average proportion minority, and average proportion of home ownership, we could handle these variables with one merge command. This technique is useful for working with individual data for persons, households, plants, firms, states, provinces, or countries when we want to combine the microdata with aggregates for ZIP codes, cities, or states at the individual level; industries or sectors at the plant or firm level; regions or the macroeconomy at the state or province level; and global regions or world averages at the country level. # The dangers of many-to-many merges You can also use the merge command to combine datasets by using a one-to-one mans 3.7.2 You can also use the merge command the more datasets whose observations penals, merge. For example, we might have two or more datasets whose observations penals, merge. For example, we might have some the same units: e.g., U.S. state population figures from the 1990 and 2000 Census The many-to-many merge is a potential problem that arises when there are makes observations in both datasets for some values of the merge key variable(s). Manobservations in total that both have more than one value of the merge key variable merging two datasets that can cause repeated execution of the same do-file to have a different number of cases the result dataset without indicating an error. A coding error in one of the files usual causes such a problem. You can use the duplicates command to track down se errors. To prevent such problems, specify either the uniquaster or uniquaing option in a match-merge. For instance, the ZIP code data should satisfy uniqueing in the each ZIP code should be represented only once in the file. In a one-to-one match-men such as the state income and population data, you could use the unique option as implies both uniquaster and uniqueing and asserts that the merge key be unique both datasets.11 Beyond append and merge, Stata has one more command that combines dataset joinby is used less often since its task is more specialized. The command creates new dataset by forming all possible pairwise combinations of the two datasets, give the merge key. Usually, you will want to use merge instead of joinby.12 #### The reshape command 3.8 If your dataset is organized in long or wide format, you may need to reorganize it more easily obtain data transformations, statistics, or graphics. To solve this problem you can use the reshape (see [D] reshape) command, which reorganizes a dataset memory without modifying data files. Some statistical packages do not have a resurfeature, so you would need to write the data to one or more external text files read it back in. With reshape, this extra step is not necessary in Stata, but you habel the data appropriately. label the data appropriately. You may need to do some experimentation to control the appropriate command. the appropriate command syntax, which is all the more reason for using a do-file. someday you are likely to come upon a similar application for reshape. Consider a wide-format dataset with variables labeled pop1970, pop1980, pop1880, pop pop2000, and area, and with observations identified by each of the six New English state codes. ^{11.} Those familiar with relational database-management systems, such as SQL will recognize the second that the merge key is a valid on the systems of the second state of the second state of the second state of the second secon uniqueness means that the merge key is a valid and unique primary key for the dataset-12. Those familiar with relational database. 12. Those familiar with relational database-management systems, such as SQL, will be outer join: a technique to be avoided in most database management systems will recognize jointly of the dataset. onter join: a technique to be avoided in most database trades. . use http://www.stata-press.com/data/imeus/reshapeState, clear Stick | ares | pop2000 | pop1990 | pop1980 | pop1970 | state | |----------|----------|----------|----------|----------|-------| | .87169 | .2648021 | .4241557 | .6184582 | .1369841 | CT | | .4611429 | .9477426 | .8983462 | .0610638 | 6432207 | MA | | .4216726 | .2769154 | .5219247 | .5552388 | .5578017 | ME | | .8944746 | .1180158 | .8414094 | .8714491 | 6047949 | NH | | .0580663 | .4079702 | .2110077 | .2551499 | .684176 | RI | | .675948 | .7219492 | .5644092 | .0445188 | 1086679 | VT | We want to reshape the dataset into long format so that each state's and year's population value will be recorded in one variable. We specify reshape long pop so that the variable to be placed in the long format will be derived from all variables in the dataset whose names start with pop. The command works with $x_{i,j}$ data; in Stata, i defines a panel, and j defines an identifier that varies within each panel. Here the state defines the panel, so we specify that state is the i() variable; here the j() option specifies that the suffixes of the pop variable be retained as a new variable, year: . reshape long pop, i(state) j(year) | Chote: j = 1970 1980 1990 2000) | vide | -> | long | | |---|--------|----|------|-----------------| | Number of obs. | 6 | -> | 24 | THE PART OF THE | | Number of variables | 6 | -> | 4 | | | j variable (4 values)
xij variables: | | -> | year | | | pop1970 pop1980 p | op2000 | -> | pop | | The 6 observations of the original wide dataset have been expanded to 24, since each state had four population figures in the original form: | list | | _ | 20.00 | area | |------|--|--------|---|----------| | | state | year | pop | 100000 | | - 1 | B 10 10 10 10 10 10 10 10 10 10 10 10 10 | | .1369841 | .871691 | | 1. | CT | | 6184582 | .871691 | | 28 | OT | 1980 | 4241557 | .871691 | | 3. | CI | 1990 | 2648021 | .871691 | | 4. | CT | 2000 | 6432207 | .4611429 | | 5. | MA | 1970 | .045 | 10000 | | | | 1000 | .0610638 | .4611429 | | 6. | A.K | 1980 | 8983462 | .4611429 | | 7- | MA | 2000 | 9477426 | .4611429 | | 8. | MA | 1970 | .5578017 | .4216726 | | 9. | ME | 1980 | 5552388 | .4216726 | | 10. | ME | 1490 | 200000000000000000000000000000000000000 | | | | ME | 1990 | .5219247 | .4216726 | | 12. | ME | 2000 | .2769154 | .4216726 | | 13. | NH | 1970 | .6047949 |
.8944746 | | 14. | NH | 1980 | .8714491 | .8944746 | | 15. | NH | 1990 | .8414094 | .8944746 | | 15. | NH | 2000 | .1180158 | .8944746 | | 17. | RI | | .684176 | .0580662 | | 18. | RI | 1980 | .2551499 | .0580662 | | 19. | | 1990 | .2110077 | .0580662 | | 20. | RI | 2000 | .4079702 | .0580662 | | 21 | v | 1970 | .1086679 | .6759487 | | 22 | 7.00 | T 1980 | .0445188 | .6759487 | | 23 | | | .5644092 | .6759487 | | 24 | · V | T 2000 | -7219492 | -6759487 | In the wide format, the observations are labeled $i=1,\ldots,N$, and each measurement to be transformed to the long form consists of variables indexed by $j=1,\ldots,J$. The variable for reshape long lists the base names or stubs of all variables that are in the $x_{i,j}$ form and should be reshaped to the long form. Here we have only pop with J=4 because there are four decennial census years of population data; this same $x_{i,j}$ format may include several variables. For instance, our dataset might contain additional variables popM1970, popF1970, ..., popM2000, popF2000 with gender breakdowns of state population. The reshape long statement's varlist would then read pop popM popF because these variables are to be treated analogously. You must specify j(), as the long format requires the j identifier. Here the j dimension is the year, but it could be any characteristic. Instead of state population popAsian. Then we would use the options j(race) string, to specify that the j do not vary over j (year or race) are not specified in the reshape statement. In the each year. We continue with the long-format dataset that results from the example above but now want the data in wide format. We then use reshape wide to specify that the pop variable be spread over the values of j(year). The rows of the resulting wide-format dataset are defined by the i(state) option: . reshape wide pop, i(state) j(year) (note: j = 1970 1980 1990 2000) long wide Data 24 6 Number of obs. 6 4 Number of variables (dropped) j variable (4 values) year -5 xij variables: pop1970 pop1980 ... pop2000 pop This command is the same as the reshape long in the prior example, with long replaced by wide. The same information is required: you must specify the variables to be widened (here named explicitly, not by stubs), the panel's i variable, and the within-panel identifier (j variable). In creating the wide-format data, the j variable is dropped because its values are now spread over the columns pop1970, pop1980, pop1990, and pop2000. To illustrate, | | - | - | |--|---|------| | | ш | sti. | | area | pop2000 | pop1990 | pop1980 | pop1970 | state | |----------|----------|----------|----------|----------|-------| | .871691 | .2648021 | .4241557 | .6184582 | .1369841 | CT | | .4611429 | 9477426 | .8983462 | .0610638 | 6432207 | MA | | .4216726 | .2769154 | .5219247 | .5552388 | .5578017 | ME | | .8944746 | .1180158 | .8414094 | .8714491 | 6047949 | NH | | .0580662 | .4079702 | .2110077 | .2551499 | .684176 | RI | | .6759487 | .7219492 | .5644092 | .0445188 | .1086679 | VI | You need to choose appropriate variable names for reshape. If our wide dataset contained pop1970, Pop1980, popul1990, and pop2000census, you would not be able to specify the common stub labeling the choices. However, say that we have for each state the measures pop1970, pop1970M, and pop1970F. The command . reshape long pop pop@M pop@F, i(state) j(year) uses @ as a placeholder for the location of the j component of the variable name. Similarly, in our race example, if the variables were named Whitepop, Blackpop, Hispanicpop, and Asianpop, the command . reshape long Opop, i(state) j(race) string would handle those names. In more difficult cases, where repeatedly using rename may be tedious, renvars (Cox and Weesie 2001) may be useful. This discussion has only scratched the surface of reshape. See [D] reshape for more information, and experiment with the command. ## 3.8.1 The xpose command You can use the xpose command to make radical changes to the organization of you data. This command turns observations into variables and vice versa. This functionality is common in spreadsheets and matrix languages, but it is rarely useful in Stata because applying xpose will usually destroy the contents of string variables. If all variables in the dataset are numeric, this command may be useful. Rather than using xpose, consider reading in the raw data with the byvariable() option of infile (see [D] infile (free format)). If you need to transpose the data, they were probably not created sensibly in the first place. # 3.9 Using Stata for reproducible research #### 3.9.1 Using do-files Stata's command-line syntax makes it easy to document your data transformations statistical analyses, and graphics creation. For some users, the command line is a nuisance, so they applauded Stata's dialogs when they appeared in version 8. But ever Stata's dialogs produce complete commands in the Review window. Stata does not require you to keep a record of the commands you issued, but most research requires that you be able to reproduce findings. Unless you carefully document every step of the process, you will not be able to reproduce your findings later, which can be disastrous. With Stata, you can document your research by using a do-file. A do-file contains a sequence of Stata commands and can be invoked by selecting File Do... from the menu, by double-clicking on its icon, or by issuing the do command at the command line. Normally, a do-file will stop if it encounters an error. You can construct a do-file by using the Do-file Editor in Stata or any text editor. A do-file is merely a text file. You can include comments in a do-file, as long as they follow Stata conventions. Including such comments can help you remember what you did in your research. Placing a creation or revision date in a do-file is good practice. An entire research project can involve hundreds or thousands of Stata commands from start to finish, so including all of them in a massive do-file would be cumbersome each step of the process: data input, data validation and cleaning, data transformation, in turn be carried out by several do-files. If you follow this strategy, then it becomes file if it is inadvertently modified. # TRADING SOFTWARE # FOR SALE & EXCHANGE <u>www.trading-software-collection.com</u> #### **Mirrors**: <u>www.forex-warez.com</u> <u>www.traders-software.com</u> <u>www.trading-software-download.com</u> <u>Join My Mailing List</u> This strategy of using modular do-files for each step of the research project works well when you need to conduct a parallel analysis on another dataset. Many survey datasets have annual waves. Your processing of the latest wave of the survey will probably follow many of the same steps as last year's. With a well-organized and well-documented set of do-files, you need only copy those files and apply them to the new set of data. No software package will force you to be a responsible researcher, but Stata makes following good research habits easy so that you can return to a research project and see exactly what you did to generate the final results. #### 3.9.2 Data validation: assert and duplicates Before you can effectively manage data, you need to make sure that all the values of the raw data make sense. Are there any apparent coding errors in the data values? Should any values of numeric variables properly be coded as some sort of missing data, as discussed above? As mentioned, to construct an audit trail for your data management, you can create a do-file that reads the raw data, applies several checks to ensure that data values are appropriate, and writes the initial Stata binary data file. This data file should not be modified in later programs or interactive analysis. Each program that uses the file and creates additional variables, subsets, or merges of the data should save the resulting modified file under a new name. Each step in the data validation and transformation process can then be documented and reexecuted as needed. Even if the raw data are provided in Stata binary format from an official source, you should assume that there are coding errors. You should follow this method from the beginning of the data-management process. On Statalist, users often say such things as, "I did the original data transformations (or merges) in Excel, and now I need to" Even if you are more familiar with a spreadsheet syntax than with the Stata commands needed to replicate that syntax, you should use Stata so that you can document and reproduce its operations on the data. Consider two research assistants starting with the same set of 12 spreadsheets. They are instructed to construct one spreadsheet performing some complicated append or merge processes by using copy and paste. What is the probability that the two assistants will produce identical results? Probably less than one. The proposed solution: export the 12 spreadsheets to text format, and read them into Stata by using a do-file that loops over the .txt or .csv files and applies the same transformations to each one, performing the appropriate append or merge operations. That do-file, once properly constructed, will produce a reproducible result. You can easily modify the do-file to perform a similar task, such as handling 12 spreadsheets containing cost elements rather than revenues. You can (and should) add comments to the do-file documenting its purpose, dates of creation/modification, and creator/modifier. You may either place an asterisk (*) at the beginning of each comment line, use the block comment syntax (/* to begin a comment, */ to end it) to add several lines of comments to a do-file, or use two forward slashes (//) to add a comment after a command but on the same line. Although you will need to learn Stata's programming features to set up these do-files, doing so is well worth the effort. First, use describe and summarize to get useful information about the data you have imported
(typically by using insheet, infile, or infix). 13 Consider a version of the census2a dataset that has been altered to illustrate data validation: . use http://www.stata-press.com/data/imeus/census2b, clear (Version of census2a for data validation purposes) Contains data from census2b.dta Version of census2a for data 50 obs: validation purposes 23 Sep 2004 15:49 vars: 1,850 (99.9% of memory free) nize: storage display value label variable label variable name type format str14 %14s state %9s region str7 pop float %9.0g medage float %9.0g drate float %9.0g Sorted by: . summarize Variable Obs Mean Std. Dev. Min Max state 0 region 0 49 4392737 4832522 -9 nedage 2.37e+07 50 35,32 41.25901 drate 24.2 321 104.3 145.2496 40 1107 The log displays the data types of the five variables. The first two are string variables (of maximum length 14 and 7 characters, respectively), whereas other three are float variables. These data types appear to be appropriate to the data. The descriptive statistics reveal several anomalies for the numeric variables. Population data appear to be missing for one state, which is clearly an error. Furthermore, population takes on a negative value for at least one state, indicating some coding errors We know that the values of U.S. states' populations in recent decades should be greater than several hundred thousand but no more than about 30 million. A median age of 321 would suggest that Ponce de Leon is alive and well. Likewise, the drate (death rate) variable has a mean of 104 (per 100,000), so a value of 10 times that number suggests Rather than just firing up the Data Editor and visually scanning for the problems inkled through this small application. sprinkled through this small illustrative dataset, we are interested in data-validation techniques that we can apply to datasets with thousands of observations. We use assert ^{13.} See appendix A for an explanation of these input commands. to check the validity of these three variables, and in case of failure, we list the offending observations. If all checks are passed, this do-file should run without error: ``` use http://www.stata-press.com/data/imeum/census2b, clear // check pop list if pop < 300000 | pop > 3e7 assert pop < . & pop > 300000 & pop <= 3e7 // check medage list if medage <= 20 | medage >= 50 assert medage > 20 & medage < 50 // check drate list if drate < 10 | drate >= 104+145 assert drate < 10 & drate < 104+145 ``` The first list command shows that population should not be missing (< ., as above), that it should be at least 300,000, and that it should be less than 30 million (3.0×10^7). By reversing the logical conditions in the list command, we can assert that all cases have valid values for pop. Although the list command uses |, Stata's "or" operator, the assert command uses & Stata's "and" operator, because each condition must be satisfied. Likewise, we assert that each state's median age should be between 20 and 50 years. Finally, we assert that the death rate should be at least 10 per 100,000 and less than $\hat{\mu} + \hat{\sigma}$ from that variable's descriptive statistics. Let's run the data-validation do-file: . use http://www.stata-press.com/data/imeus/census2b, clear (Version of census2a for data validation purposes) . list if pop < 300000 | pop > 3e7 | | state | region | pop | medage | drate | |----|----------|---------|-----|--------|-------| | 4. | Arkansas | South | -9 | 30.6 | 99 | | 0. | Georgia | South | - | 28.7 | 81 | | 5. | Iova | N Cutrl | 0 | 30 | 90 | . assert pop <. & pop > 300000 & pop <= 3e7 3 contradictions in 50 observations assertion is false r(9); end of do-file r(9); The do-file fails to run to completion because the first assert finds three erroneous values of pop. We should now correct these entries and rerun the do-file until it executes without error. This little example could be expanded to a really long do-file that checked each of several hundred variables, and it would exit without error if all assertions are satisfied. We can use tabulate to check the values of string variables in our dataset. In the census2b dataset, we will want to use region as an identifier variable in later analysis, expecting that each state is classified in one of four U.S. regions. ^{14.} Strictly speaking, we need not apply the ≤ . condition, but it is good form to do so since we might not have an upper bound condition. . use http://www.stata-press.com/data/imeus/census2b, clear (Version of census2a for data validation purposes) . list state if region=="" | | state | |-----|--------| | 2. | Alaska | | 11. | Hawaii | . tabulate region | region | Freq. | Percent | Cum. | |---------|-------|---------|--------| | N Cntrl | 12 | 25.00 | 25.00 | | NE | 9 | 18.75 | 43.75 | | South | 16 | 33.33 | 77.08 | | West | 11 | 22.92 | 100.00 | | Total | 48 | 100.00 | | . assert r(N) == 50 assertion is false r(9); end of do-file r(9); The tabulation reveals that only 48 states have region defined. We can use one of the items left behind by the tabulate command: r(N), the total number of observations tabulated. Here the assertion that we should have 50 defined values of region fails, and a list of values where the variable equals string missing (the null string) identifies Alaska and Hawaii as the misclassified entries. Validating data with tabulate can also generate cross tabulations. Consider, for instance, a dataset of medical questionnaire respondents in which we construct a two-way table of gender and NCPreg, the number of completed pregnancies. Not only should the latter variable have a lower bound of zero and a sensible upper bound, its cross tabulation with gender=="Male" should yield only zero values. We can use duplicates to check string variables that should take on unique values. This command can handle much more complex cases—in which a combination of variables must be unique (or a so-called *primary key* in database terminology), ¹⁶ but we will apply it to the single variable state: . use http://www.stata-press.com/data/imeus/census2b, clear (Version of census2a for data validation purposes) . duplicates list state Duplicates in terms of state | obs: | state | |------|--------| | 16 | Kansas | | 17 | Kansas | . assert r(sum) == 0 assertion is false r(9); end of do-file r(9): The return item r(sum) is set equal to the total number of duplicate observations found (here, 2), so the identification of duplicates implies that you need to correct the dataset. The duplicates command could also be applied to numeric variables. In summary, following sound data-management principles can improve the quality of your data analysis. You should bring the data into Stata as early in the process as possible. Use a well-documented do-file to validate the data, ensuring that variables that should be complete are complete, that unique identifiers are such, and that only sensible values are present in every variable. That do-file should run to completion without error if all data checks are passed. Last, you should not modify the validated and, if necessary, corrected file in later analysis. Subsequent data transformations or merges should create new files rather than overwriting the original contents of the validated file. Following these principles, although time consuming, will ultimately save a good deal of your time and ensure that the data are reproducible and well documented. #### **Exercises** - 1. Using the cigconsumpW dataset (in long format), merge the state variable with that of the Stata Data Management Reference Manual dataset census5 (apply the uniquising option since this dataset is a pure cross section). Compute the averages of packpc for subsamples of median age above and below its annual median value (hint: egen, tabstat). Does smoking appear to be age related? - 2. Using the cigconsumpW dataset (in long format), compute 4-year, moving-window averages of packpc for each state with mvsumm. List the year, packpc, and mw4packpc for California. What do you notice about the moving average relative to the series itself? # 4 Linear regression This chapter presents the most widely used tool in applied economics: the linear regression model, which relates a set of continuous variables to a continuous outcome. The explanatory variables in a regression model often include one or more binary or indicator variables; see chapter 7. Likewise, many models seek to explain a binary response variable as a function of a set of factors, which linear regression does not handle well. Chapter 10 discusses several forms of that model, including those in which the response variable is limited but not binary. #### 4.1 Introduction This chapter discusses multiple regression in the context of a prototype economic research project. To carry out such a research project, we must - lay out a research framework—or economic model—that lets us specify the questions of interest and defines how we will interpret the empirical results; - find a dataset containing empirical counterparts to the quantities specified in the economic model; - use exploratory data analysis to familiarize ourselves with the data and identify outliers, extreme values, and the like; - fit the model and use specification analysis to determine the adequacy of the explanatory factors and their functional form; - conduct statistical inference (given satisfactory findings from specification analysis) on the research questions posed by the model; and - 6. analyze the findings from hypothesis testing and the success of the model in terms of predictions and marginal effects. On the basis of these findings, we may have to return to one of the earlier stages to reevaluate the dataset and its specification and functional form. Section 2 reviews the basic regression analysis theory on which regression point and interval estimates are based. Section 3 introduces a prototype economic research project studying the determinants of communities' single-family housing prices and
discusses the various components of Stata's results from fitting a regression model of housing prices. Section 4 discusses how to transform Stata's estimation results into publication-quality tables. Section 5 discusses hypothesis testing and estimation subject to constraints on the parameters. Section 6 deals with computing residuals and predicted values. The has section discusses computing marginal effects. In the following chapters, we take up violations of the assumptions on which regression estimates are based. ### Computing linear regression estimates 4.2 The linear regression model is the most widely used econometric model and the baseline against which all others are compared. It specifies the conditional mean of a response variable y as a linear function of k independent variables $$E[y \mid x_1, x_2, ..., x_k] = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$ Given values for the β s, which are fixed parameters, the linear regression model predicts the average value of y in the population for different values of x_1, x_2, \ldots, x_k . Suppose that the mean value of single-family home prices in Boston-area communities, conditional on the student-teacher ratios, is given by $$E[price \mid stratio] = \beta_1 + \beta_2 stratio$$ where price is the mean value of single-family home prices and stratio is the studentteacher ratio. This relationship reflects the hypothesis that the quality of communities' school systems is capitalized into housing prices. Here the population is the set of communities in the Commonwealth of Massachusetts. Each town or city in Massachusetts is generally responsible for its own school system. Figure 4.1: Conditional mean of single-family house price Figure 4.1 shows average single-family housing prices for 100 Boston-area communications, along with the linear fit of housing prices for 100 Boston-area communications. ties, along with the linear fit of housing prices to student–teacher ratios. The conditional mean of price for each value of stratio is shown by the appropriate point on the line. As theory predicts, the mean house price conditional on the student-teacher ratio is inversely related to that ratio. Communities with more crowded schools are considered less desirable. Of course, this relationship between house price and the student-teacher ratio must be considered ceteris paribus: all other factors that might affect the price of the house are held constant when we evaluate the effect of a measure of community schools' quality on the house price. In working with economic data, we do not know the population values of $\beta_1, \beta_2, \ldots, \beta_k$. We work with a sample of N observations of data from that population. Using the information in this sample, we must - obtain good estimates of the coefficients (β₁, β₂, . . . , β_k); - determine how much our coefficient estimates would change if we were given another sample from the same population; - decide whether there is enough evidence to rule out some values for some of the coefficients (β₁, β₂,...,β_k); and - use our estimated (β₁, β₂,..., β_k) to interpret the model. To obtain estimates of the coefficients, some assumptions must be made about the process that generated the data. I discuss those assumptions below and describe what I mean by good estimates. Before performing steps 2-4, I check whether the data support these assumptions by using a process known as specification analysis. If we have a cross-sectional sample from the population, the linear regression model for each observation in the sample has the form $$y_i = \beta_1 + \beta_2 x_{i,2} + \beta_3 x_{i,3} + \dots + \beta_k x_{i,k} + u_i$$ for each observation in the sample $i=1,2,\ldots,N$. The u process is a stochastic disturbance, representing the net effect of all other unobservable factors that might influence y. The variance of its distribution, σ_u^2 , is an unknown population parameter to be estimated along with the β parameters. We assume that N>k; to conduct statistical inference, there must be more observations in the sample than parameters to be estimated. In practice, N must be much larger than k. We can write the linear regression model in matrix form as $$y = X\beta + u \tag{4.1}$$ where X is an $N \times k$ matrix of sample values.¹ This population regression function specifies that a set of k regressors in X and the tochastic disturbance u are the determinants of the response variable (or regressand) I. Some textbooks use k in this context to refer to the number of slope parameters rather than the number of columns of X. That will explain the deviations in the formulas given below; where I write anothers write (k + 1). y. We usually assume that the model contains a constant term, so x_1 is understood to equal one for each observation. The key assumption in the linear regression model involves the relationship in the population between the regressors \mathbf{x} and u. We may rewrite (4.1) as $$u = y - x\beta$$ We assume that $$E\left[u\mid\mathbf{x}\right] = 0\tag{4.2}$$ i.e., that the u process has a zero-conditional mean. This assumption is that the unobserved factors involved in the regression function are not related systematically to the observed factors. This approach to the regression model lets us consider both nonstochastic and stochastic regressors in X without distinction, as long as they satisfy the assumption of (4.2). #### Regression as a method-of-moments estimator 4.2.1 We may use the zero-conditional-mean assumption shown in (4.2) to define a methodof-moments estimator of the regression function. Method-of-moments estimators are defined by moment conditions that are assumed to hold for the population moments. When we replace the unobservable population moments by their sample counterparts, we derive feasible estimators of the model's parameters. The zero-conditional-mean assumption gives rise to a set of k moment conditions, one for each x. In particular, the zero-conditional-mean assumption implies that each regressor is uncorrelated with u^4 $$E[\mathbf{x}'u] = \mathbf{0}$$ $E[\mathbf{x}'(y - \mathbf{x}\beta)] = \mathbf{0}$ (4.3) Substituting calculated moments from our sample into the expression and replacing the unknown coefficients β with estimated values $\hat{\beta}$ in (4.3) yields the ordinary least squares $$\mathbf{X}'\mathbf{y} - \mathbf{X}'\mathbf{X}\widehat{\boldsymbol{\beta}} = \mathbf{0}$$ $$\widehat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$ (4.4) We may use $\hat{\beta}$ to calculate the regression residuals: $$\hat{\mathbf{u}} = \mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}$$ ^{2.} \mathbf{x} is a vector of random variables and u is scalar random variable. In (4.1), \mathbf{X} is a matrix of calibrations of the random vector \mathbf{x} , \mathbf{u} and \mathbf{v} , and \mathbf{v} , and \mathbf{v} are called realizations of the random vector \mathbf{x} , \mathbf{u} and \mathbf{y} are vectors of realizations of the scalar random variables \mathbf{u} and \mathbf{y} . Chapter 8 discusses how to use the instrumental-variables estimator when the zero-conditional acan assumption is encountered. mean assumption is encountered. The assumption of zero-conditional mean is atronger than that of a zero covariance, because or ariance considers only linear relationships between variance considers only linear relationships between the random variables. Given the solution for the vector $\hat{\boldsymbol{\beta}}$, the additional parameter of the regression problem σ_n^2 —the population variance of the stochastic disturbance—may be estimated as a function of the regression residuals \hat{u}_i $$s^{2} = \frac{\sum_{i=1}^{N} \hat{u}_{i}}{N - k} = \frac{\hat{\mathbf{u}}'\hat{\mathbf{u}}}{N - k}$$ (4.5) where (N-k) are the residual degrees of freedom of the regression problem. The positive square root of s^2 is often termed the standard error of regression, or root mean squared error. Stata uses the latter term and displays s as Root MSE. The method of moments is not the only approach for deriving the linear regression estimator of (4.4), which is the well-known formula from which the OLS estimator is derived.⁵ #### 4.2.2 The sampling distribution of regression estimates The OLS estimator $\widehat{\beta}$ is a vector of random variables because it is a function of the random variable y, which in turn is a function of the stochastic disturbance u. The OLS estimator takes on different values for each sample of N observations drawn from the population. Because we often have only one sample to work with, we may be unsure of the usefulness of the estimates from that sample. The estimates are the realizations of the random vector $\widehat{\beta}$ from the sampling distribution of the OLS estimator. To evaluate the precision of a given vector of estimates $\widehat{\beta}$, we use the sampling distribution of the regression estimator. To learn more about the sampling distribution of the OLS estimator, we must make further assumptions about the distribution of the stochastic disturbance u_i . In classical statistics, the u_i were assumed to be independent draws from the same normal distribution. The modern approach to econometrics drops the normality assumption and simply assumes that the u_i are independent draws from an identical distribution (i.i.d.). Using the normality assumption, we were able to derive the exact finite-sample distribution of the OLS estimator. In contrast, under the i.i.d. assumption, we must use large-sample theory to derive the sampling distribution of the OLS estimator. Basically, large-sample theory supposes that the sample size N becomes infinitely large. Since no real sample is infinitely large, these methods only approximate the sampling distribution of the OLS estimator in finite samples. With a few hundred observations or more, the large-sample approximation works well, so these methods
work well with applied economic datasets. The treatment here is similar to that of Wooldridge (2006). See Stock and Watson (2006) and appendix 4.A for a derivation based on minimizing the squared-prediction errors. Both frameworks also assume that the (constant) variance of the u process is finite. Formally, i.i.d. stands for independently and identically distributed. Although large-sample theory is more abstract than finite-sample methods, it imposes weaker assumptions on the data-generating process. We will use large-sample theory to define "good" estimators and to evaluate the precision of the estimates produced from a given sample. In large samples, consistency means that as N goes to ∞ , the estimates will converge to their respective population parameters. Roughly speaking, if the probability that the estimator produces estimates arbitrarily close to the population values goes to one as the sample size increases to infinity, the estimator is said to be consistent. The sampling distribution of an estimator describes the set of estimates produced when that estimator is applied to repeated samples from the underlying population. You can use the sampling distribution of an estimator to evaluate the precision of a given set of estimates and to statistically test whether the population parameters take on certain values. Large-sample theory shows that the sampling distribution of the OLS estimator is approximately normal. Specifically, when the u_i are i.i.d. with finite variance σ_u^2 , the OLS estimator $\hat{\beta}$ has a large-sample normal distribution with mean β and variance $\sigma_u^2 \mathbf{Q}^{-1}$, where \mathbf{Q}^{-1} is the variance-covariance matrix of X in the population. The variance covariance of the estimator, $\sigma_u^2 \mathbf{Q}^{-1}$, is also referred to as a VCE. Because it is unknown, we need a consistent estimator of the VCE. Although neither σ_u^2 nor \mathbf{Q}^{-1} is actually known, we can use consistent estimators of them to construct a consistent estimator of $\sigma_u^2 \mathbf{Q}^{-1}$. Given that s^2 consistently estimates σ_u^2 and $1/N(\mathbf{X}'\mathbf{X})$ consistently estimates \mathbf{Q} , $s^2(\mathbf{X}'\mathbf{X})^{-1}$ is a VCE of the OLS estimator. # 4.2.3 Efficiency of the regression estimator Under the assumption of i.i.d. errors, the Gauss–Markov theorem holds. Among linear, unbiased estimators, the OLS estimator has the smallest sampling variance, or the greatest precision. In that sense, it is best, so that "ordinary least squares is BLUE" (the best linear unbiased estimator) for the parameters of the regression model. If we consider only unbiased estimators that are linear in the parameters, we cannot find a more estimator. The property of efficiency refers to the precision of the estimator. If estimator A has a smaller sampling variance than estimator B, estimator A is said to be relatively efficient. The Gauss–Markov theorem states that OLS is relatively efficient ^{7.} More precisely, the distribution of the OLS estimator converges to a normal distribution. Although appendix B provides some details, in the text I will simply refer to the "approximate" or "large-sample" normal distribution. See Wooldridge (2006) for an introduction to large-sample theory. ^{8.} At first glance, you might think that the expression for the VCE should be multiplied by 1/N, but this assumption is incorrect. As discussed in appendix B, because the OLS estimator is consistent, it variance of the OLS estimator is going to zero as the sample size gets larger. Large-sample theory estimator of the VCE is a product of this standardizes the estimator. The loss of the 1/N term in the ^{9.} For a formal presentation of the Gauss–Markov theorem, see any econometrics text, e.g., Wooldridge (2006, 108–109). The OLS estimator is said to be "unbiased" because $E[\widehat{\beta}] = \beta$. versus all other linear, unbiased estimators of the parameterization model. However, this statement rests upon the hypotheses of an appropriately specified model and an i.i.d. disturbance process with a zero-conditional mean, as specified in (4.2). ## 4.2.4 Numerical identification of the regression estimates As in (4.4) above, the solution to the regression problem involves a set of k moment conditions, or equations to be jointly solved for the k parameter estimates $\hat{\beta}_1, \hat{\beta}_2, \ldots, \hat{\beta}_k$. When will these k parameter estimates be uniquely determined, or numerically identified? We must have more sample observations than parameters to be estimated, or N > k. That condition is not sufficient, though. For the simple "two-variable" regression model $y_i = \beta_1 + \beta_2 x_{i,2} + u_i$, $\operatorname{Var}[x_2]$ must be greater than 0. If there is no variation in x_2 , the data do not provide sufficient information to determine estimates of β_1 and β_2 . In multiple regression with many regressors, $\mathbf{X}_{N\times k}$ must be a matrix of full column rank k, which implies two things. First, only one column of \mathbf{X} can take on a constant value, so each of the other regressors must have a positive sample variance. Second, there are no exact linear dependencies among the columns of the matrix \mathbf{X} . The assumption that \mathbf{X} is of full column rank is often stated as " $(\mathbf{X}'\mathbf{X})$ is of full rank" or " $(\mathbf{X}'\mathbf{X})$ is nonsingular (or invertible)." If the matrix of regressors \mathbf{X} contains k linearly independent columns, the cross-product matrix $(\mathbf{X}'\mathbf{X})$ will have rank k, its inverse will exist, and the parameters β_1, \ldots, β_k in (4.4) will be numerically identified. If numerical identification fails, the sample does not contain enough information for us to use the regression estimator on the model as it is specified. That model may be valid as a description of the data-generating process, but the particular sample may lack the necessary information to generate a regressor matrix of full column rank. Then we must either respectify the model or acquire another sample that contains the information needed to uniquely determine the regression estimates. # 4.3 Interpreting regression estimates This section illustrates using regression by an example from a prototype research project and discusses how Stata presents regression estimates. We then discuss how to recover the information displayed in Stata's estimation results for further computations within your program and how to combine this information with other estimates to present them in a table. The last subsection considers problems of numerical identification, or collinearity, that may appear when you are estimating the regression equation. ^{10.} When computing infinite precision, we must be concerned with numerical singularity and a computer program's ability to reliably invert a matrix regardless of whether it is analytically invertible. As we discuss in section 4.3.7, computationally near-linear dependencies among the columns of X should be avoided. ### Research project: A study of single-family housing prices 4.3.1 As an illustration, we present regression estimates from a model fitted to 506 Bostonarea communities' housing price data, in which the response variable is the logarithm of the median price of a single-family home in each community. The dataset (hprice2a) contains an attribute of each community's housing stock that we would expect to influence price: rooms, the average number of rooms per house. Our research question relates to the influences on price exerted by several external factors. These factors measured at the community level, include a measure of air pollution (lnox, the log of nitrous oxide in parts per 100m), the distance from the community to employment centers (ldist, the log of the weighted distance to five employment centers), and the average student-teacher ratio in local schools (stratio). From economic theory, we would expect the average number of rooms to increase the price, ceter's paribus. Each of the external factors is expected to decrease the median housing price in the community. More polluted communities, those less conveniently situated to available jobs, and those with poorly staffed schools should all have less expensive housing, given the forces of supply and demand. We present the descriptive statistics with summarize and then fit a regression equa- . use http://www.stata-press.com/data/imeus/hprice2a, clear (Housing price data for Boston-area communities) summarize price lprice lnox ldist stratio, sep(0) | Variable | Obs | Mean | Std. Dev. | Min | Hax | |----------|-----|----------|-----------|----------|----------| | price | 506 | 22511.51 | 9208.856 | 5000 | 50001 | | lprice | 506 | 9.941057 | .409255 | 8.517193 | 10.8198 | | lnox | 506 | 1.693091 | .2014102 | 1.348073 | 2.164472 | | ldist | 506 | 1.188233 | .539501 | .1222176 | 2.495682 | | stratio | 506 | 18.45929 | 2.16582 | 12.6 | 22 | The regress command, like other Stata estimation commands, requires us to specify the response variable followed by a varlist of the explanatory variables. | Source | 88 | df | | MS | | Number of obs | = 8 | |--|--|------------------------------|--------------|---|---|-------------------------------------|--| | Model
Residual | 49.3987735
35.1834974 | 4
501 | | 496934
226542 | | F(4, 501)
Prob > F
R-squared | = 175.
= 0.00
= 0.58 | | Total | 84.5822709 | 505 | . 167 | 489645 | | Adj R-squared
Root MSE | = 0.58 | | lprice | Coef. | Std. | Err. | t | P>ItI | [95% Conf. | Interva | | lnox
ldist
roomn
stratio
_cons | 95354
1343401
2545271
0524512
11.08387 |
.043
.018
.018
.005 | 1032
5303 | -8.17
-3.12
13.74
-8.89
34.84 | 0.000
0.002
0.000
0.000
0.000 | -1.182904
2190255 | 72417
04965
29093
040865
11.7086 | The header of the regression output describes the overall model estimates, whereas the table presents the point estimates, their precision, and their interval estimates. #### 4.3.2 The ANOVA table: ANOVA F and R-squared The regression output for this model includes the analysis of variance (ANOVA) table in the upper left, where the two sources of variation are displayed as Model and Residual. The SS are the sums of squares, with the Residual SS corresponding to $\widehat{\mathbf{u}}'\widehat{\mathbf{u}}$ and the total Total SS to $\widetilde{\mathbf{y}}'\widetilde{\mathbf{y}}$ in (4.6) below. The next column of the table reports the df: the degrees of freedom associated with each sum of squares. The degrees of freedom for total SS are (N-1) since the total SS have been computed by using one sample statistic, \overline{y} . The degrees of freedom for the model are (k-1), equal to the number of slopes (or explanatory variables), or one fewer than the number of estimated coefficients due to the constant term. The model SS refer to the ability of the four regressors to jointly explain a fraction of the variation of y about its mean (the total SS). The residual degrees of freedom are (N-k), indicating that (N-k) residuals may be freely determined and still satisfy the constraint from the first normal equation of least squares that the regression surface passes through the multivariate point of means $(\overline{y}, \overline{x}_2, \dots, \overline{x}_k)$: $$\overline{y} = \widehat{\beta}_1 + \widehat{\beta}_2 \overline{x}_2 + \widehat{\beta}_3 \overline{x}_3 + \dots + \widehat{\beta}_k \overline{X}_k$$ In the presence of the constant term $\hat{\beta}_1$, the first normal equation implies that $\hat{u} = \bar{y} - \Sigma_i \bar{x}_i \hat{\beta}_i$ must be identically zero.¹¹ This is not an assumption but is an algebraic implication of the least-squares technique, which guarantees that the sum of least-squares residuals (and their mean) will be very close to zero.¹² The last column of the ANOVA table reports the MS, the mean squares due to regression and error, or the SS divided by the df. The ratio of the Model MS to Residual MS is reported as the ANOVA F statistic, with numerator and denominator degrees of freedom equal to the respective df values. This ANOVA F statistic is a test of the null hypothesis that the slope coefficients in the model are jointly zero: that is, the null model of $y_i = \mu + u_i$ is as successful in describing y as the regression alternative. The Prob > F is the tail probability or p-value of the F statistic. Here we can reject the null hypothesis at any conventional level of significance. Also the Root MSE for the regression of 0.265, which is in the units of the response variable y, is small relative to the mean of that variable, 9.94. The upper-right section of the regress output contains several goodness-of-fit statistics, which measure the degree to which a fitted model can explain the variation of the response variable y. All else equal, we should prefer a model with a better fit to the data. For the sake of parsimony, we also prefer a simpler model. The mechanics of ^{11.} Recall that the first column of $X = \iota$, an N-element unit vector. ^{12.} Since computers use finite arithmetic, the sum will differ from zero. A well-written computer program should result in a difference similar to machine precision. For this regression, Stata reports a mean residual of -1.4×10^{-15} , comparable to the epsdouble() value of 2.2×10^{-16} , which is the smallest number distinguishable by Stata. ^{13.} I discuss hypothesis testing in detail in section 4.5. regression imply that a model with a great many regressors can explain y arbitrarily well. Given the least-squares residuals, the most common measure of goodness of fit, regression R^2 , may be calculated (given a constant term in the regression function) as $$R^2 = 1 - \frac{\widehat{\mathbf{u}}'\widehat{\mathbf{u}}}{\widetilde{\mathbf{y}}'\widetilde{\mathbf{y}}} \tag{4.6}$$ where $\tilde{\mathbf{y}} = y - \overline{y}$: the regressand with its sample mean removed. This calculation emphasizes that the object of regression is not to explain $\mathbf{y}'\mathbf{y}$, the raw sum of squares of the response variable y, which would merely explain why $E[y] \neq 0$ —not an interesting question. Rather, the object is to explain the variations in the response variable. With a constant term in the model, the least-squares approach seeks to explain the largest possible fraction of the sample variation of y about its mean (and not the associated variance). The null model with which (4.1) is contrasted is $y = \mu + u_i$, where μ is the population mean of y. In estimating a regression, we want to determine whether the information in the regressors \mathbf{x} is useful. Is the conditional expectation $E[y]\mathbf{x}$ more informative than the unconditional expectation $E[y] = \mu$? The null model above has an $R^2 = 0$, whereas virtually any set of regressors will explain some fraction of the variation of y around y, the sample estimate of y. y is that fraction in the unit interval, the proportion of the variation in y about y explained by y. #### 4.3.3 Adjusted R-squared What about the Adj R-squared? The algebra of least squares dictates that adding a (k+1)st column to X will result in a regression estimate with $R_{k+1}^2 \geq R_k^2$. R^2 cannot fall with the addition of \mathbf{x}_{k+1} to the regression equation, as long as the observations on the marginal regressor are linearly independent of the previous k columns from a numerical standpoint. Indeed, we know that R_N^2 (that is, R^2 calculated from a regression in which there are N linearly independent columns of \mathbf{X} and N observations in the sample) must equal 1.0. As we add regressors to \mathbf{x} , R^2 cannot fall and is likely to rise, even when the marginal regressor is irrelevant econometrically. What if we have a competing model that cannot be expressed as nested within this model, and this model does not nest within the competing model? A nonstatistical approach to this problem, especially where the two models differ widely in their numbers of regressors (or Model df), is to consider their \overline{R}^2 values, the statistic Stata labels as Adj R-squared 15. The \overline{R}^2 considers the explained variance of y, rather than the explained variation, as does ordinary R^2 . That is, rather than merely considering $\widehat{u}^*\widehat{u}$, the residual sum of squares, \overline{R}^2 takes into account the degrees of freedom lost in fitting ^{14.} In this sense, the limitations of finite arithmetic using the binary number system intrude: $\sin 0.100$ cannot be exactly expressed in a finite number of digits in the binary system, even a column that should be perfectly collinear with the columns of X_k may not be so computationally. The researcher existing regressor matrix, whether or not the resulting regressor cannot logically add information to all rank by Stata. ^{15.} A formal statistical approach to the nonnested models problem is presented below in section 4.5.5 the model and scales $\hat{\mathbf{u}}'\hat{\mathbf{u}}$ by (N-k) rather than $N.^{10}$ \overline{R}^2 can be expressed as a corrected version of R^2 in which the degrees-of-freedom adjustments are made, penalizing a model with more regressors for its loss of parsimony: $$\overline{R}^2 = 1 - \frac{\widehat{\mathbf{u}}'\widehat{\mathbf{u}}/(N-k)}{\widehat{\mathbf{y}}'\widehat{\mathbf{y}}/(N-1)} = 1 - (1-R^2)\frac{N-1}{N-k}$$ If an irrelevant regressor is added to a model, \overline{R}^2 cannot fall and will probably rise, but \overline{R}^2 will rise if the benefit of that regressor (reduced variance of the residuals) exceeds the cost of including it in the model: 1 degree of freedom. Therefore, \overline{R}^2 can fall when a more elaborate model is considered, and indeed it is not bounded by zero. Algebraically, \overline{R}^2 must be less than R^2 since (N-1)/(N-k) < 1 for any X matrix and cannot be interpreted as the "proportion of variation of y", as can R^2 in the presence of a constant term. Nevertheless, you can use \overline{R}^2 to informally compare models with the same response variable but differing specifications. You can also compare the equations' s^2 values (labeled Root MSE in Stata's output) in units of the dependent variable to judge nonnested specifications. Two other measures commonly used to compare competing regression models are the Akaike information criterion (AIC; Akaike [1974]) and Bayesian information criterion (BIC; often referred to as the Schwarz criterion: Schwarz [1978]). These measures also account for both the goodness of fit of the model and its parsimony. Each measure penalizes a larger model for using additional degrees of freedom while rewarding improvements in goodness of fit. The BIC places a higher penalty on using degrees of freedom. You can calculate the AIC and BIC after a regression model with the estatic command. estatic will display the log likelihood of the null model (that with only a constant term), the log likelihood of the fitted model, the model degrees of freedom, and the AIC and BIC values. For the regression above, we would type . estat ic | Model | Obs | 11(null) | 11(model) | df | AIC | BIC | |-------|-----|-----------|-----------|----|----------|---------| | | 506 | -265.4135 | -43,49514 | 5 | 96.99028 | 118.123 | Least-squares regression can also be considered a maximum likelihood estimator of the vector $\boldsymbol{\beta}$ and ancillary parameter σ_u^2 . The degree to which our fitted model improves upon the null model in explaining the variation of the response
variable is measured by the (algebraically) larger magnitude of 11 (model) than that of 11 (null). ^{16.} For comparison you may write (4.6), dividing both numerator and denominator by N ^{17.} This is not a statistical judgment, as \overline{R}_{k+1}^2 can exceed \overline{R}_k^2 if the t statistic on the added regressor exceeds 1.0 in absolute value. The maximum likelihood estimator requires the normality assumption. See Johnston and DiNardo (1997). ^{19.} A likelihood-ratio test formally compares these two magnitudes under the null hypothesis that the null model is adequate. I discuss likelihood-ratio tests in chapter 10. #### The coefficient estimates and beta coefficients 4.3.4 Below the ANOVA table and summary statistics, Stata reports the $\hat{\beta}$ coefficient estimates, along with their estimated standard errors, t statistics, and the associated p values labeled P>|t|: that is, the tail probability for a two-tailed test on the hypothesis H_0 : $\hat{\beta}_j = 0.20$ The last two columns display an estimated confidence interval, with limits defined by the current setting of level. You can use the level() option on regress (or other estimation commands) to specify a particular level. After performing the estimation (e.g., with the default 95% level), you can redisplay the regression results with for instance, regress, level (90). You can change the default level (see [R] level) for the session or permanently with set level # [, permanently]. Economic researchers often express regressors or response variables in logarithms. 21 A model in which the response variable is the log of the original series and the regressors are in levels is termed a log-linear (or single-log) model. The rough approximation that $\log(1+x) \simeq x$ for reasonably small x is used to interpret the regression coefficients These coefficients are also the semielasticities of y with respect to x, measuring the response of y in percentage terms to a unit change in x. When logarithms are used for both the response variable and regressors, we have the double-log model. In this model, the coefficients are themselves elasticities of y with respect to each x. The most celebrated example of a double-log model is the Cobb-Douglas production function. $q = al^{\alpha}k^{\beta}e^{\epsilon}$, which we can estimate by linear regression by taking logs of q, l, and k. In other social science disciplines, linear regression results are often reported as estimated beta coefficients. This terminology is somewhat confusing for economists given their common practice of writing the regression model in terms of β s. The beta coefficient is defined as $\partial y^*/\partial x_j^*$, where the starred quantities are z-transformed of standardized variables; for instance, $y^* = (y_i - \overline{y})/s_y$, where \overline{y} is the sample mean and s_y is the sample standard deviation of the response variable. Thus the beta coefficient for the jth regressor tells us how many standard deviations y would change given a 1-standard deviation change in x_j . This measure is useful in disciplines where many empirical quantities are indices lacking a natural scale. We can then rank regressors by the magnitudes of their beta coefficients because the absolute magnitude of the beta coefficient for x_j indicates the strength of the effect of that variable. For the regression model above, we can merely redisplay the regression by using the beta option: ^{20.} We discuss hypothesis testing in detail in section 4.5. Economista use natural logs exclusively; references to log should be taken as the natural log, or la | 0 | 55 | df | | MS | | Number of obs = | 506 | |-----|--------------------------|-------|------|------------------|-------|---|----------| | | 49.3987735
35.1834974 | 501 | - | 496934
226542 | | F(4, 501) =
Prob > F =
R-squared = | | | | 84.5822709 | 505 | .167 | 489645 | | Adj R-squared =
Root MSE = | 0.5807 | | | Coef. | Std. | Err. | ŧ | P>ItI | | Beta | | | 95354 | .1167 | 7418 | -8.17 | 0.000 | | .4692738 | | 3 | 1343401 | -0431 | 1032 | -3.12 | 0.002 | | 1770941 | | | .2545271 | .0185 | 5303 | 13.74 | 0.000 | | .4369626 | | 9 = | .0524512 | .0058 | 8971 | -8.89 | 0.000 | | .277577 | | | 11.08387 | .3181 | 1115 | 34.84 | 0.000 | | | The output indicates that lnox has the largest beta coefficient, in absolute terms, followed by rooms. In economic and financial applications, where most regressors have a natural scale, it is more common to compute marginal effects such as elasticities or semielasticities (see section 4.7). #### 4.3.5 Regression without a constant term With Stata, you can estimate a regression equation without a constant term by using the noconstant option, but I do not recommend doing so. Such a model makes little sense if the mean of the response variable is nonzero and all regressors' coefficients are insignificant. Estimating a constant term in a model that does not have one causes a small loss in the efficiency of the parameter estimates. In contrast, incorrectly omitting a constant term produces inconsistent estimates. The tradeoff should be clear: include a constant term, and let the data indicate whether its estimate can be distinguished from zero. What if we want to estimate a homogeneous relationship between y and the regressors x, where economic theory posits $y \propto x$? We can test the hypothesis of proportionality by estimating the relationship with a constant term and testing $H_0: \beta_1 = 0$. If the data reject that hypothesis, we should not fit the model with the constant term removed. Many of the common attributes of a linear regression are altered in a model that truly lacks a constant term. For instance, the least-squares residuals are not constrained to have zero sum or mean, and R^2 measured conventionally will be negative when the null model $y_i = \mu + u_i$ is not only preferable but strictly dominates the model $y_i = \beta_2 x_{i,2} + u_i$. Therefore, unless we have a good reason to fit a model without a constant term, we should retain the constant. An estimated $\hat{\beta}_1$ not significantly different from zero does not harm the model, and it renders the model's summary statistics comparable to those of other models of the response variable y. ^{22.} If we provide the equivalent of a constant term by including a set of regressors that add up to a constant value for each observation, we should specify the baseons option as well as no constant. Using the baseons option will alter the Model SS and Total SS, affecting the ANOVA F and R^2 measures; it does not affect the Root MSE or the t statistics for individual coefficients. The noconstant option might be sensible when the regressor matrix contains a set of variables that sum to a constant value. For instance, if the regressors include a set of portfolio shares or budget shares, we cannot include all those regressors in a model with a constant term because the constant is an exact linear combination of the share variables. Fitting a model with (k + 1) regressors, adding one variable to the list of k regressors, implies that at the margin there must be some useful information in regressor (k+1): information that cannot be deduced, in linear terms, from the first k regressors. In the presence of accounting constraints or identities among the variables, one item must fail to satisfy that condition. If that condition is detected, Stata will automatically drop one of the regressors and indicate a coefficient value of (dropped). Then, rather than using the noconstant option, we should drop one of the portfolio or budget shares and include a constant term. The significance of the fitted model will be invariant to the choice of the excluded regressor. We may still want to include a complete set of items that sum to a constant value in a regression model, so we must omit the constant term (with the noconstant option) to prevent Stata from determining that the regressor matrix is rank deficient. #### 4.3.6 Recovering estimation results The regress command shares the features of all estimation (e-class) commands. As discussed in section 2.2.12, we can view saved results from regress by typing ereturn list. All Stata estimation commands save an estimated parameter vector as matrix e(b) and the estimated variance—covariance matrix of the parameters as matrix e(V). You can refer to an element of the estimated parameter vector as _b[varname] and its associated estimated standard error as _se[varname] in later commands. However, the contents of e(), _b[], and _se[] are overwritten when the next e-class command is executed, so that if some of these values are to be retained, they should be copied to local macros, scalars, or matrices. For example, typing ereturn list for the regression above produced scalars: $e(11_0) = -265.4134648194153$ e(11) = -43.4951392092929 $e(r2_a) = .5807111444517128$. ereturn list e(x2_a) = .5807111444517128 e(res) = 35.18349741237626 e(ms) = 49.39877352102583 e(rms) = .2650029089298266 e(r2) = .5840322442976398 e(f) = 175.8550695227946 e(df_r) = 501 e(df_n) = 4 e(N) = 506 ``` macros: e(title): "Linear regression" e(depvar): "lprice" e(cmd): "regress" e(properties): "b V" e(predict): "regres_p" e(model): "ols" e(estat_cmd): "regress_estat" matrices: e(b): 1 x 5 e(V): 5 x 5 functions: e(sample) ``` Most of the items displayed above are recognizable from the regression output. Two that are not displayed in the regression output are e(11) and e(11.0), which are, respectively, the values of the log-likelihood function for the fitted model and for the null model.²³ These values could be used to implement a likelihood-ratio test of the model's adequacy, similar to the Wald test provided by the ANOVA F. Another result displayed above is e(sample), which is listed as a function rather than a scalar, macro, or matrix. The e(sample) function returns 1 if an observation
was included in the estimation sample and 0 otherwise. The regress command honors any if exp and in range qualifiers and then does casewise deletion to remove any observations with missing values from the data (y, X). Thus the observations actually used in generating the regression estimates may be fewer than those specified in the regress command. A subsequent command, such as summarize regressors if exp (or in range), will not necessarily use the same observations as the previous regression. But we can easily restrict the set of observations to those used in estimation with the qualifier if e(sample). For example, ``` . summarize regressors if e(sample) ``` will yield the summary statistics from the regression sample. The estimation sample may be retained for later use by placing it in a new variable: ``` . generate byte regisample = e(sample) ``` where we use the byte data type to save memory since e(sample) is an indicator {0,1} variable. The estat command displays several items after any estimation command. Some of those items (ic, summarize, and vce) are common to all estimation commands, whereas others depend on the specific estimation command that precedes estat. After regress, the estat summarize command produces summary statistics, computed over the estimation sample, for the response variable and all regressors from the previous regress command. ^{23.} These values are identical to those discussed above in the output of estat ic- | . estat | numma | rize | | |---------|-------|------|---------| | | | | regress | | Number | of | obs | * | 506 | |--------|----|-----|---|-----| | | | | | | | Variable | Mean | Std. Dev. | Min | Max | |----------|----------|-----------|---------|---------| | lprice | 9.941057 | .409255 | 8.51719 | 10.8198 | | lnox | 1.693091 | .2014102 | 1.34807 | 2.16447 | | ldist | 1.186233 | .539501 | .122218 | 2.49568 | | rooms | 6.284051 | .7025938 | 3.56 | 8.78 | | stratio | 18.45929 | 2.16582 | 12.6 | 22 | In the following example, we use the matrix list command to display the coefficient matrix generated by our regression: e(b), the k-element row vector of estimated coefficients. Like all Stata matrices, this array bears row and column labels, so an element may be addressed by either its row and column number²⁴ or by its row and column names. ``` . matrix list e(b) e(b)[1,5] lnox ldist rooms stratio cons y1 -.95354002 -.13434015 .25452706 -.05245119 11.083865 ``` We can use the estat vce command to display the estimated variance-covariance (VCE) matrix.²⁵ This command provides several options to control the display of the matrix: . estat vce Covariance matrix of coefficients of regress model | e(V) | lnox | ldist | rooms | stratio | _cons | |---------|-----------|-----------|-----------|-----------|-----------| | lnox | .01362865 | | | | | | ldist | .00426247 | .00185789 | | | | | rooms | .00035279 | .00003043 | .00034337 | | | | stratio | 9.740e-07 | .00002182 | .00003374 | .00003478 | | | _cons | 03037429 | 01001835 | 00341397 | 00088151 | .10119496 | The diagonal elements of the VCE matrix are the squares of the estimated standard errors (_se[]) of the respective coefficients. #### 4.3.7 Detecting collinearity in regression If the sample (X'X) matrix is numerically singular, not all the regression parameter estimates are numerically identified. (X'X) will be singular, or noninvertible, when oper variable is perfectly collinear with some of the other variables. That variable can be represented as a linear combination of the other regressors. Stata automatically detects perfect collinearity, but near-collinearity is more difficult to diagnose. Both perfect and near-collinearity change how we may interpret regression estimates. ^{24.} Stata matrices' rows and columns are numbered starting from 1. First, consider perfect collinearity. When Stata determines that (X'X) is numerically singular, it drops variables until the resulting regressor matrix is invertible, marking their coefficients with (dropped) in place of a value. ²⁶ If two variables are perfectly collinear, only one of those variables can be included in the model and the estimated coefficient is the sum of the two coefficients on the original variables. Near-collinearity arises when pairwise correlations of regressors are high, or in general, in the presence of near-linear dependencies in the regressor matrix. Failure of the full rank condition on X is a problem of the sample. The information in the estimation sample does not numerically identify all the regression parameters, but a different or expanded sample might. With near-collinearity, small changes in the data matrix may cause large changes in the parameter estimates since they are nearly unidentified. Although the overall fit of the regression (as measured by R^2 or \overline{R}^2) may be very good, the coefficients may have very high standard errors and perhaps even incorrect signs or implausibly large magnitudes. If we consider a k-variable regression model containing a constant and (k-1) regressors, we may write the kth diagonal element of the VCE as $$\frac{s^2}{(1-R_k^2)\mathbf{S}_{kk}}$$ where R_k^2 is the partial R^2 from the regression of variable k on all other variables in the model and S_{kk} is the variation in the kth variable about its mean. Some observations about this expression: - the greater the correlation of x_k with the other regressors (including the constant term), ceteris paribus, the higher the estimated variance will be; - the greater the variation in \mathbf{x}_k about its mean, ceteris paribus, the lower the estimated variance will be; and - the better the overall fit of the regression, the lower the estimated variance will be. This expression is the rationale for the VIF, or variance inflation factor, $(1-R_k^2)^{-1}$. VIF_k measures the degree to which the variance has been inflated because regressor k is not orthogonal to the other regression. After fitting a model with regress, the VIF measures may be calculated with the estat vif command. A rule of thumb states that there is evidence of collinearity if the mean VIF is greater than unity or if the largest VIF is greater than 10. We can be comfortable with the conditioning of our housing price regression model, as the maximum VIF is less than four: ^{26.} This situation commonly arises with the dummy variable trap, in which a complete set of dummies and a constant term are included in the model. See chapter 7. | Source | SS | df | | MS | | Number of obs | | |-------------------|--------------------------|----------|-------|------------------|-------|-------------------------------------|--------------------| | Model
Residual | 49.3987735
35.1834974 | 4
501 | | 496934
226542 | | F(4, 501)
Prob > F
R-squared | = 0.0000 | | Total | 84.5822709 | 505 | . 167 | 489645 | | Adj R-squared
Root MSE | = 0.5807
= .265 | | lprice | Coef. | Std. 1 | Err. | t | P>(t) | [95% Conf. | Interval] | | lnox | 95354 | .1167 | 418 | -8.17 | 0.000 | -1.182904 | 7241762 | | ldist | 1343401 | .0431 | 032 | -3.12 | 0.002 | 2190255 | 0496548 | | rooms | .2545271 | .0185 | 303 | 13.74 | 0.000 | .2181203 | . 2909338 | | stratio | 0524512 | .00589 | 971 | -8.89 | 0.000 | 0640373 | 0408651 | | _cons | 11.08387 | .3181 | 115 | 34.84 | 0.000 | 10.45887 | 11,70886 | | estat vif | | | | | | | | | Variable | VIF | 1/1 | VIF | | | | | | lnox | 3.98 | 0.251 | 533 | | | | | | ldist | 3.89 | 0.257 | 162 | | | | | | rooms | 1.22 | 0.8204 | 417 | | | | | | stratio | 1.17 | 0.8524 | 488 | | | | | | Mean VIF | 2.56 | | -90 | | | | | How do we detect near-collinearity in an estimated regression? A summary measure for the regression equation is the condition number of (X'X), which measures the sensitivity of the estimates to changes in X.²⁷ A large condition number indicates that small changes in X can cause large changes in the estimated coefficients. Belsley (1991), in an update of the seminal work on collinearity, recommends that the condition number be calculated from a transformed data matrix in which each regressor has unit length. A condition number for Belsley's normalized (X'X) in excess of 20 might be cause for concern. But just as there is no objective measure of how small the determinant of X'X might be to trigger instability in the estimates, it is difficult to come up with a particular value that would indicate a problem: to some degree, it depends. Although we assume that the identification condition is satisfied and X is of full (numerical) rank to run a regression, there is no basis for a statistical test of the adequacy of that condition. Official Stata does not have a command to generate the conditioning diagnostics of Belsley (1991), which beyond the computation of condition numbers include the variance decomposition matrix, which may be used to identify the regressors that are involved in near-linear dependencies. The coldiag2 routine, contributed by John Hendrickx and available from the SSC archive, implements several of the diagnostic measures proposition Belsley (1991), with options to select various features of the measures. ^{27.} The condition number is the positive square root of the ratio of the largest to the smallest eigenvalue of (X'X). A large condition number indicates a nearly singular matrix, because a matrix that is singular will have at least one very small eigenvalue. Large condition numbers of such a matrix will be large relative to the value of unity that would apply for I. How should we proceed if the conditioning diagnostics or VIFs show collinearity in an estimated equation? You can safely ignore near-collinearity that does not affect your key parameters. Because near-collinearity inflates standard errors, significant coefficients would become more significant if the sample contained fewer collinear regressors. Most would be microeconomic variables are intercorrelated—some of them highly—but that in itself may not be a concern. If collinearity
adversely affects your regression equation, you have two options: respecify the model to reduce the near-linear dependencies among the regressors or acquire a larger or better sample. Sometimes, near-collinearity reflects the homogeneity of a sample, so a broader sample from that population would be helpful. For more details on near-collinearity, see Hill and Adkins (2003). #### Presenting regression estimates 4.4 The estimates command makes it easy to store and present different sets of estimation results. The estimates store command stores results (up to 300 sets of estimates in memory for the current session) under a name and, optionally, a descriptive title. You can organize several equations' estimates into a table by using estimates table. You specify that the table include several sets of results, and Stata automatically aligns the coefficients into the appropriate rows of a table. Options allow you to add estimated standard errors (se), t-values (t), p-values (p), or significance stars (star). You can assign each of these quantities its own display format if the default is not appropriate so that the coefficients, standard errors, and t- and p-values need not be rounded by hand. You can change the order of coefficients in the table by using the keep() option rather than relying on the order in which they appear in the list of estimates' contents. You can use drop() to remove certain parameter estimates from the coefficient table. You can add any result left in e() (see [P] ereturn) to the table with the stat() option, as well as several other criteria such as the AIC and BIC. Consider an example using several specifications from the housing-price model: ``` . use http://www.stata-press.com/data/imeus/hprice2a, clear (Housing price data for Boston-area communities) . generate rooms2 = rooms^2 // Fit model 1 . quietly regress lprice rooms // Store estimates as model1 . estimates store model1 // Fit model 2 - quietly regress lprice rooms rooms2 ldist // Store estimates as model2 . estimates store model2 // Fit model 3 · quietly regress lprice ldist stratio lnox . estimates store model3 // Store estimates as model3 - quietly regress lprice lnox ldist rooms stratio // Fit model 4 - estimates store model4 // Store estimates as model4 ``` entimates table model1 model2 model3 model4, stat(r2_s rmse) > b(%7.3g) se(%6.3g) p(%4.3f) | Variable | model1 | model2 | model3 | model4 | |-------------------|--------|--------|--------|--------| | DATE OF THE PARTY | .369 | 821 | | . 255 | | rooms | .0201 | .183 | | .0185 | | | 0.000 | 0.000 | | 0.000 | | Course | 0.000 | .0889 | | | | rooms2 | | .014 | | | | | | 0.000 | | | | ldist | | .237 | 157 | 134 | | Idiac | 100 | .0255 | .0505 | .043 | | | | 0.000 | 0.002 | 0.003 | | ntratio | | 3917 | 0775 | 052 | | Mertine. | | | .0066 | .005 | | | | | 0.000 | 0.00 | | lnox | | | -1.22 | 95 | | 203037 | | | .135 | .11 | | | 1 | | 0.000 | 0.00 | | _cons | 7.62 | 11.3 | 13.6 | 11. | | | .127 | .584 | .304 | .31 | | | 0.000 | 0.000 | 0.000 | 0.00 | | r2_a | .399 | .5 | .424 | .58 | | rmse | .317 | .289 | .311 | . 26 | legend: b/se/p After fitting and storing four different models of median housing price, we use estimates table to present the coefficients, estimated standard errors, and p-values in tabular form. The stats() option adds summary statistics from the e() results. Using the star option presents the results in the form . estimates table model4 model1 model2 model2, stat(r2_a rmse 11) > b(%7.3g) star title("Models of median housing price") Models of median housing price | Variable | model4 | model1 | model3 | model2 | |---|--------------------------------------|----------------------|------------------------------|---------------------| | lnox
ldist
rooms
stratio
rooms2 | 954***
134**
255***
0525*** | .369*** | -1.22***
157**
0775*** | .237*** | | _cons | 11.1*** | 7.62*** | 13.6*** | .0889*** | | r2_a
rmso
11 | .581
.265
-43.5 | .399
.317
-136 | .424
.311
-124 | .5
.289
-88.6 | legend: * p<0.05; ** p<0.01; *** p<0.001 I chose to suppress the standard errors and display significance stars for the estimate. We add the log-likelihood value for each model with the stats() option. We can use the estimates commands after any Stata estimation command, including multiple-equation commands. Ben Jann's estout is a full-featured solution for preparing publication-quality tables in various output formats (Jann 2005). This routine, which he describes as a wrapper for estimates table, reformats stored estimates in a variety of formats, combines summary statistics from model estimation, and produces output in several formats, such as tab-delimited (for word processors or spreadsheets). LateX, and HTML. A companion program, estadd, lets you add specific statistics to the e() arrays accessible by estimates. These useful programs are available from ssc. As an example, we format the four models of median housing price for inclusion in a IMPX document. This rather involved example using estout places the IMPX headers and footers in the file and ensures that all items are in proper format for that typesetting language (e.g., using _cons would cause a formatting error unless it were modified). ``` . estout model1 model2 model3 model4 using ch3.19b_est.tex, ``` You can insert the LATEX fragment produced by this command directly in a research paper. (Continued on next page) > style(tex) replace title("Models of median housing price") > prehead(\begin{table}[htbp]\\caption{{\sc @title}}\\centering\\medskip > \begin{tabular}{1*(@M)(r)}) > posthead("\hline") prefoot("\hline") > varlabels(rooms2 "rooms\$^2\$" _cons "constant") legend > stats(N F r2_a rase, fmt(%6.0f %6.0f %8.3f %6.3f) > labels("N" "F" "\$\bar(R)"2\$" "RMS error")) > cells(b(fmt(%8.3f)) se(par fmt(%6.3f))) > postfoot(\hline\end(tabular)\end(table)) notype Table 4.1: Models of median housing price | Parameter | model1
b/se | model2
b/se | model3
b/se | model4
b/se | |------------------|------------------|-------------------|-------------------|-------------------| | rooms | 0.369
(0.020) | -0.821
(0.183) | | 0.255
(0.019) | | $rooms^2$ | | 0.089
(0.014) | | | | ldist | | 0.237
(0.026) | -0.157 (0.050) | -0.134 (0.043) | | stratio | | | -0.077 (0.007) | -0.052 (0.006) | | lnox | | | -1.215 (0.135) | -0.954 (0.117) | | constant | 7.624
(0.127) | 11.263
(0.584) | 13.614
(0.304) | 11.084
(0.318) | | N | 506 | 506 | 506 | 506 | | F | 337 | 169 | 125 | 176 | | \overline{R}^2 | 0.399 | 0.500 | 0.424 | 0.581 | | RMS error | 0.317 | 0.289 | 0.311 | 0.265 | You can change virtually every detail of the table by using estout directives. Since IMTEX, like HTML, is a markup language, you can program formatting changes. This flexibility is lacking from other estout output options, such as tab-delimited text for inclusion in a word-processing document or spreadsheet. #### 4.4.1 Presenting summary statistics and correlations Most empirical papers containing regression results also provide one or more tables of summary statistics and, possibly, correlations. In more complex data structures, such as pooled cross-section time-series data or panel data, summary statistics for particular categories are often reported. You can use Stata commands and user-written commands to produce publication-quality tables with appropriate precision (number of decimal places) in tab-delimited, LATEX, and HTML formats. To produce summary statistics over categories, you could use Stata's tabstat command, but retrieving its results is hard. You could generate the same summary statistics across categories with Cox and Baum's statsmat routine, which places the statistics in one Stata matrix.²⁸ Here we use the egen function $\operatorname{cut}()$ to create crimelevel as a variable with five integer values defined by the smallest (N/5) to largest (N/5) values of crime. We then compute descriptive statistics for price for each of these five subsets of the data with the stat smat command, placing the results in a Stata matrix. ``` . label define criev 0 "v.low" 1 "low" 2 "medium" 3 "high" 4 "v.high" . egen crimelevel = cut(crime), group(5) . label values crimelevel criev . statsmat price, stat(n mean p50) by(crimelevel) > matrix(price_crime) format(X9.4g) title("Housing price by quintile of crime") price_crime(5.3): Housing price by quintile of crime n mean p50 v.low 101 27273 24499 low 101 24806 22800 medium 101 23374 21600 high 101 22222 19900 v.high 102 14987 13350 ``` Ian Watson's tabout routine, available from ssc, provides another approach to this problem. tabout provides publication-quality output of cross tabulations in several output formats. Another useful routine is Nicholas Cox's makematrix routine (available from ssc), which can execute any r-class (nonestimation) statistical command and produce a matrix of results. For instance, you could use this routine to display an oblong subset of a full correlation matrix. Here we generate the correlations of three of the variables in the dataset with median housing price. These are pairwise correlations (see pwcorr in [R] correlate), invoked with the listwise option. # 4.5 Hypothesis tests, linear restrictions, and constrained least squares Researchers often apply regression methods in economics and finance to test hypotheses that are implied by a specific theoretical model. This section discusses hypothesis tests and interval estimates assuming that the model is properly specified and that the errors are i.i.d. Estimators are random variables, and their sampling distributions depend on those of the error process. In chapter 5, we extend many of these techniques to cases in which the errors are not i.i.d. ^{28.} If you want MTEX output, Baum and de Azevedo's outtable routine will generate a INTEX table. Both statemat and outtable are available from use by using the findit
command. Three tests are commonly used in econometrics: Wald tests, Lagrange multiplier (LM) tests, and likelihood-ratio (LR) tests. These tests share the same large-sample distribution, so choosing a test is usually a matter of convenience. Any hypothesis involving the coefficients of a regression equation can be expressed as one or more restrictions on the coefficient vector, reducing the dimensionality of the estimation problem. In the unrestricted model, the restrictions are not imposed on the estimation procedure. In the restricted model, they are imposed. The Wald test uses the point and VCE estimates from the unrestricted model to evaluate whether there is evidence that the restrictions are false. Loosely speaking, the LM test evaluates whether the restricted point estimates would be produced by the unrestricted estimator. I discuss several LM tests in chapter 6. The LR test compares the objective-function values from the unrestricted and restricted models. I present several LR tests in chapter 10. Almost all the tests I present here are Wald tests. Let us consider the general form of the Wald test statistic. Given the population regression equation $$y = x\beta + u$$ any set of linear restrictions on the coefficient vector may be expressed as $$R\beta = r$$ where **R** is a $q \times k$ matrix and **r** is a q-element column vector, with q < k. The q restrictions on the coefficient vector $\boldsymbol{\beta}$ imply that (k-q) parameters are to be estimated in the restricted model. Each row of **R** imposes one restriction on the coefficient vector; one restriction can involve multiple coefficients. For instance, given the regression equation $$y = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + u$$ we might want to test the hypothesis H_0 : $\beta_2 = 0$. This restriction on the coefficient vector implies $\mathbf{R}\boldsymbol{\beta} = r$, where $$\mathbf{R} = (0\ 1\ 0\ 0)$$ $\mathbf{r} = (0)$ A test of H_0 : $\beta_2 = \beta_3$ would imply the single restriction $$\mathbf{R} = (0 \ 1 - 1 \ 0)$$ $\mathbf{r} = (0)$ whereas the ANOVA F test presented in section 4.3.2, that all the slope coefficients are zero, implies three restrictions: H_0 : $\beta_2 = \beta_3 = \beta_4 = 0$, or $$\mathbf{R} = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$ with $$\mathbf{r} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$ Given a hypothesis expressed as H_0 : $\mathbf{R}\boldsymbol{\beta} = \mathbf{r}$, we can construct the Wald statistic 112 $$W = (\mathbf{R}\widehat{\boldsymbol{\beta}} - \mathbf{r})' \left\{ \mathbf{R}(\widehat{\mathbf{V}})^{-1} \mathbf{R}' \right\}^{-1} (\mathbf{R}\widehat{\boldsymbol{\beta}} - \mathbf{r})$$ This quadratic form uses the vector of estimated coefficients, $\hat{\boldsymbol{\beta}}$, and the estimated VCE, $\hat{\mathbf{V}}$, and evaluates the degree to which the restrictions fail to hold: the magnitude of the elements of the vector $(\mathbf{R}\hat{\boldsymbol{\beta}} - \mathbf{r})$. The Wald statistic evaluates the sums of squares of that vector, each weighted by a measure of their precision. The assumptions used to derive the large-sample distribution of the OLS estimator imply that w has a large-sample χ^2 distribution when H_0 is true. In small samples, the distribution of w/q may be better approximated by an F distribution with q and (N-k) degrees of freedom. When q=1, \sqrt{w} has a large-sample normal distribution, which is sometimes better approximated by a Student t distribution with (N-k) degrees of freedom.²⁹ Now that we know the distribution of w when H_0 is true, we can set up standard hypothesis tests, which begin by specifying that $$Pr(Reject H_0 \mid H_0) = \alpha$$ where α is the significance level of the test.³⁰ Then we use the distribution of w to identify a critical value for the rejection region at a specific significance level. Rather than reporting these critical values, Stata presents p-values, which measure the evidence against H_0 . A p-value is the largest significance level at which a test can be conducted without rejecting H_0 . The smaller the p-value, the more evidence there is against H_0 . Suppose that the estimates of a coefficient and its standard error are -96.17418 and 81.51707, respectively. These estimates imply that a t statistic of the null hypothesis—in which the population coefficient is zero—is -1.18. The Student t approximation to the distribution of this Wald test produces a two-sided p-value (p>1t1) of 0.242. We cannot reject H_0 at the conventional levels of 0.1, 0.05, or 0.01.³¹ However, the p-value for the analogous test on another coefficient in the same model is 0.013, so we could reject H_0 at the 10% and the 5% levels, but not at the 1% level. ^{29.} The small-sample approximations are exact when the errors are i.i.d. draws from a normal distribution. As above, the exact results are not highlighted because the normality assumption is too strong. ^{30.} This section provides only a cursory introduction to hypothesis testing. See Wooldridge (2006, appendix C) for a more complete introduction. ^{31.} These levels are commonly referred to as the 10%, 5%, and 1% levels, respectively. Most Stata commands report p-values for two-tailed tests: a P>|t| value of 0.242 implies that 12.1% of the distribution lies in each tail of the distribution.³² What if we have a one-tailed hypothesis, such as $H_0: \beta > 0$? In the example above, we would compute the one-tailed p-value by dividing the two-tailed p-value in half. If we place 5% of the mass of the distribution in one tail rather than 2.5% in each tail, the critical values become smaller in absolute value. Thus, under $H_0: \beta > 0$, the coefficient reported above would have a one-tailed p-value of 0.121, so we still fail to reject H_0 at the conventional levels. As we have seen in regress's output, Stata automatically generates several test statistics and their p-values: the ANOVA F and the t statistics for each coefficient, with the null hypothesis that the coefficients equal zero in the population. If we want to test more hypotheses after a regression equation, three Stata commands are particularly useful: test, testparm, and lincom. The first syntax for the test command is test coeffist where coeffist contains the names of one or more variables in the regression model. A second syntax is test exp=exp where exp is an algebraic expression in the names of the regressors.³³ The testpars command works similarly but allows wildcards in the coefficient list testparm varlist where the varlist may contain * or a hyphenated range expression such as ind1-ind8. The lincom command evaluates linear combinations of coefficients. lincom exp where exp is any linear combination of coefficients that is valid in the second syntax test. For lincom, the exp must not contain an equal sign. We begin the discussion of hypothesis tests with the simplest case: a hypothesis that involves one regression coefficient. ### 4.5.1 Wald tests with test If we want to test the hypothesis H_0 : $\beta_j = 0$, the ratio of the estimated coefficient positional estimated standard error has an approximate t distribution under the null hypothesis. ^{32.} An exception is the trest command, which presents both two-tailed and one-tailed tests of the state of two means. ^{33.} We can repeat the arguments of test in parentheses, as shown below in discussing joint parentheses of test are available for multiple-equation models; see [R] test or type help test. that the population coefficient equals zero. regress displays that ratio as the t column of the coefficient table. Returning to our median-housing-price equation, we could produce a test statistic for the significance of a coefficient by using the commands use http://www.stata-press.com/data/imeus/hprice2a, clear (Housing price data for Boston-area communities) | Source | SS | df | | MS | | Number of obs
F(4, 501) | | 175.86 | |-------------------|--------------------------|----------|---------------|------------------|-------|--|----|---------| | Model
Residual | 49.3987735
35.1834974 | 4
501 | THE RESIDENCE | 496934
226542 | | Prob > F
R-squared
Adj R-squared | H | 0.0000 | | Total | 84.5822709 | 505 | -167 | 489645 | | Root MSE | - | . 268 | | lprice | Coef. | Std. | Err. | t | P>ItI | [95% Conf. | In | terval] | | lnox | 95354 | .1167 | 7418 | -8.17 | 0.000 | -1.182904 | | 7241762 | | ldist | 1343401 | .043 | 1032 | -3.12 | 0.002 | 2190255 | | 0496548 | | rooms | .2545271 | .0185 | 5303 | 13.74 | 0.000 | .2181203 | | 290933 | | stratio | 0524512 | .0058 | 3971 | -8.89 | 0.000 | 0640373 | | .040865 | | cons | 11.08387 | .318 | 1115 | 34.84 | 0.000 | 10.45887 | 1 | 11.7088 | ``` . test rooms (1) rooms = 0 F(1, 501) = 188.67 Prob > F = 0.0000 ``` which in Stata's shorthand is equivalent to the command test b[rooms] = 0 (and much easier to type). The test command displays the statistic as F(1, N - k) rather than in the t_{N-k} form of the coefficient table. Because many hypotheses to which test can be applied involve more than one restriction on the coefficient vector—and thus more than one degree of freedom—Stata routinely displays an F statistic.³⁴ If we cannot reject the hypothesis H_0 : $\beta_j = 0$ and wish to restrict the equation accordingly, we remove that variable from the list of regressors. More generally, we may want to test the hypothesis $\beta_j = \beta_j^0 = \theta$, where θ is any constant value. If theory suggests that the coefficient on variable rooms should be 0.33, we can specify that hypothesis in test: ``` . quietly regress lprice lnox ldist rooms stratio . test rooms = 0.33 (1) rooms = .33 F(1, 501) = 16.59 Prob > F = 0.0001 ``` Thus we can strongly reject the null hypothesis that the population coefficient is 0.33. ^{34.} Recall that $(t_{N-k})^2 = F_{N-k}^1$: the square of a
Student's t with (N-k) degrees of freedom is an F statistic with (1, N-k) degrees of freedom. ## 4.5.2 Wald tests involving linear combinations of parameters We might want to compute a point and interval estimate for the sum of several coefficients. We can do that with the lincom (linear combination) command, which lets us specify any linear expression in the coefficients. With our median-housing-price equation, consider an arbitrary restriction: that the coefficients on rooms, ldist, and stratio sum to zero, so we can write $$H_0: \beta_{\text{rooms}} + \beta_{\text{ldist}} + \beta_{\text{stratio}} = 0$$ Although this hypothesis involves three estimated coefficients, it involves only one restriction on the coefficient vector. Here we have unitary coefficients on each term, but that need not be so. - . quietly regress lprice lnox ldist rooms stratio - . lincom rooms + ldist + stratio - (1) ldist + rooms + stratio = 0 | lprice | Coef. | Std. Err. | t | P> t | [95% Conf. | Interval] | |--------|----------|-----------|------|-------|------------|-----------| | (1) | .0677357 | .0490714 | 1.38 | 0.168 | -,0286753 | .1641468 | The sum of the three estimated coefficients is 0.068, with an interval estimate including zero. The t statistic provided by lincom provides the same p-value that test would produce. We can use test to consider the equality of two of the coefficients or to test that their ratio equals a particular value: - . quietly regress lprice lnox ldist rooms stratio - . test ldist = stratio - (1) ldist stratio = 0 F(1, 501) = 3.63 Prob > F = 0.0574 - . test lnox = 10 * stratio - (1) lnox 10 stratio = 0 F(1, 501) = 10.77 Prob > F = 0.0011 We cannot reject the hypothesis that the coefficients on ldist and stratio are equal at the 5% level, whereas we can reject the test that the ratio of the lnox and stratio coefficients equals 10 rejected at the 1% level. Stata rewrites both expressions into normalized form. Although the ratio of two coefficients would appear to be a nonline expression, we can test this assumption by rewriting it as shown above. We cannot use the same strategy to evaluate a hypothesis involving a product of coefficients. We state that the ratio of two coefficients involving a product of coefficients. In the estimates above, we cannot reject the hypothesis that the sum of the concerns on rooms, ldist, and stratio is zero, but we estimate that sum to be slight positive. To estimate the equation subject to that restriction, we have two options. First, we could substitute the restriction(s) into the model algebraically and fit the restricted model. Here that would be simple enough, but in more complicated models, it may be cumbersome. Second, we could use Stata's constraint command to define each constraint to be imposed on the equation and estimate with the cnsreg (constrained regression) command. The constraint command has the following syntax: where # is the number of the constraint, which may be expressed either in an algebraic expression or as a coeffist. Using the latter syntax, the regressors in coeffist are removed from the equation. We can use the constraints in cnsreg: The command's syntax echoes that of regress, but it requires the constraints() option with the constraints to be imposed listed by number (# above). To illustrate the latter strategy, we use constraint: - . constraint def 1 ldist + rooms + stratio = 0 - . cnsreg lprice lnox ldist rooms stratio, constraint(1) Constrained linear regression Number of obs = 506 F(3, 502) = 233.42 Prob > F = 0.0000 Root MSE = .26524 #### (1) ldist + rooms + stratio = 0 | lprice | Coef. | Std. Err. | t | P> t | [95% Conf . | Interval] | |---------|-----------|-----------|--------|-------|-------------|-----------| | lnox | -1.083392 | .0691935 | -15.66 | 0.000 | -1.219337 | 9474478 | | ldist | 1880712 | .0185284 | -10.15 | 0.000 | 2244739 | 1516684 | | rooms | .2430633 | .01658 | 14.66 | 0.000 | .2104886 | .2766381 | | stratio | 0549922 | .0056075 | -9.81 | 0.000 | 0660092 | 0439752 | | _cons | 11.48651 | .1270377 | 90.42 | 0.000 | 11.23691 | 11.736 | This format displays all three coefficients' estimates, so we need not generate new variables to impose the constraint. You should not perform a test of the restrictions that have been imposed on the equation. By construction, the restrictions will be satisfied (within your machine's precision) in these estimates, so this hypothesis cannot be tested. Also the Root MSE has marginally increased in the constrained equation. Estimation subject to linear restrictions cannot improve the fit of the equation relative to the unrestricted counterpart and will increase Root MSE to the degree that the restrictions are binding. ### 4.5.3 Joint hypothesis tests All the tests illustrated above involve only one restriction on the coefficient vector. Often we wish to test a hypothesis involving multiple restrictions on the coefficient vector. Multiple restrictions on the coefficient vector imply a joint test, the result of which is not simply a box score of individual tests. Every user of regression is familiar with this concept. You may often encounter a regression in which each slope coefficient has a t statistic falling short of significance, but nevertheless the ANOVA F is significant. In the The ANOVA F is a joint test that all the regressors are jointly uninformative. In the presence of a high degree of collinearity, we often encounter exactly this result. The data cannot attribute the explanatory power to one regressor or another, but the combination of regressors can explain much of the variation in the response variable. We can construct a joint test in Stata by listing each hypothesis to be tested in parentheses on the test command. The joint F test statistic will have as many numerator degrees of freedom as there are restrictions on the coefficient vector. As presented above, the first syntax of the test command, test coeffist, performs the joint test that two or more coefficients are jointly zero, such as H_0 : $\beta_2 = 0$ and $\beta_3 = 0$. This joint hypothesis is not the same as H_0' : $\beta_2 + \beta_3 = 0$. The latter hypothesis will be satisfied by a locus of $\{\beta_2, \beta_3\}$ values: all pairs that sum to zero. The former hypothesis will be satisfied only at the point where each coefficient equals zero. We can test the joint hypothesis for our median-housing-price equation with ``` . quietly regress lprice lnox ldist rooms stratio . test lnox ldist (1) lnox = 0 (2) ldist = 0 F(2, 501) = 58.95 Prob > F = 0.0000 ``` The data overwhelmingly reject the joint hypothesis that the model excluding lnex and ldist is correctly specified relative to the full model. We can formulate a joint hypothesis that combines two restrictions on the equation above as follows: ``` . quietly regress lprice lnox ldist rooms stratio . test (lnox = 10 * stratio) (ldist = stratio) (1) lnox - 10 stratio = 0 (2) ldist - stratio = 0 F(2, 501) = 5.94 Prob > F = 0.0028 ``` Here we have imposed two restrictions on the coefficient vector so that the final statistic has two numerator degrees of freedom. The joint test rejects the two hypothesis at the 1% level. ^{35.} We can combine separate hypotheses by using the accumulate option on the test command Just as we cannot algebraically restrict the model or apply constraints that are inconsistent linear equations (i.e., ldist - stratio = 0 and ldist - stratio = 1) we cannot test inconsistent linear hypotheses. ## 4.5.4 Testing nonlinear restrictions and forming nonlinear combinations All the hypotheses discussed above are linear in that they may be written in the form $$H_0: \mathbf{R}\boldsymbol{\beta} = \mathbf{r}$$ where we can express a set of q < k linear restrictions on $\beta_{k \times 1}$ as the $q \times k$ matrix R and the q-vector r. Indeed, the constrained least-squares method implemented in casreg may be expressed as solving the constrained optimization problem $$\begin{split} \widehat{\boldsymbol{\beta}} &= \arg \ \min_{\boldsymbol{\beta}} \ \widehat{\mathbf{u}}' \widehat{\mathbf{u}} &= \ \arg \ \min_{\boldsymbol{\beta}} \ (\mathbf{y} - \mathbf{X} \boldsymbol{\beta})' (\mathbf{y} - \mathbf{X} \boldsymbol{\beta}) \\ s.t. \ \mathbf{R} \boldsymbol{\beta} &= \ \mathbf{r} \end{split}$$ and all the tests above may be expressed as an appropriate choice of ${\bf R}$ and ${\bf r}$. Suppose that the hypothesis tests to be conducted cannot be written in this linear form, for example, if theory predicts a certain value for the product of two coefficients in the model or for an expression such as $(\beta_2/\beta_3+\beta_4)$. Two Stata commands are analogues to those we have used above. testnl lets us specify nonlinear hypotheses on the β values, but unlike with test, we must use the syntax b[varname] to refer to each coefficient value. For a joint test, we must write the equations defining each nonlinear restriction in parentheses, as illustrated below. nlcom lets us compute nonlinear combinations of the estimated coefficients in point and interval form, similar to lincom. Both commands use the *delta method*, an approximation to the distribution of a nonlinear combination of random variables appropriate for large samples that constructs Wald-type tests.³⁶ Unlike tests of linear hypotheses, nonlinear Wald-type tests based on the delta method are sensitive to the scale of the y and X data. The median-housing-price regression illustrates these two commands. - quietly regress lprice lnox ldist rooms stratio testnl _b[lnox] * _b[stratio] = 0.06 - (1) _b[lnox] * _b[stratio] = 0.06 F(1, 501) = 1.44 Prob > F = 0.2306 This example considers a restriction on the product of the coefficients of lnox and atratio. The product of these coefficients cannot be distinguished from 0.06. Just as ^{36.} See Wooldridge (2002) for a discussion of the delta method. we can use lincom to evaluate a linear expression in the coefficients, we can use nlcom in the
nonlinear context. We can also test a joint nonlinear hypothesis: We can reject the joint hypothesis at the 1% level. ## 4.5.5 Testing competing (nonnested) models How do we compare two regression models that attempt to explain the same response variable but that differ in their regressor lists? If one of the models is strictly nested within the other, we can use the test command to apply a Wald test to the original or unconstrained model to evaluate whether the data reject the restrictions implied by the constrained model. This approach works well for classical hypothesis testing where the parameters of one model are a proper subset of another. But economic theories often are cast in the form of competing hypotheses, where neither model may be nested within the other. Furthermore, no proposed theory may correspond to the supermodel that encompasses all elements of both theories by artificially nesting both models' unique elements in one structure. Tests of competing hypotheses versus a supermodel pit one model against a hybrid model that contains elements of both that are not proposed by either theory. If we have competing hypotheses such as $$H_0: y = \mathbf{x}\boldsymbol{\beta} + \epsilon_0$$ (4.7) $$H_1: y = \mathbf{z}\gamma + \epsilon_1$$ $$(4.6)$$ where some of the elements of both x and z are unique (not included in the other regressor matrix), we must use a different strategy. The Examining goodness of fit by comparing Root MSE or noting that one of these models has a higher R^2 or \overline{R}^2 is not likely to yield conclusive results and lacks a statistical rationale. Davidson and MacKinnon (1981) proposed their J test as a solution to this problem.³⁸ This test relies on a simple approach: if model 0 has better explanatory power than model 1, model 0 is superior, and vice versa. We perform the J test by generating the predicted values of each series and including them in an augmented regression of the other model. Let $\hat{\mathbf{y}}_1$ and $\hat{\mathbf{y}}_2$ be the predicted values of \mathbf{y} using the estimates of ^{37.} A Bayesian econometrician would have no difficulty in this context; she would merely ask "which of these hypotheses is more likely to have generated the data?" 38. Do not confuse this test with Hansen's J test in the generalized method-of-moments (GMM) literature described in chapter 8. the parameters in (4.7) and (4.8), respectively. We include the \hat{y} from the alternative hypothesis above in the null hypothesis' model (4.7). If the coefficient on \hat{y}_1 is significant, we reject the model of the null hypothesis. We now reverse the definitions of the two models and include the \hat{y}_0 from the null hypothesis in the alternative hypothesis' model (4.8). If the coefficient on \hat{y}_0 is significant, we reject the model of the alternative hypothesis. Unfortunately, all four possibilities can arise: H_0 may stand against H_1 , H_1 may stand against H_0 , both hypotheses may be rejected, or neither hypothesis may be rejected. Only in the first two cases does the J test deliver a definitive verdict. Official Stata does not implement this test, but you can install Gregorio Impavido's command nnest (from ssc describe nnest). Similar tests are those of Cox (1961), Cox (1962), extended by Pesaran (1974) and Pesaran and Deaton (1978). These tests are based on likelihood-ratio tests that can be constructed from the fitted values and sums of squared residuals of the nonnested models. The Cox-Pesaran-Deaton tests are also performed by Impavido's nnest package. We illustrate these tests with our median-housing-price regression by specifying two forms of the equation, one including crime and proptax but excluding pollution levels (lnox), the other vice versa. The command uses an unusual syntax in which the first regression specification is given (as it would be for regress) and the regressors of the second specification are listed in parentheses. The dependent variable should not appear in the parenthesized list. ``` . nnest lprice lnox ldist rooms stratio (crime proptax ldist rooms stratio) M1 : Y = a + Xb with X = [lnox ldist rooms stratio] M2 : Y = a + Zg with Z = [crime proptax ldist rooms stratio] J test for non-nested models HO : M1 t(500) 10.10728 0.00000 H1 : M2 p-val 7.19138 t(499) HO: M2 0.00000 H1 : M1 p-val Cox-Pesaran test for non-nested models -20.07277 N(0,1) HO : M1 0.00000 H1: M2 p-val HO: M2 N(0,1) -17.63186 0.00000 H1 : M1 p-val ``` Here the Davidson-MacKinnon test and the Cox-Pesaran-Deaton test reject both H_0 and H_1 , indicating that a model excluding any of these three explanatory variables is misspecified relative to the supermodel including all of them. For our microeconomics research project, these findings cast doubt on the specification excluding the crime and proptax explanatory factors and suggest that we revisit our specification of the model with respect to those factors. ### 4.6 Computing residuals and predicted values After fitting a linear regression model with regress, we can compute the regression residuals or the predicted values. Computing the residuals for each observation allows us to assess how well the model explains the value of the response variable for that observation. Is the in-sample prediction \hat{y}_i much larger or smaller than the actual value y_i ? Computing predicted values lets us generate in-sample predictions: the values of the response variable generated by the fitted model. We may also want to generate out-of-sample predictions, that is, apply the estimated regression function to observations that were not used to generate the estimates. We may need to use hypothetical values of the regressors or actual values. In the latter case, we may want to apply the estimated regression function to a separate sample (e.g., to Springfield-area communities rather than Boston-area communities) to evaluate its applicability beyond the regression sample. A well-specified regression model should generate reasonable predictions for any sample from the population. If out-of-sample predictions are poor, the model's specification may be too specific to the original sample. regress does not calculate the residuals or predicted values, but we can compute either after regress with the predict command, where choice specifies the quantity to be computed for each observation. For linear regression, predict computes predicted values by default so that . predict double lpricehat predict double lpricehat, xb will yield identical results. The choice xb refers to the matrix form of the regression model (4.10) in which $\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$. These are known as the *point predictions*. If you need the residuals, use predict double lpriceeps, residual The regression estimates are available only to predict until another estimation command (e.g., regress) is issued, so if you need these series, you should compute them as early as possible. Using double as the optional type in these commands ensures that the series will be generated with full numerical precision and is strongly recommended. In both instances, predict works like generate: the named series must not already exist, and the series will be computed for the entire available dataset, not merely the estimation sample. You may use the qualifier if e(sample) to restrict the computation to the estimation sample and compute only in-sample predictions.³⁹ To evaluate the quality of the regression fit graphically, we can use a plot of actual and predicted values of y_i versus x_i with one regressor. In multiple regression, the natural analogue is a plot of actual y_i versus the predicted \hat{y}_i values. The commands ^{39.} When applied to a model fitted with time-scries data, predict can generate only static or one-step ahead forecasts. See Baum (2005) if you want dynamic or k-step-ahead forecasts. below generate such a graph (figure 4.2) illustrating the fit of our regression model. The aspect ratio has been constrained to unity so that points on the 45° line represent perfect predictions. The model systematically overpredicts the (log) price of relatively low-priced houses, which may give cause for concern about the applicability of the model to lower-income communities. There are also several very high median prices that appear to be seriously underpredicted by the model. ``` . use http://www.stata-press.com/data/imeus/hprice2a, clear (Housing price data for Boston-area communities) . quietly regress lprice lnox ldist rooms stratio . predict double lpricehat, xb . label var lpricehat "Predicted log price" . twoway (scatter lpricehat lprice, msize(small) mcolor(black) msize(tiny)) | | > (line lprice lprice if lprice <., clwidth(thin)), > ytitle("Predicted log median housing price") > xtitle("Actual log median housing price") aspectratio(1) legend(off) ``` Figure 4.2: Actual versus predicted values from regression model ## 4.6.1 Computing interval predictions Besides predicted values and least-squares residuals, we may want to use predict to compute other observation-specific quantities from the fitted model. ⁴⁰ I will discuss some of the more specialized quantities available after regress in the next section. First, I discuss how predict may provide interval predictions to complement the point predictions. ^{40.} Documentation for the capabilities of predict after regress is presented in [R] regress postestimation. The interval prediction is simply a confidence interval for the prediction. There are two commonly used definitions of "prediction", the predicted value and the forecast The predicted value estimates the average value of the dependent variable for given values of the regressors. The forecast estimates the value of the dependent variable for a given set of regressors. The mechanics of OLS implies that the point estimates are the same, but the variances of the predicted value and the forecast are different. As is
intuitive, the variance of the forecast is higher than the variance of the predicted value, Given regressor values x_0 , the predicted value is $$E[y|\mathbf{x}_0] = \hat{y}_0 = \mathbf{x}_0 \boldsymbol{\beta}$$ A consistent estimator of the variance of the predicted value is $$\widehat{V}_p = s^2 * \mathbf{x}_0 (\mathbf{X}'\mathbf{X})^{-1} \mathbf{x}_0'$$ Given the regressor values x_0 , the forecast error for a particular y_0 is $$\widehat{e}_0 = y_0 - \widehat{y}_0 = \mathbf{x}_0 \beta + u_0 - \widehat{y}_0$$ predict performs this calculation for each observation when the stdp option is specified. The zero covariance between u_0 and $\hat{\beta}$ implies⁴¹ that $$Var[\widehat{e}_0] = Var[\widehat{y}_0] + Var[u_0]$$ for which $$\hat{V}_f = s^2 * \mathbf{x}_0 (\mathbf{X}'\mathbf{X})^{-1} \mathbf{x}'_0 + s^2$$ is a consistent estimator, predict performs this calculation for each observation when the stdf option is specified. As one would expect, the variance of the forecast is higher than the variance of the predicted value. An interval prediction is an upper and lower bound that contain the true value with a given probability in repeated samples. 42 Here I present a method for finding the bounds for the forecast. Given that the standardized-prediction error has an approximate Student t distribution, the interval prediction begins by choosing bounds that enclose it with probability $1 - \alpha$: $$\Pr\left\{-t_{1-\alpha/2} < \frac{y_0 - \widehat{y}_0}{\sqrt{\operatorname{Var}[\widehat{c}]}} < t_{1-\alpha/2}\right\} = 1 - \alpha$$ where α is the significance level⁴³ and $t_{1-\alpha/2}$ is the inverse of the Student t at $1-\alpha/2$ Standard manipulations of this condition yield $$\Pr\left\{\widehat{y}_0 - t_{1-\alpha/2} * \sqrt{\operatorname{Var}[\widehat{e}_0]} < y < \widehat{y}_0 + t_{1-\alpha/2} * \sqrt{\operatorname{Var}[\widehat{e}]}\right\} = 1 - \alpha$$ 41. See Wooldridge (2006) for a discussion of this point. ^{42.} See Wooldridge (2006, section 6.4) for more about forming and interpreting interval predictions 43. Loosely speaking, the significance level is the error rate that we are willing to tolerate in repeated amples. The often-chosen significance level of 5% yields a 95% confidence interval. plugging in our consistent estimators yields the bounds $$\widehat{y}_0 \pm t_{1-\alpha/2} * \widehat{V}_f$$ Substituting $E[y|\mathbf{x}_0]$ for y_0 and using the variance of predicted value presented in the text yields a prediction interval for the predicted value $$\widehat{y}_0 \pm t_{1-\alpha/2} * \widehat{V}_p$$ The variance of the predicted value increases as we consider an x value farther from the mean of the estimation sample. The interval predictions for the predicted value lie on a pair of parabolas with the narrowest interval at $\overline{\mathbf{x}}$, widening as we diverge from the sample point of means. To compute this confidence interval, we use predict's stdp option (see [R] regress postestimation). An appropriate confidence interval may be constructed from [$\pm t$ stdp], where t would be 1.96 for a 95% confidence interval for a sample with a large N. You may then construct two more variables to hold the lower-limit and upper-limit values and graph the point and interval predictions. We consider a bivariate regression of log median housing price on lnox. For illustration, we fit only the model to 100 communities of the 506 in the dataset. The two predict commands generate the predicted values of lprice as xb and the standard error of prediction and stdpred, respectively: . use http://www.stata-press.com/data/imeus/hprice2a, clear (Housing price data for Boston-area communities) . quietly regress lprice lnox if _n<=100 . predict double xb if e(sample) (option xb assumed; fitted values) (406 missing values generated) . predict double stdpred if e(sample), stdp (406 missing values generated) To calculate the prediction interval, we use the invttail() function to generate the correct t-value for the sample size and a 95% prediction interval as a scalar. The variables uplim and lowlim can then be computed: . scalar tval = invttail(e(df_r),0.975) generate double uplim = xb + tval * stdpred (406 missing values generated) generate double lowlim = xb - tval * stdpred (406 missing values generated) Finally, we want to highlight the mean value of lnox (calculated by the summarize command, storing that value as local macro lnoxbar) and label the variables appropriately for the graph: - . summarize lnox if e(sample), meanonly - · local lnoxbar = r(mean) - · label var xb "Pred" - · label var uplim "95% prediction interval" - . label var lowlim "95% prediction interval" 4. We may now generate the figure by using three graph twoway types: scatter for the scatterplot, connected for the predicted values, and rline for the prediction interval limits: 44,45 - . twoway (scatter lprice lnox if e(sample), > sort ms(Oh) xline('lnoxbar')) - > sort ms(un) xxins(inexum) > (connected xb lnox if e(sample), sort msize(small)) - > (rline uplim lowlim lnox if e(sample), sort), > ytitle(Actual and predicted log price) legend(cols(3)) Figure 4.3: Point and interval predictions from bivariate regression Figure 4.3 plots the actual values of the response variable against their point and interval predictions. The prediction interval is narrowest at the mean value of the regressor. The vertical line (calculated by summarize lnox if e(sample), storing that value as local macro lnoxbar), marks the sample mean of lnox observations used in the regression. ^{44.} For an introduction to Stata graphics, please see [G] graph intro and help graph intro an in-depth presentation of Stata's graphics capabilities, please see A Visual Guide to Stata Graphics (Mitchell 2004). ^{45.} See [G] graph twoway litter or help graph twoway litter for another way to plot regression intervals We can compute residuals and predicted values of the dependent variable from the data and the regression point estimates. The residuals and in-sample predictions are used to assess how well the model explains the dependent variable. Whereas the goal of some studies is to obtain out-of-sample predictions for the dependent variable, using either actual or hypothetical values for the regressors, in other cases these out-of-sample predictions can be used to evaluate a model's usefulness. For example, we may apply the estimated coefficients to a separate sample (e.g., the Springfield-area communities rather than the Boston-area communities) to evaluate its out-of-sample applicability. If a regression model is well specified, it should generate reasonable predictions for any sample from the population. If out-of-sample predictions are poor, the model's specification may be too specific to the original sample. A prediction interval for the forecast may be computed with predict's stdf (standard error of forecast) option (see [R] regress postestimation). Unlike stdp, which calculates an interval around the expected value of y for a given set of X values (in or out of sample), stdf accounts for the additional uncertainty associated with the prediction of one y value (i.e., σ_u^2). We can use a confidence interval formed with stdf to evaluate an out-of-sample data point, y_0 , and formally test whether it could have been generated by the process generating the fitted model. The null hypothesis for that test implies that data point should lie within the interval $\hat{y}_0 \pm t$ stdf. ### 4.7 Computing marginal effects One of Stata's most powerful statistical features is the mfx command, which computes marginal effects or elasticities after estimation in point and interval form: mfx calculates the marginal effect that a change in a regressor has on those quantities computed with predict after estimation. It automatically uses the default prediction option, for instance, for regress, the xb option that computes \hat{y} . If you use mfx (with the default dydx option) after a regression equation, the results merely reproduce the regress coefficient table with one change: the mean of each regressor is displayed. For regression, the coefficient estimates calculate the marginal effects, and they do not vary across the sample space. Of greater interest to economists are the elasticity and semielasticity measures, which we obtain with mfx options eyex, dyex, and eydx. The first is the elasticity of y with respect to x_j , equivalent to $\partial \log(y)/\partial \log(x_j)$. By default, these are evaluated at the multivariate point of means of the data, but they can be evaluated at any point using the at() option. The second, dyex, would be appropriate if the response variable was already in logarithmic form, but the regressor was not; this is the semielasticity $\partial y/\partial \log(x_j)$ of a log-linear model. The third form, eydx, would be appropriate if the regressor was in logarithmic form, but the response variable was not; this is the semielasticity $\partial \log(y)/\partial x_j$. le CC th re St The following example shows some of these options, using a form of the median price regression in levels rather than logarithms to illustrate. We compute elasticities (by default, at the point of means) with the eyex option for each explanatory variable . use http://www.stata-press.com/data/imeus/hprice2a, clear (Housing price data for Boston-area communities) | . regress | price | nox | dist | rooms | stratio | proptax | |---------------------|--------------|-------|----------|--------------------|------------------------|---------| | and the contract of | C CONTRACTOR | 20.00 | 18 8 0 0 | W. CO. CO. SERVICE | Control of the Control | | | Source | SS | df | | MS | | Number of obs
F(5, 500) | | 50
165.8 | |----------|------------|-------|------|--------|-------|-----------------------------|-------|----------------| | Model | 2.6717e+10 | 5 | 5.34 | 34e+09 | | Prob > F | - | 0.0000 | | Residual | 1.6109e+10 | 500 | 3221 | 7368.7 | |
R-squared | # | 0.6239 | | Total | 4.2826e+10 | 505 | 848 | 803032 | | Adj R-squared
Root MSE | 10.11 | 0.6201
5676 | | price | Coef. | Std. | Err. | t | P> t | [95% Conf. | In | terval] | | nox | -2570.162 | 407. | 371 | -6.31 | 0.000 | -3370.532 | -1 | 769.793 | | dist | -955.7175 | 190.7 | 124 | -5.01 | 0.000 | -1330.414 | 1 | 581.021 | | rooms | 6828.264 | 399.7 | 034 | 17.08 | 0.000 | 6042.959 | 7 | 613.569 | | stratio | -1127.534 | 140.7 | 653 | -8.01 | 0.000 | -1404.099 | | 50.9699 | | proptax | -52.24272 | 22.53 | 714 | -2.32 | 0.021 | -96.52188 | | 963555 | | _cons | 20440.08 | 5290. | 616 | 3.86 | 0.000 | 10045.5 | | 0834.66 | [.] mfx, eyex Elasticities after regress y = Fitted values (predict) = 22511.51 | variable | ey/ex | Std. Err. | z | P> z | E | 95% | C.I. | 1 | X | |--|--|---|---|---|---------|---|-------------------------------|-------------------|---| | nox
dist
rooms
stratio
proptax | 6336244
1611472
1.906099
9245706
0947401 | .10068
.03221
.1136
.11589
.04088 | -6.29
-5.00
16.78
-7.98
-2.32 | 0.000
0.000
0.000
0.000
0.020 | 2
1. | 30954
24273
68344
15171
74871 | 436:
098:
2.128
6974 | 022
876
429 | 5.54978
3.79578
6.28405
18.4593
40.8237 | The significance levels of the elasticities are identical to those of the original coefficients. The regressor rooms is elastic, with an increase in rooms having almost two as large an effect on price in proportional terms. The other three regressors are include, with estimated elasticities within the unit interval, but the 95% confidence interest for stratio includes values less than -1.0 The at() option of mfx can compute point and interval estimates of the marginal effects or elasticities at any point in the sample space. We can specify that one variable take on a specific value while all others are held at their (estimation sample) means or medians to trace out the effects of that regressor. For instance, we may calculate house price elasticity over the range of values of lnox in the sample. The command also handles the discrete changes appropriate for indicator variables. ^{46,} afr uses a large-sample normal, whereas regress uses a Student t, thus causing the small discretization the output. The example below evaluates the variation in the elasticity of median housing price with respect to the community's student—teacher ratio in both point and interval form. We first run the regression and compute selected percentiles of stratio by using the detail option of summarize, saving them in variable x_val. ``` // run regression quietly regress price nox dist rooms stratio // compute appropriate t-statistic for 95% confidence interval scalar tmfx = invttail(e(df_r),0.975) . generate y_val = . // generate variables needed (506 missing values generated) . generate x_val = . (506 missing values generated) . generate eyex_val = . (506 missing values generated) . generate seyex1_val = . (506 missing values generated) . generate seyex2_val = . (506 missing values generated) . // summarize, detail computes percentiles of stratio . quietly summarize stratio if e(sample), detail , local pct 1 10 25 50 75 90 99 . local 1 = 0 . foreach p of local pct { local pc'p'=r(p'p') local ++i 4. // set those percentiles into x_val quietly replace x val = 'pc'p', in 'i' ``` To produce the graph, we must compute elasticities at the selected percentiles and store the mfx results in variable y_val. The mfx command, like all estimation commands, leaves behind results described in ereturn list. The saved quantities include scalars such as e(Xmfx_y), the predicted value of y generated from the regressors, and matrices containing the marginal effects or elasticities. The example above uses eyex to compute the elasticities, which are returned in the matrix e(xMfx_eyex) with standard errors returned in the matrix e(xMfx_se_eyex). The do-file extracts the appropriate values from those matrices and uses them to create variables containing the percentiles of stratio, the corresponding predicted values of price, the elasticity estimates, and their confidence interval bounds. ``` : local 1 = 0 . foreach p of local pct { 2. // compute elasticities at those points quietly mfx compute, eyex at(mean stratio='pc'p'') local ++1 3. 4. // save predictions at these points in y_val quietly replace y_val = e(Xmfx_y) in 'i' 5. // retrieve elasticities matrix Meyex = e(Xmfx_eyex) // for the stratio column 6. matrix eta = Meyex[1, "stratio"] // and save in eyex val quietly replace eyex_val = eta[1,1] in 'i' 8. // retrieve standard errors of the elasticities matrix Seyex = e(Xnfx_se_eyex) // for the stratio column 9. matrix se = Seyex[1,"stratio"] 10. // compute upper and lower bounds of confidence interval quietly replace seyex1_val = eyex_val + tmfx*se[1,1] in 'i' quietly replace seyex2_val = eyex_val - tmfx*se[1,1] in 'i' 12.) ``` I graph these series in figure 4.4, combining three twoway graph types: scatter for the elasticities, rline for their standard errors, and connected for the predicted values, with a second axis labeled with their magnitudes.⁴⁷ ``` . label variable x_val "Student/teacher ratio (percentiles 'pct')" . label variable y_val "Predicted median house price" . label variable eyex_val "Elasticity" . label variable seyex1_val "95% c.i." . label variable seyex2_val "95% c.i." . // graph the scatter of elasticities va. percentiles of stratio . // as well as the predictions with rline . // and the 95% confidence bands with connected . twoway (scatter eyex_val x_val, ms(0h) yscale(range(-0.5 -2.0))) . (rline seyex1_val seyex2_val x_val) . (connected y_val x_val, yaxis(2) yscale(axis(2) range(20000 35000))), . ytitle(Elasticity of price vs. student/teacher ratio) . drop y_val x_val eyex_val seyex1_val seyex2_val // discard graph's variables ``` ^{47.} For more about Stata's graphics capabilities, including overlaying several plot types, and A Visible to Stata Graphics (Mitchell 2004). Figure 4.4: Point and interval elasticities computed with mfx The model's predictions for various levels of the student–teacher ratio demonstrate that more crowded schools are associated with lower housing prices, ceteris paribus. The elasticities vary considerably over the range of stratio values. These do-files demonstrate how much you can automate generating a table of point and interval elasticity estimates, in this case to present them graphically, by using values stored in the $\tau()$ and e() structures. You could adapt the do-files to generate similar estimates for a different regressor or from a different regression equation. We choose the x-axis points from the percentiles of the regressor and specify the list of percentiles as a local macro. Although many users will use mfx just for its results, you can also use those results to produce a table or graph showing the variation in marginal effects or elasticities over a range of regressor values. #### Exercises - Regress y = (2,1,0) on X = (0,1,2) without a constant term, and calculate the residuals. Refit the model with a constant term, and calculate the residuals. Compare the residual sum of squares from this model with those from the model with a constant term included. What do you conclude about the model fitted without a constant term? - 2. Fit the regression of section 4.5.2, and use test to evaluate the hypothesis H₀: 2 β_{Idist} = -β_{rooms}. Compute the linear combination 2 b_{Idist} b_{rooms} by using lincom. Why do these two commands yield the same p-values? What is the relationship between the F statistic reported by test and the t statistic reported by lincom? - 3. Fit the regression of section 4.5.2. Refit the model subject to the linear restriction that 2 $\beta_{\text{1dist}} = -\beta_{\text{rooms}}$. Do the results change appreciably? Why or why not? - 4. Using the regression equation estimated in the example of section 4.7, compute the elasticities of price with respect to dist at each decile of the price distribution (hint: see xtile) and produce a table containing the 10 deciles of price and the corresponding elasticities. ## 4.A Appendix: Regression as a least-squares estimator We can express the linear regression problem in matrix notation with \mathbf{y} as an N vector, \mathbf{X} a $N \times k$ matrix, and \mathbf{u} an N vector as $$y = X\beta + u$$ (4.9) Using the least-squares approach to estimation, we want to solve the sample analogue to this problem as $$\mathbf{y} = \mathbf{X}\widehat{\boldsymbol{\beta}} + \widehat{\mathbf{u}} \tag{4.10}$$ where $\hat{\beta}$ is the k-element vector of estimates of $\hat{\beta}$ and $\hat{\mathbf{u}}$ is the N-vector of least-squares residuals. We want to choose the elements of $\hat{\beta}$ to achieve the minimum error sum of squares, $\hat{\mathbf{u}}'\hat{\mathbf{u}}$. We can write the least-squares problem as $$\boldsymbol{\beta} = \arg \min_{\boldsymbol{\beta}} \ \widehat{\mathbf{u}}' \widehat{\mathbf{u}} = \arg \min_{\boldsymbol{\beta}} \ (\mathbf{y} - \mathbf{X} \boldsymbol{\beta})' (\mathbf{y} - \mathbf{X} \boldsymbol{\beta})$$ Assuming N>k and linear independence of the columns of ${\bf X}$ (i.e., ${\bf X}$ must have full column rank), this problem has the unique solution $$\widehat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} \tag{4.11}$$ The values calculated by least squares in (4.11) are identical to those computed by the method of moments in (4.4) since the first-order conditions used to derive the least squares solution above define the moment conditions used by the method of moments # 4.B Appendix: The large-sample VCE for
linear regression The sampling distribution of an estimator describes the estimates produced by applying that estimator to repeated samples from the underlying population. If the size of each sample N is large enough, the sampling distribution of the estimator may be approximately normal, whether or not the underlying stochastic disturbances are normally distributed. An estimator satisfying this property is said to be asymptotically normal. If we are consistently estimating one parameter, its sampling variance will shrink to zero as $N \to \infty$. An estimated parameter may be biased in small samples, but that bias will disappear with large N if the estimator is consistent. In the multivariate context, the variability of the estimates is described by the variance—covariance matrix of the large–sample normal distribution. We call this matrix the variance—covariance matrix of our estimator, or VCE. To evaluate the variability of our estimates, we need a consistent estimator of the VCE. If the regressors are "well behaved" with finite second moments, we can write the probability limit, or plim, of their moments matrix, scaled by sample size N, as $$plim \frac{\mathbf{X}'\mathbf{X}}{N} = \mathbf{Q} \tag{4.12}$$ where Q is a positive-definite matrix.⁴⁸ We can then derive the distribution of the random estimates $\hat{\beta}$ as $\sqrt{N} (\hat{\beta} - \beta) \xrightarrow{d} N (0, \sigma_u^2 \mathbf{Q})$ (4.13) where $\stackrel{d}{\rightarrow}$ denotes convergence in distribution as the sample size $N \rightarrow \infty$. For $\widehat{\beta}$ itself, we can write $\widehat{\boldsymbol{\beta}} \stackrel{a}{\sim} N\left(\boldsymbol{\beta}, \frac{\sigma_u^2}{N} \mathbf{Q}^{-1}\right)$ (4.14) where $\stackrel{\circ}{\sim}$ denotes the large-sample distribution. To estimate the large-sample VCE of $\widehat{\boldsymbol{\beta}}$, we must estimate the two quantities in (4.14): σ_u^2 and $(1/N)\mathbf{Q}^{-1}$. We can consistently estimate the first quantity, σ_u^2 , as shown in (4.5) by $\mathbf{e}'\mathbf{e}/(N-k)$, where \mathbf{e} is the regression residual vector. We can estimate the second quantity consistently from the sample by $(\mathbf{X}'\mathbf{X})^{-1}$. Thus we can estimate the large-sample VCE of $\widehat{\boldsymbol{\beta}}$ from the sample as $$VCE(\hat{\boldsymbol{\beta}}) = s^2 (\mathbf{X}'\mathbf{X})^{-1} = \frac{\hat{\mathbf{u}}'\hat{\mathbf{u}}}{N-k} (\mathbf{X}'\mathbf{X})^{-1}$$ (4.15) ^{48.} A sequence of random variables $\widehat{\theta}_N$ converges in probability to the constant a if for $\epsilon>0$, $\Pr(|\widehat{\theta}_N-a|>\epsilon)\to 0$ as $N\to\infty$, a is the plim of $\widehat{\theta}_N$. If $\widehat{\theta}_N$ is an estimator of the population parameter θ and $a=\theta$, $\widehat{\theta}_N$ is a consistent estimator of θ . ## 5 Specifying the functional form ## 5.1 Introduction A key assumption maintained in the previous chapter is that the functional form was correctly specified. Here we discuss some methods for checking the validity of this assumption. If the zero-conditional-mean assumption $$E[u \mid x_1, x_2, ..., x_k] = 0$$ (5.1) is violated, the coefficient estimates are inconsistent. The three main problems that cause the zero-conditional-mean assumption to fail in a regression model are - · improper specification of the model; - · endogeneity of one or more regressors; or - · measurement error of one or more regressors. The specification of a regression model may be flawed in its list of included regressors or in the functional form specified for the estimated relationship. Endogeneity means that one or more regressors may be correlated with the error term, a condition that often arises when those regressors are simultaneously determined with the response variable. Measurement error of a regressor implies that the underlying behavioral relationship includes one or more variables that the econometrician cannot accurately measure. This chapter discusses specification issues, whereas chapter 8 addresses endogeneity and measurement errors. ## 5.2 Specification error The consistency of the linear regression estimator requires that the sample regression function correspond to the underlying population regression function or true model for the response variable y: $$y_i = \mathbf{x}_i \boldsymbol{\beta} + u_i$$ Specifying a regression model often involves making a sequence of decisions about the model's contents. Economic theory often provides some guidance in model specification but may not explicitly indicate how a specific variable should enter the model, identify the functional form, or spell out precisely how the stochastic elements (u_i) enter the model. Comparative static results that provide expected signs for derivatives do not indicate which functional specification to use for the model. Should it be estimated in levels; as a log-linear structure; as a polynomial in one or more of the regressors; or in logarithms, implying a constant-elasticity relationship? Theory is often silent on such specifics, yet we must choose a specific functional form to proceed with empirical research. Let us assume that the empirical specification may differ from the population regression function in one of two ways (which both might be encountered in the same fitted model). Given the dependent variable y, we may omit relevant variables from the model, or we may include irrelevant variables in the model, making the fitted model "short" or "long", respectively, relative to the true model. ### 5.2.1 Omitting relevant variables from the model Suppose that the true model is $$y = \mathbf{x}_1 \boldsymbol{\beta}_1 + \mathbf{x}_2 \boldsymbol{\beta}_2 + u$$ with k_1 and k_2 regressors in the two subsets, but that we regress y on just the x_1 variables: $$y = \mathbf{x}_1 \boldsymbol{\beta}_1 + u$$ This step yields the least-squares solution $$\widehat{\boldsymbol{\beta}}_{1} = (\mathbf{X}'_{1}\mathbf{X}_{1})^{-1}\mathbf{X}'_{1}\mathbf{y}$$ $$= \boldsymbol{\beta}_{1} + (\mathbf{X}'_{1}\mathbf{X}_{1})^{-1}\mathbf{X}'_{1}\mathbf{X}_{2}\boldsymbol{\beta}_{2} + (\mathbf{X}'_{1}\mathbf{X}_{1})^{-1}\mathbf{X}'_{1}\mathbf{u}$$ (5.2) $$(5.3)$$ Unless $X_1'X_2 = 0$ or $\beta_2 = 0$, the estimate $\hat{\beta}_1$ is biased, since $$E[\hat{\boldsymbol{\beta}}_1|\mathbf{X}] = \boldsymbol{\beta}_1 + \mathbf{P}_{1\cdot 2} \boldsymbol{\beta}_2$$ where $\mathbf{P}_{1\cdot 2} = (\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'\mathbf{X}_2$ is the $k_1 \times k_2$ matrix reflecting the regression of each column of \mathbf{X}_2 on the columns of \mathbf{X}_1 . If $k_1 = k_2 = 1$ and the single variable in \mathbf{X}_2 is correlated with the single variable in \mathbf{X}_1 , we can derive the direction of bias. Generally with multiple variables in each set, we can make no statements about the nature of the bias of the $\widehat{\boldsymbol{\beta}}_1$ coefficients. We may conclude that the cost of omitting relevant variables is high. If $E[\mathbf{x}_1'\mathbf{x}_2] \neq \emptyset$. (5.3) would have showed that the estimator was inconsistent. If the population correlations between elements of \mathbf{x}_1 and \mathbf{x}_2 are zero, regression estimates would be consistent but probably biased in finite samples. In economic research, a variable mistakently excluded from a model is unlikely to be uncorrelated in the population or in the sample with the regressors. This requirement holds unless one chooses to use nonparametric methods that are beyond the selfof this book. See Hardle (1990) for an introduction to nonparametric methods. # Specifying dynamics in time-series regression models A related concern arises in models for time-series data, in which theory rarely fully specifies the time form of the dynamic relationship. For instance, consumer theory may specify the ultimate response of an individual's saving to a change in her after-tax income. However, theory may fail to indicate how rapidly the individual will adjust her saving to a permanent change in her salary. Will that adjustment take place within one, two, three, or more biweekly pay periods? From our analysis of the asymmetry of specification error, we know that the advice to the modeler should be "do not underfit the dynamics." If we do not know the time form of a dynamic relationship with certainty, we should include several lagged values of the regressor. We can then use the "test down" strategy discussed below to determine whether the longer lags are necessary. Moreover, omitting higher-order dynamic terms may cause apparent nonindependence of the regression errors, as signaled by residual independence tests. ### 5.2.2 Graphically analyzing regression data With Stata's graphics, you can easily perform exploratory data analysis on the regression sample, even with large datasets. In specification analysis, we may want to examine the simple bivariate relationships between y and the regressors in x. Although multiple linear regression coefficients are complicated functions of the various bivariate regression coefficients among these variables, we still often find it useful to examine a set of bivariate plots. We use graph matrix to generate a set of plots illustrating the bivariate relationships underlying our regression model of median housing prices: (Continued on next page) - graph matrix lprice lnox ldist rooms stratio, ms(Oh) msize(tiny) Figure 5.1: graph matrix of regression variables The first row (or column) of the plot matrix in figure 5.1 illustrates the relationships between the variable to be explained (the log of median housing price) and the four causal factors. These plots are the y-x planes, in which a simple regression of \log housing price on each of these factors in turn would determine the line of best fit. The other bivariate graphs below the main diagonal are also illustrative. If any of these relationships could be fitted well by a straight line, the intercorrelation among
those regressors would be high, and we would expect collinearity problems. For instance, the scatter of points between lnox and ldist appears to be compact and linear. The correlate command shows that those two variables have a simple correlation of -0.86 ## c 2.3 Added-variable plots The added-variable plot identifies the important variables in a relationship by decomposing the multivariate relationship into a set of two-dimensional plots.² Taking each regressor in turn, the added-variable plot is based on two residual series. The first series, contains the residuals from the regression of \mathbf{x}_g on all other \mathbf{x} , whereas the second series, e_2 , contains the residuals from the regression of y on all x variables except \mathbf{x}_g . That is, e_1 represents the part of \mathbf{x}_g that cannot be linearly related to those other regressors, whereas e_2 represents the information in y that is not explained by all other regressors (excluding \mathbf{x}_g). The added-variable plot for \mathbf{x}_g is then the scatter of e_2 (on the y-axis) versus e_1 (on the x-axis). Two polar cases (as discussed by Cook and Weisberg [1994, 194]) are of interest. If most points are clustered around a horizontal line at ordinate zero in the added-variable plot, \mathbf{x}_g is irrelevant. On the other hand, if most points are clustered around a vertical line with abscissa zero, the plot would indicate near-perfect collinearity. Here as well, adding \mathbf{x}_g to the model would not be helpful. The strength of a linear relationship between e_1 and e_2 (that is, the slope of a least-squares line through this scatter of points) represents the marginal value of \mathbf{x}_g in the full model. If the slope is significantly different from zero, \mathbf{x}_g makes an important contribution to the model beyond that of the other regressors. The more closely the points are grouped around a straight line in the plot, the more important is the contribution of \mathbf{x}_g at the margin. As an added check, if the specification of the full model (including \mathbf{x}_g) is correct, the plot of e_1 versus e_2 must exhibit linearity. Significant departures from linearity in the plot cast doubt on the appropriate specification of \mathbf{x}_g in the model. After regress, the command to generate an added-variable plot is given as avplot varname where varname is the variable on which the plot is based, which can be a regressor or a variable not included in the regression model. Alternatively, avplots produces one graph with all added-variable plots from the last regression, as we now illustrate. ^{2.} For details about the added-variable plot, see Cook and Weisberg (1994, 191–194). See [R] regress postestimation for more details about its implementation in Stata. - use http://www.stata-press.com/data/imeus/hprice2a, clear (Housing price data for Bostom-area communities) - generate rooms2 = rooms 2 - regress lprice lnox ldist rooms rooms2 stratio lproptax | Source | SS | df | | MS | | Number of obs | = 506
= 138,41 | |-------------------|--------------------------|----------|----------|------------------|-------|--|----------------------| | Model
Residual | 52.8357813
31.7464896 | 6
499 | 20000000 | 596356
362022 | | F(6, 499)
Prob > F
R-squared
Adj R-squared | = 0.0000
= 0.6247 | | Total | 84.5822709 | 505 | .1674 | 489645 | | Root MSE | = .25223 | | lprice | Coef. | Std. | Err. | t | P> t | [95% Conf. | Interval] | | lnox | 6615694 | .120 | 1606 | -5.51 | 0.000 | 8976524 | 4254864 | | ldist | 095087 | .042 | 1435 | -2.26 | 0.024 | 1778875 | 0122864 | | rooms | 5625662 | .161 | 0315 | -3.49 | 0.001 | -,8789496 | 2461829 | | rooms2 | .0634347 | .012 | 4621 | 5.09 | 0.000 | .0389501 | .0879193 | | stratio | 0362928 | .006 | 0699 | -5.98 | 0.000 | 0482185 | 0243671 | | lproptax | 2211125 | .041 | 0202 | -5.39 | 0.000 | 301706 | 1405189 | | _cons | 14.15454 | | 3846 | 24.86 | 0.000 | 13.03585 | 15.27323 | | | | | | | | | | . avplots, ms(Oh) msize(small) col(2) Figure 5.2: Added-variable plots In each pane of figure 5.2, we see several observations that are far from the straight linking the response variable and that regressor. The outlying values are particularly evident in the graphs for lnox and ldist, where low values of $E[\ln x|X]$ and $E[\ln x|X]$ are associated with prices much higher than those predicted by the model. The t statistics shown in each panel test the hypothesis that the least-squares line has a slope significantly different from zero. These test statistics are identical to those of the original regression, shown above. ## 5.2.4 Including irrelevant variables in the model Including irrelevant regressors does not violate the zero-conditional-mean assumption. Since their population coefficients are zero, including them in the regressor list does not cause the conditional mean of the u process to differ from zero. Suppose that the true model is $y = \mathbf{x}_1 \boldsymbol{\beta}_1 + u \qquad (5.4)$ but we mistakenly include several \mathbf{x}_2 variables in our regression model. In that case, we fail to impose the restrictions that $\boldsymbol{\beta}_2=0$. Since $\boldsymbol{\beta}_2=0$ in the population, including \mathbf{x}_2 leaves our estimates of $\boldsymbol{\beta}_1$ unbiased and consistent, as is the estimate of σ_u^2 . Overfitting the model and including the additional variables causes a loss of efficiency (see section 4.2.3). By ignoring that the \mathbf{x}_2 variables do not belong in the model, our estimates of $\boldsymbol{\beta}_1$ are less precise than they would be with the correctly specified model, and the estimated standard errors of $\boldsymbol{\beta}_1$ will be larger than those fitted from the correct model of (5.4). This property is especially apparent if we have $k_1=k_2=1$ and the correlation between x_1 and x_2 is high. Mistakenly including \mathbf{x}_2 will lead to imprecise estimates of $\boldsymbol{\beta}_1$. Clearly, overfitting the model costs much less than underfitting, as discussed earlier. The long model delivers unbiased and consistent estimates of all its parameters, including those of the irrelevant regressors, which tend to zero. ### 5.2.5 The asymmetry of specification error We may conclude that the costs of these two types of specification error are asymmetric. We would much rather err on the side of caution (including additional variables) to avoid the inconsistent estimates that would result from underfitting the model. Given this conclusion, a model selection strategy that starts with a simple specification and seeks to refine it by adding variables is flawed. The opposite approach, starting with a general specification and seeking to refine it by imposing appropriate restrictions, has much more to recommend it.³ Although a general specification may be plagued by collinearity, a tecursive simplification strategy is much more likely to yield a usable model at the end of the specification search. Ideally, we would not need to search for a specification. We would merely write down the fitted model that theory propounds, run one regression, ³ The general-to-specific approach proposed by econometrician David Hendry in several of his works implements such a refinement strategy. See http://ideas.repec.org/e/phe33.html for more information. and evaluate its results. Unfortunately, most applied work is not that straightforward. Most empirical investigations contain some amount of specification searching. In considering such a research strategy, we also must be aware of the limits of statistical inference. We might run 20 regressions in which the regressors do not appear in the true model, but at the 5% level, we would expect one of those 20 estimates to erroneously show a relationship between the response variable and regressors. Many articles in the economic literature decry "data mining" or "fishing for results". The rationale for fitting a variety of models in search of the true model is to avoid using statistical inference to erroneously reject a theory because we have misspecified the relationship. If we write down one model that bears little resemblance to the true model, fit that model, and conclude that the data reject the theory, we are resting our judgment on the maintained hypothesis that we have correctly specified the population model. But if we used a transformation of that model, or added omitted variables to the model, our inference might reach a different conclusion. #### 5.2.6 Misspecification of the functional form A model that includes the appropriate regressors may be misspecified because the model may not reflect the algebraic form of the relationship between the response variable and those regressors. For instance, suppose that the true model specifies a nonlinear relationship between y and x_j —such as a polynomial relationship—and we omit the squared term. Doing so would be misspecifying the functional form. Likewise, if the true model expresses a constant-elasticity relationship, the model fitted to logarithms of y and x could render conclusions different from those of a model fitted to levels of the variables. In one sense, this problem may be easier to deal with than the omission of relevant variables. In a misspecification of the functional form, we have all the appropriate variables at hand and only have to choose the appropriate form in which they enter the regression function. Ramsey's omitted-variable regression specification error test (RESET) implemented by Stata's estat ovtest may be useful in this context. #### 5.2.7 Ramsey's RESET Linear regression of y on the levels of various x's restricts the effects of each x_j to be strictly linear. If the functional relationship linking y to x_j is nonlinear, a linear function may work reasonably well for some values of x_j but will eventually break
down. Ramsey's RESET is based on this simple notion. RESET runs an augmented regression that includes the original regressors, powers of the predicted values from the original regression, and powers of the original regressors. Under the null hypothesis of no misspecification, the coefficients on these additional regressors are zero. RESET is simply a Wald test of this null hypothesis. The test works well because polynomials in \hat{y} and x_j can approximate a variety of functional relationships between y and the regressors x. ^{4.} Distinguish between a model linear in the parameters and a nonlinear relationship between y and $y_i = \beta_1 + \beta_2 x_i + \beta_3 x_i^2 + u_i$ is linear in the β parameters but defines a nonlinear function, E[y|x] = f(x). As discussed in [R] regress postestimation, to compute the RESET after regress, we use the following command syntax: 5 The parsimonious flavor of the test, computed by default, augments the regression with the second, third, and fourth powers of the \widehat{y} series. With the rhs option, powers of the individual regressors themselves are used. This option may considerably reduce the power of the test in small samples because it will include many regressors. For example, if we perform RESET after our regression model of log housing prices, ``` quietly regress lprice lnox ldist rooms stratio estat ovtest Ramsey RESET test using powers of the fitted values of lprice Ho: model has no omitted variables F(3, 498) = 9.69 Prob > F = 0.0000 estat ovtest, rhs Ramsey RESET test using powers of the independent variables Ho: model has no omitted variables F(12, 489) = 11.79 Prob > F = 0.0000 ``` we can reject RESET's null hypothesis of no omitted variables for the model using either form of the test. We respecify the equation to include the square of rooms and include another factor, lproptax, the log of property taxes in the community: regress lprice lnox ldist rooms rooms2 stratio lproptax | Source | SS | df | | MS | | Number of obs
F(6, 499) | * | 506
138.41 | |-------------------|--------------------------|----------|------|------------------|-------|--|------|----------------------------| | Model
Residual | 52.8357813
31.7464896 | 6
499 | - | 596356
362022 | | Prob > F
R-squared
Adj R-squared | | 0.0000
0.6247
0.6202 | | Total | 84.5822709 | 505 | .167 | 489645 | | Root MSE | - | .25223 | | lprice | Coef. | Std. | Err. | t | P> t | [95% Conf. | In | terval | | lnox | 6615694 | .1201 | 606 | -5.51 | 0.000 | 8976524 | - | 4254864 | | ldist | 095087 | .0421 | 435 | -2.26 | 0.024 | 1778875 | 17.5 | 0122864 | | rooms | 5625662 | .1610 | 315 | -3.49 | 0.001 | 8789496 | = | 2461829 | | rooms2 | .0634347 | .0124 | 621 | 5.09 | 0.000 | .0389501 | 3 | 0879193 | | stratio | 0362928 | .0060 | 699 | -5.98 | 0.000 | 0482185 | = | 024367 | | lproptax | 2211125 | .0410 | 202 | -5.39 | 0.000 | 301706 | -5 | 1405189 | | cons | 14.15454 | .5693 | 846 | 24.86 | 0.000 | 13.03585 | 1 | 5.2732 | [.] estat ovtest Ramsey RESET test using powers of the fitted values of lprice Ho: model has no omitted variables F(3, 496) = 1.64 F(3, 496) = 1.64Prob > F = 0.1798 ^{5.} A more general command that implements several flavors of the RESET, and may be applied after instrumental-variables estimation, is Mark Schaffer's ivreset, available from asc. This model's predicted values no longer reject the RESET. The relationship between rooms and housing values appears to be nonlinear (although the pattern of signs on the rooms and rooms2 coefficients is not that suggested by theory). But as theory suggests, communities with higher property tax burdens have lower housing values, ceteris paribus. ### 5.2.8 Specification plots Many plots based on the residuals have been developed to help you evaluate the specification of the model because certain patterns in the residuals indicate misspecification. We can graph the residuals versus the predicted values with rvfplot (residual-versus-fitted plot) or plot them against a specific regressor with rvpplot (residual-versus-predictor plot) by using the regression model above: - . quietly regress lprice lnox ldist rooms rooms2 stratio lproptax - . rvpplot ldist, ms(Oh) yline(O) Figure 5.3: Residual-versus-predictor plot The latter plot is displayed in figure 5.3. Any pattern in this graph indicates a problem with the model. For instance, the residuals appear much more variable for low levels versus high levels of log of distance (ldist), so the assumption of homoskedasticity (a constant variance of the disturbance process) is untenable. A variety of other graphical techniques for identifying specification problems have been proposed, and several are implemented in Stata; see [R] regress postestimation ## Specification and interaction terms We might also encounter specification error with respect to interactions among the We magnetic that $\partial y/\partial x_j$ is a function of x_ℓ , we should fit the regressors. If the true model implies that $\partial y/\partial x_j$ is a function of x_ℓ , we should fit the $$y = \beta_1 + \beta_2 X_2 + \dots + \beta_j x_j + \beta_\ell X_\ell + \beta_p (x_j \cdot x_\ell) + \dots + u$$ $$(5.5)$$ in which the regressor $(x_j \cdot x_\ell)$ is an interaction term. With this term added to the model, we find that $\partial y/\partial x_j = \beta_j + \beta_p x_\ell$. The effect of x_j then depends on x_ℓ . For example, in a regression of housing prices on attributes of the dwelling, the effect of adding a bedroom to the house may depend on the house's square footage. If the coefficient β_p is constrained to equal zero [that is, if we estimate (5.5) without interaction effects], the partial derivatives of both x_j and x_ℓ are constrained to be constant rather than varying, as they would be for the equation including the interaction term. If the interaction term or terms are irrelevant, their t statistics will indicate that you can safely omit them. But here the correct specification of the model requires that you enter the regressors in the proper form in the fitted model. As an example of misspecification due to interaction terms, we include taxschlan interaction term between 1proptax, the logarithm of average property taxes in the community, and stratio, the student-teacher ratio—in our housing-price model. Both are negative factors, in the sense that buyers would prefer to pay lower taxes and enjoy schools with larger staff and would not be willing to pay as much for a house in a community with high values for either attribute. . generate taxschl = lproptax * stratio | Source | ce lnox ldist | df | | MS | | Number of obs
F(5, 500) | | 506
84.47 | |-------------------|--------------------------|----------|------|------------------|-------|--|----|--------------| | Model
Residual | 38.7301562
45.8521148 | 5
500 | | 503123
170423 | | Prob > F
R-squared
Adi R-squared | | 0.0000 | | Total | 84.5822709 | 505 | .167 | 489645 | | Root MSE | | .30283 | | lprice | Coef. | Std. | Err. | t | P> t | [95% Conf. | In | terval] | | lnox | 9041103 | .1441 | 253 | -6.27 | 0.000 | -1.187276 | | 620944 | | ldist | 1430541 | .0501 | | -2.85 | 0.005 | 2416499 | | 044458 | | lproptax | -1.48103 | .5163 | | -2.87 | 0.004 | -2,495438 | | 466621 | | stratio | 4388722 | .1538 | | -2.85 | 0.005 | 7411093 | | 136635 | | taxachl | .0641648 | | 5406 | 2.43 | 0.015 | .0122843 | | 116045 | | CODE | 21.47905 | 2.95 | | 7.28 | 0.000 | 15,6786 | 3 | 27.2795 | The interaction term is evidently significant, so a model excluding that term can be considered misspecified for the reasons discussed in section 5.2.1, although the omitted variable is algebraically related to the included regressors. The interaction term has ^{6.} And vice versus in (5.5), $\partial y/\partial x_I$ is a function of the level of x_J . We exclude the rooms and rooms regressors from this example for illustration. a positive sign, so the negative partial derivative of lprice with respect to lproptax (stratio) becomes less negative (closer to zero) for higher levels of stratio (lproptax). #### 5.2.10 Outlier statistics and measures of leverage To evaluate the adequacy of the specification of an fitted model, we must also consider evidence relating to the model's robustness to influential data. The OLS estimator is designed to fit the regression sample as well as possible. However, our objective in fitting the model often includes inference about the population from which the sample was drawn or computing out-of-sample forecasts. Evidence that the model's coefficients have been strongly influenced by a few data points or of structural instability over subsamples casts doubt on the fitted model's worth in any broader context. For this reason, we consider tests and plots designed to identify influential data. A variety of statistics have been designed to evaluate influential data and the relationship between those data and the fitted model. A pioneering work in this field is Belsley, Kuh, and Welsch (1980) and the later version, Belsley (1991). An outlier in a regression relationship is a data point with an unusual value, such as a value of housing price twice as high as any other or a community with a student–teacher ratio 3 standard deviations below the mean. An outlier may be an observation associated with a large residual (in absolute terms), a data point that the model fits poorly. On the other hand, an unusual data point that is far from the center of mass of the x_j distribution may also be an outlier, although the residual associated with that data point will often be small because the least-squares process attaches a squared penalty to the residual in forming the least-squares criterion. Just as the arithmetic mean (a least-squares estimator) is sensitive to extreme values (relative to the sample median), the
least-squares regression fit will attempt to prevent such an unusual data point from generating a sizable residual. We say that this unusual point has a high degree of leverage on the estimates because including it in the sample alters the estimated coefficients by a sizable amount. Data points with large residuals may also have high leverage. Those with low leverage may still have a large effect on the regression estimates. Measures of influence and the identification of influential data points take their leverage into account. You can calculate a measure of each data point's leverage after regress with . predict double lev if e(sample), leverage These leverage values are computed from the diagonal elements of the "hat matrix", $h_j = \mathbf{x}_j (\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}'_j$, where \mathbf{x}_j is the jth row of the regressor matrix. You can use $\mathbf{1vr2plot}$ to graphically display leverage values versus the (normalized) squared residuals. Points with very high leverage or very large squared residuals may deserve scruting. We can also examine those statistics directly. Consider our housing-price regression model, for which we compute leverage and squared residuals. The town variable identifies the community. s. The formulas for predict options are presented in [R] regress postestimation. ``` quietly regress lprice lnox ldist rooms rooms2 stratio lproptax . generate town = _n predict double lev if e(sample), leverage , predict double eps if e(sample), res . generate double eps2 = eps^2 summarize price lprice Mean Min Obs Std. Dev. Max Variable 506 22511.51 9208.856 price ``` 9.941057 We then list the five largest values of the leverage measure, using gsort to produce the descending-sort order: .409255 8.517193 10.8198 . gsort -lev , list town price lprice lev eps2 in 1/5 506 | eps2 | lev | lprice | price | town | |-----------|-----------|----------|-------|------| | .61813718 | .17039262 | 10.2219 | 27499 | 366 | | .30022048 | .11272637 | 10.04759 | 23100 | 368 | | .33088957 | .10947853 | 9.994242 | 21900 | 365 | | .06047061 | .08036068 | 10.8198 | 50001 | 258 | | .03382768 | .0799096 | 10.8198 | 50001 | 226 | We can also examine the towns with the largest squared residuals: . gsort -eps2 lprice . list town price lprice lev eps2 in 1/5 | eps2 | lev | lprice | price | town | |-----------|-----------|----------|-------|------| | 1.7181195 | .02250047 | 10.8198 | 50001 | 369 | | 1.4894088 | .01609848 | 10.8198 | 50001 | 373 | | 1.2421055 | .02056901 | 10.8198 | 50001 | 372 | | 1.0224558 | .0172083 | 10.8198 | 50001 | 370 | | 1.0063662 | .00854955 | 8.517193 | 5000 | 406 | As these results show, a large value of leverage does not imply a large squared residual, and vice versa. Several of the largest values of leverage or the squared residuals correspond to the extreme values of median housing prices recorded in the dataset, which tange from \$5,000 to \$50,001. These data may have been coded with observations outside that range equal to that minimum or maximum value, respectively. #### The DFITS statistic A summary of the leverage values and magnitude of residuals is provided by the DFITS statistic of Welsch and Kuh (1977), $$\mathrm{DFITS}_j = r_j \sqrt{\frac{h_j}{1 - h_j}}$$ where r_j is a studentized (standardized) residual, $$r_j = \frac{e_j}{s_{(j)}\sqrt{1-h_j}}$$ with $s_{(j)}$ referring to the root mean squared error (s) of the regression equation with the jth observation removed. Working through the algebra shows that either a large value of leverage (h_j) or a large absolute residual (e_j) will generate a large $|\text{DFITS}_j|$. The DFITS measure is a scaled difference between the in-sample and out-of-sample predicted values for the jth observation. DFITS evaluates the result of fitting the regression model including and excluding that observation. Belsley, Kuh, and Welsch (1980) suggest that a cutoff value of $|\text{DFITS}_j| > 2\sqrt{k/N}$ indicates highly influential observations. We now compute DFITS in our housing-price regression model: . predict double dfits if e(sample), dfits We then sort the calculated DFITS statistic in descending order and calculate the recommended cutoff value as an indicator variable, cutoff, equal to 1 if the absolute value of DFITS is large and zero otherwise. Consider the values of DFITS for which cutoff = 1: ^{9.} See [R] regress postestimation for more details. .gsort -dfits quietly generate cutoff = abs(dfits) > 2*sqrt((e(df_m)+1)/e(N)) & e(sample) list town price lprice dfits if cutoff | | town | price | lprice | dfits | |-----|------------|-------|----------|------------| | | 200 | 27499 | 10.2219 | 1.5679033 | | 14 | 366 | 23100 | 10.04759 | .82559867 | | 2. | 368 | 50001 | 10.8198 | .8196735 | | 3. | 369 | 50001 | 10.8198 | .65967704 | | 4. | 372
373 | 50001 | 10.8198 | .63873964 | | | 371 | 50001 | 10.8198 | .55639311 | | 6. | 370 | 50001 | 10.8198 | .54354054 | | 70 | 361 | 24999 | 10.12659 | .32184327 | | 8. | 359 | 22700 | 10.03012 | .31516743 | | 9. | 408 | 27901 | 10.23642 | .31281326 | | | 367 | 21900 | 9.994242 | .31060611 | | 1. | 360 | 22600 | 10.02571 | .28892457 | | 2. | 363 | 20800 | 9.942708 | .27393758 | | 3. | 358 | 21700 | 9.985067 | .24312885 | | 4. | 386 | 7200 | 8.881836 | 23838749 | | 1. | 388 | 7400 | 8.909235 | 25909393 | | 2. | 491 | 8100 | 8.999619 | 26584795 | | 3. | 400 | 6300 | 8.748305 | 28782824 | | 4. | 416 | 7200 | 8.881836 | 29288953 | | 5. | 402 | 7200 | 8.881836 | -,29595696 | | 96. | 381 | 10400 | 9.249561 | 29668364 | | 7. | 258 | 50001 | 10.8198 | 30053391 | | 18. | 385 | 8800 | 9.082507 | 302916 | | 19. | 420 | 8400 | 9.035987 | 30843965 | | 00. | 490 | 7000 | 8.853665 | 3142718 | | 01. | 401 | 5600 | 8.630522 | 33273658 | | 02. | 417 | 7500 | 8.922658 | 34950136 | | 33. | 399 | 5000 | 8.517193 | 36618139 | | 04. | 406 | 5000 | 8.517193 | 37661853 | | 05. | 415 | 7012 | 8.855378 | -,43879798 | | 06. | 365 | 21900 | 9.994242 | 85150064 | About 6% of the observations are flagged by the DFITS cutoff criterion. Many of those observations associated with large positive DFITS have the top-coded value of \$50,001 for median housing price, and the magnitude of positive DFITS is considerably greater than that of negative DFITS. The identification of top-coded values that represent an arbitrary maximum recorded price suggests that we consider a different estimation technique for this model. The tobit regression model, presented in section 10.3.2, can properly account for the censored nature of the median housing price. #### The DFBETA statistic We may also want to focus on one regressor and consider its effect on the estimates by computing the DFBETA series with the dfbeta command after a regression. The jth observation's DFBETA measure for regressor ℓ may be written as $$\mathrm{DFBETA}_j = \frac{r_j v_j}{\sqrt{v^2 (1 - h_j)}}$$ where the v_j are the residuals obtained from the partial regression of x_ℓ on the remaining columns of \mathbf{X} , and v^2 is their sum of squares. The DFBETAs for regressor ℓ measure the distance that this regression coefficient would shift when the jth observation is included or excluded from the regression, scaled by the estimated standard error of the coefficient. One rule of thumb suggests that a DFBETA value greater than unity in absolute value might be reason for concern since this observation might shift the estimated coefficient by more than one standard error. Belsley, Kuh, and Welsch (1980) suggest a cutoff of $|\mathrm{DFBETA}_j| > 2/\sqrt{N}$. We compute DFBETAs for one of the regressors, lnox, in our housing-price regression model: - , quietly regress lprice lnox ldist rooms rooms2 stratio lproptax - . dfbeta lnox DFInox: DFbeta(lnox) - . quietly generate dfcut = abs(DFlnox) > 2/sqrt(e(N)) & e(sample) - , sort DFlnox - . summarize lnox | Max | Min | Std. Dev. | Mean | Obs | Variable | | |----------|----------|-----------|----------|-----|----------|--| | 2.164472 | 1.348073 | .2014102 | 1.693091 | 506 | lnox | | ^{10.} As discussed in [R] regress postestimation, we can calculate one dibeta series with predictwhereas you can use one dibeta command to compute one or all of these series and automatically manner them. list town price lprice lnox DFlnox if dfcut | tow | n price | lprice | lnox | DFlnox | |------|--------------|----------|----------|----------| | 36 | 9 50001 | 10.8198 | 1.842136 | 4316933 | | 37 | | 10.8198 | 1.842136 | 4257791 | | 37 | 2000000 | 10.8198 | 1.899118 | 3631822 | | 37 | ****** | 10.8198 | 1.842136 | 2938702 | | 37 | W. (10.00.4) | 10.8198 | 1.842136 | 2841335 | | 365 | 21900 | 9.994242 | 1.971299 | 2107066 | | 408 | | 10.23642 | 1.885553 | 1728729 | | 368 | 100000000 | 10.04759 | 1.842136 | 1309522 | | 12 | 15000 | 9.615806 | 1.656321 | 1172723 | | 410 | 27499 | 10.2219 | 1.786747 | 1117743 | | 413 | 17900 | 9.792556 | 1.786747 | 0959273 | | 437 | 1000000 | 9.169518 | 2.00148 | 0955826 | | 146 | CONTRACT. | 9.532424 | 2.164472 | 0914387 | | 154 | 19400 | 9.873029 | 2.164472 | .0910494 | | 463 | 19500 | 9.87817 | 1.964311 | .0941472 | | 464 | 20200 | 9.913438 | 1.964311 | .0974507 | | 427 | 10200 | 9.230143 | 1.764731 | .1007114 | | 406 | | 8.517193 | 1.93586 | .1024767 | | 151 | | 9.975808 | 2,164472 | .1047597 | | 152 | | 9.883285 | 2.164472 | .1120427 | | 460 | 20000 | 9.903487 | 1.964311 | .1142668 | | 160 | | 10.05621 | 2.164472 | .1165014 | | 491 | | 8.999619 | 1.806648 | .1222368 | | 362 | 12501100 | 9.898475 | 2.04122 | .1376445 | | 363 | | 9.942708 | 2.04122 | .1707894 | | 490 | 7000 | 8.853665 | 1.806648 | .1791869 | | 358 | | 9.985067 | 2.04122 | .1827834 | | 360 | 777 | 10.02571 | 2.04122 | .2209745 | | 2000 | | 10.12659 | 2.04122 | 2422512 | | 361 | | 10.12059 | 2.04122 | 2483543 | | 359 | 22700 | 10.03012 | 2.04122 | | Compared to the DFITS measure, we see a similar pattern for the DFBETA for lnox, with roughly 6% of the sample exhibiting large values of this measure. As with DFITS, the large
positive values exceed their negative counterparts in magnitude. Many of the positive values are associated with the top-coded median house value of \$50,001. These (presumably wealthy) communities have values of lnox well in excess of its minimum or mean. In contrast, many of the communities with large negative DFBETA values have extremely high values (or the maximum recorded value) of that pollutant. How should we react to this evidence of many data points with a high degree of leverage? For this research project, we might consider that the price data have been improperly coded, particularly on the high end. Any community with a median housing value exceeding \$50,000 has been coded as \$50,001. These observations in particular have been identified by the DFITS and DFBETA measures. Removing the bottom-coded and top-coded observations from the sample would remove communities from the sample nonrandomly, affecting the wealthiest and poorest communities. To resolve this problem of censoring (or coding of extreme values) we could use the tobit model (see section 10.3.2). A version of the tobit model, two-limit tobit, can handle censoring at both lower and upper limits. ### 5.3 Endogeneity and measurement error In econometrics, a regressor is endogenous if it violates the zero-conditional-mean assumption $E[u \mid X] = 0$: that is, if the variable is correlated with the error term, it is endogenous. I deal with this problem in chapter 8. We often must deal with measurement error, meaning that the variable that the ory tells us belongs in the relationship cannot be precisely measured in the available data. For instance, the exact marginal tax rate that an individual faces will depend on many factors, only some of which we might be able to observe. Even if we knew the individual's income, number of dependents, and homeowner status, we could only approximate the effect of a change in tax law on her tax liability. We are faced with using an approximate measure, including some error of measurement, whenever we try to formulate and implement such a model. This issue is similar to a proxy variable problem, but here it is not an issue of a latent variable such as aptitude or ability. An observable magnitude does exist, but the econometrician cannot observe it. Why is this measurement error of concern? Because the economic behavior we want to model—that of individuals, firms, or industries—presumably is driven by the actual measures, not our mismeasured approximations of those factors. If we fail to capture the actual measure, we may misinterpret the behavioral response. Mathematically, measurement error (commonly termed errors-in-variables) has the same effect on an OLS regression model as endogeneity of one or more regressors (see chapter 8). #### Exercises - Using the lifeexpW dataset, regress lifeexp on popgrowth and lgnppc. Generate an added-value plot by using avplot safewater. What do you conclude about the regression estimates? - Refit the model, including safewater. Use Ramsey's RESET to evaluate the specification. What do you conclude? - Generate the dfits series from the regression, and list the five countries with the largest absolute value of the DFITS measure. Which of these countries stand out? - 4. Refit the model, omitting Haiti, and apply the RESET. What do you conclude about the model's specification? # 6 Regression with non-i.i.d. errors As discussed in section 4.2.2, if the regression errors are i.i.d., OLS produces consistent estimates; the large-sample distribution in large samples is normal with a mean at the true coefficient values, and the VCE is consistently estimated by (4.15). If the zero-conditional-mean assumption holds but the errors are not i.i.d., OLS produces consistent estimates whose sampling distribution in large samples is still normal with a mean at the true coefficient values but whose VCE cannot be consistently estimated by (4.15). We have two options when the errors are not i.i.d. First, we can use the consistent OLS point estimates with a different estimator of the VCE that accounts for non-i.i.d. errors. Or, if we can specify how the errors deviate from i.i.d. in our regression model, we can use a different estimator that produces consistent and more efficient point estimates. The tradeoff between these two methods is robustness versus efficiency. A robust approach places fewer restrictions on the estimator: the idea is that the consistent point estimates are good enough, although we must correct our estimator of their VCE to account for non-i.i.d. errors. The efficient approach incorporates an explicit specification of the non-i.i.d. distribution into the model. If this specification is appropriate, the additional restrictions it implies will produce a more efficient estimator than that of the robust approach. The i.i.d. assumption fails when the errors are either not identically distributed or not independently distributed (or both). When the variance of the errors, conditional on the regressors, changes over the observations, the identically distributed assumption fails. This problem is known as heteroskedasticity (unequal variance), with its opposite being homoskedasticity (common variance). The i.i.d. case assumes that the errors are conditionally homoskedastic: there is no information in the regressors about the variance of the disturbances. When the errors are correlated with each other, they are not independently distributed. In this chapter, we allow the errors to be correlated with each other (violating the i.i.d. assumption) but not with the regressors. We still maintain the zero-conditional-mean assumption, which implies that there is no correlation between the regressors and the errors. The case of nonindependent errors is different from the case in which the regressors are correlated with the errors. After introducing some common causes for failure of the assumption of i.i.d. errors, we present the robust approach. We then discuss the general form of the efficient approach, the estimation and testing in the most common special cases, and the testing for i.i.d. errors in these subsections because efficient tests require that we specify the form of the deviation. ### 6.1 The generalized linear regression model The popularity of the least-squares regression technique is linked to its generality. If we have a model linking a response variable to several regressors that satisfy the zero-conditional-mean assumption of (5.1), OLS will yield consistent point estimates of the β parameters. We need not make any further assumptions on the distribution of the u process and specifically need not assume that it is distributed multivariate normal. Here I present the generalized linear regression model (GLRM) that lets us consider the consequences of non-i.i.d. errors on the estimated covariance matrix of the estimated parameters $\hat{\beta}$. The GLRM is $$\mathbf{y} = \mathbf{X}\beta + \mathbf{u}$$ $E[\mathbf{u}|\mathbf{X}] = \mathbf{0}$ $E[\mathbf{u}\mathbf{u}'|\mathbf{X}] = \Sigma_u$ where Σ_u is a positive-definite matrix of order $N \times N$.² This is a generalization of the i.i.d. error model in which $\Sigma_u = \sigma^2 I_N$. When $\Sigma_u \neq \sigma^2 I_N$ the OLS estimator of β is still unbiased, consistent, and normally distributed in large samples, but it is no longer efficient, as demonstrated by $$\widehat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$ $$= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{X}\boldsymbol{\beta} + \mathbf{u})$$ $$= \boldsymbol{\beta} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{u}$$ $$E[\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}] = 0$$ given the assumption of zero-conditional mean of the errors. That assumption implies that the sampling variance of the linear regression estimator (conditioned on X) will be $$Var[\widehat{\boldsymbol{\beta}}|\mathbf{X}] = E[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{u}\mathbf{u}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}]$$ $$= (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\boldsymbol{\Sigma}_{u}\mathbf{X})(\mathbf{X}'\mathbf{X})^{-1}$$ (6.1) The VCE computed by regress is merely $\sigma_u^2(\mathbf{X}'\mathbf{X})^{-1}$, with σ_u^2 replaced by its estimate. When $\Sigma_u \neq \sigma^2 I_N$, this simple estimator of the VCE is not consistent and the usual inference procedures are inappropriate. Hypothesis tests and confidence intervals using the simple estimator of the VCE after regress will not be reliable. ### 6.1.1 Types of deviations from i.i.d. errors The GLRM lets us consider models in which $\Sigma_u \neq \sigma^2 I_N$. Three special cases are of interest. First, consider the case of pure heteroskedasticity in which Σ_u is a diagonal 2. y is an N × 1 vector of observations on y, X is an N × K matrix of observations on x, and u.s. st. N × 1 disturbance vector. We do need to place some restrictions on the higher moments of u. But we can safely ignore their technical regularity conditions. matrix. This case violates the identically distributed assumption. When the diagonal elements of Σ_u differ, as in $$\Sigma_{u} = \begin{pmatrix} \sigma_{1}^{2} & 0 & \dots & 0 \\ 0 & \sigma_{2}^{2} & \dots & 0 \\ & & \vdots & \\ 0 & 0 & \dots & \sigma_{N}^{2} \end{pmatrix}$$ the model allows the variance of u, conditional on \mathbf{X} , to vary across the observations. For instance, using a household survey, we could model consumer expenditures as a function of household income. We might expect the error variance of high-income individuals to be much greater than that of low-income individuals because high-income individuals have much more discretionary income. Second, we can separate the observations into several groups or clusters within which the errors are correlated. For example, when we are modeling households' expenditures on housing as a function of their income, the errors may be correlated over the households within a
neighborhood. Clustering—correlation of errors within a cluster of observations—causes the Σ_u matrix to be block-diagonal because the errors in different groups are independent of one another. This case drops the independently distributed assumption in a particular way. Since each cluster of observations may have its own error variance, the identically distributed assumption is relaxed as well. $$\Sigma_{u} = \begin{pmatrix} \Sigma_{1} & 0 & & & 0 \\ 0 & \ddots & & & \\ & & \Sigma_{m} & & \\ & & & \ddots & 0 \\ 0 & & & 0 & \Sigma_{M} \end{pmatrix}$$ $$(6.2)$$ In this notation, Σ_m represents an intracluster covariance matrix. For cluster (group) m with τ_m observations, Σ_m will be $\tau_m \times \tau_m$. Zero covariance between observations in the M different clusters gives the covariance matrix Σ_u a block-diagonal form. Third, the errors in time-series regression models may show serial correlation, in which the errors are correlated with their predecessor and successor. In the presence of serial correlation, the error covariance matrix becomes $$\Sigma_{u} = \sigma_{u}^{2} \begin{pmatrix} 1 & \rho_{1} & \dots & \rho_{N-1} \\ \rho_{1} & 1 & \dots & \rho_{2N-3} \\ \vdots & & \ddots & \\ \rho_{N-1} & \rho_{2N-3} & \dots & 1 \end{pmatrix}$$ (6.3) where the unknown parameters $\rho_1, \rho_2, \dots, \rho_{\{N(N-1)\}/2}$ represent the correlations between successive elements of the error process. This case also drops the independently distributed assumption but parameterizes the correlations differently. #### 6.1.2 The robust estimator of the VCE If the errors are conditionally heteroskedastic and we want to apply the robust approach, we use the Huber–White–sandwich estimator of the variance of the linear regression estimator. Huber and White independently derived this estimator, and the sandwich aspect helps you understand the robust approach. We need to estimate $\operatorname{Var}[\widehat{\beta}|X]$, which according to (6.1) is of the form $$Var[\widehat{\boldsymbol{\beta}}|\mathbf{X}] = (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\boldsymbol{\Sigma}_{u}\mathbf{X})(\mathbf{X}'\mathbf{X})^{-1}$$ $$= (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'E[\mathbf{u}\mathbf{u}'|\mathbf{X}]\mathbf{X})(\mathbf{X}'\mathbf{X})^{-1}$$ (64) The term that we must estimate, $\{X'E[uu'|X]X\}$, is sandwiched between the $(X'X)^{-1}$ terms. Huber (1967) and White (1980) showed that $$\widehat{S}_0 = \frac{1}{N} \sum_{i=1}^{N} \widehat{u}_i^2 \mathbf{x}_i' \mathbf{x}_i$$ (6.5) consistently estimates $(\mathbf{X}'E[\mathbf{u}\mathbf{u}'|\mathbf{X}]\mathbf{X})$ when the u_i are conditionally heteroskedastic. In this expression, \widehat{u}_i is the *i*th regression residual, and \mathbf{x}_i is the *i*th row of the regressor matrix: a $1 \times k$ vector of sample values. Substituting the consistent estimator from (6.5) for its population equivalent in (6.4) yields the robust estimator of the VCE³ $$\operatorname{Var}[\widehat{\boldsymbol{\beta}}|\mathbf{X}] = \frac{N}{N-k}(\mathbf{x}'\mathbf{x})^{-1} \left(\sum_{i=1}^{N} \widehat{u}_{i}^{2} \mathbf{X}_{i}' \mathbf{X}_{i} \right) (\mathbf{X}'\mathbf{X})^{-1}$$ (6.6) The robust option available with most Stata estimation commands, including the regress command, implements the sandwich estimator described above. Calculating robust standard errors affects only the coefficients' standard errors and interval estimates and does not affect the point estimates $\hat{\beta}$. The ANOVA F table will be suppressed, as will the adjusted R^2 measure because neither is valid when robust standard errors are being computed. The title Robust will be displayed above the standard errors of the coefficients to remind you that a robust estimator of the VCE is in use. After regress, Wald tests produced by test and lincom, which use the robust estimator of the VCE, will be robust to conditional heteroskedasticity of unknown form. See [U] 20.14 Obtaining robust variance estimates for more detail. If the assumption of homoskedasticity is valid, the simple estimator of the VCE is more efficient than the robust version. If we are working with a sample of modes size and the assumption of homoskedasticity is tenable, we should rely on the simple estimator of the VCE. But because the robust estimator of the VCE is easily calculated in ^{3.} There is no error in (6.6). As in the appendix to chapter 4, we define $Var[\widehat{\beta}|X]$ to be a large-sample approximation to the variance of our estimator. The large-sample calculations cause the 1/N factor (6.5) to be dropped from (6.6). The factor N/(N-k) improves the approximation in small samples 4. Davidson and Marketine. ^{4.} Davidson and MacKinnon (1993) recommend using a different divisor that improves the pethermance of the robust estimator of the VCE estimator in small samples. Specifying the Bc3 option regress will produce this robust estimator of the VCE. Stata, it is simple to estimate both VCEs for a particular equation and consider whether inference based on the nonrobust standard errors is fragile. In large datasets, it has become increasingly common to report results using the robust estimator of the VCE. To illustrate the use of the robust estimator of the VCE, we use a dataset (ferti12) that contains data on 4,361 women from a developing country. We want to model the number of children ever born (ceb) to each woman based on their age, their age the first birth (agefbrth), and an indicator of whether they regularly use a method of contraception (usemeth). I present the descriptive statistics for the dataset with summarize based on those observations with complete data for a regression: - use http://www.stata-press.com/data/imeus/fertil2, clear - , quietly regress ceb age ageforth usemeth - , estimates store nonRobust - summarize ceb age ageforth usemeth children if e(sample) | Max | Min | Std. Dev. | Mean | Obs | Variable | |-----|-----|-----------|----------|------|----------| | 13 | 1 | 2.236836 | 3.230003 | 3213 | ceb | | 49 | 15 | 7.920432 | 29.93931 | 3213 | 30000 | | 38 | 10 | 3.098121 | 19.00498 | 3213 | age | | 13 | 0 | .4668889 | .6791161 | 3213 | ageforth | | 13 | 0 | 2.055579 | 2.999378 | 3213 | usemeth | | | | 2.055579 | 2,999378 | 3213 | | The average woman in the sample is 30 years old, first bore a child at 19, and has had 3.2 children, with just under three children in the household. We expect that the number of children ever born is increasing in the mother's current age and decreasing in her age at the birth of her first child. The use of contraceptives is expected to decrease the number of children ever born. For later use, we use estimates store to preserve the results of this (undisplayed) regression. We then fit the same model with a robust estimator of the VCE, saving those results with estimates store. We then use the estimates table command to display the two sets of coefficient estimates, standard errors, and t statistics. , regress ceb age ageforth usemeth, robust Linear regression Number of obs = 3213 F(3, 3209) = 874.06 Prob > F = 0.0000 R-squared = 0.5726 Root MSE = 1.463 | Interval: | [95% Conf. | P>Itl | t | Robust
Std. Err. | Coef. | ceb | |-----------|------------|-------|--------|---------------------|----------|----------| | .232877 | .2145962 | 0.000 | 47.99 | .0046619 | .2237368 | age | | 241915 | 2794109 | 0.000 | -27.26 | .0095616 | 2606634 | ageforth | | .306276 | .0684642 | 0.002 | 3.09 | .0606446 | .1873702 | usemeth | | 1.68667 | 1.029593 | 0.000 | 8.11 | .1675624 | 1.358134 | _cons | [·] estimates store Robust ⁵ Since the dependent variable is an integer, this model would be properly fitted with Poisson retression. For pedagogical reasons, we use linear regression. estimates table nonRobust Robust, b(%9.4f) se(%5.3f) t(%5.2f) > title(Estimates of CEB with OLS and Robust standard errors) Estimates of CEB with OLS and Robust standard errors | Variable | nonRobust | Robust | |---------------------|-----------|---------| | age | 0.2237 | 0.2237 | | 3.60 | 0,003 | 0.005 | | | 64.89 | 47.99 | | agefbrth | -0.2607 | -0.2607 | | WO HAT WOULD | 0.009 | 0.010 | | | -29.64 | -27.26 | | agefbrth
usemeth | 0.1874 | 0.1874 | | MACON CONTRACTOR | 0.055 | 0.061 | | | 3.38 | 3.09 | | cons | 1.3581 | 1.3581 | | | 0.174 | 0.168 | | | 7.82 | 8.11 | legend: b/se/t Our prior results are borne out by the estimates, although the effect of contraceptive use appears to be marginally significant. The robust estimates of the standard errors are similar to the nonrobust estimates, suggesting that there is no conditional heteroskedasticity. ### 6.1.3 The cluster estimator of the VCE Stata has implemented an estimator of the VCE that is robust to the correlation of disturbances within groups and to not identically distributed disturbances. It is commonly referred to as the cluster–robust–VCE estimator, because these groups are known as clusters. Within-cluster correlation allows the Σ_u in (6.2) to be block-diagonal, with nonzero elements within each block on the diagonal. This block-diagonal structure allows the disturbances within each cluster to be correlated with each other but require that the disturbances from difference clusters be uncorrelated. If the within-cluster correlations are meaningful, ignoring them leads to inconsistent estimates of the VCE. Since the robust estimate of the VCE assumes independently distributed errors, its estimate of (X'E[uu'|X]X) is not consistent. Stata's cluster() option, available on most estimation commands including regress, lets you account for such an error structure. Like the robust option (which it encompasses), application of the cluster() option does not affect the point estimates but only modifies the estimated VCE of the estimated parameters. The cluster() option requires you specify a group- or cluster-membership variable that indicates how the observations are grouped. The cluster-robust-VCE estimator is
$$\operatorname{Var}[\widehat{\boldsymbol{\beta}}|\mathbf{X}] = \frac{N-1}{N-k} \frac{M}{M-1} (\mathbf{X}'\mathbf{X})^{-1} \left(\sum_{j=1}^{M} \widehat{\mathbf{u}}_{j}' \widehat{\mathbf{u}}_{j} \right) (\mathbf{X}'\mathbf{X})^{-1}$$ (6.7) where M is the number of clusters, $\bar{\mathbf{u}}_j = \sum_{i=1}^{N_k} \hat{u}_i \mathbf{x}_i$, N_j is the number of observations in the jth cluster, \hat{u}_i is the ith residual from the jth cluster, and \mathbf{x}_i is the $1 \times k$ vector of regressors from the ith observation in the jth cluster. Equation (6.7) has the same form as (6.6). Aside from the small-sample adjustments, the (6.7) differs from (6.6) only in that the "meat" of the sandwich is now the cluster robust estimator of $(\mathbf{X}'E[\mathbf{u}\mathbf{u}'|\mathbf{X}|\mathbf{X})$. The goal of the robust and the cluster-robust-VCE estimators is to consistently estimate the $Var[\beta|X]$ in the presence of non-i.i.d. disturbances. Different violations of the i.i.d. disturbance assumption simply require distinct estimators of $(\mathbf{X}'E[\mathbf{u}\mathbf{u}']\mathbf{X}]\mathbf{X}$). To illustrate the use of the cluster estimator of the covariance matrix, we revisit the model of fertility in a developing country that we estimated above via nonrobust and robust methods. The clustering variable is children: the number of living children in the household. We expect the errors from households of similar size to be correlated, while independent of those generated by households of different size. | . regress ceb
Linear regress | ion | | ister (chi | ldren) | Number of obs
F(3, 13)
Prob > F
R-squared
Root MSE | = 3213
= 20.91
= 0.0000
= 0.5726
= 1.463 | |-------------------------------------|---|--|-------------------------------|----------------------------------|---|--| | ceb | Coef. | Robust
Std. Err. | t | P>Itl | [95% Conf. | Interval] | | age
agefbrth
usemeth
_cons | .2237368
2606634
.1873702
1.358134 | .0315086
.0354296
.0943553
.4248589 | 7.10
-7.36
1.99
3.20 | 0.000
0.000
0.069
0.007 | .1556665
3372045
016472
.4402818 | .2918071
1841224
.3912125
2.275985 | The cluster estimator, allowing for within-cluster correlation of errors, results in much more conservative standard errors (and smaller t statistics) than those displayed in the previous example. ### The Newey-West estimator of the VCE In the presence of heteroskedasticity and autocorrelation, we can use the Newey-West estimator of the VCE. This heteroskedastic and autocorrelation consistent (HAC) estimator of the VCE has the same form as the robust and cluster-robust estimators, but it lists a distinct estimator for (X'E[uu'|X]X). Rather than specifying a cluster variable, the Newey-West estimator requires that we specify the maximum order of any significant autocorrelation in the disturbance process—known as the maximum lag, denoted by L. In addition to the term that adjusts for heteroskedasticity, the estimator proposed by Newey and West (1987) uses weighted cross products of the residuals to account for autocorrelation: $$\widehat{\mathbf{Q}} = \widehat{\mathbf{S}}_0 + \frac{1}{T} \sum_{t=1}^{L} \sum_{t=t+1}^{T} w_t \ \widehat{u}_t \widehat{u}_{t-t} (\mathbf{x}_t' \mathbf{x}_{t-t} + \mathbf{x}_{t+t}' \mathbf{x}_t)$$ Here $\hat{\mathbf{S}}_0$ is the robust estimator of the VCE from (6.5), \hat{u}_t is the tth residual, and \mathbf{x}_t is the tth row of the regressor matrix. The Newey-West formula takes a specified number (L) of the sample autocorrelations into account, using the Bartlett kernel estimator, $$w_l = 1 - \frac{l}{L+1}$$ to generate the weights. The estimator is said to be HAC, allowing for any deviation of Σ_u from $\sigma_u^2 I$ up to Lth-order autocorrelation. The user must specify her choice of L, which should be large enough to encompass any likely autocorrelation in the error process. One rule of thumb is to choose $L = \sqrt[4]{N}$. This estimator is available in the Stata command newey [see [TS] newey), which you can use as an alternative to regress to estimate a regression with HAC standard errors. This command has the following syntax, where the number given for the lag() option is L above. Like the robust option, the HAC estimator does not modify the point estimates; it affects only the estimator of the VCE. Test statistics based on the HAC VCE are robust to arbitrary heteroskedasticity and autocorrelation. We illustrate this estimator of the VCE by using a time-series dataset of monthly short-term and long-term interest rates on U.K. government securities (Treasury bills and gilts), 1952m3-1995m12. The descriptive statistics for those series are given by summarize: - . use http://www.stata-press.com/data/ineus/ukrates, clear - . summarize rs r20 | Variable | Obs | Mean | Std. Dev. | Min | Max | |-----------|------------|----------------------|-----------|----------|-------| | rs
r20 | 526
526 | 7.651513
8.863726 | 3.553109 | 1.561667 | 16.18 | The model expresses the monthly change in the short rate rs, the Bank of England's monetary policy instrument, as a function of the prior month's change in the long-reful $_{\rm rate}$ r20. The regressor and regress and are created on the fly by Stata's time-series $_{\rm operators}$ p. and L. The model represents a monetary policy reaction function. We fit the model with and without HAC standard errors by using regress and newey, respectively, using estimates store to save the results and estimates table to juxtapose them. Since there are 524 observations, the rule of thumb for lag selection recommends five lags, which we specify in newey's lag() option. - quietly regress D.rs LD.r20 - . estimates store nonHAC - , nevey D.rs LD.r20, lag(5) Regression with Newey-West standard errors maximum lag: 5 Number of obs = 524 F(1, 522) = 36.00 Prob > F = 0.0000 | D.rs | Coef. | Newey-West
Std. Err. | t | P> t | [95% Conf. | Interval] | |---------------------|----------|-------------------------|--------------|-------|---------------------|---------------------| | r20
LD.
_cons | .4882883 | .0813867 | 6.00
0.16 | 0.000 | .3284026
0459004 | .648174
.0539371 | - . estimates store NeweyWest - . estimates table nonHAC NeweyWest, b(%9.4f) se(%5.3f) t(%5.2f) - > title(Estimates of D.rs with OLS and Newey--West standard errors) Estimates of D.rs with OLS and Newey-West standard errors | Variable | nonHAC | NeweyWest | |----------|--------|-----------| | LD.r20 | 0.4883 | 0.4883 | | 200000 | 0.067 | 0.081 | | | 7,27 | 6.00 | | _cons | 0.0040 | 0.0040 | | | 0.022 | 0.025 | | | 0.18 | 0.16 | legend: b/se/t The HAC standard error estimate of the slope coefficient from newey is larger than that produced by regress, although the coefficient retains its significance. Two issues remain with this HAC VCE estimator. First, although the Newey-West estimator is widely used, there is no justification for using the Bartlett kernel. We might use several alternative kernel estimators, and some may have better properties in specific instances. The only requirement is that the kernel delivers a positive-definite estimate of the VCE. Second, if there is no reason to question the assumption of homoskedasticity of u, we may want to deal with serial correlation under that assumption. We may want the AC without the H. The standard Newey-West procedure as implemented in newey does not allow for this. The ivreg2 routine (Baum, Schaffer, and Stillman 2003) can estimate robust. AC, and HAC standard errors for regression models, and it provides a thoice of alternative kernels. See chapter 8 for full details on this routine. ### 6.1.5 The generalized least-squares estimator This section presents a class of estimators for estimating the coefficients of a GLRM when the zero-conditional-mean assumption holds, but the errors are not i.i.d. Known as feasible generalized least squares (FGLS), this technique relies on the insight that if we knew Σ_u , we could algebraically transform the data so that the resulting errors were i.i.d. and then proceed with linear regression on the transformed data. We do not know Σ_u , though, so this estimator is infeasible. The feasible alternative requires that we assume a structure that describes how the errors deviate from i.i.d. errors. Given that assumption, we can consistently estimate Σ_u . Any consistent estimator of Σ_u may be used to transform the data to generate observations with i.i.d. errors. Although both the robust estimator of the VCE approach and FGLS estimators account for non-i.i.d. disturbances, FGLS estimators place more structure on the estimation method to obtain more efficient point estimates and consistent estimators of the VCE. In contrast, the robust estimator of the VCE approach uses just the OLS point estimates and makes the estimator of the VCE robust to the non-i.i.d. disturbances. First, consider the infeasible GLS estimator of $$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{u}$$ $E[\mathbf{u}\mathbf{u}'|\mathbf{X}] = \boldsymbol{\Sigma}_{u}$ The known $N \times N$ matrix Σ_u is symmetric and positive definite, which implies that it has an inverse $\Sigma_u^{-1} = \mathbf{PP'}$, where \mathbf{P} is a triangular matrix. Premultiplying the model by $\mathbf{P'}$ yields $$P'y = P'X\beta + P'u$$ $y_* = X_*\beta + u_*$ (6.8) where⁶ $$\mathrm{Var}[\mathbf{u}_*] = E[\mathbf{u}_*\mathbf{u}_*'] = \mathbf{P}'\boldsymbol{\Sigma}_u\mathbf{P} = \mathbf{I}_N$$ With a known Σ_u matrix, regression of \mathbf{y}_* on \mathbf{X}_* is asymptotically efficient by the Gauss-Markov theorem presented in section 4.2.3. That estimator merely represents standard linear regression on the
transformed data: $$\widehat{\boldsymbol{\beta}}_{\mathrm{GLS}} = (\mathbf{X}_{*}'\mathbf{X}_{*})^{-1}(\mathbf{X}_{*}'\mathbf{y}_{*})$$ The VCE of the GLS estimator $\hat{\beta}_{\text{GLS}}$ is $$\mathrm{Var}[\widehat{\boldsymbol{\beta}}_{\mathrm{GLS}}|\mathbf{X}] = (\mathbf{X}'\boldsymbol{\Sigma}_u^{-1}\mathbf{X})^{-1}$$ ^{6.} $E[\mathbf{P'uu'P}] = \mathbf{P'}E[\mathbf{uu'}]\mathbf{P} = \mathbf{P'}\Sigma_{\mathbf{u}}\mathbf{P}$. But that expression equals $\mathbf{P'}(\mathbf{PP'})^{-1}\mathbf{P} = \mathbf{P'}(\mathbf{P'})^{-1}\mathbf{P} = \mathbf{I}_N$. See Davidson and MacKinnon (2004, 258) ### The FGLS estimator When Σ_n is unknown, we cannot apply the GLS estimator of (6.8). But if we have a consistent estimator of Σ_u , denoted $\widehat{\Sigma}_u$, we may apply the FGLS estimator, replacing \mathbf{P}' with $\mathbf{\hat{P}}'$ in (6.8). The FGLS estimator has the same large-sample properties as its infeasible counterpart. That result does not depend on using an efficient estimator of Σ_u , but merely any consistent estimator of Σ_u . The challenge in devising a consistent estimator of Σ_u lies in its dimension. Σ_u is a square symmetric matrix of order N with $\{N(N+1)\}/2$ distinct elements. Fortunately, the most common departures from i.i.d. errors lead to parameterizations of $\widehat{\Sigma}_u$ with many fewer parameters. As I discuss in the next sections, heteroskedasticity and autocorrelation can often be modeled with a handful of parameters. All we need for consistency of these estimates is a fixed number of parameters in $\hat{\Sigma}_n$ as $N \to \infty$. The gain from using FGLs depends on the degree to which Σ_u diverges from $\sigma^2 I_N$, the covariance matrix for i.i.d. errors. If that divergence is small, the FGLS estimates will be similar to those of standard linear regression, and vice versa. The following two sections discuss the most common violations of the i.i.d. errors assumption—heteroskedasticity and serial correlation—and present the FGLS estimator appropriate for each case. ### Heteroskedasticity in the error distribution 6.2 In cross-sectional datasets representing individuals, households, or firms, the disturbance variances are often related to some measure of scale. For instance, in modeling consumer expenditures, the disturbance for variance of high-income households is usually larger than that of poorer households. For the FGLS estimator described above, the diagonal elements of the Σ_u matrix for these errors will be related to that scale measure. We may instead have a dataset in which we may reasonably assume that the disturbances are homoskedastic within groups of observations but potentially heteroskedastic between groups. For instance, in a labor market survey, self-employed individuals or workers paid by salary and commission (or salary and tips) may have a greater variance around their conditional-mean earnings than salaried workers. For the FGLS estimator, there will be several distinct values of σ_u^2 , each common to those individuals in a group but differing between groups. As a third potential cause of heteroskedasticity, consider the use of grouped data, in which each observation is the average of microdata (e.g., state-level data for the United States, where the states have widely differing populations). Since means computed from larger samples are more accurate, the disturbance variance for each observation is known up to a factor of proportionality. Here we are certain (by the nature of grouped ^{7.} See Davidson and MacKinnon (2004). data) that heteroskedasticity exists, and we can construct the appropriate Σ_n . In the two former cases, we are not so fortunate. We may also find heteroskedasticity in time-series data, especially volatility clustering, which appears in high-frequency financial-market data. I will not discuss this type of conditional heteroskedasticity at length, but the use of the autoregressive conditional heteroskedasticity (ARCH) and generalized ARCH (GARCH) models for high-frequency time-series data is based on the notion that the errors in these contexts are conditionally heteroskedastic and that the evolution of the conditional variance of the disturbance process may be modeled.8 #### Heteroskedasticity related to scale 6.2.1 We often use an economic rationale to argue that the variance of the disturbance process is related to some measure of scale of the individual observations. For instance, if the response variable measures expenditures on food by individual households, the disturbances will be denominated in dollars (or thousands of dollars). No matter how well the estimated equation fits, the dollar dispersion of wealthy households' errors around their predicted values will likely be much greater than those of low-income households. Thus a hypothesis of (6.9) $\sigma^2 \propto z^0$ is often made, where z_i is some scale-related measure for the *i*th unit. The notion of proportionality comes from the definition of FGLS: we need only estimate $\hat{\Sigma}_u$ up to a factor of proportionality. It does not matter whether z is one of the regressors or merely more information we have about each unit in the sample. We write z_i^{α} in (6.9) since we must indicate the nature of this proportional relationship. For instance, if $\alpha = 2$, we are asserting that the standard deviation of the disturbance process is proportional to the level of z_i (e.g., to household income of a firm's total assets). If $\alpha = 1$, we imply that the variance of the disturbance process is proportional to the level of z_i , so that the standard deviation is proportional to $\sqrt{z_i}$. Given a plausible choice of z_i , why is the specification of α so important? If we are to use FGLS to deal with heteroskedasticity, our choices of z_i and α in (6.9) will define the FGLS estimator to be used. Before I discuss correcting for heteroskedasticity related to scale, you must understand how to detect the presence of heteroskedasticity. 9. With firm data, the same logic applies. If we are explaining a firm's capital investment expending has the degree to which spending differs from the model's predictions could be billions of dollars for a partial instance, but much small instance, but much ^{8.} The development of ARCH models was a major factor in the award of the Bank of Sweden Prior in Economic Sciences in Memory of Alfred Nobel to Robert F. Engle in 2003. He shared the printed fellow time-series econometrician Clien Control of the Printed Sciences and Prin fellow time-series econometrician Clive Granger. A bibliography of Engle's published and unpublished works may be found at http://ideas.repre.org/c/ # Testing for heteroskedasticity related to scale After fitting a regression model, we can base a test for heteroskedasticity on the regressionals. Why is this approach reasonable of the After fitting. Why is this approach reasonable, if the presence of heteroskedasticity on the regression residuals. Why is this approach reasonable, if the presence of heteroskedasticity has standard errors unusable? The consistent sion residuals that may be used to make information point estimates $\hat{\beta}$ produce \hat renders the point estimates β produce estimated residuals that may be used to make inferences about the distribution of u. If the u assumption of homoskedasticity conditional on the regressors holds, it can be expressed as follows: $$H_0$$: $Var[u|\mathbf{v}] = \sigma_u^2$ (6.10) Under this null hypothesis the conditional variance of the error process does not depend on the explanatory variables. Given that E[u] = 0, this null hypothesis is depend on $E[u^2|\mathbf{X}] = \sigma_u^2$. The conditional mean of the squared disturbances should not be a function of the regressors, so a regression of the squared residuals on any candidate z, should have no meaningful explanatory power. 10,11 One of the most common tests for heteroskedasticity is derived from this line of reasoning: the Breusch-Pagan (BP) test (Breusch and Pagan 1979). 12 The BP test, an IM test, involves regressing the squared residuals on a set of variables in an auxiliary regression: 13 $$\hat{u}_i^2 = d_1 + d_2 z_{i2} + d_3 z_{i3} + \dots d_\ell z_{i\ell} + v_i$$ (6.11) We could use the original regressors from the fitted model as the z variables, 14 use a subset of them, or add measures of scale as discussed above. If the magnitude of the squared residual is not systematically related to any of the z variables, then this auxiliary regression will have no explanatory power. Its R^2 will be small, and its ANOVA F statistic will indicate that it fails to explain any meaningful fraction of the variation of \hat{u}_i^2 around its own mean. 15 The BP test can be conducted by using either the F or LM statistic from the auxiliary regression (6.11). Under the null hypothesis of (6.10), LM $\sim \chi_{\ell}^2$, where there are ℓ regressors in the auxiliary regression. We can obtain the BP test with estat hettest after regress. If no regressor list (of z's) is provided, hettest uses the fitted values from the previous regression (the \hat{y}_i values). As mentioned above, the variables specified in the set of z's could be chosen as measures that did not appear in the original regressor list. ^{10.} z_i must be a function of the regressor. Il. zi has been generalized to be a vector. ¹² The Stata manuals document this test as that of Cook and Weisberg. Breusch and Pagan (1979), Godfrey (1978), and Cook and Weisberg (1983) separately derived (and published) the same test statis- tic. It should not be confused with a different test devised by Breusch and Pagan implemented in sureg. ^{13.} An LM test statistic evaluates the results of a restricted regression model. In the BP test, the restrictions are those implied by homoskedasticity, which implies that the squared
regression disturbances should be uncorrelated with any measured characteristics in the regression. For more details, see Wooldridge (2006, 185-186). ^{14.} Although the residuals are uncorrelated by construction with each of the regressors of the original nodel that condition need not hold for their squares. ^{15.} Although the regression residuals from a model with a constant term have mean zero, the mean of their sec. their squares must be positive unless $R^2 = 1$. The BP test with $\mathbf{z}=\mathbf{x}$ is a special case of White's general test (White 1980) for heteroskedasticity, which takes the list of regressors (x_2,x_3,\ldots,x_k) and augments it with squares and cross products of each of these variables. The White test then runs an auxiliary regression of \widehat{u}_i^2 on the regressors, their squares, and their cross products, removing duplicate elements. For instance, if crime and crime-squared were in the original regression, only one instance of the squares term will enter the list of Zs. Under the null hypothesis, none of these variables should have any explanatory power for the squared residual series. The White test is another LM test of the $N \times R^2$ form but involves many more regressors in the auxiliary regression (especially for a regression in which k is sizable). The resulting test may have relatively low power because of the many degrees of freedom devoured by a lengthy regressor list. An alternate form of White's test uses only the fitted values of the original regression and their squares. We can compute both versions of White's test with whitetst as described in Baum, Cox, and Wiggins (2000), which you can install by using ssc. The original version of White's test may also be computed by the estat imtest command, using the white option. All these tests rest on the specification of the disturbance variance expressed in (6.9). A failure to reject the tests' respective null hypotheses of homoskedasticity does not indicate an absence of heteroskedasticity but implies that the heteroskedasticity is not likely to be of the specified form. In particular, if the heteroskedasticity arises from group membership (as discussed in section 6.2.2), we would not expect tests based on measures of scale to pick it up unless there was a strong correlation between scale and group membership.¹⁶ We consider the potential scale-related heteroskedasticity in our model of median housing prices where the scale can be thought of as the average size of houses in each community, roughly measured by number of rooms. After fitting the model, we calculate three test statistics: that computed by estat hettest, iid without arguments, which is the BP test based on fitted values; estat hettest, iid with a variable list, which uses those variables in the auxiliary regression; and White's general test statistic from whitetst. 17 . use http://www.stata-press.com/data/imeus/hprice2a, clear (Housing price data for Boston-area communities) . regress lprice rooms crime ldist | Source | SS | df | MS | |-------------------|--------------------------|----------|--------------------------| | Model
Residual | 47.9496883
36.6325827 | 3
502 | 15.9832294
.072973272 | | Total | 84.5822709 | 505 | .167489645 | Number of obs = 506 F(3, 502) = 219.03 Prob > F = 0.0000 R-squared = 0.5669 Adj R-squared = 0.5643 Root MSE = 27014 ^{16.} Many older textbooks discuss the Goldfeld-Quandt test, which is based on forming two groups of residuals defined by high and low values of one z variable. Because there is little to recommend this relative to the BP or White test approaches, which allow for multiple z's, I do not discuss it further. 17. By default, estat hettest produces the original BP test, which assumes that the u, are normally distributed. Typing estat hettest, 11d yields the Koenker (1981) LM test, which assumes the u-life be i.i.d. under the null hypothesis. | - | lprice | Coef. | Std. Err. | * | P> t | [95% Conf. | Interval] | |---|--------|----------|-----------|--------|-------|------------|-----------| | 1 | rooms | .3072343 | .0178231 | 17.24 | 0.000 | .2722172 | .3422514 | | | crime | 0174486 | .001591 | -10.97 | 0.000 | 0205744 | 0143228 | | | ldist | .074858 | .0255746 | 2.93 | 0.004 | .0246115 | .1251045 | | | cons | 7.984449 | .1128067 | 70.78 | 0.000 | 7.762817 | 8.20608 | estat bettest, iid Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of lprice Prob > chi2 = 0.0000 estat hettest rooms crime ldist, iid Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: rooms crime ldist chi2(3) = 80.11 Prob > chi2 = 0.0000 White's general test statistic : 144.0052 Chi-sq(9) P-value = 1.5e-26 Each of these tests indicates that there is a significant degree of heteroskedasticity in this model. #### FGLS estimation To use FGLS on a regression equation in which the disturbance process exhibits hetereskedasticity related to scale, we must estimate the Σ_u matrix up to a factor of proportionality. We implement FGLS by transforming the data and running a regresson on the transformed equation. For FGLS to successfully deal with the deviation from i.i.d. errors, the transformations must purge the heteroskedasticity from the disturbance process and render the disturbance process in the transformed equation i.i.d. Say that we test for this form of heteroskedasticity and conclude, per (6.9), that the disturbance variance of the ith firm is proportional to z_i^2 , with z defined as a measure of scale related to the covariates in the model. We assume that z_i is strictly positive or that it has been transformed to be strictly positive. The appropriate transformation to induce homoskedastic errors would be to divide each variable in (y, \mathbf{X}) (including ι the first column of X) by z_i . That equation will have a disturbance term u_i/z_i , and since z_i is a constant, $\operatorname{Var}[u_i/z_i] = (1/z_i^2)\operatorname{Var}[u_i]$. If the original disturbance variance is proportional to z_i , dividing it by z_i^2 will generate a constant value: homoskedasticity of the transformed equation's error process. We could implement FGLS on the equation $$y_i = \beta_1 + \beta_2 x_{i,2} + \dots + \beta_k x_{i,k} + u_i$$ (6.12) by specifying the transformed equation $$\frac{y_i}{z_i} = \frac{\beta_1}{z_i} + \frac{\beta_2 x_{i,2}}{z_i} + \dots + \frac{\beta_k x_{i,k}}{z_i} + \frac{u_i}{z_i}$$ (6.13) OI $$y_i^* = \beta_1 \iota^* + \beta_2 x_{i,2}^* + \dots + \beta_k x_{i,k}^* + u_i^*$$ (6.14) where $i^*=1/z_i$. The economic meaning of the coefficients in the transformed equation has not changed; β_2 and its estimate $\hat{\beta}_2$ still represent $\partial y/\partial x_2$. Since we have changed the dependent variable, measures such as R^2 and Root MSE are not comparable to those of the original equation. In particular, the transformed equation does not have a constant term. Although we could do these transformations by hand with generate statements followed by regress on the transformed (6.14), that approach is cumbersome. For instance, we will normally want to evaluate measures of goodness of fit based on the original data, not the transformed data. Furthermore, the transformed variables can be confusing. For example, if z_i were also regressor x_2 in (6.12), ¹⁸ the x^* variables would include $1/z_i$ and ι , a units vector. The coefficient on the former is really an estimate of the constant term of the equation, whereas the coefficient labeled as _cons by Stata is actually the coefficient on z, which could become confusing. Fortunately, we need not perform FGLS by hand. FGLS in a heteroskedastic context can be accomplished by weighted least squares. The transformations we have defined above amount to weighting each observation (here by $1/z_i$). Observations with smaller disturbance variances receive a larger weight in the computation of the sums and therefore have greater weight in computing the weighted least-squares estimates. We can instruct Stata to perform this weighting when it estimates the original regression by defining $1/z_i^2$ as the so-called analytical weight. Stata implements several kinds of weights (see [U] 11 Language syntax and [U] 20.16 Weighted estimation), and this sort of FGLS involves the analytical weight (aw) variety. We merely estimate the regression specifying the weights, | um of wgt is
Source | 1.3317e+01
SS | df | | MS | | Number of ob | | | | |------------------------|-------------------------|----------|-------|-------------------|-------|--|--------|-----|--| | Model
Residual | 39.6051883
41.426616 | 3
502 | | 017294
2523139 | | F(3, 502)
Prob > F
R-squared
Adj R-squared | = 0 | 59 | | | Total | 81.0318042 | 505 | , 160 | 459018 | | Root MSE | -11(1) | 28 | | | lprice | Coef. | Std. | Err. | t | P> t | [95% Conf. | | | | | rooms | .2345368 | .019 | 4432 | 12.06 | 0.000 | . 1963367 | 014 | 2 | | | crime | 0175759 | | 6248 | -10.82 | 0.000 | | 014 | E | | | ldist | .0650916 | .02 | 7514 | 2.37 | 0.018 | .0110349 | 8.68 | 105 | | | _cons | 8,450081 | .117 | 2977 | 72.04 | 0.000 | 8.219626 | 8.00 | | | which indicates that the regression is to be performed using 1/rooms2 as the analytical which makes which robust with slightly makes weight, obtained with robust, with slightly weaker measures of goodness of fit. The coefficient estimates and standard errors from this weighted regression will be identical to those computed by hand if the y^*, \mathbf{x}^* variables are generated. But unlike the regression output from (6.14), the regression with analytical weights produces the the region desired measures of goodness of fit (e.g., R^2 and Root MSE) and predict will generate predicted values or residuals in the units of the untransformed dependent variable. The FGLS point
estimates differ from those generated by regress from the untransformed regression; see (6.12). However, both the standard regression and FGLS point estimates are consistent estimates of β . The series specified as the analytical weight (aw) must be the inverse of the observation variance, not its standard deviation, and the original data are multiplied by the analytical weight, not divided by it. Some other statistical packages that provide facilities for FGLS differ in how they specify the weighting variable, for instance, requiring you to provide the value that appears as the divisor in (6.13). We often see empirical studies in which a regression equation has been specified in some ratio form. For instance, per capita dependent and independent variables for data on states or countries are often used, as are financial ratios for firm- or industrylevel data. Although the study may not mention heteroskedasticity, these ratio forms probably have been chosen to limit the potential damage of heteroskedasticity in the fitted model. Heteroskedasticity in a per capita form regression on country-level data is much less likely to be a problem in that context than it would be if the levels of GDP were used in that model. Likewise, scaling firms' values by total assets, total revenues, or the number of employees can mitigate the difficulties caused by extremes in scale between large corporations and corner stores. Such models should still be examined for their errors' behavior, but the popularity of the ratio form in these instances is an implicit consideration of potential heteroskedasticity related to scale. ### Heteroskedasticity between groups of observations Between-group heteroskedasticity is often associated with pooling data across what may be nonidentically distributed sets of observations. For instance, a consumer survey conducted in Massachusetts (MA) and New Hampshire (NH) may give rise to a regression equation predicting the level of spending as a function of several likely factors. If we merely pool the sets of observations from MA and NH into one dataset (using append). we may want to test that any fitted model is structurally stable over the two states' observations: that is, are the same β parameters appropriate?²⁰ Even if the two states' observations share the same population parameter vector $\boldsymbol{\beta}$, they may have different σ_u^2 values. For instance, spending in MA may be more sensitive to the presence of sales tax on many nonfood items, whereas NH shoppers do not pay a sales tax. This difference ^{19.} This is one of the rare instances in Stata syntax when the square brackets ([1]) are used. A discussion of testing for structural stability appears in section 7.4. may affect not only the slope parameters of the model but also the error variance. If so, then the assumption of homoskedasticity is violated in a particular manner. We may argue that the intrastate (or more generally, intragroup) disturbance variance is constant but that it may differ between states (or groups). This same situation may arise, as noted above, with other individual-level series. Earnings may be more variable for self-employed workers, or those who depend on commissions or tips than salaried workers. With firm data, we might expect that profits (or revenues or capital investment) might be much more variable in some industries than others. Capital-goods makers face a much more cyclical demand for their product than do, for example, electric utilities. ### Testing for heteroskedasticity between groups of observations How might we test for groupwise heteroskedasticity? With the assumption that each group's regression equation satisfies the classical assumptions (including that of homoskedasticity), the s^2 computed by regress is a consistent estimate of the groupspecific variance of the disturbance process. For two groups, we can construct an F test, with the larger variance in the numerator; the degrees of freedom are the residual degrees of freedom of each group's regression. We can easily construct such a test if both groups' residuals are stored in one variable, with a group variable indicating group membership (here 1 or 2). We can then use the third form of satest (see [R] satest), with the by (groupvar) option, to conduct the F test. What if there are more than two groups across which we wish to test for equality of disturbance variance: for instance, a set of 10 industries? We may then use the robvar command (see [R] sdtest), which like sdtest expects to find one variable containing each group's residuals, with a group membership variable identifying them. The by(groupvar) option is used here as well. The test conducted is that of Levene (1960), labeled as w_0 , which is robust to nonnormality of the error distribution. Two variants of the test proposed by Brown and Forsythe (1992), which uses more robust estimates of central tendency (e.g., median rather than mean), w_{50} and w_{10} , are also computed. I illustrate groupwise heteroskedasticity with state-level data from the NEdata.dta These data comprise one observation per year for each of the six U.S. states in the New England region for 1981–2000. Descriptive statistics are generated by summarize for dpipc, state disposable personal income per capita. We fit a linear trend model to dpipc by regressing that variable on year. The residuals are tested for equality of variances across states with robvar. | regress dpip | c year
SS | đf | | MS | | Number of obs | = 440.17 | |-------------------|--------------------------|------|------|------------------|-------|--|-----------------------| | Model
Residual | 3009.33617
806.737449 | 1118 | | .33617
575804 | | Prob > F
R-squared
Adj R-squared | = 0.7886
= 0.7868 | | Total | 3816.07362 | 119 | 32.0 | 678456 | | Root MSE | - 2.6147 | | dpipc | Coef. | Std. | Err. | t | P> t | [95% Conf. | Intervall | | year
_cons | .8684582
-1710.508 | .041 | | 20.98
-20.76 | 0.000 | .7864865
-1873.673 | .9504298
-1547.343 | [,] predict double eps, residual [.] robvar eps, by(state) | state | Summary of Residuals
Mean Std. Dev. | Freq. | |---|--|--| | CT
MA
ME
NH
RI
VT | 4.167853 1.3596266
1.618796 .86550138
-2.9841056 .93797625
.51033312 .61139299
8927223 .63408722
-2.4201543 .71470977 | 20
20
20
20
20
20
20 | | Total
W0 = 4.38820
W50 = 3.29890
W10 = 4.25360 | 349 df(5, 114) Pr > F = | 120
.00108562
.00806752
.00139064 | The hypothesis of equality of variances is soundly rejected by all three robvar test statistics, with the residuals for Connecticut possessing a standard deviation considerably larger than those of the other three states. #### FGLS estimation If different groups of observations have different error variances, we can apply the GLS estimator using analytical weights, as described above in section 6.2.1. In the groupwise context, we define the analytical weight (aw) series as a constant value for each observation in a group. That value is calculated as the estimated variance of that group's OLS residuals. Using the residual series calculated above, we construct an estimate of its variance for each New England state with egen and generate the analytical weight series; - . by state, sort: egen sd_eps = sd(eps) - . generate double gw_wt = 1/sd_eps^2 - . tabstat sd_eps gw_wt, by(state) Summary statistics: mean by categories of: state | state | sd_eps | gw_wt | |-------|----------|----------| | CT | 1.359627 | .5409545 | | MA | .8655014 | 1.334948 | | ME | .9379762 | 1.136623 | | NH | .611393 | 2.675218 | | RI | .6340872 | 2.48715 | | VT | .7147098 | 1.957675 | | Total | .8538824 | 1.688761 | The tabstat command reveals that the standard deviations of New Hampshire and Rhode Island's residuals are much smaller than those of the other four states. We now reestimate the regression with FGLS, using the analytical weight series: | Source | SS | df | | MS | | Number of obs
F(1, 118) | | 698.1 | |-------------------
---|------|------|--------------------------------|-------|--|-------|--------------------| | Model
Residual | CONTRACTOR | | | 1 2845.55409
118 4.07560405 | | Prob > F
R-squared
Adj R-squared | 11 11 | 0.000 | | Total | 3326.47537 | 119 | 27.9 | 535745 | | Root MSE | - | 2.0188 | | dpipc | Coef. | Std. | Err. | t | P> t | [95% Conf. | In | terval] | | year
_cons | .8444948
-1663.26 | .031 | | 26.42
-26.14 | 0.000 | .7812049
-1789.239 | | 9077847
537.281 | Compared with the unweighted estimates' Root MSE of 2.6147, FGLs yields a considerably smaller value of 2.0188. ### 6.2.3 Heteroskedasticity in grouped data In section 6.2, I addressed a third case in which heteroskedasticity arises in crosssectional data, where our observations are grouped or aggregated data, representing different numbers of microdata records. This situation arises when the variables in our dataset are averages or standard deviations of groups' observations, for instance a set of 50 U.S. state observations. Because we know the population of each state, we know precisely how much more accurate California's observation (based on more than 30 million individuals) is than Vermont's (based on fewer than a million). This situation would also arise in the context of observations representing average attainment scotes for individual schools or school districts, where we know that each school's (or school district's) student population is different. In these cases we know that heteroskedastic ity will occur in the grouped or aggregated data, and we know Ω because it depends only on the N_g underlying each observation. You could consider this a problem of nonrandom sampling. In the first example above, when 30 million California records are replaced by one state record, an individual has little weight in the average. In a smaller state, each individual would have a greater weight in her state's average values. If we want to conduct inference for a national random sample, we must equalize those weights, leading to a heavier weight being placed on California's observation and a lighter weight being placed on Vermont's. The weights are determined by the relative magnitudes of the states' populations. Each observation in our data stands for an integer number of records in the population (stored, for instance, in pop). ### **FGLS** estimation We can deal with the innate heteroskedasticity in an OLS regression on grouped data by considering that the precision of each group mean (i.e., its standard error) depends on the size of the group from which it is calculated. The analytical weight, proportional to the inverse of the observation's variance, must take the group size into account. If we have state-level data on per capita saving and per capita income, we could estimate #### . regress saving income [aw=pop] in which we specify that the analytical weight is pop. The larger states will have higher weights, reflecting the greater precision of their group means. I illustrate this correction with a dataset containing 420 public school districts' characteristics. The districts' average reading score (read_scr) is modeled as a function of their expenditures per student (expn_stu), computers per student (comp_stu), and the percentage of students eligible for free school lunches (meal_pct, an indicator of poverty in the district). We also know the enrollment per school district (enrl_tot). The descriptive statistics for these variables are given by summarize: - . use http://www.stata-press.com/data/imeus/pubschl, clear - summarize read_scr expn_stu comp_stu meal_pct enrl_tot | Max | Min | Std. Dev. | Mean | Obs | Variable | |----------|---------|-----------|----------|-----|----------| | 704 | 604.5 | 20.10798 | 654.9705 | 420 | read_scr | | 7711.507 | 3926.07 | 633.9371 | 5312.408 | 420 | expn_stu | | .4208333 | 0 | .0649558 | .1359266 | 420 | comp_stu | | 100 | 0 | 27.12338 | 44.70524 | 420 | meal_pct | | 27176 | 81 | 3913.105 | 2628.793 | 420 | enrl_tot | First, we estimate the parameters by using regress, ignoring the total enrollment per school district, which varies considerably over the districts. We expect that districts' average reading scores will be positively related to expenditures per student and computers per student and negatively related to poverty. | Source | SS | df | | MS | | Number of obs
F(3, 416) | 120 | |-------------------|--------------------------|----------|------|------------------|-------|--|----------------------| | Model
Residual | 136046.267
33368.3632 | 3
416 | | 8.7558
124115 | | F(3, 416)
Prob > F
R-squared
Adj R-squared | = 0.0000 | | Total | 169414.631 | 419 | 404. | 330861 | | Root MSE | = 0.8016
= 8.9561 | | read_scr | Coef. | Std. | Err. | t | P>(t) | [95% Conf. | Interval] | | expn_stu | .0046699 | .000 | 7204 | 6.48 | 0.000 | .0032538 | .006086 | | comp_stu | 19.88584 | 7.16 | 8347 | 2.77 | 0.006 | 5.795143 | 33.97654 | | meal_pct | 635131 | .016 | 4777 | -38.54 | 0.000 | 667521 | 602741 | | cons | 655.8528 | 3.81 | 2206 | 172.04 | 0.000 | 648.3592 | 663.3464 | Our prior results on the relationship between reading scores and these factors are borne out. We reestimate the parameters, using enrollment as an analytical weight. | Source | SS | df | | MS | | Number of obs
F(3, 416) | | |-------------------|--------------------------|----------|------|------------------|-------|--|--------------------| | Model
Residual | 123692.671
18915.9815 | 3
416 | | 0.8903
711093 | | Prob > F
R-squared
Adi R-squared | = 0.000
= 0.867 | | Total | 142608.652 | 419 | 340. | 354779 | | Root MSE | = 6.743 | | read_scr | Coef. | Std. | Err. | t | P> t | [95% Conf. | Interval | | expn_stu | ,0055534 | .000 | 8322 | 6.67 | 0.000 | .0039176 | .007189 | | comp_stu | 27.26378 | 8.19 | 7228 | 3.33 | 0.001 | 11.15063 | 43.3769 | | meal_pct | 6352229 | .01 | 3149 | -48.31 | 0.000 | 6610696 | 609376 | | cons | 648.988 | 4.16 | 3875 | 155.86 | 0.000 | 640.8031 | 657.172 | Including the weights modifies the coefficient estimates and reduces the Root MSE of the estimated equation. Equally weighting very small and very large school districts places too much weight on the former and too little on the latter. For instance, the effect of increases in the number of computers per student is almost 50% larger in the weighted estimates, and the effect of expenditures per student is smaller in the OLS estimates. The weighting also yields more precise coefficient estimates. ### 6.3 Serial correlation in the error distribution Our discussion of heteroskedasticity in the error process focused on the first *i* in *i*, *i* the notion that disturbances are *identically* distributed over the observations. As in the discussion of the cluster estimator, we also may doubt the second *i*, that the disturbances are *independently* distributed. With cross-sectional data, departures independence may reflect neighborhood effects, as accounted for by the cluster disterimator. Observations that are similar in some way share a correlation in their disturbances. When we turn to time-series data, we see a similar rationale for departures from independence. Observations that are close in time may be correlated, with the strength of that correlation increasing with proximity. Although there is no natural measure of a that correlation increasing with proximity. Although there is no natural measure of proximity in cross-sectional data, time-series data by its nature defines temporal proximity. The previous and subsequent observations are those closest to y_t chronologically. When correlations arise in a time series, we speak of the disturbance process exhibiting serial correlation or autocorrelation; it is literally correlated with itself. We must be wary of
specification issues, as apparent serial correlation in the errors may be nothing more than a reflection of one or more systematic factors mistakenly excluded from the regression model. As discussed in section 5.2, inadequate specification of dynamic terms may cause such a problem. But sometimes errors will be, by construction, serially correlated rather than independent across observations. Theoretical schemes such as partial-adjustment mechanisms and agents' adaptive expectations can give rise to errors that cannot be serially independent. Thus we also must consider this sort of deviation of Σ_n from $\sigma^2 I_N$, one that is generally more challenging to deal with than is pure heteroskedasticity. ### 6.3.1 Testing for serial correlation How might we test for the presence of serially correlated errors? Just as for pure heteroskedasticity, we base tests of serial correlation on the regression residuals. In the simplest case, autocorrelated errors follow the AR(1) model: an autoregressive process of order one, also known as a first-order Markov process: $$u_t = \rho u_{t-1} + v_t, \ |\rho| < 1$$ (6.15) where the v_t are uncorrelated random variables with mean zero and constant variance. We impose the restriction that $|\rho| < 1$ to ensure that the disturbance process u is stationary with a finite variance. If $\rho = 1$, we have a random walk, which implies that the variance of u is infinite, and u is termed a nonstationary series, or an integrated process of order one [often written as I(1)]. We assume that the u process is stationary, with a finite variance, which will imply that the effects of a shock, v_t , will dissipate over time.²¹ The larger (in absolute value) ρ is, the greater will be the persistence of that shock to u_t and the more highly autocorrelated will be the sequence of disturbances u_t . In fact, in the AR(1) model, the autocorrelation function of u will be the geometric sequence $\rho, \rho^2, \rho^3, \ldots$, and the correlation of disturbances separated by τ periods will be ρ^{τ} . In Stata, the autocorrelation function for a time series may be computed with the ac or corregram commands ([TS] corregram refers to the correlogram of the series). If we suspect that there is autocorrelation in the disturbance process of our regression model, we could use the estimated residuals to diagnose it. The empirical counterpart ^{21.} If there is reason to doubt the stationarity of a time series, a unit root test should be performed: see, for example, [TS] dfgls. to u_t in (6.15) will be the \widehat{u}_t series produced by predict. We estimate the auxiliary regression of \widehat{u}_t on \widehat{u}_{t-1} without a constant term because the residuals have mean zero. The resulting slope estimate is a consistent estimator of the first-order autocorrelation coefficient ρ of the u process from (6.15). Under the null hypothesis $\rho=0$, so a rejection of this null hypothesis by this LM test indicates that the disturbance process exhibits AR(1) behavior. A generalization of this procedure that supports testing for higher-order autoregressive disturbances is the LM test of Breusch and Godfrey (Godfrey 1988). In this test, the regression is augmented with p lagged residual series. The null hypothesis is that the errors are serially independent up to order p. The test evaluates the partial correlations of the regressors \mathbf{x} partialled off.²² The residuals at time t are orthogonal to the columns of \mathbf{x} at time t, but that need not be so for the lagged residuals. This is perhaps the most useful test for nonindependence of time-series disturbances, since it allows the researcher to examine more than first-order serial independence of the errors in one test. The test is available in Stata as estat bgodfrey (see [R] regress postestimation time series). A variation on the Breusch–Godfrey test is the Q test of Box and Pierce (1970), as refined by Ljung and Box (1979), which examines the first p sample autocorrelations of the residual series: $$Q = T(T+2) \sum_{j=1}^{p} \frac{r_j^2}{T-j}$$ where r_j^2 is the jth autocorrelation of the residual series. Unlike the Breusch-Godfrey test, the Q test does not condition the autocorrelations on a particular x. Q is based on the simple correlations of the residuals rather than their partial correlations. Therefore, it is less powerful than the Breusch-Godfrey test when the null hypothesis (of no serial correlation in u up to order p) is false. However, the Q test may be applied to any time series whether or not it contains residuals from an estimated regression model. Under the null hypothesis, $Q \sim \chi^2(p)$. The Q test is available in Stata as wntestq, named such to indicate that it may be used as a general test for so-called white noise, a property of random variables that do not contain autocorrelation. The oldest test (but still widely used and reported, despite its shortcomings) is the Durbin and Watson (1950) d statistic: $$d = \frac{\sum_{t=2}^{T} (\widehat{u}_t - \widehat{u}_{t-1})^2}{\sum_{t=1}^{T} \widehat{u}_t^2} \simeq 2(1 - \rho)$$ The Durbin–Watson (D–W) test proceeds from the principle that the numerator of the statistic, when expanded, contains twice the variance of the residuals minus twice the (first) autocovariance of the residual series. If $\rho=0$, that autocovariance will be near zero, and d will equal 2.0. As $\rho\to 1$, $d\to 0$, whereas as $\rho\to -1$, $d\to 4$. However, ^{22.} The partial autocorrelation function of a time series may be calculated with the pac command: ** [FS] corrgram. the exact distribution of the statistic depends on the regressor matrix (which must contain a constant term and must not contain a lagged dependent variable). Rather than having a set of critical values, the D–W test has two, labeled d_L and d_U . If the dstatistic falls below d_L , we reject the null; above d_U , we do not reject; and in between, the statistic is inconclusive. (For negative autocorrelation, you test 4-d against the same tabulated critical values.) The test is available in Stata as estat dwstat (see |R| regress postestimation time series) and is automatically displayed in the output of the prais estimation command. In the presence of a lagged dependent variable or generally, predetermined regressors. the d statistic is biased toward 2.0, and Durbin's alternative (or h) test (Durbin 1970) must be used.23 That test is an LM test, which is computed by regressing residuals on their lagged values and the original X matrix. The test is asymptotically equivalent to the Breusch-Godfrey test for p=1 and is available in Stata as command estat durbinalt (see [R] regress postestimation time series). I illustrate the diagnosis of autocorrelation with a time-series dataset of monthly short-term and long-term interest rates on U.K. government securities (Treasury bills and gilts), 1952m3-1995m12, summarize gives the descriptive statistics for these series: . use http://www.stata-press.com/data/imeus/ukrates, clear summarize rs r20 | Variable | Obs | Mean | Std. Dev. | Min | Max | |----------|-----|----------|-----------|----------|-------| | rs | 526 | 7.651513 | 3.553109 | 1.561667 | 16.18 | | r20 | 526 | 8.863726 | 3.224372 | 3.35 | 17.18 | The model expresses the monthly change in the short rate rs, the Bank of England's monetary policy instrument, as a function of the prior month's change in the long-term rate r20. The regressor and regressand are created on the fly by Stata's time-series operators D. and L. The model represents a monetary policy reaction function. We save the model's residuals with predict so that we can use wntestq. . regress D.rs LD.r20 Number of obs = MS df Source 52.88 F(1, 522) = 0.0000 Prob > F 13.8769739 Model 1 13.8769739 R-squared 0.0920 Residual 136.988471 .262430021 0.0902 Adj R-squared = Root MSE .288461654 Total 150.865445 523 [95% Conf. Interval] Polti D.rs Std. Err. Coef. r20 .6202027 .356374 0.000 .0671484 7.27 LD. .4882883 0.18 0.858 .0479921 .022384 _cons .0040183 ^{23.} A variable x is predetermined if $E[x_tu_{t+s}]=0$ for all t and s. See Davidson and MacKinnon (1993) - . predict double eps, residual (2 missing values generated) - . estat bgodfrey, lags(6) Breusch-Godfrey LM test for autocorrelation | lags(p) | chi2 | df | Prob > chi2 | |---------|--------|----|-------------| | 6 | 17.237 | 6 | 0.0084 | HO: no serial correlation . wntestq eps Portmanteau test for white noise Portmanteau (Q) statistic = 82.3882 Prob > chi2(40) = 0.0001 . ac eps The Breusch-Godfrey test performed here considers the null of serial independence up to sixth order in the disturbance process, and that null is soundly rejected. That test is conditioned on the fitted model. The Q test invoked by wntestq, which allows for more general alternatives to serial independence of the residual series, confirms the diagnosis. To further analyze the nature of the residual series' lack of independence, we compute the autocorrelogram (displayed in figure 6.1). This graph indicates the strong presence of first-order autocorrelation—AR(1)—but also signals several other empirical autocorrelations outside the Bartlett confidence bands. Figure 6.1: Autocorrelogram of regression residuals # FGLS estimation with serial correlation For AR(1) disturbances of (6.15), if ρ were known, we could estimate the coefficients by 6.3.2 For AR(1) and of Σ_u displayed in (6.3) is simplified when we consider first-order serial of Σ_u with one parameter ρ . An analytical in GIS. The correlation with one parameter ρ . An analytical inverse of Σ_u may be derived as $$\Sigma_{u}^{-1} = \sigma_{u}^{-2} \begin{pmatrix} \sqrt{1 - \rho^{2}} & 0 & \dots & 0 \\ -\rho & 1 & \dots & 0 \\ & & \vdots & \\ 0 & -\rho & 1 & 0 \\ 0 & \dots & -\rho & 1 \end{pmatrix}$$ (6.16) As with heteroskedasticity, we do not explicitly construct and apply this matrix. Rather, we
can implement GLS by transforming the original data and running a regresson on the transformed data. For observations $2, \ldots, T$, we quasidifference the data: $y_t - \rho y_{t-1}, x_{j,t} - \rho x_{j,t-1}$, and so on. The first observation is multiplied by $\sqrt{1 - \rho^2}$. The GLS estimator is not feasible because ρ is an unknown population parameter just like β and σ_{μ}^2 . Replacing the unknown ρ values above with a consistent estimate and computing $\widehat{\Sigma}_n$ yields the FGLS estimator. As with heteroskedasticity, the OLS residuals from the original model may be used to generate the necessary estimate. The Prais and Winsten (1954) estimator uses an estimate of ρ based on the OLS residuals to estimate $\hat{\Sigma}_{u}^{-1}$ by (6.16). The closely related Cochrane and Orcutt (1949) variation on that estimator differs only in its treatment of the first observation of the transformed data, given the estimate of ρ from the regression residuals. Either of these estimators may be iterated to convergence: essentially they operate by ping-ponging back and forth between estimates of β and ρ . Optional iteration refines the estimate of ρ , which is strongly recommended in small samples. Both estimators are available in Stata with the prais command. Other approaches include maximum likelihood, which simultaneously estimates one parameter vector (β', σ^2, ρ) , and the grid search approach of Hildreth and Lu (1960). Although you could argue for the superiority of a maximum likelihood approach, Monte Carlo studies suggest that the Prais-Winsten estimator is nearly as efficient in practice as maximum likelihood. I illustrate the Prais-Winsten estimator by using the monetary policy reaction function displayed above. FGLS on this model finds a value of ρ of 0.19 and a considerably smaller coefficient on the lagged change in the long-term interest rate than that of our OLS estimate. . prais D.rs LD.r20, nolog Prais-Winsten AR(1) regression -- iterated estimates | Source | SS | df | | MS | | Number of obs
F(1, 522) | | 524 | |---------------------|--------------------------|----------|--------------|----------------|-------|--|----|-------------------------------------| | Model
Residual | 6.56420242
133.146932 | 1
522 | 6.564 | 20242
07075 | | Prob > F
R-squared
Adi R-squared | - | 25.73
0.0000
0.0470
0.0452 | | Total | 139.711134 | 523 | .26 | 71341 | | Root MSE | - | .50505 | | D.rs | Coef. | Std. | Err. | t | P> t | [95% Conf. | In | terval] | | r20
LD.
_cons | .3495857 | .06 | 8912
2145 | 5.07
0.18 | 0.000 | .2142067
0484649 | | 4849647
0584619 | | rho | .1895324 | | | | | | | | Durbin-Watson statistic (original) 1.702273 Durbin-Watson statistic (transformed) 2.007414 In summary, although we may use FGLS to deal with autocorrelation, we should always be aware that this diagnosis may reflect misspecification of the model's dynamics or omission of one or more key factors from the model. We may mechanically correct for first-order serial correlation in a model, but we then attribute this persistence to some sort of clockwork in the error process rather than explaining its existence. Applying FGLS as described here is suitable for AR(1) errors but not for higher-order AR(p) errors or moving-average (MA) error processes, both of which may be encountered in practice. Regression equations with higher-order AR errors or MA errors can be modeled by using Stata's arima command. #### **Exercises** - Use the cigconsump dataset, retaining only years 1985 and 1995. Regress lpackpc on lavgprs and lincpc. Use the Breusch-Pagan test (hettest) for variable year. Save the residuals, and use robvar to compute their variances by year. What do these tests tell you? - 2. Use FGLS to refit the model, using analytical weights based on the residuals from each year. How do these estimates differ from the OLS estimates? - 3. Use the sp500 dataset, applying tsset date. Regress the first difference of close on two lagged differences and lagged volume. How do you interpret the coefficient estimates? Use the Breusch-Godfrey test to evaluate the errors' independence. What do you conclude? - 4. Refit the model with FGLS (using prais). How do the FGLS estimates compare to those from OLS? ## 7 Regression with indicator variables One of the most useful concepts in applied economics is the indicator variable, which signals the presence or absence of a characteristic. Indicator variables are also known as binary or Boolean variables and are well known to econometricians as dummy variables (although the meaning of that latter term is shrouded in the mists of time). Here we consider how to use indicator variables - to evaluate the effects of qualitative factors; - in models that mix quantitative and qualitative factors; - in seasonal adjustment; and - to evaluate structural stability and test for structural change. ### 7.1 Testing for significance of a qualitative factor Economic data come in three varieties: quantitative (or cardinal), ordinal (or ordered), and qualitative. In chapter 3, I described the first category as continuous data to stress that their values are quantities on the real line that may conceptually take on any value. We also may work with ordinal or ordered data. They are distinguished from cardinal measurements in that an ordinal measure can express only inequality of two items and not the magnitude of their difference; for example, a Likert scale of "How good a job has the president done? 5 = great, 4 = good, 3 = fair, 2 = poor, 1 = very poor will generate ordered numeric responses. A response of 5 beats 4, which in turn beats 3 for voter satisfaction. But we cannot state that a respondent of 5 is five times more likely to support the president than a voter responding 1, nor 25% more likely than a respondent of 4, and so on. The numbers can be taken only as ordered. They could be any five ordered points on the real line (or the set of integers). The implication: if data are actually ordinal rather than cardinal, we should not mistake them for cardinal measures and should not use them as a response variable or as a regressor in a linear regression model. In contrast, we often encounter economic data that are purely qualitative, lacking any obvious ordering. If these data are coded as string variables, such as M and F for survey respondents' genders, we are not likely to mistake them for quantitative values. We hope that few researchers would contemplate using five-digit ZIP codes (U.S. postal codes) in a quantitative setting. But where a quality may be coded numerically, there I. I discuss consored data in chapter 10. is the potential to misuse this qualitative factor as quantitative. This misuse of course is nonsensical: as described in section 2.2.4, we can encode a two-letter U.S. state code (AK, AL, AZ, ..., WY) into a set of integers 1, ..., 50 for ease of manipulation, but we should never take those numeric values as quantitative measures. How should we evaluate the effects of purely qualitative measures? Since the answer to this question will apply largely to ordinal measures as well, it may be taken to cover all nonquantitative economic and financial data. To test the hypothesis that a qualitative factor has an effect on a response variable, we must convert the qualitative factor into a set of indicator variables, or dummy variables. Following the discussion in section 4.5.3, we then conduct a joint test on their coefficients. If the hypothesis to be tested includes one qualitative factor, the estimation problem may be described as a one-way ANOVA. Economic researchers consider that ANOVA models may be expressed as linear regressions on an appropriate set of indicator variables.² The equivalence of one-way ANOVA and linear regression on a set of indicator variables that correspond to one qualitative factor generalizes to multiple qualitative factors. If two qualitative factors (e.g., race and sex) are hypothesized to affect income, an economic researcher would regress income on two appropriate sets of indicator variables, each representing one of the qualitative factors. If we include one or many qualitative factors in a model, we will estimate a linear regression on several indicator (dummy) variables. ### 7.1.1 Regression with one qualitative measure Consider measures of the six New England states' per capita disposable personal income (dpipc) for 1981-2000 as presented in section 6.2.2. Does the state of residence explain a significant proportion of the variation in dpipc over these two decades? We calculate the average dpipc (in thousands of dollars) over the two decades by using mean (see [R] mean): Stata's snova command has a regress option that presents the results of ANOVA models in a regression framework. | use http://www.stata-press.co
mean dpipc, over(state) | | | |---|--------------------|-----| | imation | Number of obs = 10 | 20. | | Mean estimation CT: state = CT MA: state = MA ME: state = ME NH: state = NH RI: state = RI VT: state = VT | | | | Over | Mean | Std. Err. | [95% Conf. | Interval] | |-------------------------|----------|-----------|------------|-----------| | dpipc CT MA ME NH RI VT | 22.32587 | 1.413766 | 19.52647 | 25.12527 | | | 19.77681 | 1.298507 | 17.20564 | 22.34798 | | | 15.17391 | .9571251 | 13.27871 | 17.06911 | | | 18.66835 | 1.193137 | 16.30582 | 21.03088 | | | 17.26529 | 1.045117 | 15.19586 | 19.33473 | | | 15.73786 | 1.020159 | 13.71784 | 17.75788 | States' average dpipc in 2000 varies considerably between Connecticut (\$22,326) and Maine (\$15,174). But are these differences statistically significant? Let us test this hypothesis with regress. We first must create the appropriate indicator variables. One
way to do this (which I prefer to using xi) is, as described in section 2.2.4, to use tabulate and its generate() option to produce the desired variables. The following command generates six indicator variables, but we recognize that these six indicator variables must be mutually exclusive and exhaustive (MEE). Each observation must belong to one and only one state. Also the mean of an indicator variable is the fraction or proportion of the sample satisfying that characteristic. Those means must sum to 1.0 across any complete set of indicator variables. If tabulate generates a set of indicator variables $\mathbf{D}_{N\times g}$, where there are G groups (here, six), then $\mathbf{D}\iota=\iota$, where ι is the units vector. If we sum the indicator variables across the g categories, we must produce an N-vector of ones. For that reason, we must drop one of the indicator variables when running a regression to avoid perfect collinearity with the constant term. We fit the regression model, dropping the first indicator variable (that for CT): . tabulate state, generate(NE) | state | Freq. | Percent | Cum. | | |----------------------------------|--|---|---|--| | CT
MA
ME
NH
RI
VT | 20
20
20
20
20
20
20 | 16.67
16.67
16.67
16.67
16.67 | 16.67
33.33
50.00
66.67
83.33
100.00 | | | Total | 120 | 100.00 | | | | Source | SS | df | | MS | | Number of obs
F(5, 114) | = 120
= 5.27 | |-------------------|--------------------------|----------|------|------------------|-------|--|----------------------| | Model
Residual | 716.218512
3099.85511 | 5
114 | | 243702
917115 | | Prob > F
R-squared
Adj R-squared | = 0.0002
= 0.1877 | | Total | 3816.07362 | 119 | 32.0 | 678456 | | Root MSE | = 5.2146 | | dpipc | Coef. | Std. | Err. | t | P> t | [95% Conf. | Interval] | | NE2 | -2.549057 | 1.64 | 8991 | -1.55 | 0.125 | -5.815695 | .7175814 | | NE3 | -7.151959 | 1.64 | 8991 | -4.34 | 0.000 | -10.4186 | -3.88532 | | NE4 | -3.65752 | 1.64 | 8991 | -2.22 | 0.029 | -6.924158 | 3908815 | | NES | -5.060575 | 1.64 | 8991 | -3.07 | 0.003 | -8.327214 | -1.793937 | | NE6 | -6.588007 | 1.64 | 8991 | -4.00 | 0.000 | -9.854646 | -3.321369 | | cons | 22.32587 | 1.16 | 6013 | 19.15 | 0.000 | 20.01601 | 24.63573 | This regression produces estimates of a constant term and five coefficients. We have excluded the first state (CT), so the constant term is the mean of CT values over time, identical to the means output above. The coefficients reported by regress represent the differences between each state's mean dpipc and that of CT. The state means shown in the mean output above are six points on the real line. Are their differences statistically significant? It does not matter how we measure those differences, whether from the VT mean value of 15.7 or from the CT mean value of 22.3. Although we must exclude one state's indicator variable from the regression, the choice of the excluded class is arbitrary and will not affect the statistical judgments. The test for relevance of the qualitative factor state is merely the ANOVA F statistic for this regression. The ANOVA F, as section 4.3.2 describes, tests the null hypothesis that all slope coefficients are jointly zero. In this context, that is equivalent to testing that all six state means of dpipc equal a common μ . The strong rejection of that hypothesis from the ANOVA F statistic implies that the New England states have significantly different levels of per capita disposable personal income. Another transformation of indicator variables to produce centered indicators is often useful. If we create new indicators $d_i^* = d_i - d_g$, where d_g is the indicator for the excluded class, we can use the (g-1) d_i^* variables in the model rather than the original d_i variables. As discussed above, the coefficients on the original d_i variables are contrasts with the excluded class. The d_i^* variables, which are trinary (taking on values of -1,0,1) will be contrasts with the grand mean. The constant term in the regression on d_i^* will be the grand mean, and the individual d_i^* coefficients are contrasts with that mean, illustrate, ^{3.} For instance, 22.32587 - 2.549057 = 19.77681, the mean estimate for MA given above. | corvalues 1
corvalues 2
corvalues 2
corva | 0 1142 | df | .6 | MS | | Number of obs
F(5, 114) | = 5.46 | |--|--|---|------------------------------|---|---|--|---| | Model
Residual | 716.218512
3099.85511 | 5
114 | 4 27.1917115 | | | Prob > F
R-squared
Adj R-squared
Root MSE | = 0.0002
= 0.1877
= 0.1521
= 5.2146 | | Total | 3816.07362 | 119 | | | | | = 5.214 | | dpipc | Coef. | Std. | Err. | t | P> t | [95% Conf. | Interval | | NE_1
NE_2
NE_3
NE_4
NE_5
cons | 4.167853
1.618796
-2.984106
.5103331
8927223
18.15802 | 1.064
1.064
1.064
1.064
4.760 | 1419
1419
1419
1419 | 3.92
1.52
-2.80
0.48
-0.84
38.15 | 0.000
0.131
0.006
0.633
0.403 | 2.059247
48981
-5.092712
-1.598273
-3.001328
17.21502 | 6.27645
3.72740
875499
2.61893
1.21588
19.1010 | This algebraically equivalent model has the same explanatory power in terms of its anova F statistic and R^2 as the model including five indicator variables. For example, 4.168 + 18.158 = 22.326, the mean income in CT. Below we use lincom to compute the coefficient on the excluded class as minus the sum of the coefficients on the included classes. | dpipc | Coef. | Std. Err. | t | P> t | [95% Conf. | Interval] | |-------|---------------|-----------|-------|-------|------------|-----------| | (1) | -2.420154 1.0 | 1.064419 | -2.27 | 0.025 | -4.52876 | 3115483 | ### 7.1.2 Regression with two qualitative measures We can use two sets of indicator variables to evaluate the effects of two qualitative factors on a response variable. Take for example the Stata manual dataset nlsw88, an extract of the U.S. National Longitudinal Survey (NLSW) for employed women in 1988. We restrict the sample of 2,246 working women to a subsample for which data on hourly wage, race, and an indicator of union status are available. This step reduces the sample to 1.878 workers. We also have data on a measure of job tenure in years. use http://www.stata-press.com/data/imeus/nlsw88, clear (NLSW, 1988 extract) [.] keep if !missing(wage + race + union) (368 observations deleted) [·] generate lwage = log(wage) | SUMBATI | 22.60 | WAGE | TACA | im i on | tenure, | sen(0) | |---------|-------|----------------|---------|--------------
---|-------------| | | | Black of Ville | A 440.0 | SERVICE SPAN | STATES AND DESCRIPTION OF THE PERSON | and process | | Max | Min | Std. Dev. | Mean | Obs | Variable | |----------|----------|-----------|----------|------|----------| | 39.23074 | 1.151368 | 4.168369 | 7.565423 | 1878 | wage | | 2 | 1 | .4822417 | 1.292332 | 1878 | race | | 1 | 0 | .4304825 | .2454739 | 1878 | union | | 25.91667 | 0 | 5.640675 | 6.571065 | 1868 | tenure | We model lwage, the log of the reported wage, as the response variable. The variable race is coded 1, 2, or 3 for white, black, or other. We want to determine whether the variance in (log) wages is significantly related to the factors race and union. We cannot fit a regression model with two complete sets of dummies, so we will exclude one dummy from each group.4 The regression estimates show the following: #### . tabulate race, generate(R) | race | Freq. | Percent | Cum. | |-------|-------|---------|----------| | white | 1,353 | 72.04 | 72.04 | | black | 501 | 26.68 | 98.72 | | other | 24 | 1.28 | 100.00 | | Total | 1,878 | 100.00 | The same | regress lwage R1 R2 union | Source | SS | df | | MS | | Number of obs | | 1878 | |-------------------|-------------------------------|-----------|------------|------------------------|-------------------------|--------------------------------------|----|---| | Model
Residual | 29.3349228
473.119209 | 3
1874 | | 830761
464893 | | F(3, 1874)
Prob > F
R-squared | | 0.0000 | | Total | 502.454132 | 1877 | .267 | 690001 | | Adj R-squared
Root MSE | | .50246 | | lwage | Coef. | Std. | Err. | t | P>iti | [95% Conf. | In | tervall | | R1
R2
union | 0349326
2133924
.239083 | .1035 | 954
353 | -0.34
-2.03
8.84 | 0.736
0.042
0.000 | 1000000 | 0 | 1680793
0074721
2921054
115105 | -1029591 _cons test R1 R2 joint test for the effect of race 18.58 0.000 1.711252 - (1) R1 = 0 - (2) R2 = 0 F(2, 1874) = 23.25 Prob > F = 0.0000 1.913178 A test for the significance of the qualitative factor race is the joint test for the coefficients of R1. R2 equaling zero, W1. of R1, R2 equaling zero. When taking other as the excluded class for race we do perfine that β_{R1} (the coefficient for that β_{R1}) is in the excluded class for race we do the find that β_{R1} (the coefficient for that β_{R1}) is in the excluded class for race we do the find that β_{R1} (the coefficient for that β_{R1}) is in the excluded class for race we do the excluded class for race we do the find that β_{R1} (the coefficient for the excluded class for race we do exclusion cl find that β_{R1} (the coefficient for white) differs from zero. But this coefficient is contrast between the mean of lyage for contrast between the mean of lwage for other and the mean for white. The mean for black), on the other hand, is distinguished. (black), on the other hand, is distinguishable from that for other. These coefficients ^{4.} We could include one complete set of dummies in an equation without a constant term had be transferred to the constant term had been constant not recommend that approach. The absence of a constant term alters the meaning of many statistics. taken together, reflect the effects of race on lwage. Those regressors should be kept or removed as a group. In particular, we should not use the t statistics for individual indicator variables to make inferences beyond noting, as above, the differences between group means. The magnitudes of those coefficients and their t statistics depend on the choice of excluded class, which is arbitrary. The model of two qualitative factors illustrated here is a special case in that it assumes that the effects of the two qualitative factors are independent and strictly additive. That is, if you are black, your (log) wage is expected to be 0.213 lower than that of the other race category, whereas if you are a union member, it is predicted to be 0.239 higher. What would this regression model predict that a black union member would earn, relative to the excluded class (a nonunion member of other race)? It would predict merely the sum of those two effects, or +0.026, since the union effect is slightly stronger than the black effect. We have a 3×2 two-way table of race and union categories. We can fill in the six cells of that table from the four coefficients estimated in the regression. For that approach to be feasible, we must assume independence of the qualitative effects so that the joint effect (reflected by a cell within the table) is the sum of the marginal effects. The effect of being black and a union member is taken to be the sum of the effects of being black, independent of union status, and that of being a union member, independent of race. #### Interaction effects Although sometimes this independence of qualitative factors is plausible, often it is not an appropriate assumption. Consider variations of the unemployment rate across age and race. Teenagers have a hard time landing a job because they lack labor market experience, so teenage unemployment rates are high relative to those of prime-aged workers. Likewise, minority participants generally have higher unemployment rates, whether due to discrimination or other factors such as the quality of their education. These two effects may not be merely additive. Perhaps being a minority teenager involves two strikes against you when seeking employment. If so, the effects of being both minority and a teenager are greater than the sum of their individual contributions. This reasoning implies that we should allow for interaction effects in evaluating these qualitative factors, which will allow their effects to be correlated, and requires that we estimate all six elements in the 3 × 2 table from the last regression example. In regression, interactions involve products of indicator variables. Dummy variables may be treated as algebraic or Boolean. Adding indicator variables is equivalent to the Boolean "or" operator (1), denoting the union of two sets, whereas multiplying two indicator variables is equivalent to the Boolean "and" operator (2), denoting the intersection of sets. We may use either syntax in Stata's generate statements, remembering that we need to handle missing values properly. ^{5.} This prediction translates into roughly 21%, using the rough approximation that $\log(1+x) \simeq x$, although this approximation should really be used only for single-digit x. How can we include a race*union interaction in the last regression? Since we need two race dummies to represent the three classes and one union dummy to reflect that factor, we need two interaction terms in the model: the interaction of each included race dummy with the union dummy. In the model $$\mathbf{lwage}_i = \beta_1 + \beta_2 \mathbf{R1}_i + \beta_3 \mathbf{R2}_i + \beta_4 \mathbf{union}_i + \beta_5 (\mathbf{R1}_i \times \mathbf{union}_i) + \beta_6 (\mathbf{R2}_i \times \mathbf{union}_i) + u_i$$ the mean log wage for those in race R1 (white) is $\beta_1 + \beta_2$ for nonunion members, but $\beta_1 + \beta_2 + \beta_4 + \beta_5$ for union members. Fitting this model yields the following: - . generate Rlu = R1*union - . generate R2u = R2*union - . regress lwage R1 R2 union R1u R2u | Source | SS | df | | MS | | Number of obs
F(5, 1872) | | |-------------------|-------------------------|-----------|------|------------------|-------|------------------------------|----------------------| | Model
Residual | 33.3636017
469.09053 | 5
1872 | | 272035
582548 | | Prob > F
R-squared | = 0.0000
= 0.0664 | | Total | 502.454132 | 1877 | .267 | 690001 | | Adj R-squared
Root MSE | = .50058 | | lvage | Coef. | Std. | Err. | t | P> t | [95% Conf. | Interval] | | Ri | 1818955 | .126 | 0945 | -1.44 | 0.149 | 4291962 | .0654051 | | R2 | 4152863 | -1279 | 9741 | -3.25 |
0.001 | 6662731 | 1642995 | | union | 2375316 | .216 | 7585 | -1.10 | 0.273 | 6626452 | .187582 | | Riu | .4232627 | .219 | 2086 | 1.93 | 0.054 | 0066561 | .8531816 | | R2u | .6193578 | .222 | 1704 | 2.79 | 0.005 | .1836302 | 1.055085 | | _cons | 2.07205 | .125 | 1456 | 16.56 | 0.000 | 1.82661 | 2.317489 | - . test R1u R2u // joint test for the interaction effect of race*union - (1) R1u = 0 - (2) R2u = 0 The joint test of the two interaction coefficients R1u and R2u rejects the null hypothesis of independence of the qualitative factors race and union at all conventional levels. Because the interaction terms are jointly significant, it would be a misspecification to fit the earlier regression rather than this expanded form. In regression, we can easily consider the model with and without interactions by merely fitting the model with interactions and performing the joint test that all interaction coefficients are equal to zero. ### 7.2 Regression with qualitative and quantitative factors Earlier, we fitted several regression models in which all the regressors are indicated variables. In economic research, we often want to combine quantitative and qualitative information in a regression model by including both continuous and indicator regressions. Returning to the nlsw88 dataset, we might model the log(wage) for qualitative factors race and union, as well as a quantitative factor tenure, the number of years worked in the current job. Estimation of that regression yields | Source | SS | df | | MS | | Number of obs | 4 | 1868 | |-------------------|--------------------------|-----------|------|------------------|-------|---|---------|-------------------------------------| | Model
Residual | 77.1526731
418.434693 | 4
1863 | | 881683
602626 | | F(4, 1863)
Prob > F
R-squared
Adj R-squared | 1 1 1 1 | 85.88
0.0000
0.1557
0.1539 | | Total | 495.587366 | 1867 | .265 | 445831 | | Root MSE | = | .47392 | | lwage | Coef. | Std. | Err. | t | P> t | [95% Conf. | In | terval] | | R1 | 070349 | .0976 | 711 | -0.72 | 0.471 | 2619053 | 1 | 1212073 | | R2 | 2612185 | .0991 | 154 | -2.64 | 0.008 | 4556074 | 20 | 0668297 | | union | .1871116 | .0257 | 654 | 7.26 | 0.000 | .1365794 | 17/2 | 2376438 | | tenure | .0289352 | .0019 | 646 | 14.73 | 0.000 | .0250823 | 354 | 0327882 | | cons | 1.777386 | .0975 | 549 | 18.22 | 0.000 | 1.586058 | 1 | .968715 | [,] test R1 R2 // joint test for the effect of race These results illustrate that this analysis-of-covariance model accounts for considerably more of the variation in lwage than does its counterpart based on only qualitative factors.⁶ How might we interpret β_{tenure} ? Using the standard approximation that $\log(1+x) \simeq x^7$ we see that a given worker with 1 more year on her current job can expect to earn about 2.89% more (roughly, the semielasticity of wage with respect to tenure). How do we interpret the constant term? It is the mean log wage for a nonunion worker of other race with zero years of job tenure. Here that is a plausible category, since you might have less than 1 year's tenure in your current job. In other cases—for instance, where age is used as a regressor in a labor market study—the constant term may not correspond to any observable cohort. The predictions of this model generate a series of parallel lines in {log(wage), tenure} space: a total of six lines, corresponding to the six possible combinations of race and union, with their intercepts computed from their coefficients and the constant term. We can separately test that those lines are distinct with respect to a qualitative factor: for instance, following the regression above, we jointly tested R1 and R2 for significance, If that test could not reject its null that each of those coefficients is zero, we would conclude that the {log(wage), tenure} profiles do not differ according to the qualitative factor race, and the six profiles would collapse to two. 7. See section 4.3.4. ⁽¹⁾ R1 = 0 ⁽²⁾ R2 = 0 ^{6.} I earlier noted that the form of this model with interaction terms was to be preferred; for pedagogical braising, we return to the simpler form of the model. #### Testing for slope differences The model we have fitted is parsimonious and successful, given that it considers one quantitative factor. But are the true {log(wage), tenure} profiles parallel? Say that the unionized sector achieves larger annual wage increments by using its organized bargaining power. Might we expect two otherwise identical workers—one union, one nonunion—to have different profiles, with the unionized worker's profile steeper? To test that hypothesis, I return to the notion of an interaction effect, but here we interact a continuous measure (tenure) with the indicator variable union: - . quietly generate uTen = union*tenure - regress lwage R1 R2 union tenure uTen | Source | SS | df | | MS | | Number of obs | | 1868 | |-------------------|-------------------------|-----------|-------|------------------|-------|--------------------------------------|----|-------------------------------------| | Model
Residual | 77.726069
417.861297 | 5
1862 | | 452138
415304 | | F(5, 1862)
Prob > F
R-squared | | 69.27
0.0000
0.1568
0.1546 | | Total | 495.587366 | 1867 | . 265 | 445831 | | Adj R-squared
Root MSE | | .47372 | | lwage | Coef. | Std. | Err. | t | P> t | [95% Conf. | In | terval] | | R1 | 0715443 | .0976 | 332 | -0.73 | 0.464 | 2630264 | | 1199377 | | R2 | 2638742 | .0990 | 879 | -2.66 | 0.008 | 4582093 | | 0695391 | | union | .2380442 | .0409 | 9706 | 5.81 | 0.000 | .157691 | | 3183975 | | tenure | .0309616 | .0023 | 3374 | 13.25 | 0.000 | .0263774 | | 0355458 | | uTen | 0068913 | .0043 | 3112 | -1.60 | 0.110 | 0153467 | | .001564 | | _cons | 1.766484 | .0977 | 7525 | 18.07 | 0.000 | 1.574768 | | 1.9582 | The tenure effect is now measured as $\partial lwage/\partial tenure = \hat{\beta}_{tenure}$ for nonunion members, but $(\hat{\beta}_{tenure} + \hat{\beta}_{uTen})$ for union members. The difference between those values is the estimated coefficient $\hat{\beta}_{uTen}$, which is not significantly different from zero at the l0% level, but negative. Counter to our intuition, the data cannot reject the hypothesis that the slopes of the union and nonunion profiles are equal. But what about the profiles for race? It is often claimed that minority hires are not treated equally over time, for instance, that promotions and larger increments go to whites rather than to blacks or Hispanics. We interact the race categories with tenure, in effect allowing the slopes of the {log(wage), tenure} profiles to differ by race: - . quietly generate R1ten = R1*tenure - . quietly generate R2ten = R2*tenure - regress Iwage R1 R2 union tenure R1ten R2ten | Source | SS | df | MS | |-------------------|--------------------------|-----------|--------------------------| | Model
Residual | 77.2369283
418.350438 | 6
1861 | 12.8728214
.224798731 | | Total | 495.587366 | 1867 | .265445831 | Number of obs = 1860 F(6, 1861) = 57.20 Prob > F = 0.000 R-squared = 0.1551 Adj R-squared = 47413 Root MSE = 47413 | | lwage | Coef. | Std. Err. | t | P> t | [95% Conf. | Intervall | |---|--------|----------|-----------|-------|-------|------------|-----------| | - | RI | 082753 | .1395 | -0.59 | 0.553 | 3563459 | .1908398 | | | R2 | 291495 | .1422361 | -2.05 | 0.041 | 570454 | 012536 | | | union | .1876079 | .0257915 | 7.27 | 0.000 | .1370246 | .2381912 | | | tenure | .0257611 | -0186309 | 1.38 | 0.167 | 0107785 | .0623007 | | | Riten | .0024973 | .0187646 | 0.13 | 0.894 | 0343045 | .0392991 | | | R2ten | .0050825 | .018999 | 0.27 | 0.789 | 032179 | .0423441 | | | cons | 1.794018 | .1382089 | 12.98 | 0.000 | 1.522957 | 2.065078 | test Riten R2ten (1) Riten = 0 (2) R2ten = 0 F(2, 1861) = 0.19 Prob > F = 0.8291 We cannot reject the null hypothesis that both interaction coefficients are zero, implying that we do not have evidence against the hypothesis that one slope over categories of race suffices to express the effect of tenure on the wage. There does not seem to be evidence of statistical discrimination in wage increments, in the sense that the growth rates of female workers' wages do not appear to be race related. This last regression estimates five {log(wage), tenure} profiles, where the profiles for union members and nonunion members have equal slopes for a given race (with intercepts 0.188 higher for union members). We could fully interact tenure with both qualitative factors and estimate six {log(wage), tenure} profiles with different slopes: , regress lwage R1 R2 union tenure uTen R1ten R2ten | Source | SS | df | MS | | Number of obs
F(7, 1860) | = 1868 = 49.48 | |-------------------|--------------------------|-----------|-----------------------|-------|--|----------------------------------| | Model
Residual | 77.8008722
417.786494 | 100000000 | .1144103
224616394 | | Prob > F
R-squared
Adj R-squared | = 0.0000
= 0.1570
= 0.1538 | | Total | 495.587366 | 1867 .2 | 65445831 | | Root MSE | = .47394 | | lwage | Coef. | Std. Erz | t | P> t | [95% Conf. | Interval] | | R1 | 0697096 | .1396861 | -0.50 | 0.618 | 3436676 | .2042485 | | R2 | 2795277 | .1423788 | -1.96 | 0.050 | 5587668 | 0002886 | | union | . 238244 | .0410597 | 5.80 | 0.000 | .1577161 | .3187718 | | tenure | .0304528 | .0188572 | 1.61 | 0.106 | 0065308 | .0674364 | | uTen | 0068628 | .0043311 | -1.58 | 0.113 | 0153572 | .0016316 | | Riten | 0001912 | .0188335 | -0.01 | 0.992 | 0371283 | .0367459 | | R2ten | -0023429 | .0190698 | 0.12 | 0.902 | 0350576 | .0397433 | | _cons | 1.76904 | 1390492 | | 0.000 | 1.496331 | 2.041749 | ^{8.} We could certainly use these findings to argue that black women with a given job tenure earn lower wages than do white women or those of other races, but that outcome could be related to other
factors: the workers' ages, levels of education, employment location, and so forth. ``` . test uTen Riten R2ten (1) uTen = 0 (2) Riten = 0 (3) R2ten = 0 ``` The joint test conducted here considers the null of one slope for all six categories versus six separate slopes. That null is not rejected by the data, so one slope will suffice Before leaving this topic, consider a simpler model in which we consider only the single indicator variable union and one quantitative measure, tenure. Compare the equation $$lwage_i = \beta_1 + \beta_2 union_i + \beta_3 tenure_i + \beta_4 (union_i \times tenure_i) + u_i$$ (7.1) with the equations $$\begin{aligned} \text{lwage}_i &= \gamma_1 + \gamma_2 \text{tenure}_i + v_i, \ i \neq \text{union} \\ \text{lwage}_i &= \delta_1 + \delta_2 \text{tenure}_i + \omega_i, \ i = \text{union} \end{aligned} \tag{7.2}$$ That is, we estimate separate equations from the nonunion and union cohorts. The point estimates of β from (7.2) are identical to those that may be computed from (7.1), but their standard errors will differ since the former are computed from smaller samples. Furthermore, when the two equations are estimated separately, each has its own σ^2 estimate. In estimating (7.1), we assume that u is homoskedastic over union and nonunion workers, but that may not be an appropriate assumption. From a behavioral standpoint, collective bargaining may reduce the volatility of wages (e.g., by ruling out merit increments in favor of across-the-board raises), regardless of the effects of collective bargaining on the level of wages. Estimating these equations for the nisses data illustrates these points. First, I present the regression over the full sample: | Source | SS | df | | MS | | Number of obs
F(3, 1864) | - 36 | |----------------------------------|---|----------------------|--------------|---------------------------------|----------------------------------|---|---------------------------| | Model
Residual | 64.0664855
431.52088 | 3
1864 | | 554952
502618 | | Prob > F
R-squared | = 0.0 | | Total | 495.587366 | 1867 | . 265 | 445831 | | Root MSE | # .40 | | lwage | Coef. | Std. | Err. | t | P> t | [95% Conf. | Interv | | union
tenure
uTen
_cons | .2144586
.0298926
0056219
1.655054 | .002
.002
.004 | 3694
3756 | 5.17
12.62
-1.28
85.34 | 0.000
0.000
0.199
0.000 | .1330872
.0252456
0142035
1.617018 | .03453
.00295
1.693 | The t test for uTen indicates that the effects of tenure do not differ significantly across the classifications. We now fit the model over the union and nonunion subsamples: | regress lwag | e tenure if !
SS | df | | MS | | Number of obs = 1408
F(1, 1406) = 148.43 | |--|---|-------------------------------|-------|------------------------|-------|---| | Model
Residual | 36.8472972
349.032053 | 1
1406 | 36.84 | | | Prob > F = 0.0000
R-squared = 0.0955
Adj R-squared = 0.0948 | | Total | 385.87935 | 1407 | -2742 | 56823 | | Root MSE = .49824 | | lwage | Coef. | Std. | Err. | t | Polti | [95% Conf. Interval] | | tenure
_cons | .0298926
1.655054 | .0024 | | 12.18
82.41 | 0.000 | .0250795 .0347056
1.615659 1.69448 | | predict doub | le unw if e(s
alues generat | | , res | | | | | predict doub
470 missing v
regress lwag | e tenure if u | nion | | we | | Number of obs = 46 | | predict doub | e tenure if u
SS
10.0775663 | nion
df | 10.07 | MS
75663 | | F(1, 458) = 55.9
Prob > F = 0.000 | | predict doub
470 missing v
regress lwag
Source | e tenure if u | nion
df | 10.07 | AND THE REAL PROPERTY. | | F(1, 458) = 55.9
Prob > F = 0.000
R-squared = 0.108 | | predict doub
470 missing v
regress lwag
Source
Model | e tenure if u
SS
10.0775663 | nion
df | 10.07 | 75663 | | F(1, 458) = 55.9
Prob > F = 0.000
R-squared = 0.108 | | predict doub
170 missing v
regress lwag
Source
Model
Residual | e tenure if u
SS
10.0775663
82.4888278 | nion
df
1
458
459 | 10.07 | 75663
106611 | P> t | F(1, 458) = 55.9
Prob > F = 0.000
R-squared = 0.108
Adj R-squared = 0.108 | [.] predict double nunw if e(sample), res (1418 missing values generated) The Root MSE values are different for the two subsamples and could be tested for equality as described in section 6.2.2's treatment of groupwise heteroskedasticity:⁹ ``` . generate double allres = nunw (1418 missing values generated) ``` . replace allres = unw if unw<. (1408 real changes made) . mdtest allres, by(union) Variance ratio test | Group | Obs | Mean | Std. Err. | Std. Dev. | [95% Conf. | Interval] | |-------------------|-------------|----------------------|-----------|----------------------|--------------------|-----------| | nonunion
union | 1408
460 | 5.19e-17
6.47e-17 | .0132735 | .4980645
.4239271 | 0260379
0388425 | .0260379 | | combined | 1868 | 5.50e-17 | .0111235 | .4807605 | 0218157 | .0218157 | ratio = sd(nonunion) / sd(union) Ho: ratio = 1 degrees of freedom = 1497, 459 Ha: ratio < 1 Ha: ratio != 1 Ha: ratio > 1 Ha: ratio > 1 Pr(F < f) = 1.0000 2*Pr(F > f) = 0.0000 We could instead use egen double allres = rowtotal(nunw unw), but we would then have to use replace allres=, if nunw ==, & unw==, to deal with observations missing from both subsamples. Those observations would otherwise be coded as zeros. We conclude that contrary to our prior results, nonunion workers have a significantly smaller variance of their disturbance process than union members. We should either correct for the heteroskedasticity across this classification or use robust standard errors to make inferences from a model containing both union and nonunion workers. To illustrate the latter point: . regress lwage union tenure uTen, robust Linear regression | Number of obs | (8) | 1868 | |---------------|-----|--------| | F(3, 1864) | = | 109.84 | | Prob > F | 8 | 0.0000 | | R-squared | 8 | 0.1293 | | Root MSE | = | .48115 | | lwage | Coef. | Robust
Std. Err. | t | P> t | [95% Conf. | Interval] | |--------|----------|---------------------|-------|-------|------------|-----------| | union | .2144586 | .0407254 | 5.27 | 0.000 | .1345864 | . 2943308 | | tenure | .0298926 | .0023964 | 12.47 | 0.000 | .0251928 | . 0345924 | | uTen | 0056219 | .0038631 | -1.46 | 0.146 | 0131984 | .0019546 | | _cons | 1.655054 | .0210893 | 78.48 | 0.000 | 1.613693 | 1.696415 | Although robust standard errors increase the t statistic for uTen, the coefficient is not significantly different from zero at any conventional level of significance. We conclude that an interaction of tenure and union is not required for proper specification of the model #### 7.3 Seasonal adjustment with indicator variables Economic data with a time-series dimension often must be seasonally adjusted. For instance, monthly sales data for a set of retail firms will have significant variations around the holidays, and quarterly tax collections for municipalities located in a tourist are will fluctuate widely between the tourist season and off-season. A common method of seasonal adjustment involves modeling the seasonal factor in the time series as being either additive or multiplicative. An additive seasonal factor increases (decreases) the variable by the same dollar amount every January (or first quarter), with the amount denominated in units of the variable. In contrast, a multiplicative seasonal factor increases (decreases) the variable by the same percentage every January (or first quarter). The primary concern here is that some economic data are made available in scalar ally adjusted (SA) form. For flow series such as personal income, this concept is offer indicated as seasonally adjusted at an annual rate (SAAR). Other economic data that may be used in a model of household or firm behavior are denoted as not seasonable adjusted (NSA). The two types of data should not be mixed in the same model: instance, an NSA response variable versus a set of regressors, each of which is SA. Soch regression will contain seasonality in its residuals and will fail any test for independent of the errors that considers AR(4) models (for quarterly data) or AR(12) models (monthly data). If we recognize that there are seasonal components in one or more data. series, we should use some method of seasonal adjustment unless all series in the model are NSA. Deseasonalization with either the additive or multiplicative form of the seasonal model requires that a set of seasonal dummies be created by defining the elements of the set with statements like ``` generate mseas1 = (month(dofm(datevar)) == 1) generate qseas1 = (quarter(dofq(datevar)) == 1) ``` for data that have been identified as monthly or quarterly data to Stata, respectively, by tsset datevar. The variable mseast will be 1 in January and 0 in other months; qseast will be 1 in the first quarter of each year and 0 otherwise. The month() and quarter() functions, as well as the more arcane dofm() and dofq, are described in [D] functions under the headings Date functions and Time-series functions. The set of seasonal dummies is easily constructed with a forvalues loop, as shown in the example below. To remove an additive seasonal factor from the data, we regress the series on a constant term and all but one of the seasonal dummies ``` . regress sales mseas* . regress taxrev qseas* ``` for monthly or quarterly data, respectively. After the regression, we use predict with the residuals option to produce the deseasonalized series. Naturally, this series will have a mean of zero, since it comes from a regression with a constant term; usually it is "rebenched" to
the original series' mean, as I illustrate below. We use the turksales dataset, which contains quarterly turkey sales data for 1990q1–1994q4, as described by summarize: ``` . use http://www.stata-press.com/data/imeus/turksales, clear ``` | | | | | | summarize sales | |----------|----------|-----------|----------|-----|-----------------| | Max | Min | Std. Dev. | Mean | Obs | Variable | | 112.9617 | 97.84603 | 4.056961 | 105.6178 | 40 | sales | We first find the mean of the quarterly sales series and generate three quarterly dummy variables: ``` summarize sales, meanonly local mu = r(mean) forvalues i=1/3 { generate qseas'i' = (quarter(dofq(t)) == 'i') 3. } ``` We then run the regression to evaluate the importance of seasonal factors: | Source | SS | df | | MS | | Number of obs
F(3, 36) | | 40 | |-------------------|-------------------------|---------|------|------------------|-------|--|--------|--------------------------| | Model
Residual | 161.370376
480.52796 | 3
36 | | 901254
479989 | | Prob > F
R-squared
Adj R-squared | = 0.0 | 4.03
0.0143
0.2514 | | Total | 641.898336 | 39 | 16.4 | 589317 | | Root MSE | = 0.1 | | | sales | Coef. | Std. | Err. | t | P> t | [95% Conf. | Interv | al] | | qseas1 | -5.232047 | 1.633 | 891 | -3.20 | 0.003 | -8.545731 | -1.918 | 362 | | qseas2 | -2.842753 | 1.633 | 891 | -1.74 | 0.090 | -6.156437 | .4709 | | | qseas3 | 8969368 | 1.633 | 891 | -0.55 | 0.586 | -4.210621 | 2.416 | 748 | | cons | 107.8608 | 1.155 | 335 | 93.36 | 0.000 | 105.5177 | 110.2 | | The ANOVA F statistic from the regression indicates that seasonal factors explain much of the variation in sales. To generate the deseasonalized series, we use predict to recover the residuals and add the original mean of the series to them: - . predict double salesSA, residual - . replace salesSA = salesSA + 'mu' (40 real changes made) We can now compare the two series: . summarize sales salesSA | Variable | 0bs | Mean | Std. Dev. | Min | Max | |----------|-----|----------|-----------|----------|----------| | sales | 40 | 105.6178 | 4.056961 | 97.84603 | 112.9617 | | salesSA | 40 | 105.6178 | 3.510161 | 97.49429 | 111.9563 | - , label var salesSA "sales, seasonally adjusted" - . tsline sales salesSA, lpattern(solid dash) The deseasonalized series has a smaller standard deviation than the original the seasonality has been removed. This effect is apparent in the graph of the original series and the smoother deseasonalized series in figure 7.1. Figure 7.1: Seasonal adjustment of time series We may also want to remove the trend component from a series. To remove a linear trend, we merely regress the series on a time trend. For a multiplicative (geometric, or constant growth rate) trend, we regress the logarithm of the series on the time trend. In either case, the residuals from that regression represent the detrended series. We may remove both the trend and seasonal components from the series in the same regression, as illustrated here: | Source | SS | df | | MS | | Number of obs
F(4. 35) | | 54.23 | |-------------------|--------------------------|---------|------|------------------|-------|--|----|----------------------------| | Model
Residual | 552.710487
89.1878487 | 4
35 | | 177622
822425 | | Prob > F
R-squared
Adj R-squared | 1 | 0.0000
0.8611
0.8452 | | Total | 641.898336 | 39 | 16.4 | 589317 | | Root MSE | = | 1.5963 | | sales | Coef. | Std. | Err. | t | P>iti | [95% Conf. | In | terval] | | qseas1 | -4.415311 | .7169 | 299 | -6.16 | 0.000 | -5.870756 | | .959866 | | qseas2 | -2.298262 | .7152 | 2449 | -3.21 | 0.003 | -3.750287 | | 846238 | | qseas3 | 6246916 | .7142 | 2321 | -0.87 | 0.388 | -2.07466 | 3 | 8252766 | | t | .2722452 | .0219 | 9686 | 12.39 | 0.000 | .2276466 | 3 | 3168438 | | cons | 69.47421 | 3.138 | 3432 | 22.14 | 0.000 | 63.10285 | | 75.84556 | - test qseas1 qseas2 qseas3 - (1) qseas1 = 0 - (2) qseas2 = 0 (3) qseas3 = 0 - F(3, 35) = 15.17 Prob > F = 0.0000 For more detail, see Davidson and MacKinnon (2004, 72–73). - . predict double salesSADT, residual - . replace salesSADT = salesSADT + 'mu' (40 real changes made) - . label var salesSADT "sales, detrended and SA" - . tsline sales salesSADT, lpattern(solid dash) yline('mu') The trend t is highly significant in these data. A joint F test for the seasonal factors shows that they are also significant beyond a trend term. The detrended and deseasonalized series, rebenched to the mean of the original series (shown by the horizontal line), is displayed in figure 7.2. Figure 7.2: Seasonal adjustment and detrending of time series Several other methods of seasonal adjustment and detrending for time-series data are implemented in Stata under the heading tssmooth; see in particular [TS] tssmooth shwinters. As Davidson and MacKinnon (2004, 584–585) point out, the seasonal adjustment methods used by government statistics bureaus can be approximated by a linear filter, or τ -term moving average. In this context, tssmooth ma or the egen function filter() available in the egenmore package from ssc may be helpful. If you are interested in filtering time-series data to identify business cycles, set the author's bking (Baxter-King bandpass filter) and hprescott (Hodrick-Prescott filter) routines, both available from the SSC archive (see [R] ssc). # 7.4 Testing for structural stability and structural change Indicator variables are used to test for structural stability in a regression function in which we specify a priori the location of the possible structural breakpoints. In (7.1) and (7.2), we found that the intercept of the regression differed significantly between union and nonunion cohorts but that one slope parameter for tenure was adequate. In further resting, we found that the σ_u^2 differed significantly between these two cohorts in the sample. If we doubt structural stability—for instance, an industry-level regression over a set of natural resource—intensive and manufacturing industries—we may use indicator variables to identify groups within the sample and test whether the intercept and slope parameters are stable over these groups. In household data, a function predicting food expenditures might not be stable over families with different numbers of children. Merely including the number of children as a regressor might not be adequate if this relationship is nonlinear in the number of mouths to feed. Structural instability over cohorts of the sample need not be confined to shifts in the intercept of the relationship. A structural shift may not be present in the intercept, but it may be an important factor for one or more slope parameters. If we question structural stability, we should formulate a general model in which all regressors (including the constant term) are interacted with cohort indicators and test down where coefficients appear to be stable across cohorts. Section 6.2.2 considers the possibility of heteroskedasticity over groups or cohorts in the data that may have been pooled. Beyond the possibility that σ_u^2 may differ across groups, we should be concerned with the stability of the regression function's coefficients over the groups. Whereas groupwise heteroskedasticity may be readily diagnosed and corrected, improperly specifying the regression function to be constant over groups of the sample will be far more damaging, rendering regression estimates biased and inconsistent. For instance, if those firms who are subject to liquidity constraints (because of poor credit history or inadequate collateral) behave differently from firms that have ready access to financial markets, combining both sets of firms in the same regression will yield a regression function that is a mix of the two groups' dissimilar behavior. Such a regression is unlikely to provide reasonable predictions for firms in either group. Placing the two groups in the same regression, with indicator variables used to allow for potential differences in structure between their coefficient vectors, is more sensible. That approach will allow those differences to be estimated and tested for significance. ## 7.4.1 Constraints of continuity and differentiability It is easy to determine that the regression function should be allowed to exhibit various structural breaks. Tests may show that a representative worker's earnings tenure profile should be allowed to have different slopes over different ranges of job tenure. You could accomplish this configuration by using a polynomial in tenure, but doing so may introduce unacceptable behavior (for instance, with tenure and tenure², there must be some tenure at which the profile turns downward, predicting that wages will fall with each additional year on the job). If we use the interaction terms with no further Number of obs = 2231F/ 7 2223 = 37.12 .0036191 -0439837 constraints on the regression function, that piecewise linear function exhibits discontinuities over the groups identified by the interaction terms (e.g., the age categories in the sample). I illustrate, returning to the NLSW dataset and defining four job tenure categories: fewer than 2 years, 2–7 years, 7–12 years, and more than 12 years: ``` . use http://www.stata-press.com/data/imeus/nlsw88, clear (NLSW, 1988 extract) . generate lwage = log(wage) . generate Ten2 = tenure<=2 . generate Ten7 = !Ten2 & tenure<=7 . generate Ten12 = !Ten2 & !Ten7 & tenure<=12 . generate Ten25 = !Ten2 & !Ten7 & !Ten12 & tenure<</pre> ``` We now generate interactions of tenure with each of the tenure categories, run the regression on the categories and interaction terms, 11 and generate predicted values: ``` . generate tTen2 = tenure*Ten2 (15 missing values generated) . generate tTen7 = tenure*Ten7 (15 missing values generated) . generate tTen12 = tenure*Ten12 (15 missing values generated) . generate tTen25 = tenure*Ten25 (15 missing values generated) . regress
lwage Ten* tTen*, nocons hascons Source | SS df MS ``` | Model
Residual | 76.6387069
655.578361 | 7
2223 | 3700000 | 483867
907045 | | Prob > F
R-squared | 100 | 0.0000
0.1047
0.1018 | |-------------------|--|-----------|---------|---|-------|---------------------------|-----|----------------------------| | Total | 732.217068 | 2230 | .328 | 348461 | | Adj R-squared
Root MSE | - | .54305 | | lwage | Coef. | Std. | Err. | t | P> t | [95% Conf. | In | terval] | | Ten2 | 1.55662 | .0383 | 3259 | 40.62 | 0.000 | 1.481462 | 1 | .631778 | | Ten7 | 1.708728 | :060 | 0084 | 28.44 | 0.000 | 1.590901 | | .826554 | | Ten12 | 1.870808 | .1877 | 7798 | 9,96 | 0.000 | 1.502566 | 117 | 2.23905 | | Ten25 | 1.751961 | .1691 | 1799 | 10.36 | 0.000 | 1.420194 | 2 | .083728 | | tTen2 | .0897426 | .033 | 1563 | 2.71 | 0.007 | .0247221 | | 1547631 | | tTen7 | .0434089 | .0140 | 739 | 3.08 | 0.002 | .0158095 | -1 | 0710083 | | tTen12 | .0154208 | .019 | 786 | 0.78 | 0.436 | 0233801 | | 542218 | | 1000 | THE RESERVE TO STATE OF THE PARTY PAR | | | 100000000000000000000000000000000000000 | 200 | | | Committee of the same of | 2.31 .0102917 ``` predict double lwagehat (option xb assumed; fitted values) (15 missing values generated) ``` .0238014 tTen25 [.] label var lwagehat "Predicted log(wage)" sort tenure ^{11.} We exclude the constant term so that all four tenure dummies can be included. The option hascest indicates to Stata that we have the equivalent of a constant term in the four tenure dummies Ten2-Ten25 The predicted values for each segment of the wage-tenure profile can now be graphed: ``` twoway (line lwagehat tenure if tenure<=2) > (line lwagehat tenure if tenure>2 & tenure<=7) > (line lwagehat tenure if tenure>7 & tenure<=12) > (line lwagehat tenure if tenure>12 & tenure<.). legend(off) ``` Figure 7.3: Piecewise wage-tenure profile As we see in figure 7.3, this piecewise function allows for a different slope and intercept for each of the four ranges of job tenure, but it is not continuous. For instance, the estimates predict that at the point of 2 years' tenure, the average worker's log wage will abruptly jump from 1.73 per hour to 1.80 per hour and then decline from 2.01 per hour to 1.98 per hour at the point of 7 years' tenure. We may want to allow such a profile to be flexible over different ranges of job temure but force the resulting function to be piecewise continuous by using a linear spline; a mathematical function that enforces continuity between the adjacent segments. Spline functions are characterized by their degree. A linear spline is degree 1, a quadratic spline is degree 2, and so on. A linear spline will be continuous but not differentiable at the knot points; those points on the profile that define segments of the function. A quadratic spline is continuous and once differentiable. Since the function has constant first derivatives on both sides of the knot, there will be no kinks in the curve. Likewise, a cubic spline will be continuous and twice differentiable, and so on. I illustrate using a linear spline to generate a piecewise continuous earnings-tenure profile. Stata's mkspline (see [R] mkspline) command automates this process for linear splines. Higher-order splines must be defined algebraically or by using a user-written routine. We can use the mkspline command to generate a spline with knots placed at specified points or a spline with equally spaced knots. 12 Here we use the former syntax mkspline $$newvar_1 \# 1 \ [newvar_2 \# 2 \ [\dots]] \ newvar_k = oldvar \ [if] \ [in]$$ where k neuvars are specified to define a linear spline of varname with (k-1) knots, placed at the values $\#1, \#2, \ldots, \#(k-1)$ of the splined variable. The resulting set of neuvarname variables may then be used as regressors. In the piecewise regression above, we estimated four slopes and four intercepts for a total of eight regression parameters. Fitting this model as a linear spline places constraints on the parameters. At each of the three knot points (2, 7, and 12 years) along the tenure axis, $\gamma + \delta$ tenure must be equal from the left and right. Simple algebra shows that each of the three knot points imposes one constraint on the parameter vector. The piecewise linear regression using a linear spline will have five parameters rather than eight: - . mkspline sTen2 2 sTen7 7 sTen12 12 sTen25 = tenure - , regress lwage sTen* | = 2231
= 64.55 | Number of obs
F(4, 2226) | | MS | | df | SS | Source | |----------------------------------|--|-------|-----------------|--|-------|--------------------------|-------------------| | = 0.0000
= 0.1039
= 0.1023 | Prob > F
R-squared
Adj R-squared | | 58987
749988 | THE RESERVE OF THE PARTY | 2226 | 76.1035947
656.113473 | Model
Residual | | 54291 | Root MSE | | 348461 | ,3283 | 2230 | 732.217068 | Total | | Interval] | [95% Conf. | P> t | t | Err. | Std. | Coef. | lwage | | .1660716 | .0685619 | 0.000 | 4.72 | 3619 | .0248 | .1173168 | sTen2 | | .0656455 | .02859 | 0.000 | 4.99 | 9448 | .009 | .0471177 | sTen7 | | .0273158 | 0163076 | 0.621 | 0.49 | 1226 | .011 | .0055041 | sTen12 | | .0401744 | .007379 | 0.005 | 2.84 | 3618 | .0083 | .0237767 | sTen25 | | 1.610505 | 1.469465 | 0.000 | 42.82 | 9605 | .0359 | 1.539985 | _cons | . predict double lwageSpline (option xb assumed; fitted values) (15 missing values generated) - . label var lwageSpline "Predicted log(wage), splined" - . twoway line lwageSpline tenure The result of the piecewise linear estimation, displayed in figure 7.4, is a continuous earnings tenure profile with kinks at the three knot points. From an economic standpoint, the continuity is highly desirable. The model's earnings predictions for tenures of 1.9, 2.0, and 2.1 years will now be smooth, without implausible jumps
at the knot points. ^{12.} The alternative syntax can also place knots at equally spaced percentiles of the variable with the pettle option. Figure 7.4: Piecewise linear wage-tenure profile #### 4.2 Structural change in a time-series model With time-series data, a concern for structural stability is usually termed a test for structural change. We can allow for different slopes or intercepts for different periods in a time-series regression (e.g., allowing for a household consumption function to shift downward during wartime). Just as in a cross-sectional context, we should consider that both intercept and slope parameters may differ over various periods. Older econometrics texts often discuss this difference in terms of a Chow test and provide formulas that manipulate error sums of squares from regressions run over different periods to generate a test statistic. This step is not necessary since the Chow test is nothing more than the F test that all regime dummy coefficients are jointly zero. For example, $$y_t = \beta_1 + \beta_2 x_{2t} + \beta_3 x_{3t} + \beta_4 g w_t + \beta_5 (x_{2t} \times g w_t) + \beta_6 (x_{3t} \times g w_t) + u_t$$ where $gw_t=1$ during calendar quarters of the Gulf War. The joint test $\beta_4=\beta_5=\beta_6=0$ would test that this regression function is stable during the two regimes. We may also consider the intermediate cases: for instance, the coefficient on x_2 may be stable over peacetime and wartime, but the coefficient on x_3 (or the intercept) may not. We can easily handle more than two regimes by merely adding regime dummies for each regime and their interactions with the other regressors. We should also be concerned about the realistic possibility that the σ_u^2 has changed over regimes. We may deal with this possibility by computing robust standard errors for the regression with regime dummies, him we might want to estimate the differing variances for each regime, as this is a sort of groupwise heteroskedasticity where the groups are time-series regimes. Sometimes a regime may be too short to set up the fully interacted model since it requires that the regression model be fitted over the observations of that regime. Since the model above contains three parameters per regime, it cannot be estimated over a regime with 4 or fewer observations. This problem often arises at the end of a time series. We may want to test the hypothesis that the last T_2 observations were generated by the same regime as the previous T_1 observations. Then we construct an F test by estimating the regression over all $T = T_1 + T_2$ observations and then estimating it again over the first T_1 observations. The sum of squared residuals $(\Sigma \hat{u}_t^2)$ for the full sample will exceed that from the first T_1 observations unless the regression fits perfectly over the additional T_2 data points, we can reject the null of model stability over $[T_1, T_2]$. This Chow predictive F test has T_2 degrees of freedom in the numerator: $$F(T_2, T_1 - k) = \frac{(\widehat{\mathbf{u}}_T' \widehat{\mathbf{u}}_T - \widehat{\mathbf{u}}_{T1}' \widehat{\mathbf{u}}_{T1})/T_2}{(\widehat{\mathbf{u}}_{T1}' \widehat{\mathbf{u}}_{T1})/(T_1 - k)}$$ where $\hat{\mathbf{u}}_T$ is the residual vector from the full sample. Following a regression, the error sum of squares may be accessed as e(rss) (see [P] ereturn). These dummy variable methods are useful when the timing of one or more structural breaks is known a priori from the economic history of the period. However, we often are not sure whether (and if so, when) a relationship may have undergone a structural shift. This uncertainty is particularly problematic when a change may be a gradual process rather than an abrupt and discernible break. Several tests have been devised to evaluate the likelihood that a change has taken place, and if so, when that break may have occurred. Those techniques are beyond the scope of this text. See Bai and Perron (2003). #### **Exercises** - Using the dataset of section 7.1.2, test that race explains much of the variation in lwage. - Consider the model used in section 7.2 to search for evidence of statistical discrimination. Test a model that includes interactions of the factors race and tenure. - 3. Consider the model used in section 7.3 to seasonally adjust turkey sales data. Fit a multiplicative seasonal model to these data. Is an additive seasonal factor of a multiplicative seasonal factor preferred? - 4. Consider the model used in section 7.3 to seasonally adjust turkey sales data. Apply Holt-Winters seasonal smoothing (tssmooth shwinters), and compare the resulting series to that produced by seasonal adjustment with indicator variables. - 5. Consider the model used in section 7.4.1. Use the alternate syntax of aksplipe to generate three equally placed knots and estimate the equation. Repeat the exercise, using the pctile option. How sensitive are the results to the chalce of linear spline technique? ## 8 Instrumental-variables estimators ## 8.1 Introduction The zero-conditional-mean assumption presented in section 4.2 must hold for us to use linear regression. There are three common instances where this assumption may be violated in economic research: endogeneity (simultaneous determination of response variable and regressors), omitted-variable bias, and errors in variables (measurement error in the regressors). Although these problems arise for different reasons in microeconomic models, the solution to each is the same econometric tool: the instrumental-variables (IV) estimator, described in this chapter. The most common problem, endogeneity, is presented in the next section. The other two problems are discussed in chapter appendices. The following sections discuss the IV and two-stage least-squares (2SLS) estimators, identification and tests of overidentifying restrictions, and the generalization to generalized method-of-moments (GMM) estimators. The last three sections of the chapter consider testing for heteroskedasticity in the IV context, testing the relevance of instruments, and testing for endogeneity. A variable is endogenous if it is correlated with the disturbance. In the model $$y = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$ x_j is endogenous if $\operatorname{Cov}[x_j,u] \neq 0$. x_j is exogenous if $\operatorname{Cov}[x_j,u] = 0$. The OLS estimator will be consistent only if $\operatorname{Cov}[x_j,u] = 0$, $j=1,2,\ldots,k$. This zero-covariance assumption and our convention that x_1 is a constant imply that E[u] = 0. Following Wooldridge (2002, 2006), we use the zero-conditional-mean assumption $$E[u|x_1, x_2, \dots, x_k] = 0$$ which is sufficient for the zero-covariance condition. Although the rest of this chapter uses economic intuition to determine when a variable is likely to be endogenous in an empirical study, it is the above definition of endogeneity that matters for empirical work. ## 8.2 Endogeneity in economic relationships Economists often model behavior as simultaneous-equations systems in which economically endogenous variables are determined by each other and some additional economically exogenous variables. The simultaneity gives rise to empirical models with vari- ables that do not satisfy the zero-conditional-mean assumption. Consider the textbook supply-and-demand paradigm. We commonly write $$q^d = \beta_1 + \beta_2 p + \beta_3 inc \tag{8.1}$$ to indicate that the quantity demanded of a good (q^d) depends on its price (p) and the level of purchasers' income (inc). When $\beta_1 > 0$, $\beta_2 < 0$, and $\beta_3 > 0$, the demand curve in [p,q] space slopes downward, and for any given price the quantity demanded will rise for a higher level of purchasers' income. If this equation reflected an individual's demand function, we might argue that the individual is a price taker who pays the posted price if she chooses to purchase the good and has a fixed income at her disposal on shopping day. But we often lack microdata, or household-level data, for the estimation of this relationship for a given good. Rather, we have data generated by the market for the good. The observations on p and q are equilibrium prices and quantities in successive trading periods. If we append an error term, u, to (8.1) and estimate OLS from these [p,q] pairs, the estimates will be inconsistent. It does not matter whether the model is specified as above with q as the response variable or in inverse form with p as the response variable. In either case, the regressor is endogenous. Simple algebra shows that the regressor must be correlated with the error term, violating the zero-conditional-mean assumption. In (8.1), a shock to the demand curve must alter both the equilibrium price and quantity in the market. By definition, the shock u is correlated with p. How can we use these market data to estimate a demand curve for the product? We must specify an instrument for p that is uncorrelated with u but highly correlated with p. In an economic model, this is termed the identification problem: what will allow us to identify or trace out the demand curve? Consider the other side of the market. Any factor in the supply function that does not appear in the demand function will be a valid instrument. If we are modeling the demand for an agricultural commodity, a factor like rainfall or temperature would suffice. Those factors are determined outside the economic model but may have an important effect on the yield of the commodity and thus the quantity that the grower will bring to market. In the economic model, these factors will appear in the reduced-form equations for both q and p: the algebraic solution to the simultaneous system. To derive consistent estimates of (8.1), we must find an IV that satisfies two properties: the instrument z must be uncorrelated with u but must be highly correlated with p. A variable that meets those two conditions is an IV or instrument for p that deals with
the correlation of p and the error term. Because we cannot observe u, we cannot directly test the assumption of zero correlation between z and u, which is known as an orthogonality assumption. We will see that in the presence of multiple instruments such a test can be constructed. But we can readily test the second assumption and should always do so by regressing the included regressor p on the instrument z: ^{1.} The meaning of "highly correlated" is the subject of section 8.10. $$p_i = \pi_1 + \pi_2 z_i + \zeta_i$$ (8.2) If we fail to reject the null hypothesis H_0 : $\pi_2 = 0$, we conclude that z is not a valid instrument. Unfortunately, rejecting the null of irrelevance is not sufficient to imply that the instrument is not "weak", as discussed in section 8.10. There is no unique choice of an instrument here. We discuss below how we can construct an instrument if more than one is available. If we decide that we have a valid instrument, how can we use it? Return to (8.1), and write it in matrix form in terms of ${\bf y}$ and ${\bf X}$ $$y = X\beta + u$$ where β is the vector of coefficients $(\beta_1, \beta_2, \beta_3)'$ and \mathbf{X} is $N \times k$. Define a matrix \mathbf{Z} of the same dimension as \mathbf{X} in which the endogenous regressor—p in our example above—is replaced by z. Then $Z'y = Z'X\beta + Z'u$ The assumption that \mathbf{Z} is unrelated to \mathbf{u} implies that $1/N(\mathbf{Z}'\mathbf{u})$ goes to zero in probability as N becomes large. Thus we may define the estimator $\hat{\boldsymbol{\beta}}_{\text{IV}}$ from $$\mathbf{Z}'\mathbf{y} = \mathbf{Z}'\mathbf{X} \,\widehat{\boldsymbol{\beta}}_{\mathrm{IV}}$$ $\widehat{\boldsymbol{\beta}}_{\mathrm{IV}} = (\mathbf{Z}'\mathbf{X})^{-1}\mathbf{Z}'\mathbf{y}$ (8.3) We may also use the zero-conditional-mean assumption to define a method-of-moments estimator of the IV model. In the linear regression model presented in section 4.2.1, the zero-conditional-mean assumption held for each of the k variables in \mathbf{X} , giving rise to a set of k moment conditions. In the IV model, we cannot assume that each \mathbf{X} satisfies the zero-conditional-mean assumption: an endogenous x does not. But we can define a matrix \mathbf{Z} as above in which each endogenous regressor will be replaced by its instrument, yielding a method-of-moments estimator for β : $$\mathbf{Z}'\mathbf{u} = 0$$ $$\mathbf{Z}'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = 0$$ (8.4) We may then substitute calculated moments from our sample of data into the expression and replace the unknown coefficients β with estimated values $\widehat{\beta}$ in (8.4) to derive $$\mathbf{Z}'\mathbf{y} - \mathbf{Z}'\mathbf{X}\widehat{\boldsymbol{\beta}}_{\mathrm{IV}} = 0$$ $\widehat{\boldsymbol{\beta}}_{\mathrm{IV}} = (\mathbf{Z}'\mathbf{X})^{-1}\mathbf{Z}'\mathbf{y}$ The IV estimator has an interesting special case. If the zero-conditional-mean assumption holds, each explanatory variable can serve as its own instrument, $\mathbf{X} = \mathbf{Z}$, and ² Bound, Jaeger, and Baker (1995) proposed the rule of thumb that this F statistic must be at least 10. In more recent work, table 1 of Stock, Wright, and Yogo (2002) provides critical values that depend number of instruments. the IV estimator reduces to the OLS estimator. Thus OLS is a special case of IV that is appropriate when the zero-conditional-mean assumption is satisfied. When that assumption cannot be made, the IV estimator is consistent and has a large-sample normal distribution as long as the two key assumptions about the instrument's properties are satisfied. However, the IV estimator is not an unbiased estimator, and in small samples its bias may be substantial. #### 8.3 2SLS Consider the case where we have one endogenous regressor and more than one potential instrument. In (8.1), we might have two candidate instruments: z_1 and z_2 . We could apply the IV estimator of (8.3) with z_1 entering \mathbf{z} , and generate an estimate of $\hat{\boldsymbol{\beta}}_{\text{IV}}$. If we repeated the process with z_2 entering \mathbf{z} , we would generate another $\hat{\boldsymbol{\beta}}_{\text{IV}}$ estimate, and those two estimates would differ. Obtaining the simple IV estimator of (8.3) for each candidate instrument raises the question of how we could combine them. An alternative approach, 28LS, combines multiple instruments into one optimal instrument, which can then be used in the simple IV estimator. This optimal combination, conceptually, involves running a regression. Consider the auxiliary regression of (8.2), which we use to check that a candidate z is reasonably well correlated with the regressor that it is instrumenting. Merely extend that regression model, $$p_i = \pi_1 + \pi_2 z_{i1} + \pi_3 z_{i2} + \omega_i$$ and generate the instrument as the predicted values of this equation: \hat{p} . Given the mechanics of least squares, \hat{p} is an optimal linear combination of the information in z_1 and z_2 . We may then estimate the parameters of (8.3), using the IV estimator with \hat{p} as a column of \mathbf{Z} . 28LS is nothing more than the IV estimator with a decision rule that reduces the number of instruments to the exact number needed to estimate the equation and fill in the **Z** matrix. To clarify the mechanics, define matrix **Z** of dimension $N \times \ell$, $\ell \ge k$, of instruments. Then the first-stage regressions define the instruments as $$\widehat{\mathbf{X}} = \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{X}$$ (8.5) Denote the projection matrix $\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'$ as \mathbf{P}_{Z} . Then from (8.3), $$\begin{split} \widehat{\boldsymbol{\beta}}_{\mathrm{2SLS}} &= (\widehat{\mathbf{X}}'\mathbf{X})^{-1}\widehat{\mathbf{X}}'\mathbf{y} \\ &= \{\mathbf{X}'\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{X}\}^{-1}\{\mathbf{X}'\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{y}\} \\ &= (\mathbf{X}'\mathbf{P}_Z\mathbf{X})^{-1}\mathbf{X}'\mathbf{P}_Z\mathbf{y} \end{split} \tag{8.6}$$ where the "two-stage" estimator can be calculated in one computation using the $da^{l\delta}$ on X, Z, and y. When $\ell=k$, 28LS reduces to IV, so the 28LS formulas presented below also cover the IV estimator. Assuming i.i.d. disturbances, a consistent large-sample estimator of the VCE of the psis estimator is $$Var[\widehat{\boldsymbol{\beta}}_{2SLS}] = \widehat{\sigma}^{2} \{ \mathbf{X}' \mathbf{Z} (\mathbf{Z}' \mathbf{Z})^{-1} \mathbf{Z}' \mathbf{X} \}^{-1} = \widehat{\sigma}^{2} (\mathbf{X}' \mathbf{P}_{Z} \mathbf{X})^{-1}$$ (8.7) where $\hat{\sigma}^2$ is computed as $$\widehat{\sigma}^2 = \frac{\widehat{\mathbf{u}}'\widehat{\mathbf{u}}}{N}$$ calculated from the 2SLS residuals $$\hat{\mathbf{u}} = \mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}_{2SLS}$$ defined by the original regressors and the estimated 2SLS coefficients.3 The point of using the 2SLS estimator is the consistent estimation of $\widehat{\boldsymbol{\beta}}_{2SLS}$ in a model containing response variable \mathbf{y} and regressors \mathbf{X} , some of which are correlated with the disturbance process \mathbf{u} . The predictions of that model involve the original regressors \mathbf{X} , not the instruments $\widehat{\mathbf{X}}$. Although from a pedagogical standpoint we speak of 2SLS as a sequence of first-stage and second-stage regressions, we should never perform those two steps by hand. If we did so, we would generate predicted values $\{\widehat{\mathbf{X}}\}$ from first-stage regressions of endogenous regressors on instruments and then run the second-stage OLS regression using those predicted values. Why should we avoid this? Because the second stage will yield the incorrect residuals, $$\hat{\mathbf{u}}_i = \mathbf{y}_i - \hat{\mathbf{X}}\hat{\boldsymbol{\beta}}_{2\text{SLS}}$$ (8.8) rather than the correct residuals, $$\widehat{\mathbf{u}}_i = \mathbf{y}_i - \mathbf{X} \widehat{\boldsymbol{\beta}}_{\mathrm{2SLS}}$$ which would be calculated by predict after a 2SLS estimation. Statistics computed from the incorrect residuals, such as an estimate of σ^2 and the estimated standard error for each $\hat{\beta}_{2\text{SLS}}$ in (8.7), will be inconsistent since the \hat{X} variables are not the true explanatory variables (see Davidson and MacKinnon 2004, 324). Using Stata's 2SLS command ivreg avoids these problems, as I now discuss. ## 8.4 The ivreg command The ivreg command has the following partial syntax: ivreg $$depvar [varlist1]$$ ($varlist2 = instlist$) [if] [in] [, options] where depvar is the response variable, varlist2 contains the endogenous regressors, instlist contains the excluded instruments, and the optional varlist1 contains any exogenous regressors included in the equation. In our example from the demand for an agricultural commodity in (8.1), we could specify ^{3.} Some packages, including Stata's ivreg, include a degrees-of-freedom correction to the estimate of $\tilde{\sigma}^2$ by replacing N with N-k. This correction is unnecessary since the estimate of $\tilde{\sigma}^2$ would not be unbiased anyway (Greene 2000, 373). . ivreg q inc (p = rainfall temperature) to indicate that q is to be regressed on inc and p with rainfall and temperature as excluded instruments. Stata reports that the instruments used in estimation include inc rainfall temperature, considering that inc is serving as its own instrument. Just as with regress, a constant term is included in the equation by default. If a constant appears in the equation, it also implicitly appears in the instrument list used to specify Z, the matrix of instruments in the first-stage regression. The first-stage regression (one for each endogenous regressor) may be displayed with the first option. In a situation with multiple endogenous regressors such as . ivreg y x2 (x3 x4 = za zb zc zd) novice users of instrumental variables often ask, "How do I tell
Stata that I want to use za, zb as instruments for x3, and zc, zd as instruments for x4?" You cannot, but not because of any limitation of Stata's ivreg command. The theory of 2SLS estimation does not allow such designations. All instruments—included and excluded—must be used as regressors in all first-stage regressions. Here both x3 and x4 are regressed on z x2 za zb zc zd and a constant term to form the \hat{X} matrix. We noted above that summary statistics such as Root MSE should be calculated from the appropriate residuals using the original regressors in X. If we compare the Root MSE from ivreg and the Root MSE from regress on the same model, the former will inevitably be larger. It appears that taking account of the endogeneity of one or more regressors has cost us something in goodness of fit: least squares is least squares. The minimum sum of squared errors from a model including $\{y \mid x\}$ is by definition that computed by regress. The 2SLS estimator calculated by ivreg is a least-squares estimator, but the criterion minimized involves the improper residuals of (8.8). The 2SLS method is fitting y to $\widehat{\mathbf{X}}$ by least squares to generate consistent estimates $\widehat{\boldsymbol{\beta}}_{2SLS}$, thereby minimizing sum of squared errors with respect to $\widehat{\mathbf{X}}$. As long as $\widehat{\mathbf{X}} \neq \mathbf{X}$, those $\widehat{\boldsymbol{\beta}}_{2SLS}$ estimates cannot also minimize the sum of squared errors calculated by [R] regress. Before I present an example of ivreg, we must define identification of a structural equation. ## 8.5 Identification and tests of overidentifying restrictions The parameters in an equation are said to be identified when we have sufficient valid instruments so that the 2SLS estimator produces unique estimates. In econometrics, as say that an equation is identified, if the parameters in that equation are identified. Equation (8.6) shows that $\widehat{\beta}_{2\text{SLS}}$ is unique only if ($\mathbf{Z}'\mathbf{Z}$) is a nonsingular $\ell \times \ell$ matrix and ($\mathbf{Z}'\mathbf{X}$) has full rank k. As long as the instruments are linearly independent, will be a nonsingular $\ell \times \ell$ matrix, so this requirement is usually taken for granted. ^{4.} This terminology comes from literature on estimating the structural parameters in systems of $(Z^{(\mathbf{X})})$ be of rank k is known as the rank condition. That $\ell \geq k$ is known as the order condition. Because the exogenous regressors in \mathbf{X} serve as their own instruments, the order condition is often stated as requiring that there be at least as many instruments as endogenous variables. The order condition is necessary, but not sufficient, for the rank condition to hold. If the rank condition fails, the equation is said to be underidentified, and no econometric procedure can produce consistent estimates. If the rank of $(\mathbf{Z}'\mathbf{X})$ is k, the equation is said to be exactly identified. If the rank of $(\mathbf{Z}'\mathbf{X}) > k$, the equation is said to be overidentified. The rank condition requires only that there be enough correlation between the instruments and the endogenous variables to guarantee that we can compute unique parameter estimates. For the large-sample approximations to be useful, we need much higher correlations between the instruments and the regressors than the minimal level required by the rank condition. Instruments that satisfy the rank condition but are not sufficiently correlated with the endogenous variables for the large-sample approximations to be useful are known as weak instruments. We discuss weak instruments in section 8.10. The parameters of exactly identified equations can be estimated by IV. The parameters of overidentified equations can be estimated by IV, after combining the instruments as in 2SLS. Although overidentification might sound like a nuisance to be avoided, it is actually preferable to working with an exactly identified equation. Overidentifying restrictions produce more efficient estimates in large samples. Furthermore, recall that the first essential property of an instrument is statistical independence from the disturbance process. Although we cannot test the validity of that assumption directly, we can assess the adequacy of instruments in an overidentified context with a test of overidentifying restrictions. In such a test, the residuals from a 2SLS regression are regressed on all exogenous variables; both included exogenous regressors and excluded instruments. Under the null hypothesis that all instruments are uncorrelated with u, an LM statistic of the $N \times R^2$ form has a large-sample $\chi^2\left(r\right)$ distribution, where r is the number of overidentifying form has a large-sample of excess instruments. If we reject this hypothesis, we cast restrictions: the number of excess instruments. If we reject this hypothesis, we cast doubt on the suitability of the instrument set. One or more of the instruments do not appear to be uncorrelated with the disturbance process. This Sargan (1958) or Basmann (1960) test is available in Stata as the overid command (Baum, Schaffer, and Stillman 2003). This command can be installed from ssc for use after estimation with ivreg. I present an example of its use below. ## 8.6 Computing IV estimates I illustrate how to use ivreg with a regression from Griliches (1976), a classic study of the wages of a sample of 758 young men.⁵ Griliches models their wages as a function of several continuous factors: s, expr, and tenure (years of schooling, experience, and job tenure, respectively); rns, an indicator for residency in the South; smsa, an indicator for urban versus rural; and a set of year dummies since the data are a set of pooled cross sections. The endogenous regressor is iq, the worker's IQ score, which is considered as a potentially mismeasured version of ability. Here we do not consider that wage and iq are simultaneously determined, but rather that iq cannot be assumed independent of the error term: the same correlation that arises in the context of an endogenous regressor in a structural equation.⁶ The IQ score is instrumented with four factors excluded from the equation: med, the mother's level of education; kww, the score on another standardized test; age, the worker's age; and mrt, an indicator of marital status. I present the descriptive statistics with summarize and then fit the IV model. . use http://www.stata-press.com/data/imeus/griliches, clear (Wages of Very Young Men, Zvi Griliches, J.Pol.Ec. 1976) | 8 | summarize | lw | 3 | expr | tenure | rns | smsa | iq | med | kuu | age | mrt. | sen(0) | |---|-----------|----|---|------|--------|-----|------|----|-----|-----|-----|------|--------| | Variable | Obs | Mean | Std. Dev. | Min | Max | |----------|-----|----------|-----------|-------|--------| | lw | 758 | 5.686739 | .4289494 | 4,605 | 7.051 | | 8 | 758 | 13.40501 | 2.231828 | 9 | 18 | | expr | 758 | 1.735429 | 2.105542 | 0 | 11,444 | | tenure | 758 | 1.831135 | 1.67363 | 0 | 10 | | rns | 758 | .2691293 | .4438001 | 0 | 1 | | smsa | 758 | .7044855 | .456575 | 0 | 1 | | iq | 758 | 103.8562 | 13.61867 | 54 | 145 | | med | 758 | 10.91029 | 2.74112 | 0 | 18 | | kww | 758 | 36.57388 | 7.302247 | 12 | 56 | | age | 758 | 21.83509 | 2.981756 | 16 | 30 | | mrt | 758 | .5145119 | .5001194 | 0 | 1 | We use the first option for ivreg to evaluate the degree of correlation between these four factors and the endogenous regressor iq: 6. Measurement error problems are discussed in appendix B to this chapter ^{5.} These data were later used by Blackburn and Neumark (1992). I am grateful to Professor Fluidit Hayashi for his permission to use the version of the Blackburn-Neumark data circulated as grills with his econometrics textbook (Hayashi 2000). ivreg lw s expr tenure rns smsa _I* (iq=med kww age mrt), first | Source | SS | df | H | S | | mber of obs = | | |--|----------------------------------|--------|----------------|--------------|-------|----------------------------|-------------| | 330 | 47176.4676 | 15 | 3145.0 | 9784 | | (15, 742) =
rob > F | | | Model | 93222.8583 | 742 | 125.63 | | | | 0.3360 | | Residual | 93222.0000 | 70700 | | | | dj R-squared | | | Total | 140399.326 | 757 | 185.46 | 8066 | | oot MSE | 11.209 | | | Coef. | Std. | Err. | t | P>Itl | [95% Conf. | Interval] | | iq | | . 2858 | 150 | 8.74 | 0.000 | 1.936638 | 3.058846 | | 5 | 2.497742 | .2534 | | -0.13 | 0.895 | 5311042 | .4640082 | | expr | 033548 | .2731 | | 2.25 | 0.024 | .0796522 | 1.151991 | | tenure | .6158215 | .9499 | | -2.75 | 0.006 | -4.475177 | 7452663 | | rns | -2.610221 | | | | | -1.784499 | 1.836595 | | sasa | .0260481 | .9222 | | 0.03 | 0.977 | | 4.176436 | | _Iyear_67 | .9254935 | 1.655 | | 0.56 | 0.576 | -2.325449 | 3.56182 | | _Iyear_68 | .4706951 | 1.574 | | 0.30 | 0.765 | -2.620429 | 5.15137 | | _Iyear_69 | 2.164635 | 1.52 | | 1.42 | 0.155 | 8221007 | | | _lyear_70 | 5.734786 | 1.696 | | 3.38 | 0.001 | 2.405191 | 9.064381 | | _Iyear_71 | 5.180639 | 1.563 | 2156 | 3.32 | 0.001 | 2.113866 | 8.247411 | | _lyear_73 | 4.526686 | 1,4 | 3294 | 3.05 | 0.002 | 1.615429 | 7.437943 | | _lyear_ro | .2877745 | .162 | 2338 | 1.77 | 0.077 | 0307176 | .6062665 | | kvv | .4581116 | .069 | 9323 | 6.55 | 0.000 | .3208229 | .5954003 | | | 8809144 | .223 | 2535 | -3.95 | 0.000 | -1.319198 | 4426307 | | age | 584791 | | 6056 | -0.62 | 0.537 | -2.442056 | 1.272474 | | mrt
_cons | 67.20449 | 4.10 | | 16.36 | 0.000 | 59.14121 | 75.26776 | | astrumental v | rariables (28) | S) re | gressio | MS MS | | Number of ob
F(12, 745 |) = 45.91 | | Model | 59.2679161 | 12 | 4.93 | 899301 | | Prob > F | = 0.0000 | | Residual | 80.0182337 | 745 | .107 | 407025 | | R-squared | | | Kesiduai | 00,0102001 | 1000 | 1130/0 | 12000 | | Adj R-square | d = 0.4163 | | Total | 139.28615 | 757 | ,183 | 997556 | | Root MSE | = .32773 | | lw |
Coef. | Std. | Err. | t | P> t | [95% Conf | . Interval] | | 32 | 0001747 | 003 | 39374 | 0.04 | 0.965 | 0075551 | .0079044 | | 19 | .0001747 | | 3049 | 5.30 | 0.000 | .0435587 | .0947931 | | 8 | .0691759 | | | 4.46 | 0.000 | .0167189 | .0430132 | | expr | .029866 | | 06697 | 5.62 | 0.000 | .0281705 | .058377 | | tenure | .0432738 | | 76934 | | 0.001 | 1619682 | 0452111 | | rns | -,1035897 | | 97371 | -3.48 | 0.000 | .0823277 | .1879019 | | Sasa | .1351148 | .02 | 68888 | 5.02 | | 1470388 | .0418428 | | | 052598 | -04 | 81067 | -1.09 | 0.275 | 009085 | | | _Iyear_67 | .0794686 | .04 | 51078 | 1.76 | | | . 2978939 | | | | | 43153 | 4.76 | 0.000 | | | | _Iyear_68 | | .04 | | | 0.000 | -13:0002 | | | _Iyear_68
_Iyear_69 | .2108962 | | | 4.64 | | | 315082 | | _Iyear_68
_Iyear_69
_Iyear_70 | .2108962
.2386338 | .05 | 14161 | 4.64
5.18 | 0.000 | .1418390 | 315082 | | _Iyear_68
_Iyear_69
_Iyear_70
_Iyear_71 | .2108962
.2386338
.2284609 | .05 | 14161
41236 | 5.18 | 0.000 | .1418396 | 3150824 | | _Iyear_68
_Iyear_69
_Iyear_70 | .2108962
.2386338 | .05 | 14161 | | 0.000 | .1418396 | 315082 | Instrumented: iq s expr tenure rns smsa _Iyear_67 _Iyear_68 _Iyear_69 _Iyear_70 _Iyear_71 _Iyear_73 med Instruments: kww age mrt The first-stage regression results suggest that three of the four excluded instruments are highly correlated with iq. The exception is mrt, the indicator of marital status. However, the endogenous regressor iq has an IV coefficient that cannot be distinguished from zero. Conditioning on the other factors included in the equation, iq does not seem to play an important role in determining the wage. The other coefficient estimates agree with the predictions of theory and empirical findings. Are the instruments for iq appropriately uncorrelated with the disturbance process? To answer that, we compute the test for overidentifying restrictions: . overid ``` Tests of overidentifying restrictions: Sargan N*R-sq test 87.655 Chi-sq(3) P-value = 0.0000 Basmann test 97.025 Chi-sq(3) P-value = 0.0000 ``` The above test signals a strong rejection of the null hypothesis that the instruments are uncorrelated with the error term and suggests that we should not be satisfied with this specification of the equation. We return to this example in the next section. In the following sections, I present several topics related to the IV estimator and a generalization of that estimator. These capabilities are not provided by Stata's ivreg but are available in the extension of that routine known as ivreg2 (Baum, Schaffer, and Stillman 2003, 2005). ## 8.7 ivreg2 and GMM estimation In defining the simple IV estimator and the 2SLS estimator, we assumed the presence of i.i.d. errors. As for linear regression, when the errors do not satisfy the i.i.d. assumption, the simple IV and 2SLS estimators produce consistent but inefficient estimates whose large-sample VCE must be estimated by a robust method. In another parallel to the linear regression case, there is a more general estimator based on the GMM that will produce consistent and efficient estimates in the presence of non-i.i.d. errors. Here I describe and illustrate this more general estimation technique. The equation of interest is $$y = X\beta + u$$, $E[uu'|X] = \Omega$ The matrix of regressors \mathbf{X} is $N \times k$, where N is the number of observations. The error term \mathbf{u} is distributed with mean zero, and its covariance matrix Ω is $N \times N$. We consider four cases for Ω : homoskedasticity, conditional heteroskedasticity, clustering and the combination of heteroskedasticity and autocorrelation. The last three cases correspond to those described in section 6.1. ^{7.} I am deeply indebted to collaborators Mark E. Schaffer and Steven Stillman for their efforts a crafting the software in the ivreg2 suite of programs and its description in our cited article. Much of this section is adapted from that article and subsequent joint work. 19 Some of the regressors are endogenous, so $E[\mathbf{x}u] \neq \mathbf{0}$. We partition the set of regressors into $\{\mathbf{x}_1 \ \mathbf{x}_2\}$ with the k_1 regressors \mathbf{x}_1 considered endogenous and the $(k-k_1)$ regressors \mathbf{x}_2 assumed to be exogenous. The matrix of instrumental variables \mathbf{Z} is $N \times \ell$. These variables are assumed to be exogenous: $E[\mathbf{z}u] = \mathbf{0}$. We partition the instruments into $\{\mathbf{z}_1 \ \mathbf{z}_2\}$ where the ℓ_1 instruments \mathbf{z}_1 are excluded instruments and the remaining $(\ell - \ell_1)$ instruments $\mathbf{z}_2 \equiv \mathbf{x}_2$ are the included instruments or exogenous regressors. ## 8.7.1 The GMM estimator The standard IV and 2SLS estimators are special cases of the GMM estimator. As with the simple IV case discussed in section 8.2, the assumption that the instruments \mathbf{z} are exogenous can be expressed as a set of moment conditions $E[\mathbf{z}u] = \mathbf{0}$. The ℓ instruments give us a set of ℓ moments: $$g_i(\beta) = \mathbf{Z}_i' u_i = \mathbf{Z}_i' (y_i - \mathbf{x}_i \boldsymbol{\beta})$$ where g_i is $\ell \times 1.8^{-8}$ Just as in method-of-moments estimators of linear regression and simple IV, each of the ℓ moment equations corresponds to a sample moment. We write these ℓ sample moments as $$\overline{g}(\beta) = \frac{1}{N} \sum_{i=1}^{N} g_i(\beta) = \frac{1}{N} \sum_{i=1}^{N} \mathbf{z}'_i(y_i - \mathbf{x}_i \beta) = \frac{1}{N} \mathbf{Z}' \mathbf{u}$$ The intuition behind GMM is to choose an estimator for $m{\beta}$ that solves $\overline{g}(\hat{m{\beta}}_{\mathrm{GMM}})=0$. If the equation to be estimated is exactly identified $(\ell=k)$, we have just as many moment conditions as we do unknowns. We can exactly solve the ℓ moment conditions for the k coefficients in $\widehat{\boldsymbol{\beta}}_{\text{GMM}}$. Here there is a unique $\widehat{\boldsymbol{\beta}}_{\text{GMM}}$ that solves $\overline{g}(\widehat{\boldsymbol{\beta}}_{\text{GMM}})=0$. This GMM estimator is identical to the standard IV estimator of (8.3). If the equation is overidentified, $\ell > k$, we have more equations than we do unknowns. We will not be able to find a k-vector $\widehat{\boldsymbol{\beta}}_{\text{GMM}}$ that will set all ℓ sample moment conditions to zero. We want to choose $\widehat{\boldsymbol{\beta}}_{\text{GMM}}$ so that the elements of $\overline{g}(\widehat{\boldsymbol{\beta}}_{\text{GMM}})$ are as close to zero as possible. We could do so by minimizing $\overline{g}(\widehat{\boldsymbol{\beta}}_{\text{GMM}})'\overline{g}(\widehat{\boldsymbol{\beta}}_{\text{GMM}})$, but this method offers to way to produce more efficient estimates when the errors are not i.i.d. For this reason, the GMM estimator chooses the $\widehat{\boldsymbol{\beta}}_{\text{GMM}}$ that minimizes $$J(\widehat{\boldsymbol{\beta}}_{\text{GMM}}) = N \ \overline{g}(\widehat{\boldsymbol{\beta}}_{\text{GMM}})' \mathbf{W} \overline{g}(\widehat{\boldsymbol{\beta}}_{\text{GMM}})$$ (8.9) where W is an $\ell \times \ell$ weighting matrix that accounts for the correlations among the $\widehat{g}(\widehat{\beta}_{GMM})$ when the errors are not i.i.d. ^{8.} Because these conditions imply that (\mathbf{Z}, \mathbf{u}) will be uncorrelated, they are often termed orthogonality conditions in the literature. A GMM estimator for β is the $\hat{\beta}$ that minimizes $J(\hat{\beta}_{GMM})$. Deriving and solving the k first-order conditions $\frac{\partial J(\widehat{\beta})}{\partial \widehat{\beta}} = 0$ yields the GMM estimator of an overidentified equation: $$\widehat{\boldsymbol{\beta}}_{GMM} = (\mathbf{X}'\mathbf{Z}\mathbf{W}\mathbf{Z}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Z}\mathbf{W}\mathbf{Z}'\mathbf{y}$$ (8.10) The results of the minimization—and hence the GMM estimator—will be identical for all weighting matrices W that differ by a constant of proportionality. We use knowledge of this fact below. However, there are as many GMM estimators as there are choices of weighting matrix W. For an exactly identified equation, $W = i_N$. The weighting matrix only plays a role in the presence of overidentifying restrictions. The optimal weighting matrix is that which produces the most efficient estimate Hansen (1982) showed that this process involves choosing $W = s^{-1}$, where S is the covariance matrix of the moment conditions g: $$S = E[Z'uu'Z] = E[Z'\Omega Z]$$ (8.11) where S is an $\ell \times \ell$ matrix. Substitute this matrix into (8.10) to obtain the efficient GMM estimator: $\widehat{\boldsymbol{\beta}}_{\text{EGMM}} = (\mathbf{X}'\mathbf{Z}\mathbf{S}^{-1}\mathbf{Z}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Z}\mathbf{S}^{-1}\mathbf{Z}'\mathbf{y}$ Note the generality (the G of GMM) of this approach. We have made no assumptions about Ω , the covariance matrix of the disturbance process. But the efficient GMM estimator is not a feasible estimator since the matrix S is not known. To implement the estimator, we need to estimate S, so we must make some assumptions about Ω , as we discuss next. Assume that we have developed a consistent estimator of S, denoted S. Generally such an estimator will involve the 2SLS residuals. Then we may use that estimator to define the feasible efficient two-step GMM estimator (FEGMM) implemented in ivreg2 when the gmm option is used. 11 In the first step, we use standard 2SLS estimation to generate parameter estimates and residuals. In the second step, we use an assumption about the structure of Ω to produce $\hat{\mathbf{S}}$ from those residuals and define the FEGMM: $$\widehat{\boldsymbol{\beta}}_{\mathrm{FEGMM}} = (\mathbf{X}'\mathbf{Z}\widehat{\mathbf{S}}^{-1}\mathbf{Z}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Z}\widehat{\mathbf{S}}^{-1}\mathbf{Z}'\mathbf{y}$$ #### GMM in a homoskedastic context 8.7.2 If we assume that $\Omega = \sigma^2 I_N$, the optimal weighting matrix implied by (8.11) will
be proportional to the identity of the state t be proportional to the identity matrix. Since no weighting is involved in calculating ^{10.} Aside from some conditions that guarantee $\frac{1}{\sqrt{N}}$, $\mathbf{z}^t u$ is a vector of well-behaved random variables. ^{11.} This estimator goes under various names: two-stage instrumental variables (2SIV), White (1981) two-stage least squares. Comb. If two-step two-stage least squares, Cumby, Huizinga, and Obstfeld (1983); heteroskedastic pro- (8.10), the GMM estimator is merely the standard IV estimator in point and interval (8.10), the IV estimator of (8.6) and (8.7) is the FEGMM estimator under conditional form. Particity of Ω . homoskedasticity of Ω . # 3.7.3 GMM and heteroskedasticity-consistent standard errors One of the most commonly encountered problems in economic data is heteroskedasticity one of the of unknown form, as described in section 6.2. We need a heteroskedasticity-consistent of unknown \hat{S} . Such an \hat{S} is available by using the standard sandwich approach to is standard sandwich approach to robust covariance estimation described in section 6.1.2. Define the 2SLS residuals as \hat{u}_i and the ith row of the instrument matrix as \mathbf{Z}_i . Then a consistent estimator of \mathbf{S} is given by $$\widehat{\mathbf{S}} = \frac{1}{N} \sum_{i=1}^{N} \widehat{u}_i^2 \mathbf{Z}_i' \mathbf{Z}_i$$ The residuals can come from any consistent estimator of β because efficiency of the parameter estimates used to compute the \hat{u}_i is not required. In practice, 2SLS residuals are almost always used. For more details, see Davidson and MacKinnon (1993, 607-610). If the regression equation is exactly identified with $\ell=k$, the results from ivreg2, gam will be identical to those of ivreg2, robust or from ivreg with the robust option. For overidentified models, the GMM approach makes more efficient use of the information in the ℓ moment conditions than the standard 2SLS approach that reduces them to kinstruments in $\widehat{\mathbf{X}}$. The 2SLS estimator can be considered a GMM estimator with a suboptimal weighting matrix when the errors are not i.i.d. To compare GMM with 2SLS, we reestimate the wage equation displayed earlier by using the gmm option. This step automatically generates heteroskedasticity-robust standard errors. By default, ivreg2 reports large-sample z statistics for the coefficients. . ivreg2 lw s expr tenure rns smsa _I* (iq=med kww age mrt), gmm GMM estimation Number of obs = 745) = F(12. 49.67 Prob > F 0.0000 Centered R2 0.4166 139.2861498 Total (centered) SS Uncentered R2 = 0.9967 24652.24662 Total (uncentered) SS Root MSE .3274 81.26217887 Residual SS | lv | Coef. | Robust
Std. Err. | z | P> z | [95% Conf. | Interval] | |--------------------|---------------|---------------------|-----------|-----------|---------------------------------|------------------| | iq | 0014014 | .0041131 | -0.34 | 0.733 | 009463 | .0066602 | | 24 | .0768355 | .0131859 | 5.83 | 0.000 | .0509915 | .1026794 | | expr | .0312339 | .0066931 | 4.67 | 0.000 | .0181157 | .0443522 | | tenure | .0489998 | .0073437 | 6.67 | 0.000 | .0346064 | .0633931 | | rns | 1006811 | .0295887 | -3.40 | 0.001 | 1586738 | 0426884 | | smsa | .1335973 | .0263245 | 5.08 | 0.000 | .0820021 | . 1851925 | | _Iyear_67 | 0210135 | .0455433 | -0.46 | 0.645 | 1102768 | .0682498 | | _Iyear_68 | .0890993 | .042702 | 2.09 | 0.037 | .0054049 | .1727937 | | _lyear_69 | 2072484 | .0407995 | 5.08 | 0.000 | .1272828 | . 287214 | | _Iyear_70 | .2338308 | .0528512 | 4.42 | 0.000 | .1302445 | .3374172 | | | .2345525 | .0425661 | 5.51 | 0.000 | .1511244 | .3179805 | | _Iyear_71 | .3360267 | .0404103 | 8.32 | 0.000 | .2568239 | .4152295 | | _Iyear_73
_cons | 4.436784 | .2899504 | 15.30 | 0.000 | 3.868492 | 5.005077 | | nderson cano | n, corr. LR s | tatistic (id | lentifica | tion/IV r | elevance test;
sq(4) P-val = | 54.338
0.0000 | | lansen J stat | istic (overio | ientification | test of | all inst | ruments):
sq(3) P-val = | 74.165 | iq Instrumented: Included instruments: s expr tenure rns smsa _Iyear_67 _Iyear_68 _Iyear_69 _Iyear_70 _Iyear_71 _Iyear_73 Excluded instruments: med kww age mrt We see that the endogenous regressor iq still does not play a role in the equation The Hansen J statistic displayed by ivreg2 is the GMM equivalent of the Sargan test produced by overid above. The independence of the instruments and the disturbance process is called into question by this strong rejection of the J test null hypothesis #### GMM and clustering 8.7.4 When the disturbances have within-cluster correlation, ivreg2 can compute the cluster robust estimator of the VCE, and it can optionally use the cluster-robust estimator of the voca, and it can optionally use the cluster-robust estimator of the voca, and it can optionally use the cluster-robust estimator of the voca, and it can optionally use the cluster-robust estimator of the voca, and it can optionally use the cluster-robust estimator of the voca, and it can optionally use the cluster-robust estimator of the voca, and it can optionally use the cluster-robust estimator of the voca, and it can optionally use the cluster-robust estimator of the voca, and it can optionally use the cluster-robust estimator of the voca, and it can optionally use the cluster-robust estimator of the voca, and it can optionally use the cluster-robust estimator of the voca, and it can optionally use the cluster-robust estimator of the voca, and it can optionally use the cluster-robust estimator of the voca, and it can optionally use the cluster-robust estimator of the voca, and it can optionally use the cluster-robust estimator of the voca, and it can optionally use the cluster-robust estimator of the voca, and it can optionally use the cluster-robust estimator of the voca, and it is not optionally used optiona S to produce more efficient parameter estimates when the model is overidentified consistent estimate of S is at consistent estimate of S in the presence of within-cluster correlated disturbances is $$\hat{\mathbf{S}} = \sum_{j=1}^{M} \tilde{\mathbf{u}}_{j}' \hat{\mathbf{u}}_{j}$$ $$\widehat{\mathbf{u}}_j = (y_j - \mathbf{x}_j \widehat{\boldsymbol{\beta}}) \mathbf{X}' \mathbf{Z} (\mathbf{Z}' \mathbf{Z})^{-1} \mathbf{z}_j$$ is the jth observation on y, \mathbf{x}_j is the jth row of \mathbf{X} , and \mathbf{z}_j is the jth row of \mathbf{Z} . The second of that we are summing over the M clusters instead of the N observations leads the second of that we essentially do not have N observations: we have M, where M is the simulation of clusters. That number, M, must exceed ℓ if we are to estimate the sum since $M-\ell$ is the effective degrees of freedom of the cluster estimator. If we get using a sizable number of instruments, this constraint may bind. 12 Specifying the cluster() option will cause ivreg2 to compute the cluster-robust simulator of the VCE. If the equation is overidentified, adding the gmm option will cause stimate of S to compute more efficient parameter stimates. ## 67.5 GMM and HAC standard errors When the disturbances are conditionally heteroskedastic and autocorrelated, we can compute HAC estimates of the VCE and if the equation is overidentified, we can optionally use an HAC estimate of S to compute more efficient parameter estimates. The integ2 routine will compute Newey-West estimates of the VCE using the Bartlett-kernel weighting when the robust and bw() options are specified. When there are no endogenous regressors, the results will be the same as those computed by newey. If some of the regressors are endogenous, then specifying the robust and bw() options will cause integ2 to compute an HAC estimator of the VCE. If the equation is overidentified and the robust and gmm options are specified, the resulting GMM estimates will be more efficient than those produced by 2SLS. The number specified in the bw() (bandwidth) option should be greater than that specified in the lag() option in newey. The ivreg2 routine lets us choose several alternative kernel estimators (see the kernel() option) as described in the online help for that command. 13 To illustrate, we estimate a Phillips curve relationship with annual time-series data for the United States, 1948–1996. The descriptive statistics for consumer price inflation (cinf) and the unemployment rate (unem) are as follows: · use http://www.stata-press.com/data/imeus/phillips, clear . Surmarize cinf unem if cinf < . | Variable | Obs | Mean | Std. Dev. | Min | Max | |----------|-----|---------|-----------|------|-----| | cinf | 48 | 10625 | 2.566926 | -9.3 | 6.6 | | unem | 48 | 5.78125 | 1.553261 | 2.9 | 9.7 | 12 Official ivreg is more forgiving and will complain only if M < k. On the other hand, ivreg2 insists that $M > \ell$. If we do not doubt the homoskedasticity assumption but want to deal with autocorrelation of unknown form, we should use the AC correction without the H correction for arbitrary heteroskedasticity. Itrega allows us to select H, AC, or HAC VCEs by combining the robust (or gnm), bw(), and kernel() appliant. A Phillips curve is the relation between price or wage inflation and the unemployment rate. In Phillips' model, these variables should have a negative relationship with lower unemployment leading to inflationary pressures. Since both variables are determined within the macroeconomic environment, we cannot consider either as exogenous. Using these data, we regress the rate of consumer price inflation on the unemployment rate. To deal with simultaneity, we instrument the unemployment rate with its second and third lags. Specifying bw(3), gmm, and robust causes ivreg2 to compute the efficient GMM estimates. . ivreg2 cinf (unem = 1(2/3).unem), bw(3) gmm robust GMM estimation Heteroskedasticity and autocorrelation-consistent statistics kernel=Bartlett; bandwidth=3 time variable (t): year Total (centered) SS Residual
SS Total (uncentered) SS Number of obs = 46 F(1, 44) = 0.39 Prob > F = 0.5371 Centered R2 -32 -0.1266 = 217.4271745 Uncentered R2 = -0.1262= 217.4900005 2.308 Root MSE = 244.9459113 | cinf | Coef. | Robust
Std. Err. | z | P>121 | [95% Conf. | Interval] | |------|----------|----------------------|------|-------|----------------------|---------------------| | unem | .1949334 | .3064662
1.686995 | 0.64 | 0.525 | 4057292
-4.450522 | .795596
2.162378 | Hansen J statistic (overidentification test of all instruments): 0,589 Chi-sq(1) P-val = 0,4426 Instrumented: unem Excluded instruments: L2.unem L3.unem The hypothesized relationship is not borne out by these estimates, as many researchers have found. The original relationship over the period ending in the late 1960s broke down badly in the presence of 1970s supply shocks and high inflation. To focus on the IV technique, we see that the Hansen J test statistic indicates that the instruments are appropriately uncorrelated with the disturbance process. If the first and second lags of unem are used, the J test rejects its null with a p-value of 0.02. The first lag of unem appears to be inappropriate as an instrument in this specification. ## 8.8 Testing overidentifying restrictions in GMM Just as for 28LS (see section 8.5), the validity of the overidentifying restrictions imposed on a GMM estimator can be tested. The test, which can and should be performed as a standard diagnostic in any overidentified model, 14 has a null hypothesis of correct model specification and valid overidentifying restrictions. A rejection calls either or both of those hypotheses into question. With GMM, the overidentifying restrictions may be tested by the commonly used J statistic of Hansen (1982).¹⁵ This statistic is merely the value of the GMM objective function (8.9), evaluated at the efficient GMM estimator $\widehat{\boldsymbol{\beta}}_{\text{EGMM}}$. Under the null, $$J(\widehat{\boldsymbol{\beta}}_{\mathrm{EGMM}}) = N \; \overline{g}(\widehat{\boldsymbol{\beta}}_{\mathrm{EGMM}})' \widehat{\mathbf{S}}^{-1} \overline{g}(\widehat{\boldsymbol{\beta}}_{\mathrm{EGMM}}) \; \stackrel{A}{\sim} \; \chi^2_{\ell-k}$$ where the matrix $\hat{\mathbf{S}}$ is estimated using the two-step methods described above. The J statistic is asymptotically distributed as χ^2 with degrees of freedom equal to the number of overidentifying restrictions $\ell-k$ rather than the total number of moment conditions, ℓ . In effect, k degrees of freedom are spent in estimating the coefficients β . Hansen's J is the most common diagnostic used in GMM estimation to evaluate the suitability of the model. A rejection of the null hypothesis implies that the instruments do not satisfy the required orthogonality conditions—either because they are not truly exogenous or because they are being incorrectly excluded from the regression. The J statistic is calculated and displayed by ivreg2 when the gmm or robust options is specified. ¹⁶ #### 8.8.1 Testing a subset of the overidentifying restrictions in GMM The Hansen-Sargan tests for overidentification presented above evaluate the entire set of overidentifying restrictions. In a model containing a very large set of excluded instruments, such a test may have little power. Another common problem arises when you have suspicions about the validity of a subset of instruments and want to test them. In these contexts, you can use a difference-in-Sargan test. 17 The C test allows us to test a subset of the original set of orthogonality conditions. The statistic is computed as the difference between two J statistics. The first is computed from the fully efficient regression using the entire set of overidentifying restrictions. The second is that of the inefficient but consistent regression using a smaller set of restrictions in which a specified set of instruments are removed from the instrument list. For excluded instruments, this ^{14.} Thus Davidson and MacKinnon (1993, 236): "Tests of overidentifying restrictions should be calculated routinely whenever one computes IV estimates." Sargan's own view, cited in Godfrey (1988, 145), was that regression analysis without testing the orthogonality assumptions is a "pious fraud". ¹⁵ For conditional homoskedasticity (see section 8.7.2), this statistic is numerically identical to the Sargan test statistic discussed above. ^{16.} Despite the importance of testing the overidentifying restrictions, the J test is known to overreject the null hypothesis in certain circumstances. Using the "continuous updating" GMM estimator discussed in the help file for ivreg2 may produce rejection rates that are closer to the level of the test. See Hayashi (2000, 218) for more information. ^{17.} See Hayashi (2000, 218-221 and 232-234) or Ruud (2000, chap. 22), for comprehensive presentations. The test is known under other names as well; e.g., Ruud (2000) calls it the distance difference statistic, and Hayashi (2000) follows Eichenbaum, Hansen, and Singleton (1988) and dubs it the Calistic. I use the latter form. step is equivalent to dropping them from the instrument list. For included instruments, the C test places them in the list of included endogenous variables, treating them as endogenous regressors. The order condition must still be satisfied for this form of the equation. Under the null hypothesis that the specified variables are proper instruments, the difference-in-Sargan C test statistic is distributed χ^2 with degrees of freedom equal to the loss of overidentifying restrictions or the number of suspect instruments being tested.¹⁸ Specifying orthog(instlist) with the suspect instruments causes ivreg2 to compute the C test with instlist as the excluded instruments. The equation must still be identified with these instruments removed (or placed in the endogenous regressor list) to compute the C test. If the equation excluding suspect instruments is exactly identified, the J statistic for that equation will be zero and the C statistic will coincide with the statistic for the original equation. This property illustrates how the J test of overidentifying restrictions is an omnibus test for the failure of any of the instruments to satisfy the orthogonality conditions. At the same time, the test requires that the investigator believe the nonsuspect instruments to be valid (see Ruud 2000, 577). Below we use the C statistic to test whether \mathfrak{s} , years of schooling, is a valid instrument in the wage equation estimated above by 2SLS and GMM. In those examples, the Sargan and J tests of overidentifying restrictions signaled a problem with the instruments used. ^{18.} Although the C statistic can be calculated as the simple difference between the Hansen–Sargae statistics for two regressions, this procedure can generate a negative test statistic in finite samples. For 2SLS, this problem can be avoided and the C statistic guaranteed to be nonnegative if the estimate of the error variance $\hat{\sigma}^2$ from the original 2SLS regression is used to calculate the Sargan statistic fix the regression with nonsuspect instruments as well. The equivalent procedure in GMM is to use the matrix from the original estimation to calculate both J statistics. More precisely, \hat{S} from the original equation is used to form the first J statistic, and the submatrix of \hat{S} with rows/columns corresponding to the reduced set of instruments is used to form the J statistic for the second equation (see Haysahi 2000, 220). _ivrag2 lw s expr tenure rns smss _I* (iq=med kww age mrt), gmm orthog(s) GMM estimation | Total (centere
Total (uncente
Residual SS | d) SS = red) SS = = | 139.2861498
24652.24662
81.26217887 | | 1 | Number of obs
7(12, 745)
Prob > F
Centered R2
Uncentered R2
Root MSE | = 49.67
= 0.0000
= 0.4166 | |---|---------------------|---|---------------------|----------|--|---------------------------------| | lv | Coef. | Robust
Std. Err. | z | P> z | [95% Conf | . Interval] | | iq | 0014014 | -0041131 | -0.34 | 0.733 | 009463 | .0066602 | | 8 | .0768355 | .0131859 | 5.83 | 0.000 | .0509915 | .1026794 | | expr | .0312339 | .0066931 | 4.67 | 0.000 | .0181157 | .0443522 | | tenure | .0489998 | .0073437 | 6.67 | 0.000 | .0346064 | .0633931 | | rns | 1006811 | .0295887 | -3.40 | 0.001 | 1586738 | 0426884 | | sasa | .1335973 | .0263245 | 5.08 | 0.000 | .0820021 | .1851925 | | _Iyear_67 | 0210135 | .0455433 | -0.46 | 0.645 | 1102768 | .0682498 | | _Iyear_68 | .0890993 | .042702 | 2.09 | 0.037 | .0054049 | .1727937 | | _Iyear_69 | .2072484 | .0407995 | 5.08 | 0.000 | .1272828 | .287214 | | _Iyear_70 | .2338308 | .0528512 | 4.42 | 0.000 | .1302445 | .3374172 | | _Iyear_71 | .2345525 | .0425661 | 5.51 | 0.000 | .1511244 | .3179805 | | _Iyear_73 | .3360267 | .0404103 | 8.32 | 0.000 | .2568239 | .4152295 | | _cons | 4.436784 | ,2899504 | 15.30 | 0.000 | 3.868492 | 5.005077 | | Anderson canon | . corr. LR s | tatistic (ide | ntifica | | relevance ter
-sq(4) P-val | | | Hansen J statis | stic (overid | entification | test of | | | 74.165 | | | | | | Chi | -sq(3) P-val | = 0.0000 | | -orthog- option
Hansen J statis | 12 | anding man | | hor cor | ditional | 15.997 | | mansen J statis | sere (edu: e: | rerading susp | Ject oft | Ch- | -sq(2) P-val | | | | | | | | | 58.168 | | C statistic (ex | cogenerty/or | thogonality o | a suspe | Ct Insti | -uments):
i-sq(1) P-val | | | Instruments tes | sted: s | | | Chi | 1-sq(1) P-vai | - 0.0000 | | Instrumented: | iq | | | | | | | Included instru | ments: s ex | ar_70 _Iyear. | s smsa _
71 _Iye | Iyear_67 | 7 _Iyear_68 _ | Iyear_69 | The C test rejects its null, indicating that the suspect instrument, \mathbf{s} , fails the test for overidentifying restrictions. The significant J
statistic of 15.997 for the equation excluding suspect instruments implies that treating s as endogenous still results in an unsatisfactory equation. The remaining instruments do not appear to be independent of the error distribution. Now we use the orthog() option to test whether a subset of the excluded instruments are appropriately exogenous. We include age and the marital status indicator (age and srt) in the option's varlist. The equation estimated without suspect instruments merely drops those instruments from the list of excluded instruments: . ivreg2 lw s expr tenure rns smsa _I* (iq=med kww age mrt), gmm orthog(age mrt) GMM estimation | Total (centered) SS
Total (uncentered) SS
Residual SS | = 139.2861498
= 24652.24662
= 81.26217887 | F(12, 745) = 49
Prob > F = 0.0
Centered R2 = 0.4
Uncentered R2 = 0.5 | 758
9.67
9000
1166
9967
3274 | |---|---|--|---| |---|---|--|---| | 1w | Coef. | Robust
Std. Err. | z | P> z | [95% Conf. | . Interval] | |--------------------|----------|---------------------|-------|-------|------------|-------------| | - | 0014014 | .0041131 | -0.34 | 0.733 | 009463 | .0066602 | | iq | .0768355 | .0131859 | 5.83 | 0.000 | .0509915 | .1026794 | | 5 | .0312339 | .0066931 | 4.67 | 0.000 | .0181157 | .0443522 | | expr | .0489998 | .0073437 | 6.67 | 0.000 | .0346064 | .0633931 | | tenure | 1006811 | .0295887 | -3.40 | 0.001 | 1586738 | 0426884 | | rns | .1335973 | .0263245 | 5.08 | 0.000 | .0820021 | .1851925 | | smsa. | 0210135 | .0455433 | -0.46 | 0.645 | 1102768 | .0682498 | | _Iyear_67 | .0890993 | .042702 | 2.09 | 0.037 | .0054049 | .1727937 | | _Iyear_68 | .2072484 | .0407995 | 5.08 | 0.000 | .1272828 | . 287214 | | _Iyear_69 | .2338308 | .0528512 | 4.42 | 0.000 | .1302445 | .3374172 | | _Iyear_70 | .2345525 | .0425661 | 5.51 | 0.000 | .1511244 | .3179805 | | _Iyear_71 | .3360267 | .0404103 | 8.32 | 0.000 | . 2568239 | .4152295 | | _Iyear_73
_cons | 4.436784 | .2899504 | 15.30 | 0.000 | 3.868492 | 5.005077 | | Anderson canon. corr. LR statistic (identification | Chi-sq(4) P-val = | 0.0000 | |--|------------------------------------|-------------------------------------| | Hansen J statistic (overidentification test of all | instruments):
Chi-sq(3) P-val = | 74.165
0.0000 | | C statistic (avanuation) | Chi-sq(1) P-val - | 1,176
0,2782
72,989
0,0000 | | Instrumented: | iq | TWOAT 69 | |-----------------------|--|------------------| | Included instruments: | iq
s expr tenure rns smsa _Iyear_67
Iyear 70 | _Iyear_68 _Iyear | | | _Iyear_70 _Iyear_71 _Iyear_73 | | Excluded instruments: med kww age mrt age mrt Instruments tested: The equation estimated without suspect instruments, free of the two additional of thogonality conditions on age and mrt, has an insignificant J statistic, whereas the statistic for those two instruments is highly significant. These two instruments do not appear valid in this context. To evaluate whether we have found a more appropriate specification, we reestimate the equation with the reduced instrument list: ivreg2 lv s expr tenure rns smsa _I* (iq=med kvv), gmm get estimation | Total (centered) SS
Total (uncentered) SS | = 139.2861498
= 24652.24662
= 124.9413508 | Centered R2
Uncentered R2 | = 30.77
= 0.0000
= 0.1030 | |--|---|------------------------------|---------------------------------| | Residual SS | 21000000000 | MOOC HISE | - 400 | | lv | Coef. | Robust
Std. Err. | 2 | P> z | [95% Conf. | Interval] | |--------------------|----------|---------------------|-------|-------|------------|-----------| | | .0240417 | .0060961 | 3.94 | 0.000 | .0120936 | .0359899 | | iq | .0009181 | .0194208 | 0.05 | 0.962 | 0371459 | .038982 | | 223 | .0393333 | .0088012 | 4.47 | 0.000 | -0220833 | .0565834 | | expr | .0324916 | .0091223 | 3.56 | 0.000 | .0146122 | .050371 | | tenure | 0326157 | .0376679 | -0.87 | 0.387 | 1064433 | .041212 | | rns | .114463 | .0330718 | 3.46 | 0.001 | .0496434 | .1792825 | | snsa | 0694178 | .0568781 | -1.22 | 0.222 | 1808968 | .0420613 | | _Iyear_67 | .0891834 | .0585629 | 1.52 | 0.128 | 0255977 | .2039645 | | _Iyear_68 | .1780712 | .0532308 | 3.35 | 0.001 | .0737407 | .2824016 | | _Iyear_69 | .139594 | .0677261 | 2.06 | 0.039 | .0068533 | .2723346 | | _Iyear_70 | .1730151 | .0521623 | 3.32 | 0.001 | .070779 | .2752513 | | _Iyear_71 | .300759 | .0490919 | 6.13 | 0.000 | .2045407 | .396977 | | _Iyear_73
_cons | 2.859113 | .4083706 | 7.00 | 0.000 | 2.058721 | 3.65950 | | Anderson canon. | corr. LR | statistic | (identification) | TV relevance test):
Chi-sq(2) P-val = | 35.828 | |-----------------|----------|-------------|------------------|--|--------| | - | e lana | identificat | tion test of all | instruments): | 0.781 | | Sansen J statistic | (overidentification | test | of | all | instruments):
Chi-sq(1) P-val = | 0.781 | |--------------------|---------------------|------|----|-----|------------------------------------|-------| | | | _ | _ | _ | | | Instrumented: iq Included instruments: s expr tenure rns smsa _Iyear_67 _Iyear_68 _Iyear_69 _Iyear_70 _Iyear_71 _Iyear_73 Excluded instruments: med kww In these results, we find that in line with theory, iq appears as a significant regressor for the first time and the equation's J statistic is satisfactory. The regressor s, which appeared in an earlier test to be inappropriately considered exogenous, plays no role in this form of the estimated equation. ¹⁹ ## 8.9 Testing for heteroskedasticity in the IV context This section discusses the Pagan and Hall (1983) test for heteroskedasticity in 2SLS models and the ivhettest command (Baum, Schaffer, and Stillman 2003), which im- $^{^{12}}$ You might wonder why the J statistic for this equation is not equal to that of the equation lacking the support instruments in the C test above. As explained in an earlier footnote, a positive C statistic is guaranteed by computing both J statistics using the estimated error variance of the full equation. Those two error variances differ—the equation above has a larger Root MSE—so that the J statistics differ as well. plements this test in Stata. The idea behind the test-similar to that of the Breusch-Pagan (Breusch and Pagan 1979) and White tests for heteroskedasticity discussed in section 6.2.1—is that if any of the exogenous variables can predict the squared residual uals, the errors are conditionally heteroskedastic.²⁰ Under the null of conditional homoskedasticity in the 2SLS regression, the Pagan–Hall statistic is distributed as $\chi^2_{\mu\nu}$ irrespective of the presence of heteroskedasticity elsewhere in the system.²¹ The inhettest command follows the abbreviated syntax: $$\verb|ivhettest| [varlist] [, options]|$$ where the optional varlist specifies the exogenous variables to be used to model the squared errors. Common choices for those variables include the following: - The levels only of the instruments Z (excluding the constant). This choice is available in ivhettest by specifying the ivlev option, which is the default option. - The levels and squares of the instruments Z, available as the ivsq option. - 3. The levels, squares, and cross products of the instruments Z (excluding the constant), as in the White (1980) test: available as the ivcp option. - The fitted value of the response variable.²² This choice is available in ivhettest by specifying the fitlev option. - The fitted value of the response variable and its square, available as the fitsq option. - A user-defined set of variables may also be provided. The tradeoff in the choice of variables to be used is that a smaller set of variables will conserve degrees of freedom, at the cost of being unable to detect heteroskedasticity in certain directions. The Pagan-Hall statistic has not been widely used, perhaps because it is not a standard feature of most regression packages. 23 However, from an analytical standpoint it is clearly superior to the techniques more commonly used since it is robust to the presence of heteroskedasticity elsewhere in a system of simultaneous equations and to non-normally distributed disturbances, 24 The Breusch-Pagan and White tests for heteroskedasticity (Breusch and Pagan 1979) discussed in section 6.2.1 can be applied in 2SLS market. in section 6.2.1 can be applied in 2SLS models, but Pagan and Hall (1983) point out that they will be valid only if heteroskedasticity is present in that be valid only if heteroskedasticity is present in that equation and nowhere else in the system other structural equations in the system corresponds other structural equations in the system corresponding to the endogenous regressors must also be ^{21.} A more general form of this test was separately proposed by White (1982)- ^{22.} This litted value is not the usual fitted value of the response variable, $X\hat{\beta}_{\text{IV}}$. It is, rather, $\hat{\lambda}\hat{\beta}_{\text{IV}}$ i.e., the prediction based on the IV entires $\hat{\beta}_{\text{IV}}$. i.e., the prediction based on the IV estimator $\hat{\beta}_{\text{IV}}$, the exogenous regressors Z_2 , and the fitted value of the endogenous regressors \hat{X}_1 . ^{24.} White's general test (White 1980), or its generalization by Koenker (1981), also related the sumption of normality underlying the Breusch-Pages.
sumption of normality underlying the Breusch-Pagan test- We compute several of the tests for heteroskedasticity appropriate in the IV context with 1vhettest from the last regression reported above. The default setting uses the levels of the instruments as associated variables. Results from the fitsq option are also displayed. ``` . ivhettest, all IV heteroskedasticity test(s) using levels of IVs only Ho: Disturbance is homoskedastic Chi-sq(13) P-value = 0.7992 Pagan-Hall general test statistic 8.645 9.539 Chi-sq(13) P-value = 0.7311 Pagan-Hall test w/assumed normality : White/Koenker nR2 test statistic : 13.923 Chi-sq(13) P-value = 0.3793 Breusch-Pagan/Godfrey/Cook-Weisberg: 15.929 Chi-sq(13) P-value = 0.2530 , ivhettest, fitsq all IV heteroskedasticity test(s) using fitted value (X-hat*beta-hat) & its square Ho: Disturbance is homoskedastic 0.677 Chi-sq(2) P-value = 0.7127 Pagan-Hall general test statistic 0.771 Chi-sq(2) P-value = 0.6799 Pagan-Hall test w/assumed normality : Chi-sq(2) P-value = 0.7056 0.697 White/Koenker nR2 test statistic 0.798 Chi-sq(2) P-value = 0.6710 Breusch-Pagan/Godfrey/Cook-Weisberg : ``` None of the tests signal any problem of heteroskedasticity in the estimated equation's disturbance process. ### 8.10 Testing the relevance of instruments As discussed above, an instrumental variable must not be correlated with the equation's disturbance process and it must be highly correlated with the included endogenous regressors. We may test the latter condition by examining the fit of the first-stage regressions. The first-stage regressions are reduced-form regressions of the endogenous regressors, \mathbf{x}_1 , on the full set of instruments, \mathbf{z} . The relevant test statistics here relate to the explanatory power of the excluded instruments, \mathbf{z}_1 , in these regressions. A statistic commonly used, as recommended by Bound, Jaeger, and Baker (1995), is the R^2 of the first-stage regression with the included instruments partialled out.²⁵ This test may be expressed as the F test of the joint significance of the \mathbf{z}_1 instruments in the first-stage regression. But the distribution of this F statistic is nonstandard.²⁶ Also, for models with multiple endogenous variables, these indicators may not be sufficiently informative. To grasp the pitfalls facing empirical researchers here, consider the following simple example. You have a model with two endogenous regressors and two excluded instruments. One of the two excluded instruments is highly correlated with each of the two endogenous regressors, but the other excluded instrument is just noise. Your model is basically underidentified. You have one valid instrument but two endogenous regressors. The Bound, Jaeger, and Baker F statistics and partial R^2 measures from the two ^{25.} More precisely, this is the squared partial correlation between the excluded instruments \mathbf{z}_1 and the endogenous regressor in question. It is defined as $(RSS_{\mathbf{z}_2} - RSS_{\mathbf{z}})/TSS$, where $RSS_{\mathbf{z}_2}$ is the residual sum of squares in the regression of the endogenous regressor on \mathbf{z}_2 and $RSS_{\mathbf{z}}$ is the RSS when the full set of instruments is used. ^{26.} See Bound, Jaeger, and Baker (1995) and Stock, Wright, and Yogo (2002). first-stage regressions will not reveal this weakness. Indeed, the F statistics will be statistically significant, and without investigation you may not realize that the model cannot be estimated in this form. To deal with this problem of instrument irrelevance, either more relevant instruments are needed or one of the endogenous regressors must be dropped from the model. The statistics proposed by Bound, Jaeger, and Baker can diagnose instrument relevance only in the presence of one endogenous regressor. When multiple endogenous regressors are used, other statistics are required. One such statistic has been proposed by Shea (1997): a partial \mathbb{R}^2 measure that takes the intercorrelations among the instruments into account.27 For a model containing one endogenous regressor, the two R^2 measures are equivalent. The distribution of Shea's partial R^2 statistic has not been derived, but it may be interpreted like any R^2 . As a rule of thumb, if an estimated equation yields a large value of the standard (Bound, Jaeger, and Baker 1995) partial R^2 and a small value of the Shea measure, you should conclude that the instruments lack sufficient relevance to explain all the endogenous regressors. Your model may be essentially underidentified. The Bound, Jaeger, and Baker measures and the Shea partial R^2 statistic are provided by the first or ffirst options of the ivreg2 command. A more general approach to the problem of instrument relevance was proposed by Anderson (1984) and discussed in Hall, Rudebusch, and Wilcox (1996).²⁸ Anderson's approach considers the canonical correlations of the X and Z matrices. These measures, $r_i, i = 1, \ldots, k$ represent the correlations between linear combinations of the k columns of X and linear combinations of the ℓ columns of \mathbf{Z}^{29} . If an equation to be estimated by instrumental variables is identified from a numerical standpoint, all k of the canonical correlations must be significantly different from zero. Anderson's likelihood-ratio test has the null hypothesis that the smallest canonical correlation is zero and assumes that the regressors are distributed multivariate normal. Under the null, the test statistic is distributed χ^2 with $(\ell - k + 1)$ degrees of freedom, so that it may be calculated even for an exactly identified equation. A failure to reject the null hypothesis calls the identification status of the estimated equation into question. The Anderson statistic is displayed in ivreg2's standard output. The canonical correlations between X and Z may also be used to test a set of instructs for reclarable and the set of instructs for reclarable and the set of instructions are set of instructions. ments for redundancy following Hall and Peixe (2000). In an overidentified context with $\ell > k$, if some of the instance of the $\ell \geq k$, if some of the instruments are redundant then the large-sample efficiency of the estimation is not increased by the sample of the contract co estimation is not improved by including them. The test statistic is a likelihood-ratio statistic based on the canonical correlations with and without the instruments being ^{27.} The Shea partial R^2 statistic may be easily computed according to the simplification presented as Godfrey (1939), who demonstrates that Share the same of Godfrey (1939), who demonstrates that Shea's statistic for endogenous regressor i may be expressed as $R_p^2 = (\nu_{1,8}, o.c.s)/(\nu_{1,4}, v) \{(1 - R_{0,s}^2)/(1 R_{0,s}^$ as $R_p^2 = (\nu_{i,i,\text{OLS}})/(\nu_{i,i,\text{IV}}) \{(1 - R_{\text{IV}}^2)/(1 - R_{\text{OLS}}^2)\}$, where $\nu_{i,i}$ is the estimated asymptotic variance. ^{28.} Hall, Rudebusch, and Wilcox state that the test is closely related to the minimum-eigenvalue price option. statistic proposed by Gragg and Donald (1993). This test is displayed with the first or ffirst oping on tweez: see the following example. 29. The squared canonical correlations may be calculated as the eigenvalues $(X'X)^{-1}(X'Z)(Z'Z)^{-1}(Z'X)$; see Hall, Budebusch, and Mat. tested. Under the null hypothesis that the specified instruments are redundant, the statistic is distributed as χ^2 with degrees of freedom equal to the number of endogenous regressors times the number of instruments being tested. Like the Anderson test, the redundancy test assumes that the regressors are distributed multivariate normal. This test is available in ivreg2 with the redundant() option. I illustrate the weak-instruments problem with a variation on the log wage equation using only age and mrt as instruments. . ivreg2 lw s expr tenure rns smsa _I* (iq = age mrt), ffirst redundant(mrt) Summary results for first-stage regressions | Summary re | sults for first- | stage regression | ns | | | |--|--|------------------------|-------------------|---|--| | Variable
iq | Shea
 Partial R2
 0.0073 | Partial
 0.007 | | 2, 744)
2.72 | P-value
0.0665 | | Anderson c
Cragg-Dona
Ho: matrix | ification tests:
anon. corr. like
ld N*minEval sta
of reduced form
has rank>=K (ic | olihood ratio s
at. | tat. | Chi-sq(2)
5.52
5.54
(-1 (underid | P-value
0.0632
0.0626
entified) | | | ification statis | | 2.72 | | | | r(2,744) | regressors B1 i
= 43.83
= 89.31 | P-val=0.0000 | e of
n, Ho:B1= | 0 | | | lumber of | observations N | - | 758 | | | | umber of | regressors K | - | 13 | | | | | instruments L | | 14 | | | | | excluded instrum | ents L2 = | 2 | | | | Instrumental | variables (2510) | | |--------------
--|--------| | THE PARTY OF | MACHINE TO THE PARTY OF PAR | Number | | | | F(12, | | Total (centered) SS | = 139.2861498 | |-----------------------|---------------| | Total (uncentered) SS | = 24652.24662 | | Residual SS | = 1033.432656 | | Number of obs | • | 758 | |---------------|---|---------| | F(12, 748) | | 3.95 | | Prob > F | - | 0.0000 | | Centered R2 | = | -6.4195 | | Uncentered R2 | | 0.9581 | | Root MSE | = | 1.168 | | lv | Coef. | Std. Err. | 2 | P> z | [95% Conf. | Interval] | |---|---|---|---|--|---|--| | iq s expr tenure rns smsa _Iyear_67 _Iyear_68 _Iyear_70 _Iyear_71 _Iyear_71 _Iyear_73 _cons | 0948902
.3397121
006604
.0848854
3769393
.2181191
.0077748
.0377993
.3347027
.6286425
.4446099
.439027
10.55096 | .0433073
.125526
.028572
.0327558
.1584438
.1022612
.1733579
.1617101
.1666592
.2486186
.182733
.1542401
2.821406 | -2.19 2.71 -0.23 2.59 -2.38 2.13 0.04 0.23 2.01 2.53 2.43 2.85 3.74 | 0.028
0.007
0.817
0.010
0.017
0.033
0.964
0.815
0.045
0.011
0.015
0.004 | 1797708
.0936856
062604
.0206852
6874834
.0176908
3320005
2791466
.0080568
.141359
.0864599
.136722
5.02111 | 0100095
.5857386
.0493961
.1490856
0663952
.4185474
.3475501
.3547452
.6613487
1.115926
.8027599
.7413321
16.08082 | | Anderson canon, corr. LR statistic (identifi | cation/IV relevance test): 5.5
Chi-sq(2) P-val = 0.06 | | |--|--|-----| | -redundant- option:
LR IV redundancy test (redundancy of specifi | ed instruments): 0.0
Chi-sq(1) P-val = 0.96 | | | Instruments tested: nrt | our adday a ton | | | Management of the second th | Name at the Control of o | 202 | | Sargan | statistic | (overidentification | test | of | all | instruments):
Chi-sq(1) P-val = | 0.2379 | |--------|-----------|---------------------|------|----|-----|------------------------------------|--------| | | | | _ | _ | | | | Instrumented: iq Included instruments: s expr tenure rns smsa _Iyear_67 _Iyear_68 _Iyear_69 _Iyear_70 _Iyear_71 _Iyear_73 Excluded instruments: age mrt In the first-stage regression results, Shea's partial R² statistic is very small for the equation, and the Cragg-Donald statistic marginally rejects its null hypothesis of underidentification. The Anderson canonical correlation statistic fails to reject its null hypothesis at the 5% level, suggesting that although we have more instruments than coefficient the instruments may be inadequate to identify the equation. The redundant (mrt) option indicates that mrt provides no useful information to identify the equation. This equation may be only exactly identified. The consequence of excluded instruments with little explanatory power is increased bias in the estimated IV coefficients (Hahn and Hausman 2002b) and worsening of the large-sample approximations to the finite-sample distributions. If these instruments explanatory power in the first-stage
regression is nil, the model is in effect unidentified with respect to that endogenous variable. Here the large-sample bias of the property o estimator is the same as that of the OLS estimator, IV becomes inconsistent, and nothing is gained from instrumenting (Hahn and Hausman 2002b). What is surprising is that, as Staiger and Stock (1997) and others have shown, the weak-instrument problem can arise even when the first-stage tests are significant at conventional levels (5% or 1%) and the researcher is using a large sample. One rule of thumb is that for one endogenous regressor, an F statistic less than 10 is cause for concern (Staiger and Stock 1997, 557). The magnitude of large-sample bias of the IV estimator increases with the number of instruments (Hahn and Hausman 2002b). Given that, one recommendation when faced with a weak-instrument problem is to be parsimonious in the choice of instruments. For further discussion, see Staiger and Stock (1997); Hahn and Hausman (2002a,b); Stock, Wright, and Yogo (2002); Chao and Swanson (2005); and references therein. # 8.11 Durbin-Wu-Hausman tests for endogeneity in IV estimation There may well be reason to suspect a failure of the zero-conditional-mean assumption presented in section 4.2 in many regression models. Turning to IV or efficient GMM estimation for the sake of consistency must be balanced against the inevitable loss of efficiency. As Wooldridge states, "[there is an] important cost of performing IV estimation when x and u are uncorrelated: the asymptotic variance of the IV estimator is always larger, and sometimes much larger, than the asymptotic variance of the OLS estimator" (Wooldridge 2006, 516; emphasis added). This loss of efficiency is a price worth paying if the OLS estimator is biased and inconsistent. A test of the appropriateness of OLS and the necessity to resort to IV or GMM methods would be useful. The intuition for such a test may also be couched in the number of orthogonality conditions available. Can all or some of the included endogenous regressors be appropriately treated as exogenous? If so, these restrictions can be added to the set of moment conditions, and more efficient estimation will be possible. Many econometrics texts discuss the issue of OLS versus IV in the context of the Durbin-Wu-Hausman (DWH) tests. These tests involve fitting the model by both OLS and IV approaches and comparing the resulting coefficient vectors. In the Hausman form of the test, a quadratic form in the differences between the two coefficient vectors scaled by the precision matrix gives rise to a test statistic for the null hypothesis that the OLS estimator is consistent and fully efficient. Denote by $\widehat{\boldsymbol{\beta}}^c$ the estimator that is consistent under both the null and the alternative hypotheses, and by $\widehat{\boldsymbol{\beta}}^c$ the estimator that is fully efficient under the null but inconsistent if the null is not true. The Hausman (1978) specification test takes the quadratic form $$H = (\widehat{\boldsymbol{\beta}}_c - \widehat{\boldsymbol{\beta}}_e)'\mathbf{D}^-(\widehat{\boldsymbol{\beta}}_c - \widehat{\boldsymbol{\beta}}_e)$$ ^{30.} As discussed in Baum, Schaffer, and Stillman (2003, 11), GMM may have poor small-sample properties. If the zero-conditional-mean assumption cannot be refuted, we should use linear regression rather than IV or GMM, especially in small samples. where $$\mathbf{D} = \mathrm{Var}[\widehat{\boldsymbol{\beta}}_c] - \mathrm{Var}[\widehat{\boldsymbol{\beta}}_e]$$ $\operatorname{Var}[\widehat{\boldsymbol{\beta}}]$ denotes a consistent estimate of the asymptotic variance of $\boldsymbol{\beta}$, and the operator denotes a generalized inverse. A Hausman statistic for a test of endogeneity in an IV regression is formed by choosing OLS as the efficient estimator $\hat{\boldsymbol{\beta}}_c$ and IV as the inefficient but consistent estimator $\hat{\boldsymbol{\beta}}_c$. The test statistic is distributed as χ^2 with k_1 degrees of freedom: the number of regressors being tested for endogeneity. The test is perhaps best interpreted not as a test for the endogeneity or exogeneity of regressors per se but rather as a test of the consequence of using different estimation methods on the same equation. Under the null hypothesis that OLS is an appropriate estimation technique, only efficiency should be lost by turning to IV. The point estimates should be qualitatively unaffected. There are many ways to conduct a DWH endogeneity test in Stata for the standard W case with conditional homoskedasticity. Three equivalent ways of obtaining the Durbin component of the DWH statistic in Stata are - 1. Fit the less efficient but consistent model using IV, followed by the command estimates store iv (where iv is a name of your choice that is attached to this set of estimates; see the discussion of stored estimates in section 4.4). Then fit the fully efficient model with regress (or with ivreg if only a subset of regressors is being tested for endogeneity), followed by hausman iv ., constant sigmamore.³¹ - Fit the fully efficient model using ivreg2 and specify the regressors to be tested in the orthog() option. - 3. Fit the less efficient but consistent model using ivreg and use ivendog to conduct an endogeneity test. The ivendog command takes as its argument a varist consisting of the subset of regressors to be tested for endogeneity. If the varlist is empty, the full set of endogenous regressors is tested. The last two methods are more convenient than the first because the test can be done in one step. Furthermore, the hausman command will often generate a negative χ^2 statistic, rendering the test infeasible. Stata's documentation describes this result as a small-sample problem in which the variance of the difference of the coefficient vectors is not necessarily positive definite in finite samples. The different commands implement distinct versions of the tests, which although asymptotically equivalent can lead to different inference from finite samples. ^{31.} You should disregard the note produced by haussan regarding the rank of the differenced matrix. As the documentation of the signasore option indicates, this is the proper setting for a test of exception comparing linear regression and IV estimates. ^{32.} The description of hausman suggests that a generalized Hausman test can be performed by suggests. However, this command does not support the zweg estimator. I first illustrate using the hausman command for the wage equation: - quietly ivreg2 lw s expr tenure rns smsa _I* (iq=med kww), small estimates store iv - quietly regress lw s expr tenure rns smsa _1* io - hausman iv ., constant sigmamore Note: the rank of the differenced variance matrix (1) does not equal the number of coefficients being tested (13); be sure this is what you expect, or there may be problems computing the test. Examine the output of your estimators for anything unexpected and possibly consider scaling your variables so that the coefficients are on a similar scale. | | | icients - | | or state. | |---|---|--|---|---| | | (b)
iv | (B) | (b-B)
Difference | sqrt(diag(V_b-V_B))
S.E. | | iq
s
expr
tenure
rns
smsa
_Iyear_67
_Iyear_68
_Iyear_70
_Iyear_70
_Iyear_71
_Iyear_73
_cons | .0243202
.0004625
.039129
.0327048
0341617
.1140326
0679321
.0900522
.1794505
.1395755
.1735613
.2971599
2.837153 | .0027121
.0619548
.0308395
.0421631
0962935
.1328993
0542095
.0805808
.2075915
.2282237
.2286915
.3228747
4.235357 | .0216080614923 .00828960094582 .062131801886670137226 .0094714028141088648204913020257148 -1.398204 | .0046882
.0133417
.0017985
.0020521
.0134804
.0040934
.0029773
.002055
.0061056
.0192335
.0106596
.0055792
.3033612 | b = consistent under Ho and Ha; obtained from ivreg2 B = inconsistent under Ha, efficient under Ho; obtained from regress Test: Ho: difference in coefficients not systematic The comparison here is restricted to the point estimate and estimated standard error of the endogenous regressor, iq; the hausman test statistic rejects exogeneity of this variable. The command also warns of difficulties computing a positive-definite covariance matrix. The large χ^2 value indicates that estimation of the equation with regress yields inconsistent results. I now illustrate the second method, using ivreg2 and the orthog() option. You should notice the peculiar syntax of the parenthesized list in which no variable is identified as endogenous. This argument (and the equals sign) is still required to signal to Stata that med kww are to be considered as instruments in the unrestricted equation in which iq is considered endogenous. This treatment causes ivreg2 to perform the reported estimation using linear regression and consider the alternative model to be IV. 33 ^{33.1} use the small option to ensure that the χ^2 statistic takes on the same value in the second and third methods. . ivreg2 lw s expr tenure rns smsa _I* iq (=med kww), orthog(iq) small Ordinary Least Squares (OLS) regression Number of obs = 758 F(12. 745) =46.86 Prob > F Centered R2 = 0.4301 139.2861498 Total (centered) SS Uncentered R2 = 0.9968
24652.24662 Total (uncentered) SS Root MSE 79.37338879 .3264 Residual SS P>|t| [95% Conf. Interval] t Std. Err. Coef. lw .0476658 .0762438 8.51 0.000 .0072786 .0619548 8 .0180592 .0436198 4.74 0.000 .0308395 expr .0274763 .0568498 0.000 5.64 .0074812 .0421631 tenure -.0422151 -.1503719 0.001 -3.50 .0275467 -.0962935 rns .0807268 0.000 5.00 .0265758 .1328993 smsa -.1481506 0.258 .0478522 -1.13 -.0542095 _Iyear_67 .1687168 0.073 1.79 .0448951 .0805808 _Iyear_68 .2936963 .1214867 0.000 4.73 .0438605 _Iyear_69 .2075915 .3240245 0.000 .132423 4.68 .2282237 .0487994 _Iyear_70 .307294 .1380889 5.17 0.000 .0430952 .2226915 .4026915 _Iyear_71 .2430579 0.000 7.94 .0406574 .3228747 _Iyear_73 .0047369 .0006873 0.009 2.63 .0010314 .0027121 iq 4.012836 4.457878 37.37 .1133489 4.235357 _cons 22.659 Sargan statistic (Lagrange multiplier test of excluded instruments): Chi-sq(2) P-val = 0.0000 -orthog- option: 1.045 Sargan statistic (eqn. excluding suspect orthogonality conditions): 0.3067 Chi-sq(1) P-val = 21.614 C statistic (exogeneity/orthogonality of suspect instruments): 0.0000 Chi-sq(1) P-val = Instruments tested: iq Included instruments: s expr tenure rns smsa _Iyear_67 _Iyear_68 _Iyear_69 _Iyear_70 _Iyear_71 _Iyear_73 iq Excluded instruments: med kww The second method's C test statistic from ivendog agrees qualitatively with that from hausman. I now illustrate the third method's use of ivendog: , quietly ivreg lw s expr tenure rns smsa _I* (iq=med kww) . ivendog Tests of endogeneity of: iq P-value = 0.00000 HO: Regressor is exogenous P-value = 0.00000 21.83742 F(1,744) Wu-Hausman F test: Chi-sq(1) 21.61394 Durbin-Wu-Hausman chi-sq test: The test statistic is identical to that provided by the C statistic above. All forms of the test agree that estimation of the the test agree that estimation of this equation with linear regression yields inconsistent results. The regressor in must be results. The regressor iq must be considered endogenous in the fitted model. ### Exercises - Following the discussion in section 8.3, use the Griliches data in section 8.6 to estimate two-stage least squares "by hand". Compare the residuals and s² with those computed by ivreg on the same equation. - 2. When we presented robust linear regression estimates, the estimated coefficients and summary statistics were unchanged; only the VCE was affected. Compare the estimates displayed in section 8.6 with those of section 8.7.3. Why do the coefficient estimates and summary statistics such as R-squared and Root MSE differ? - 3. Using the Griliches data, estimate the equation , ivreg2 lw s expr rns smsa (iq=med kww age mrt) if year==67, gmm What comments can you make about these estimates? Reestimate the equation, adding the cluster(age) option. What is the rationale for clustering by age? Evaluate this form of the equation versus that estimated without clustering. What are its problems? - 4. Following the discussion in section 8.7.5, refit the Phillips curve model (a) without the gmm option and (b) without the gmm and robust options. How do these estimates—corresponding to 2SLS-HAC and 2SLS-AC—compare with the GMM-HAC estimates displayed in the text? - 5. Refit the Phillips curve model using lags 1, 2, and 3 of unem as instruments for the unemployment rate. What do you find? - 6. Does the Phillips curve require an IV estimator, or can it be consistently estimated with linear regression? Refit the model of section 8.7.5, using the orthog() option of ivreg2 to decide whether linear regression is satisfactory using the DWH framework. - 7. Does the Phillips curve exhibit heteroskedasticity in the time dimension? Refit the model of section 8.7.5 without the robust option, and use the options of ivhettest to test this hypothesis. ### Appendix: Omitted-variables bias The OLS estimator cannot produce consistent estimates if the zero-conditional-mean assumption (4.2) is violated. I illustrate an alternative solution by considering the omitted-variables problem discussed above in section 5.2: an unobserved but relevant omitted explanatory factor. Consider the relationship among high schools' average Scholastic Aptitude Test (SAT) scores (sat),34 expenditure per pupil (spend), and the poverty rate in each district (poverty): $$sat = \beta_1 + \beta_2 expend + \beta_3 poverty + u_i$$ (8.12) We cannot estimate this equation because we do not have access to poverty rates at the school-district level. However, that factor is thought to play an important role in educational attainment, proxying for the quality of the student's home environment. If we had a proxy variable available, we could substitute it for poverty, for example, the median income in the school district. Whether this strategy would succeed depends on how highly the proxy variable is correlated with the unobserved poverty. If no proxy is available, we might estimate the equation, ignoring poverty: $$\log(\mathtt{sat}_i) = \beta_1 + \beta_2 \mathtt{expend}_i + v_i$$ The disturbance process v_i in this equation is composed of $(\beta_3$ poverty, $+u_i)$. If expend and poverty are correlated—as they are likely to be—regression will yield biased and inconsistent estimates of β_1 and β_2 because the zero-conditional-mean assumption is violated. To derive consistent estimates of this equation, we must find an IV, as discussed in section 8.2. Many potential variables could be uncorrelated with the unobservable factors influencing SAT performance (including poverty) and highly correlated with expend.35 What might be an appropriate instrument for expend? Perhaps we could measure each school district's student-teacher ratio (stratio). This measure is likely to be (negatively) correlated with district expenditure. If states' education policy mandates that student-teacher ratios fall within certain bounds, stratio should not be correlated with district poverty rates. #### Appendix: Measurement error 8.B I introduced the concept of measurement error in section 5.3 and now discuss its consequences. Measurement error could appear in the response variable. Say that the true relationship explains y^* , but we observe $y = y^* + \epsilon$, where ϵ is a mean-zero-error process. Then ϵ becomes a contraction cess. Then ϵ becomes a component of the regression error term, worsening the fit of the ^{34.} The SAT is the most common standardized test taken by U.S. high school students for college ^{35.} We are not searching for a proxy variable for poverty. If we had a good proxy for poverty, it would not make a satisfactory instrumental would not make a satisfactory instrumental variable. Correlation with poverty, implies correlation with poverty, implies correlation. estimated equation. We assume that ϵ is not systematic in that it is not correlated with the independent variables x. Then measurement error does no real harm—it merely weakens the model without introducing bias in either point or interval estimates. 36 On the other hand, measurement error in a regressor is a far more serious problem. Say that the true model is $$y = \beta_1 + \beta_2 x_2^* + u$$ but that x_2^* is not observed: we observe $x_2 = x_2^* + \epsilon_2$. We assume that $E[\epsilon_2] = 0$. What should we assume about the relationship between ϵ_2 and x_2 ? First, let us assume that ϵ_2 is not correlated with the observed measure x_2 : larger values of x_2 do not give rise to systematically larger or smaller errors of measurement, which we can write as $\text{Cov}[\epsilon_2, x_2] = 0$. But if so, $\text{Cov}[\epsilon_2, x_2^*] \neq 0$: that is, the error of measurement must be correlated with the true explanatory variable x_2^* . We can then write the estimated equation in which x_2 is replaced with the observable x_2 as $$y = \beta_1 + \beta_2 x_2 + (u - \beta_2 \epsilon_2)$$ (8.13) Since both u and ϵ_2 have zero mean and, by assumption, are uncorrelated with x_2 , the presence of measurement error merely inflates the error term. Var $[u - \beta_2 \epsilon_2] =$ $\sigma_u^2 + \beta_2^2 \sigma_{\epsilon_2}^2$ given a zero correlation of u, ϵ . Measurement error in x_2^* does not damage the regression of y on x_2 —it merely inflates the error variance, as does measurement error in the response variable. However, this is not the case that is usually considered in applied econometrics as errors in variables. It is more reasonable to assume that the measurement error is uncorrelated with the true explanatory variable: $Cov[\epsilon_2, x_2^*] = 0$. For instance, we might assume that the discrepancy between reported income and actual income is not a function of actual income. If so, $Cov[\epsilon_2, x_2] = Cov[\epsilon_2, (x_2^* + \epsilon_2)] \neq 0$ by construction, and the regression of (8.13) will have a nonzero correlation between its explanatory variable x_2 and the composite error term. This result violates the zero-conditional-mean assumption of (4.2). The covariance of $(x_2, u - \beta_2 \epsilon_2) = -\beta_2 \text{Cov}[\epsilon_2, x_2] = -\beta_2 \sigma_{\epsilon_2}^2 \neq 0$, causing the OLS regression of y on x_2 to be biased and inconsistent. In this simple case of one explanatory variable measured with error, we can determine the nature of the bias because β_2 consistently estimates $$\begin{split} \widehat{\boldsymbol{\beta}}_2 &= \beta_2 + \frac{\operatorname{Cov}\left[x_2, u - \beta_2 \epsilon_2\right]}{\operatorname{Var}[x_2]} \\ &= \beta_2 \left(\frac{\sigma_{x_2}^2}{\sigma_{x_2}^2 + \sigma_{\epsilon_2}^2}\right) \end{split}$$ This expression demonstrates that the OLS point estimate will be attenuated—biased toward zero even in large samples—because the bracketed expression of squared quantities must be a fraction. In the absence of measurement error, $\sigma_{\epsilon_2}^2 \to 0$, and the OLS coefficient becomes consistent and unbiased. As $\sigma_{\epsilon_2}^2$ increases relative to the variance ^{36.} If
the magnitude of the measurement error in y is correlated with one or more of the regressors in the point estimates will be biased. in the (correctly measured) explanatory variable, the OLS estimate becomes more and more unreliable, shrinking toward zero. We conclude that in a multiple regression equation in which one of the regressors is subject to measurement error, if the measurement error is uncorrelated with the true (correctly measured) explanatory variable, then the OLS estimates will be biased and inconsistent for all the regressors, not merely for the coefficient of the regressor measured with error. We cannot predict the direction of bias with multiple regressors. Realistically, more than one regressor in an economic model may be subject to measurement error. In a household survey, both reported income and reported wealth may be measured incorrectly. Since measurement error violates the zero-conditional-mean assumption in the same sense as simultaneity bias or omitted-variables bias, we can treat it similarly. #### 8.B.1 Solving errors-in-variables problems We can use the IV estimator to deal with the errors-in-variables model discussed in section 8.B. To deal with measurement error in one or more regressors, we must be able to specify an instrument for the mismeasured x variable that satisfies the usual assumptions. The instrument must not be correlated with the disturbance process u but must be highly correlated with the mismeasured x. If we could find a second measurement of x—even one that is prone to measurement error—we could use it as an instrument, since it would presumably be well correlated with x itself. If it is generated by an independent measurement process, it will be uncorrelated with the original measurement error. For instance, we might have data from a household survey that inquired about each family's disposable income, consumption, and saving. The respondents' answers about their saving last year might well be mismeasured since it is much harder to track saving than, say, earned income. We could say the same for their estimates of how much they spent on various categories of consumption. But using income and consumption data, we could derive a second (mismeasured) estimate of saving, which we could use as an instrument to mitigate the problems of measurement error in the direct estimate. ### g Panel-data models A panel dataset has multiple observations on the same economic units. For instance, we may have multiple observations on the same households or firms over time. In panel data, each element has two subscripts, the group identifier i and a within-group index denoted by t in econometrics, because it usually identifies time. Given panel data, we can define several models that arise from the most general linear representation: $$y_{it} = \sum_{k=1}^{k} x_{kit} \beta_{kit} + \epsilon_{it}, \ i = 1, \dots, N, \ t = 1, \dots, T$$ (9.1) where N is the number of individuals and T is the number of periods. In sections 9.1-9.3, I present methods designed for "large N, small T" panels in which there are many individuals and a few periods. These methods use the large number of individuals to construct the large-sample approximations. The small T puts limits on what can be estimated. Assume a balanced panel in which there are T observations for each of the N individuals. Since this model contains $k \times N \times T$ regression coefficients, it cannot be estimated from $N \times T$ observations. We could ignore the nature of the panel data and apply pooled ordinary least squares, which would assume that $\beta = \beta_j \ \forall \ j,i,t$, but that model might be overly restrictive and can have a complicated error process (e.g., heteroskedasticity across panel units, serial correlation within panel units, and so forth). Thus the pooled OLS solution is not often considered to be practical. One set of panel-data estimators allows for heterogeneity across panel units (and possibly across time) but confines that heterogeneity to the intercept terms of the relationship. I discuss these techniques, the fixed-effects (FE) and random-effects (RE) models, in the next section. They impose restrictions on the above model of $\beta_{jit} = \beta \ \forall i, t, \ j > 1$, thereby allowing only the constant to differ over i. These estimation techniques can be extended to deal with endogenous regressors. The following section discusses several IV estimators that accommodate endogenous regressors. I then present the dynamic panel data (DPD) estimator, which is appropriate when lagged dependent variables are included in the set of regressors. The DPD estimator is applied to "large N, small T" panels, such as a few years of annual data on each of several hundred firms Section 9.4 discusses applying seemingly unrelated regression (SUR) estimators to "small N, large T" panels, in which there are a few individuals and many periods—for instance, financial variables of the 10 largest U.S. manufacturing firms, observed over the last 40 calendar quarters. The last section of the chapter revisits the notion of moving-window estimation, demonstrating how to compute a moving-window regression for each unit of a panel. #### 9.1 FE and RE models The structure represented in (9.1) may be restricted to allow for heterogeneity across units without the full generality (and infeasibility) that this equation implies. In particular, we might restrict the slope coefficients to be constant over both units and time and allow for an intercept coefficient that varies by unit or by time. For a given observation, an intercept varying over units results in the structure $$y_{it} = \mathbf{x}_{it}\beta_k + \mathbf{z}_i\delta + u_i + \epsilon_{it}$$ (9.2) where \mathbf{x}_{it} is a $1 \times k$ vector of variables that vary over individual and time, $\boldsymbol{\beta}$ is the $k \times 1$ vector of coefficients on \mathbf{x} , \mathbf{z}_i is a $1 \times p$ vector of time-invariant variables that vary only over individuals, $\boldsymbol{\delta}$ is the $p \times 1$ vector of coefficients on \mathbf{z} , u_i is the individual-level effect, and ϵ_{it} is the disturbance term. The u_i are either correlated or uncorrelated with the regressors in \mathbf{x}_{it} and $\mathbf{z}_{i\cdot}$ (The u_i are always assumed to be uncorrelated with $\epsilon_{it\cdot}$) If the u_i are uncorrelated with the regressors, they are known as RE, but if the u_i are correlated with the regressors, they are known as FE. The origin of the term RE is clear: when u_i are uncorrelated with everything else in the model, the individual-level effects are simply parameterized as additional random disturbances. The sum $u_i + \epsilon_{ii}$ is sometimes referred to as the composite-error term and the model is sometimes known as an error-components model. The origin of the term FE is more elusive. When the u_i are correlated with some of the regressors in the model, one estimation strategy is to treat them like parameters or FE. But simply including a parameter for every individual is not feasible, because it would imply an infinite number of parameters in our large- N_i large-sample approximations. The solution is to remove the u_i from the estimation problem by a transformation that still identifies some of the coefficients of interest. RE estimators use the assumptions that the u_i are uncorrelated with the regressors to identify the β and δ coefficients. In the process of removing the u_i , FE estimators lose the ability to identify the δ coefficients. An additional cost of using the FE estimator is that all inference is conditional on the u_i in the sample. In contrast, inference using RE estimators pertains to the population from which the RE were drawn. We could treat a time-varying intercept term similarly, as either an FE (giving tipe to an additional coefficient) or as a component of a composite-error term. We concept trate here on the one-way FE and RE models in which only the individual intercept is considered in the "large N, small T" context most commonly found in microeconomic research.¹ ### g.1.1 One-way FE The FE model modestly relaxes the assumption that the regression function is constant over time and space. A one-way FE model permits each cross-sectional unit to have its own constant term while the slope estimates (β) are constrained across units, as is the σ_{ϵ}^2 . This estimator is often termed the least-squares dummy variable (LSDV) model, since it is equivalent to including N-1 dummy variables in the OLS regression of y on x (including a units vector). However, the name LSDV is fraught with problems because it implies an infinite number of parameters in our estimator. A better way to understand the FE estimator is to see that removing panel-level averages from each side of (9.2) removes the FE from the model. Let $\bar{y}_i = (1/T) \sum_{t=1}^T y_{it}$, $\bar{x}_i = (1/T) \sum_{t=1}^T x_{it}$, and $\bar{\epsilon}_i = (1/T) \sum_{t=1}^T \epsilon_{it}$. Also note that z_i and u_i are panel-level averages. Then simple algebra on (9.2) implies $$y_{it} - \overline{y}_i = (\mathbf{x}_{it} - \overline{\mathbf{x}}_i)\beta + (\mathbf{z}_i - \mathbf{z}_i)\delta + u_i - u_i + \epsilon_{it} - \overline{\epsilon}_i$$ which implies that $$\tilde{y}_{it} = (\tilde{\mathbf{x}}_{it}) \boldsymbol{\beta} + \tilde{\epsilon}_{it}$$ (9.3) Equation (9.3) implies that OLS on the within-transformed data will produce consistent estimates of β . We call this estimator $\hat{\beta}_{\rm FE}$. Equation (9.3) also shows that sweeping out the u_i also removes the δ . The large-sample estimator of the VCE of $\hat{\beta}_{\rm FE}$ is just the standard OLS estimator of the VCE that has been adjusted for the degrees of freedom used up by the within transform $$s^{2} \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \widetilde{\mathbf{x}}_{it} \widetilde{\mathbf{x}}'_{it}
\right)^{-1}$$ where $s^2 = \{1/(NT-N-k-1)\}\sum_{i=1}^N\sum_{t=1}^T \widehat{\hat{\epsilon}}_{it}^2$ and $\widehat{\hat{\epsilon}}_{it}$ are the residuals from the OLS regression of \widehat{y}_{it} on $\widehat{\mathbf{x}}_{it}$. This model will have explanatory power only if the individual's y above or below the individual's mean is significantly correlated with the individual's x values above or below the individual's vector of mean x values. For that reason, it is termed the within estimator, since it depends on the variation within the unit. It does not matter if some individuals have, e.g., very high y values and very high x values because it is only the within variation that will show up as explanatory power. This outcome clearly implies that any characteristic that does not vary over time for each unit cannot be included I Stata's set of xt commands extends these panel-data models in a variety of ways. For more information, see [XT] xt ^{2.} This is the panel analogue to the notion that OLS on a cross-section does not seek to "explain" the mean of y, but only the variation around that mean. in the model, for instance, an individual's gender or a firm's three-digit SIC (industry) code. The unit-specific intercept term absorbs all heterogeneity in y and x that is a function of the identity of the unit, and any variable constant over time for each unit will be perfectly collinear with the unit's indicator variable. We can fit the one-way individual FE model with the Stata command xtreg by using the fe (FE) option. The command has a syntax similar to that of regress: xtreg depvar [indepvars], fe [options] As with standard regression, options include robust and cluster(). The command output displays estimates of σ_u^2 (labeled sigma_u), σ_ϵ^2 (labeled sigma_e), and what Stata terms rho: the fraction of variance due to u_i . Stata fits a model in which the u_i of (9.2) are taken as deviations from one constant term, displayed as _cons. The empirical correlation between u_i and the fitted values is also displayed as corr(u_i, Xb). The FE estimator does not require a balanced panel as long as there are at least 2 observations per unit.³ We wish to test whether the individual-specific heterogeneity of u_i is necessary; are there distinguishable intercept terms across units? xtreg, fe provides an F test of the null hypothesis that the constant terms are equal across units. A rejection of this null hypothesis indicates that pooled OLS would produce inconsistent estimates. The one-way FE model also assumes that the errors are not contemporaneously correlated across units of the panel. De Hoyos and Sarafidis (2006) describe some new tests for contemporaneous correlation, and their command xtscd is available from SSC. Likewise, a departure from the assumed homoskedasticity of ϵ_{it} across units of the panel—that is, a form of groupwise heteroskedasticity as discussed in section 6.2.2—may be tested by an LM statistic (Greene 2003, 328), available as the author's xttest3 routine from ssc (Baum 2001), xttest3 will operate on unbalanced panels. The example below uses 1982-1988 state-level data for 48 U.S. states on traffic fatality rates (deaths per 100,000). We model the highway fatality rates as a function of several common factors: beertax, the tax on a case of beer; spircons, a measure of spirits consumption; and two economic factors: the state unemployment rate (unrate) and state per capita personal income, in thousands (perinck). Descriptive statistics for these variables of the traffic.dta dataset are given below. ^{3.} An alternative command for this model is areg, which used to provide options unavailable featuring. With State version 9 or better, there is no advantage to using areg. One-way FE http://www.stata-press.com/data/imeus/traffic, clear | STAUS ! | atal best | Mean | Std. Dev. | Min | Max | Observati | ons | |----------|---|---------------|---------------|----------|----------|-----------|-----| | -intile | 100 | 2.040444 | .5701938 | .82121 | 4.21784 | N = | 336 | | | - HOLDER | 210000 | .5461407 | 1.110077 | 3.653197 | n = | 48 | | esta! | between
within | | .1794253 | 1.45556 | 2.962664 | Т- | 7 | | | and the same of | .513256 | .4778442 | .0433109 | 2.720764 | N = | 336 | | | overall | ****** | .4789513 | .0481679 | 2.440507 | n = | 48 | | MALE SAL | between
within | | .0552203 | .1415352 | .7935126 | Т = | 7 | | | | 1.75369 | .6835745 | 479 | 4.9 | N = | 336 | | - 115 | overall | Tri asser. | .6734649 | .8614286 | 4.388572 | n = | 48 | | pircons | overall
between
within | | .147792 | 1.255119 | 2.265119 | T - | 7 | | | CONTRACTOR OF THE PARTY | 7.346726 | 2.533405 | 2.4 | 18 | N - | 336 | | | overall | Y.340120 | 1.953377 | 4.1 | 13.2 | n = | 48 | | mrate | between
within | | 1.634257 | 4.046726 | 12.14673 | T = | 7 | | | | | 2.253046 | 9.513762 | 22.19345 | N = | 336 | | | overall | 13.88018 | 2.122712 | 9.95087 | 19.51582 | n = | 48 | | perinck | between
within | | .8068546 | 11.43261 | 16.85782 | T = | 7 | | | | | -F 5000E | 1 | 56 | N = | 336 | | | overall. | 30.1875 | 15.30985 | 3 | 56 | n = | 48 | | state | between | | 15.44883
0 | 30,1875 | 30.1875 | T = | 1 | | | Attuan | Marine Street | | 1000 | 1988 | N = | 33 | | | Transact 1 | 1985 | 2.002983 | 1982 | | n = | 4 | | year | overall | | 0 | 1985 | .000 | T = | | | | between | | 2.002983 | 1982 | 1980 | | ii. | The results for the panel identifier, state, and time variable, year, illustrate the importance of the additional information provided by xtsum. By construction, the panel desilier state does not vary within the panels; i.e., it is time invariant. xtsum informs within fact by reporting that the within standard deviation is zero. Any variable with standard deviation of zero will be dropped from the FE model. The coefficients with small within standard deviations are not well identified. The above with small within standard deviations are not be as well identified as the standard deviation of year is zero by construction. The results of the one-way FE model are | Fixed-effects
Group variable | (within) regr | ession | | 700000000000000000000000000000000000000 | f obs • f groups • | 335 | |--|-------------------------------|-----------|---|---|--------------------|---------------------| | R-sq: within | | | | Obs per ; | group: min = | | | hetveen | = 0.1146 | | | | avg = | | | overall | = 0.0863 | | | | max = | 7 | | Overan | | | | F(4,284) | | 38168 | | CONTRACTOR OF WAY | = -0.8804 | | | Prob > F | | | | corr(u_1, Xb) | - 70,0004 | | | Illess all sas | | 00000000 | | fatal | Coef. | Std. Err. | t | P> t | [95% Conf. | Interval] | | beertax | 4840728 | .1625106 | -2.98 | 0.003 | 8039508 | 1641948 | | | | .0792118 | 10.31 | 0.000 | .6610484 | .9728819 | | | .8169652 | .0122110 | 100000000000000000000000000000000000000 | | | | | spircons | .8169652
0290499 | .0090274 | -3.22 | 0.001 | 0468191 | 0112808 | | spircons
unrate | | | | | 0468191
.064165 | | | spircons | 0290499 | .0090274 | -3.22 | 0.001 | | 0112808 | | spircons
unrate
periocK
_cons | 0290499
.1047103 | .0090274 | -3.22
5.08 | 0.001 | .064165 | 0112808
.1452555 | | spircons
unrate
perincK | 0290499
.1047103
383783 | .0090274 | -3.22
5.08 | 0.001 | .064165 | 0112808
.1452555 | All explanatory factors are highly significant, with the unemployment rate having a negative effect on the fatality rate (perhaps since those who are unemployed are income constrained and drive fewer miles) and having income a positive effect (as expected because driving is a normal good). The estimate of rho suggests that almost all the variation in fatal is related to interstate differences in fatality rates. The F is following the regression indicates that there are
significant individual (state level) effects implying that pooled OLS would be inappropriate. ### 9.1.2 Time effects and two-way FE Stata lacks a command to automatically fit two-way FE models. If the number of periods is reasonably small, we can fit a two-way FE model by creating a set of the indicator variables and including all but one in the regression. The joint test that a the coefficients on those indicator variables are zero will be a test of the significance time FE. Just as the individual FE model requires regressors' variation over time will each unit, a time FE (implemented with a time indicator variable) requires regressive variation over units within each period. Estimating an equation from individual of indicator variables that we cannot include a macrofactor such as the rate of GDP grade or price inflation in a model with a time FE because those factors do not vary arose individuals. xtsum can be used to check that the between standard deviation is greater than zero. ^{4.} In the context of a balanced panel, Hsiao (1986) proposes an algebraic solution involving demeaning", which allows estimation of a two-way FE model with no i or t indicator variables. Prob > F = The time effects are generated by tabulate's generate() option and important for the excluded class from each of the other indicator variables. This significance expresses the time effects as variations from the conditional mean of the other indicator variables. This sometime than deviations from the excluded class (1988). ``` guietly tabulate year, generate(yr) local j O fervalues i=82/87 { local ++j rename yr'j' yr'i' 2. quietly replace yr'i' = yr'i' - yr7 5. drop yr7 xtreg fatal beertax spircons unrate perinck yr+, fe fixed-effects (within) regression Number of obs 336 Group variable (i): state Number of groups 48 within = 0.4528 Obs per group: min = 7 between = 0.1090 avg = 7.0 overall = 0.0770 max = 7 F(10,278) corr(u_i, Xb) = -0.8728 Prob > F Std. Err. P>|t| Coef. [95% Conf. Interval] fatal .1539564 -2.82 0.005 -.7377878 -.4347195 beertax .805857 .1126425 7.15 0.000 .5841163 1.027598 spircons 0.000 -.0752666 -.0549084 .0103418 -5.31 unrate .1276319 4.41 .0488953 .0882636 perinck .170439 2.82 0.005 .1004321 yr82 .1103638 1.46 0.144 .0321574 yr83 .0470609 -,1087771 0.004 -2.87 -.0645507 yr84 -.0601971 0.000 -.1384139 -5.00 .0198667 -.0993055 .0954021 0.034 .0038554 2.13 yr86 .0496288 0.990 0.01 yr87 .8521305 -.7948812 0.945 0.07 .4183346 _cons .0286246 signa_u Signa_e .14570531 (fraction of variance due to u_i) rho .98271904 Prob > F = 0.0000 F test that all u_i=0: 64.52 F(47, 278) = test yr82 yr83 yr84 yr85 yr86 yr87 (1) yr82 = 0 (2) yr83 = 0 7184 = O yr85 = 0 (5) yr86 = 0 (6) yr87 = 0 278) = 8.48 ``` The four quantitative factors included in the one-way FE model retain their sign and significance in the two-way FE model. The time effects are jointly significant, suggesting that they should be included in a properly specified model. Otherwise, the model is qualitatively similar to the earlier model, with much variation explained by the individual FE. #### 9.1.3 The between estimator Another estimator for a panel dataset is the between estimator, in which the group means of y are regressed on the group means of x in a regression of N observations. This estimator ignores all the individual-specific variation in y that is considered by the within estimator, replacing each observation for an individual with his or her mean behavior. The between estimator is the OLS estimator of β and δ from the model $$\overline{y}_i = \overline{\mathbf{x}}_i \boldsymbol{\beta} + \overline{\mathbf{z}}_i \boldsymbol{\delta} + u_i + \overline{\epsilon}_i$$ (9.4) Equation (9.4) shows that if the u_i are correlated with any of the regressors in the model, the zero-conditional-mean assumption does not hold and the between estimator will produce inconsistent results. This estimator is not widely used but has sometimes been applied where the time series data for each individual are thought to be somewhat inaccurate or when they are assumed to contain random deviations from long-run means. If you assume that the inaccuracy has mean zero over time, a solution to this measurement error problem can be found by averaging the data over time and retaining only 1 observation per unit. We could do so explicitly with Stata's collapse command, which would generate a new dataset of that nature (see section 3.3). However, you need not form that dataset to use the between estimator because the command xtreg with the be (between) option will invoke it. Using the between estimator requires that N > k. Any macro factor that is constant over individuals cannot be included in the between estimator because its average will not differ by individual. We can show that the pooled OLS estimator is a matrix-weighted average of the within and between estimators, with the weights defined by the relative precision of the two estimators. With panel data, we can identify whether the interesting sources of variation are in individuals' variation around their means or in those means themselves. The within estimator takes account of only the former, whereas the between estimator considers only the latter. To show why we account for all the information present in the panel, we refit the first model above with the between estimator (the second model, containing year FE, is not appropriate, since the time dimension is suppressed by the between estimator. Interestingly, two of the factors that played an important role in the one- and two-way FE model, beertax and unrate, play no significant role in this regression on group (state) means. | 336
48
7
7.0
7
9.03 | f groups = group: min = avg = max = | Number o | perinck,
P means) | aton on grou | beertax spir
ssion (regres
e (i): state | Feturen regre
Group variable
g-eq: within
between
overall | |---|---|---|-------------------------------|---|---|---| | 0.0000 | | P>Itl | t | Std. Err. | Coef. | fatal | | Intervall | [95% Conf. | | 0.51 | .1456333 | .0740362 | beertax | | .3677338
.5272618
.1088776
0990218 | 2196614
.0722417
0444111
2693277
2.283416 | 0.614
0.011
0.401
0.000
0.000 | 2.66
0.85
-4.36
5.06 | .1128135
.038005
.0422241
.7502025 | .2997517
.0322333
1841747
3.796343 | spircons
unrate
perincK
cons | ### 11.4 One-way RE gather than considering the individual-specific intercept as an FE of that unit, the RE godel specifies the individual effect as a random draw that is uncorrelated with the negressors and the overall disturbance term $$y{it} = \mathbf{x}_{it}\boldsymbol{\beta} + \mathbf{z}_i\boldsymbol{\delta} + (u_i + \epsilon_{it}) \tag{9.5}$$ where $(u_i + \epsilon_{it})$ is a composite error term and the u_i are the individual effects. A could assumption of this model is that the u_i are uncorrelated with the regressors \mathbf{x}_{it} and \mathbf{z}_i . This orthogonality assumption implies that the parameters can be consistently simuted by OLS and the between estimator, but neither of these estimators is efficient. The RE estimator uses the assumption that the u_i are uncorrelated with regressors to construct a more efficient estimator. If the regressors are correlated with the u_i , they are correlated with the composite error term and the RE estimator is inconsistent. The RE model uses the orthogonality between the u_i and the regressors to greatly reduce the number of estimated parameters. In a large survey, with thousands of individuals, an RE model has k+p coefficients and two variance parameters, whereas an FE model has k-1+N coefficients and one variance parameter. The coefficients on time-levariant variables are identified in the RE model. Because the RE model identifies the population parameter that describes the individual-level heterogeneity, inference from the RE model pertains to the underlying population of individuals. In contrast, because the FE model cannot estimate the parameters that describe the individual-level heterogeneity, inference from the FE model is conditional on the FE in the sample. Therefore, the RE model is more efficient and allows a broader range of statistical inference. The large assumption that the u_i are uncorrelated with the regressors can and should be lasted. In implement the one-way RE formulation of (9.5), we assume that both u and ϵ are an are processes, uncorrelated with the regressors; that they are each homoskedas- tic; that they are uncorrelated with each other; and that there is no correlation over individuals or time. For the T observations belonging to the ith unit of the panel, the composite error process $\eta_{it} = u_i + \epsilon_{it}$ gives rise to the error-components model with conditional variance $$E[\eta_{it}^2|\mathbf{x}^*] = \sigma_n^2 + \sigma_\epsilon^2$$ and conditional covariance within a unit of $$E[\eta_{it}\eta_{is}|\mathbf{x}^*] = \sigma_u^2, t \neq s$$ The covariance matrix of these T errors can then be written as $$\Sigma = \sigma_{\epsilon}^2 I_T + \sigma_u^2 \iota_T \iota_T'$$ Since observations i and j are uncorrelated, the full covariance matrix of η across the sample is block diagonal in Σ : $\Omega = \mathbf{I}_n \otimes \Sigma^{5.6}$ The GLS estimator for the slope parameters of this model is $$\begin{split} \widehat{\boldsymbol{\beta}}_{\mathrm{RE}} &= & (\mathbf{X}^{*'}\boldsymbol{\Omega}^{-1}\mathbf{X}^{*})^{-1}(\mathbf{X}^{*'}\boldsymbol{\Omega}^{-1}\mathbf{y}) \\ &= &
\left(\sum_{i}\mathbf{X}_{i}^{*'}\boldsymbol{\Sigma}^{-1}\mathbf{X}_{i}^{*}\right)^{-1}\left(\sum_{i}\mathbf{X}_{i}^{*'}\boldsymbol{\Sigma}^{-1}\mathbf{y}_{i}\right) \end{split}$$ To compute this estimator, we require $\Omega^{-1/2} = (\mathbf{I}_n \otimes \Sigma)^{-1/2}$, which involves $$\Sigma^{-1/2} = \sigma_{\epsilon}^{-1} (\mathbf{I} - T^{-1} \theta \iota_T \iota_T')$$ where $$\theta = 1 - \frac{\sigma_{\epsilon}}{\sqrt{\sigma_{\epsilon}^2 + T\sigma_{\mathrm{u}}^2}}$$ and the quasidemeaning transformation defined by $\Sigma^{-1/2}$ is then $\sigma_i^{-1}(y_{ii} - \theta \bar{y}_i)$; that is, rather than subtracting the entire individual mean of y from each value, we should subtract some fraction of that mean, as defined by θ . The quasidemeaning transformation reduces to the within transformation when $\theta = 1$. Like pooled OLS, the GLS RE estimator is a matrix-weighted average of the within and between estimators, but we apply optimal weights, as based on $$\lambda = \frac{\sigma_e^2}{\sigma_e^2 + T\sigma_u^2} = (1-\theta)^2$$ ^{5.} The operator \otimes denotes the Kronecker product of the two matrices. For any galaxies, $\mathbf{A}_{K\times L}$, $\mathbf{B}_{M\times N}$, $\mathbf{A}\otimes \mathbf{B} = \mathbf{C}_{KM\times LN}$. To form the product matrix, each element of \mathbf{A} substitutes the entire matrix \mathbf{B} . See Greene (2003, 824–825). 6. I give the expressions for a balanced panel. Unbalanced panels merely complicate the algebra where λ is the weight attached to the covariance matrix of the between estimator. To the extent that λ differs from unity, pooled OLS will be inefficient, as it will attach the properties of the partial pooling and the pathet than apportioning some of the variation to the differences in ϵ_i across units. The setting $\lambda=1$ ($\theta=0$) is appropriate if $\sigma_u^2=0$; that is, if there are no RE, then a pooled OLS model is optimal. If $\theta=1$, $\lambda=0$ and the FE estimator is appropriate. To the extent that λ differs from zero, the FE estimator will be inefficient, in that it applies geto weight to the between estimator. The GLS RE estimator applies the optimal λ in the unit interval to the between estimator, whereas the FE estimator arbitrarily imposes $\lambda=0$. This imposition would be appropriate only if the variation in ϵ was trivial in comparison with the variation in u. To implement the FGLS estimator of the model, all we need are consistent estimates of σ_{ϵ}^2 and σ_u^2 . Because the FE model is consistent, its residuals can be used to estimate σ_{ϵ}^2 . Likewise, the residuals from the pooled OLS model can be used to generate a consistent estimate of $(\sigma_{\epsilon}^2 + \sigma_u^2)$. These two estimators may be used to estimate θ and transform the data for the GLS model. Because the GLS model uses quasidemeaning, it can include time-invariant variables (such as gender or race). The FGLS estimator may be executed in Stata by using the command xtreg with the re (RE) option. The command will display estimates of σ_u^2 , σ_e^2 , and what Stata calls rho: the fraction of the total variance due to ϵ_i . Breusch and Pagan (1980) have developed a Lagrange multiplier test for $\sigma_u^2 = 0$, which may be computed following an RE estimation via the command xttest0 (see [XT] xtreg for details). We can also estimate the parameters of the RE model with full maximum likelihood. Typing xtreg, mle requests that estimator. The application of maximum likelihood estimation continues to assume that the regressors and u are uncorrelated, adding the assumption that the distributions of u and ϵ are normal. This estimator will produce a likelihood-ratio test of $\sigma_u^2 = 0$ corresponding to the Breusch-Pagan test available for the GLS estimator. To illustrate the one-way RE estimator and implement a test of the orthogonality assumption under which RE is appropriate and preferred, we estimate the parameters of the RE model that corresponds to the FE model above. ⁷ A possible complication: as generally defined, the two estimators above are not guaranteed to because a positive estimate of σ_s^2 in finite samples. Then the variance estimates without degrees of freezeros. | . xtreg fatal beertax spircons unrate perinck, Random-effects GLS regression Group variable (i): state R-sq: within = 0.2263 between = 0.0123 overall = 0.0042 Random effects u_i - Gaussian corr(u_i, X) = 0 (assumed) | | Number | | n = | 48
7
7.0
7
49.90 | | | |---|--|--|--|---|---------------------------------------|----------------------|---| | fatal | Coef. | Std. Err. | z | P> z | [95% | Conf. | Interval) | | beertax
spircons
unrate
perinck
_cons | .0442768
.3024711
0491381
0110727
2.001973 | .1204613
.0642954
.0098197
.0194746
.3811247 | 0.37
4.70
-5.00
-0.57
5.25 | 0.713
0.000
0.000
0.570
0.000 | 191
.1764
0683
0492
1.254 | 1546
3843
2423 | .2803765
.4284877
0298919
.0270968
2.748964 | | sigma_u
sigma_e
rho | .41675665
.15678965
.87601197 | (fraction | of varia | nce due t | o u_1) | | | Compared with the FE model, where all four regressors were significant, we see that the beertax and perincK variables do not have significant effects on the fatality rate. The latter variable's coefficient switched sign. #### 9.1.5 Testing the appropriateness of RE We can use a Hausman test (presented in section 8.11) to test the null hypothesis that the extra orthogonality conditions imposed by the RE estimator are valid. If the regressors are correlated with the u_i , the FE estimator is consistent but the RE estimator is not consistent. If the regressors are uncorrelated with the u_i , the FE estimator is still consistent, albeit inefficient, whereas the RE estimator is consistent and efficient. Therefore, we may consider these two alternatives in the Hausman test framework, fitting both models and comparing their common coefficient estimates in a probabilistic sense. If both FE and RE models generate consistent point estimates of the slope parameters, they will not differ meaningfully. If the orthogonality assumption is violated the inconsistent RE estimates will significantly differ from their FE counterparts. To implement the Hausman test, we fit each model and store its results by types estimates store set after each estimation (set defines that set of estimates: for instance, set might be fix for the FE model). Then typing hausman setconsist setelf invoke the Hausman test, where setconsist refers to the name of the FE estimates (which are consistent under the null and alternative) and setelf refers to the name of the general set of the set of the set of the name of the general set of the o We illustrate the Hausman test with the two forms of the motor vehicle fatality equation: quietly xtreg fatal beertax spircons unrate perinck, fe estimates store fix quietly streg fatal beertax spircons unrate perinck, re estimates store ran hausman fix ran | | (b) (B) fix ran | | (b-B)
Difference | sqrt(diag(V_b-V_B
S.E. | | |----------|-----------------|----------|---------------------|---------------------------|--| | beertax | 4840728 | .0442768 | 5283495 | .1090815 | | | spircons | .8169652 | .3024711 | .514494 | .0462668 | | | unrate | 0290499 | 0491381 | .0200882 | | | | perinck | .1047103 | 0110727 | -115783 | .0067112 | | b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic $chi2(4) = (b-B)'[(V_b-V_B)^-(-1)](b-B)$ = 130.93 Prob>chi2 = 0.0000 (V_b-V_B is not positive definite) As we might expect from the different point estimates generated by the RE estimator, the Hausman test's null hypothesis—that the RE estimator is consistent—is soundly rejected. The state-level individual effects do appear to be correlated with the regressors.⁸ #### 9.1.6 Prediction from one-way FE and RE Following xtreg, the predict command may be used to generate a variety of series. The default result is xb, the linear prediction of the model. Stata normalizes the unit-specific effects (whether fixed or random) as deviations from the intercept term $_{-}$ cons; therefore, the xb prediction ignores the individual effect. We can generate predictions that include the RE or FE by specifying the xbu option; the individual effect itself may be predicted with option u_{+}^{9} and the ϵ_{it} error component (or "true" residual) may be predicted with option u_{-}^{9} . The three last predictions are available only in sample for either the FE or RE model, whereas the linear prediction xb and the "combined residual" (option u_{-}^{9}) by default will be computed out of sample as well, just as with predictions from regress. Estimates of u, are not consistent with N → ∞ and fixed T. ⁸ Here Stata signals that the difference of the estimated VCEs is not positive definite. ### 9.2 IV models for panel data If the Hausman test indicates that the RE u_i cannot be considered orthogonal to the individual-level error, an IV estimator may be used to generate consistent estimates of the coefficients on the time-invariant variables. The Hausman-Taylor estimator (Hausman and Taylor 1981) assumes that some of the regressors in \mathbf{x}_{it} and \mathbf{z}_i are correlated with u
but that none are correlated with ϵ . This estimator is available in Stata as xthtaylor. This approach begins by writing (9.2) as $$y_{it} = \mathbf{x}_{1,it}\boldsymbol{\beta}_1 + \mathbf{x}_{2,it}\boldsymbol{\beta}_2 + \mathbf{z}_{1,i}\boldsymbol{\delta}_1 + \mathbf{z}_{2,i}\boldsymbol{\delta}_2 + u_i + \epsilon_{it}$$ where the x variables are time varying, the z variables are time invariant, the variables subscripted with a "1" are exogenous, and the variables subscripted with a "2" are correlated with the u_i . Identifying the parameters requires that k_1 (the number of $\mathbf{x}_{1,it}$ variables) be at least as large as ℓ_2 (the number of $\mathbf{z}_{2,i}$ variables). Applying the Hausman-Taylor estimator circumvents the problem that the $\mathbf{x}_{2,it}$ and $\mathbf{z}_{2,i}$ variables are correlated with u_i , but it requires that we find variables that are not correlated with the individual-level effect. Stata also provides an IV estimator for the FE and RE models in which some of the \mathbf{x}_{it} and \mathbf{z}_i variables are correlated with the disturbance term ϵ_{it} . These are different assumptions about the nature of any suspected correlation between the regressor and the composite error term from those underlying the Hausman-Taylor estimator. The xtivreg command offers FE, RE, between-effects, and first-differenced IV estimators in a panel-data context. ### 9.3 Dynamic panel-data models A serious difficulty arises with the one-way FE model in the context of a dynamic panel-data (DPD) model, one containing a lagged dependent variable (and possibly other regressors), particularly in the "small T, large N" context. As Nickell (1981) shows, this problem arises because the within-transform N, the lagged dependent variable is correlated with the error term. As Nickell (1981) shows, the resulting correlation creaks a large-sample bias in the estimate of the coefficient of the lagged dependent variable which is not mitigated by increasing N, the number of individual units. In the simplest setup of a pure AR(1) model without additional regressors: $$\begin{array}{rcl} y_{it} & = & \beta + \rho y_{i,t-1} + u_i + \epsilon_{it} \\ y_{it} - \overline{y}_{ix} & = & \rho (y_{i,t-1} - \overline{L.y}_i) + (\epsilon_{it} - \epsilon_i) \end{array}$$ $L.y_i$ is correlated with $(\epsilon_{it} - \epsilon_i)$ by definition. Nickell demonstrates that the inconsistent of $\widehat{\rho}$ as $N \to \infty$ is of order 1/T, which may be sizable in a "small T" context. If i > 0, the bias is invariably negative, so the persistence of y will be underestimated reasonably large values of T, the limit of $(\widehat{\rho} - \rho)$ as $N \to \infty$ will be approximated $-(1+\rho)/(T-1)$, which is a sizable value. With T=10 and $\rho=0.5$, the bias of be -0.167, or about 1/3 of the true value. Including more regressors does not remove this bias. If the regressors are correlated with the lagged dependent variable to some degree, their coefficients may be seriously biased as well. This bias is not caused by an autocorrelation in the error process ϵ and arises even if the error process is autocorrelated, the problem is even more severe given the difficulty of deriving a consistent estimate of the AR parameters in that context. The same problem affects the one-way RE model. The u_i error component enters every value of y_{it} by assumption, so that the lagged dependent variable cannot be independent of the composite error process. A solution to this problem involves taking first differences of the original model. Consider a model containing a lagged dependent variable and regressor \mathbf{x} : $$y_{it} = \beta_1 + \rho y_{i,t-1} + \mathbf{x}_{it} \boldsymbol{\beta}_2 + \ u_i + \epsilon_{it}$$ The first difference transformation removes both the constant term and the individual effect: $$\Delta y_{it} = \rho \Delta y_{i,t-1} + \Delta \mathbf{x}_{it} \boldsymbol{\beta}_2 + \Delta \epsilon_{it}$$ There is still correlation between the differenced lagged dependent variable and the disturbance process [which is now a first-order moving average process, or MA(1)]: the former contains $y_{i,t-1}$ and the latter contains $\epsilon_{i,t-1}$. But with the individual FE swept out, a straightforward IV estimator is available. We may construct instruments for the lagged dependent variable from the second and third lags of y, either in the form of differences or lagged levels. If ϵ is i.i.d., those lags of y will be highly correlated with the lagged dependent variable (and its difference) but uncorrelated with the composite-error process. ¹⁰ Even if we believed that ϵ might be following an AR(1) process, we could still follow this strategy, "backing off" one period and using the third and fourth lags of y (presuming that the time series for each unit is long enough to do so). The DPD approach of Arellano and Bond (1991) is based on the notion that the IV approach noted above does not exploit all the information available in the sample. By doing so in a GMM context, we can construct more efficient estimates of the DPD model. The Arellano-Bond estimator can be thought of as an extension to the Anderson-Hsiao estimator implemented by xtivreg, fd. Arellano and Bond argue that the Anderson-Hsiao estimator, although consistent, fails to take all the potential orthogonality conditions into account. Consider the equations $$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta}_1 + \mathbf{w}_{it}\boldsymbol{\beta}_2 + v_{it}$$ $v_{it} = u_i + \epsilon_{it}$ where \mathbf{x}_{it} includes strictly exogenous regressors and \mathbf{w}_{it} are predetermined regressors (which may include lags of y) and endogenous regressors, all of which may be correlated with u_i , the unobserved individual effect. First-differencing the equation removes the u_i and its associated omitted-variable bias. The Arellano-Bond estimator begins by specifying the model as a system of equations, one per period, and allows the instruments ^{10.} The degree to which these instruments are not weak depends on the true value of ρ . See Areliano and Bover (1995) and Blundell and Bond (1998). applicable to each equation to differ (for instance, in later periods, more lagged values of the instruments are available). The instruments include suitable lags of the levels of the endogenous variables, which enter the equation in differenced form, as well as the strictly exogenous regressors and any others that may be specified. This estimator can easily generate a great many instruments, since by period τ all lags prior to, say, $(\tau-2)$ easily generate a great many instruments. If T is nontrivial, we may need to might be individually considered as instruments. If T is nontrivial, we may need to use the option that limits the maximum lag of an instrument to prevent the number of instruments from becoming too large. This estimator is available in Stata as xtabond (see [XT] xtabond). A potential weakness in the Arellano–Bond DPD estimator was revealed in later work by Arellano and Bover (1995) and Blundell and Bond (1998). The lagged levels are often rather poor instruments for first-differenced variables, especially if the variables are close to a random walk. Their modification of the estimator includes lagged levels as well as lagged differences. The original estimator is often entitled difference GMM, whereas the expanded estimator is commonly termed system GMM. The cost of the system GMM estimator involves a set of additional restrictions on the initial conditions of the process generating y. Both the difference GMM and system GMM estimators have one-step and two-step variants. The two-step estimates of the difference GMM standard errors have been shown to have a severe downward bias. To evaluate the precision of the two-step estimators for hypothesis tests, we should apply the "Windmeijer finite-sample correction" (see Windmeijer 2005) to these standard errors. Bond (2002) provides an excellent guide to the DPD estimators. All the features described above are available in David Roodman's improved version of official Stata's estimator. His version, xtabond2, offers a much more flexible syntax than official Stata's xtabond, which does not allow the same specification of instrument sets, nor does it provide the system GMM approach or the Windmeijer correction to the standard errors of the two-step estimates. On the other hand, Stata's xtabond has a simpler syntax and is faster, so you may prefer to use it. To illustrate the use of the DPD estimators, we first specify a model of fatal as depending on the prior year's value (L.fatal), the state's spircons, and a time trend (year). We provide a set of instruments for that model with the gmm option and list year as an iv instrument. We specify that the two-step Arellano-Bond estimator be used with the Windmeijer correction. The noleveleq option specifies the original Arellano-Bond estimator in differences:¹¹ . use http://www.stata-press.com/data/imeus/traffic, clear . tsmet panel variable: state, 1 to 56 time variable: year, 1982 to 1988 ^{11.} The estimated parameters of the difference GMM model do not include a constant term because it is differenced out. -3.17 Pr > z = 0.002 xtabond2 fatal L.fatal spircons year. , gmmstyle(beertax spircons unrate perinck)) ivstyle(year) twostep robust noleveled Favoring space over speed. To switch, type or click on mata: mata set matafavor > speed. Warning: Number of instruments may be large relative to number of observations. Suggested rule of thumb: keep number of instruments <= number of groups. Arellano-Bond dynamic panel-data estimation, two-step difference GMM results Group variable: state Number of obs 240 Time variable : year Number of groups 48 Number of instruments = 48 Obs per group: min = Wald chi2(3) = 51.90 avg = 5.00 Prob > chi2 0.000 max = 5 Corrected Coef. Std. Err. P>|z| [95% Conf. Interval] fatal
.3205569 .071963 Li. 4.45 0.000 .1795121 .4616018 .2924675 .1655214 1.77 0.077 -.0319485 .6168834 spircons .0118935 0.004 .0107175 .0573391 .0340283 2.86 vear Hansen test of overid. restrictions: chi2(82) = 47.26 Prob > chi2 = 0.999 This model is moderately successful in relating spircons to the dynamics of the fatality rate. The Hansen test of overidentifying restrictions is satisfactory, as is the test for AR(2) errors. We expect to reject the test for AR(1) errors in the Arellano-Bond model. Arellano-Bond test for AR(1) in first differences: z = Arellano-Bond test for AR(2) in first differences: z = To contrast the difference GMM and system GMM approaches, we use the latter estimator by dropping the noleveleq option: . xtabond2 fatal L.fatal spircons year, > gmmstyle(beertax spircons unrate perinck) ivstyle(year) twostep robust Favoring space over speed. To switch, type or click on mata: mata set matafavor > speed. Warning: Number of instruments may be large relative to number of observations. Suggested rule of thumb: keep number of instruments <= number of groups. Arellano-Bond dynamic panel-data estimation, two-step system GMM results | Group variable: state Time variable: year Number of instruments = 48 Wald chi2(3) = 1336.50 Prob > chi2 = 0.000 | | | | Number | of obs
of group:
group: | рв | 1 11 11 | 288
48
6.00 | |---|----------------|---|-------|--------|-------------------------------|----------|---------|-------------------| | | Coef. | Corrected
Std. Err. | z | P> z | [95% | Conf | | Interval] | | fatal | - Harman and A | 100000000000000000000000000000000000000 | | | | | | | | L1. | .8670531 | .0272624 | 31.80 | 0.000 | .8136 | | | .9204865 | | spircons | 0333786 | .0166285 | -2.01 | 0.045 | 0659 | 1697 | | 0007874 | | | .0135718 | .0051791 | 2.62 | 0.009 | .0034 | 1209 | | .0237226 | | year | | 10.27954 | -2.59 | 0.010 | -46.77 | COLOR TO | | -6.477799 | Although the other summary measures from this estimator are acceptable, the marginally significant negative coefficient on spircons casts doubt on this specification. Arellano-Bond test for AR(2) in first differences: z = 1.77 Pr > z = 0.077 #### 9.4 Seemingly unrelated regression models Often we want to estimate a similar specification for several different units, a production function or cost function for each industry. If the equation to be estimated for a given unit meets the zero-conditional-mean assumption of (4.2), we can estimate each equation independently. However, we may want to estimate the equations jointly: first, to allow cross-equation restrictions to be imposed or tested, and second, to gain efficiency, since we might expect the error terms across equations to be contemporaneously correlated. Such equations are often called seemingly unrelated regressions (SURs), and Zellner (1962) proposed an estimator for this problem: the SUR estimator. Unlike the FE and RE estimators, whose large-sample justification is based on "small T, large N" datasets in which $N \to \infty$, the SUR estimator is based on the large-sample properties of "large T, small N" datasets in which $T \to \infty$, so it may be considered a multiple time-series estimator. Equation i of the SUR model is $$y_i = \mathbf{x}_i \boldsymbol{\beta}_i + \epsilon_i, \ i = 1, ..., N$$ where y_i is the ith equation's dependent variable and \mathbf{X}_i is the $T \times k_i$ matrix of observations on the regressors for the ith equation. The disturbance process $\boldsymbol{\epsilon} = (\epsilon'_1, \epsilon'_2, \dots, \epsilon'_N)'$ is assumed to have an expectation of zero and an $NT \times NT$ covariance matrix of Ω . We will consider only the case where we have T observations per equation, although we could fit the model with an unbalanced panel. Each equation may have a differing set of regressors, and apart from the constant term, there may be no variables in common across the \mathbf{x}_i . Applying SUR requires that the T observations per unit exceed N, the number of units, to render Ω of full rank and invertible. If this constraint is not satisfied, we cannot use SUR. In practice, T should be much larger than N for the large-sample approximations to work well. We assume that $E[\epsilon_{it}\epsilon_{js}] = \sigma_{ij}$, t = s, and otherwise zero, which implies that we are allowing for the error terms in different equations to be contemporaneously correlated, but assuming that they are not correlated at other points (including within a unit: they are assumed independent). Thus for any two error vectors, $$E[\epsilon_i \epsilon'_j] = \sigma_{ij} \mathbf{I}_T$$ $\Omega = \mathbf{\Sigma} \otimes \mathbf{I}_T$ where Σ is the $N \times N$ covariance matrix of the N error vectors and \otimes is the Kronecker matrix product. The efficient estimator for this problem is GLS, in which we can write \mathbf{y} as the stacked set of \mathbf{y}_i vectors and \mathbf{X} as the block-diagonal matrix of \mathbf{X}_i . Since the GLS estimator is $$\widehat{\boldsymbol{\beta}}_{\mathrm{GLS}} = (\mathbf{X}'\boldsymbol{\Omega}^{-1}\mathbf{X})(\mathbf{X}'\boldsymbol{\Omega}^{-1}\mathbf{y})$$ and $$\Omega^{-1} = \Sigma^{-1} \otimes I$$ We can write the (infeasible) GLS estimator as $$\widehat{\boldsymbol{\beta}}_{\mathrm{GLS}} = \{\mathbf{X}'(\boldsymbol{\Sigma}^{-1} \otimes \mathbf{I})\mathbf{X}\}^{-1}\{\mathbf{X}'(\boldsymbol{\Sigma}^{-1} \otimes \mathbf{I})\mathbf{y}\}$$ which if expanded demonstrates that each block of the $\mathbf{X}_i'\mathbf{X}_j$ matrix is weighted by the scalar σ_{ij}^{-1} . The large-sample VCE of $\widehat{\boldsymbol{\beta}}_{\mathrm{GLS}}$ is the first term of this expression. When will this estimator provide a gain in efficiency over equation-by-equation OLS? First, if the σ_{ij} , $i \neq j$ are actually zero, there is no gain. Second, if the \mathbf{X}_i matrices are identical across equations—not merely having the same variable names, but containing the same numerical values—GLS is identical to equation-by-equation OLS, and there is no gain. Beyond these cases, the gain in efficiency depends on the magnitude of the cross-equation contemporaneous correlations of the residuals. The higher those correlations are, the greater the gain will be. Furthermore, if the \mathbf{X}_i matrices' columns are highly correlated across equations, the gains will be smaller. The feasible SUR estimator requires a consistent estimate of Σ , the $N \times N$ contemporaneous covariance matrix of the equations' disturbance processes. We can estimate the representative element σ_{ij} , the contemporaneous correlation between ϵ_i, ϵ_j , from equation-by-equation OLS residuals as $$s_{ij} = \frac{e_i' e_j}{T}$$ assuming that each unit's equation is estimated from T observations.¹² We use these estimates to perform the "Zellner step", where the algebra of partitioned matrices will show that the Kronecker products may be rewritten as products of the blocks in the expression for $\widehat{\boldsymbol{\beta}}_{\text{GLS}}$. The estimator may be iterated. The GLS estimates will produce a new set of residuals, which may be used in a second Zellner step, and so on. Iteration will make the GLS estimates equivalent to maximum likelihood estimates of the system. The SUR estimator is available in Stata via the sureg command; see [R] sureg. SUR can be applied to panel-data models in the wide format. UR is a more attractive estimator than pooled OLS, or even FE, in that SUR allows each unit to have its own coefficient vector. Not only does the constant term differ from unit to unit, but each of the slope parameters and σ_i^2 differ across units. In contrast, the slope and variance parameters are constrained to be equal across units in pooled OLS, FE, or RE estimators. We can use standard F tests to compare the unrestricted SUR results with those that may be generated in the presence of linear constraints, such as cross-equation restrictions (see [R] constraint). Cross-equation constraints correspond to the restriction that a particular regressor's effect is the same for each panel unit. We can use the isure option to iterate the estimates, as described above. We can test whether applying SUR has yielded a significant gain in efficiency by using a test for the diagonality of Σ proposed by Breusch and Pagan (1980). Their LM statistic sums the squared correlations between residual vectors i and j, with a null hypothesis of diagonality (zero contemporaneous covariance between the errors of different equations). This test is produced by sureg when the corr option is specified. We apply SUR to detrended annual output and factor input prices of five U.S. industries (SIC codes 32–35) for 1958–1996, stored in the wide format. The descriptive statistics of the price series are given below. . use http://www.stata-press.com/data/imeus/4klem_wide_defl, clear (35KLEN: Jorgensen industry sector data) . tsset time variable: year, 1958 to 1996 ^{12.} A degrees-of-freedom correction could be used in the denominator, but relying on large-sample ^{13.} If the data are set up in the long format more commonly used with panel data, the reshale command (see [D] reshape) may be used to place them in the wide format; see section 3.8. 14. See [XT] xtgls for a SUR estimator that imposes a common coefficient vector on a panel-data model. ^{15.} This test should not be confused with these authors' test for heteroskedasticity described in ^{16.} The price series have been detrended with a cubic polynomial time trend. summarize *d year, sep(5) pi34d pk34d p134d pe34d pm34d pi35d pk35d p135d pe35d pm35d year | Obs | Mean | Std. Dev. | Min | Max | |-----|--
--|---|--| | 39 | .611359 | .02581 | .566742 | .6751782 | | 39 | .7335128 | .0587348 | .5981754 | .840534 | | 39 | .5444872 | .0198763 | .4976022 | .5784216 | | 39 | .5592308 | .0786871 | .4531953 | .7390293 | | 39 | .5499744 | .0166443 | .5171617 | .5823871 | | 39 | .4948205 | .0149315 | .4624915 | .5163859 | | 39 | .5190769 | .035114 | .4277323 | .5760419 | | 39 | .5200256 | .0424153 | .4325826 | .6127931 | | 39 | .5706154 | .093766 | .4387668 | .8175654 | | | 39
39
39
39
39
39
39 | 39 .611359
39 .7335128
39 .5444872
39 .5592308
39 .5499744
39 .4948205
39 .5190769
39 .5200256
39 .5706154 | 39 .611359 .02581
39 .7335128 .0587348
39 .5444872 .0198763
39 .5592308 .0786871
39 .5499744 .0166443
39 .4948205 .0149315
39 .5190769 .035114
39 .5200256 .0424153
39 .5706154 .093766 | 39 .611359 .02581 .566742 39 .7335128 .0587348 .5981754 39 .5444872 .0198763 .4976022 39 .5592308 .0786871 .4531953 39 .5499744 .0166443 .5171617 39 .4948205 .0149315 .4624915 39 .5190769 .035114 .4277323 39 .5200256 .0424153 .4325826 39 .5706154 .093766 .4387668 | .0178689 .0558735 .0169301 .0974223 .0180344 .0168748 .1315394 .0216141 .0865252 .0234541 11.40175 .4659021 .377311 .468933 .4349643 .5070866 .4821945 .423117 .4493805 .4476493 .5317762 1958 .5421571 .5258276 .6376742 .5492905 .8020797 .5773573 .5484785 1.061852 .5516838 .7584586 .6334837 1996 .5013333 .5157692 .5073077 .5774359 .5440256 .5159487 .7182051 .4984872 .5629231 .5684615 1977 39 39 39 39 39 39 39 39 39 39 39 We regress each industry's output price on its lagged value and four factor input prices: those for capital (k), labor (1), energy (e), and materials (m). The sureg command requires the specification of each equation in parentheses. We build up the equations' specification by using a forvalues loop over the industry codes. local eqn "'eqn' (pi'i'd L.pi'i'd pk'i'd pl'i'd pe'i'd pm'i'd) " . forvalues i=32/35 { 3. } . sureg 'eqn', corr Seemingly unrelated regression | and a | The state of s | | | | chi2 | P | | |----------------------------------|--|---------|--|--------------------------------------|---------------------------------------|----------------------------|--| | Equation | Obs | Parms | RMSE | "R-sq" | Consider. | 2020000 | | | pi32d
pi33d
pi34d
pi35d | 38
38
38
38 | 5 5 5 5 | .0098142
.0027985
.0030355
.0092102 | 0.8492
0.9615
0.9677
0.6751 | 219.14
1043.58
1182.37
78.10 | 0.0000
0.0000
0.0000 | | | | Coef. | Std. Err. | z | P> z | [95% Conf. | . Interval] | |-------|-------------------|-----------|-------|----------|--------------|-------------| | 132d | | | | | | | | pi32d | - 11000000 | | 0.02 | 0.974 | 3234953 | 2100000 | | L1. | 0053176 | .1623386 | -0.03 | | 0863556 | .3128602 | | pk32d | 0188711 | .0344315 | -0.55 | 0.584 | | .0486133 | | p132d | 5575705 | .1166238 | -4.78 | 0.000 | 786149 | 328992 | | pe32d | .0402698 | .0592351 | 0.68 | 0.497 | 0758289 | . 1563684 | | pm32d | 1.587711 | .3252302 | 4.88 | 0.000 | .9502717 | 2.225151 | | _cons | .0362004 | .1104716 | 0.33 | 0.743 | 1803199 | . 2527208 | | pi33d | 1 | | | | | | | pi33d | The second second | | | | | | | L1. | .1627936 | .0495681 | 3.28 | 0.001 | .065642 | .2599453 | | pk33d | 0199381 | .0250173 | -0.80 | 0.425 | 0689712 | .0290949 | | p133d | 0655277 | .0225466 | -2.91 | 0.004 | 1097181 | 0213372 | | pe33d | 0657604 | .008287 | -7.94 | 0.000 | 0820027 | 0495181 | | pm33d | 1.133285 | .084572 | 13.40 | 0.000 | .9675273 | 1.299043 | | _cons | 0923547 | .0185494 | -4.98 | 0.000 | 1287109 | 0559985 | | pi34d | | | | | | | | pi34d | | | | | | | | L1. | .3146301 | .0462574 | 6.80 | 0.000 | . 2239673 | .405293 | | pk34d | .0137423 | .009935 | 1.38 | 0.167 | 0057298 | .0332145 | | p134d | .0513415 | .0373337 | 1.38 | 0.169 | 0218312 | .1245142 | | pe34d | 0483202 | .0115829 | -4.17 | 0.000 | 0710222 | 0256182 | | pm34d | .8680835 | .0783476 | 11.08 | 0.000 | .7145251 | 1.021642 | | _cons | 1338766 | .0241593 | -5.54 | 0.000 | 1812279 | -,0865252 | | pi35d | | | | w II wii | The state of | | | pi35d | | | | | | | | L1. | .2084134 | .1231019 | 1.69 | 0.090 | 0328619 | 4496887 | | pk35d | | .0125305 | -3.99 | 0.000 | 0745046 | 0253858 | | p135d | | .0847428 | 0.15 | 0.879 | 1531786 | .179007 | | pe35d | | .0641549 | 1.67 | 0.095 | 018641 | . 2328415 | | pm35c | | .2051799 | 0.30 | 0.763 | 3402282 | .4640624 | | _cons | .3427017 | .1482904 | 2.31 | 0.021 | .0520579 | 6333454 | Correlation matrix of residuals: | | pi32d | pi33d | pi34d | pi35d | |-------|---------|---------|--------|--------| | pi32d | 1.0000 | | | | | pi33d | -0.3909 | 1.0000 | | | | pi34d | -0.2311 | 0.2225 | 1.0000 | | | pi35d | -0.1614 | -0.1419 | 0.1238 | 1.0000 | | | | | | | Breusch-Pagan test of independence: chi2(6) = 12.057, Pr = 0.0607 The summary output indicates that each equation explains almost all the variation in the industry's output price. The corr option displays the estimated VCE of residuals and tests for independence of the residual vectors. Sizable correlations—both positive and negative—appear in the correlation matrix, and the Breusch-Pagan test rejects its null of independence of these residual series at the 10% level. We can test cross-equation constraints in the sureg framework with test, combining multiple hypotheses as expressions in parentheses. We consider the null hypothesis that each industry's coefficient on the energy price index is the same. ``` rest ([pi32d]pe32d = [pi33d]pe33d) ([pi32d]pe32d = [pi34d]pe34d) ([pi32d]pe32d = [pi35d]pe35d) (1) [pi32d]pe32d - [pi33d]pe33d = 0 (2) [pi32d]pe32d - [pi34d]pe34d = 0 (3) [pi32d]pe32d - [pi35d]pe35d = 0 chi2(3) = 11.38 prob > chi2 = 0.0098 ``` The joint test decisively rejects these equality constraints. To illustrate using constrained estimation with sureg, we impose the restriction that the coefficient on the energy price index should be identical over industries. This test involves the definition of three constraints on the coefficient vector. Imposing constraints cannot improve the fit of each equation but may be warranted if the data accept the restriction. ``` . constraint define 1 [pi32d]pe32d = [pi33d]pe33d . constraint define 2 [pi32d]pe32d = [pi34d]pe34d . constraint define 3 [pi32d]pe32d = [pi35d]pe35d . sureg 'eqn', notable c(1 2 3) Seemingly unrelated regression Constraints: (1) [pi32d]pe32d - [pi33d]pe33d = 0 (2) [pi32d]pe32d - [pi34d]pe34d = 0 (3) [pi32d]pe32d - [pi35d]pe35d = 0 ``` | P | chi2 | "R-sq" | RMSE | Parms | Obs | Equation | |--------|---------|--------|----------|-------|-----|----------| | 0.0000 | 236.78 | 0.8472 | .0098793 | 5 | 38 | pi32d | | 0.0000 | 719.32 | 0.9567 | .0029664 | 5 | 38 | pi33d | | 0.0000 | 1212.12 | 0.9672 | .0030594 | 5 | 38 | pi34d | | 0.0000 | 110.37 | 0.6055 | .0101484 | 5 | 38 | pi35d | These constraints considerably increase the RMSE (or Root MSE) values for each equation, as we would expect from the results of the test command. # 9.4.1 SUR with identical regressors The second case discussed above, in which SUR will generate the same point and interval estimates—the case of numerically identical regressors—arises often in economic theory and financial theory. For instance, the demand for each good should depend on the set of prices and income,
or the portfolio share of assets held in a given class should depend on the returns to each asset and on total wealth. Here there is no reason to use mything other than OLS for efficiency. However, SUR estimation is often used in this case because it allows us to test cross-equation constraints or to estimate with those constraints in place. If we try to apply SUR to a system with adding-up constraints, such as a complete set of cost share or portfolio share equations, the SUR estimator will fail because the error covariance matrix is singular. This assertion holds not only for the unobservable errors but also for the least-squares residuals. A bit of algebra will show that if there are adding-up constraints across equations—for instance, if the set of y_i variables is a complete set of portfolio shares or demand shares—the OLS residuals will sum to zero across equations, and their empirical covariance matrix will be singular by construction. We may still want to use systems estimation to impose the cross-equation constraints arising from economic theory. Here we drop one of the equations and estimate the system of N-1 equations with SUR. The parameters of the Nth equation, in point and interval form, can be algebraically derived from those estimates. The FGLS estimates will be sensitive to which equation is dropped, but iterated SUR will restore the invariance property of the maximum likelihood estimator of the problem. For more details, see Greene (2003, 362–369). Poi (2002) shows how to fit singular systems of nonlinear equations. # 9.5 Moving-window regression estimates As with mvsumm and mvcorr (discussed in section 3.5.3), we may want to compute moving-window regression estimates in a panel context. As with mvsumm, we can compute regression estimates for nonoverlapping subsamples with Stata's statsby command. However, that command cannot deal with overlapping subsamples, as that would correspond to the same observation's being a member of several by-groups. The functionality to compute moving-window regression estimates is available from the author's rollreg routine, available from ssc. With a moving-window regression routine, how should we design the window? One obvious scheme would mimic mysumm and allow for a window of fixed width that is to be passed through the sample, one period at a time: the move(#) option. If nother applications, we may want an "expanding window": that is, starting with the first τ periods, we compute a set of estimates that consider observations $1...(\tau+1), 1...(\tau+2)$, and so on. This sort of window corresponds to the notion of the information set available to an economic agent at a point in time (and to the scheme used to generate instruments in a DPD model; see [XT] xtabond). Thus rollreg also offers that functionality via its $add(\tau)$ option. For completeness, the routine also offers the $drop(\tau)$ option, which implements a window that initially takes into account the last τ periods and then expands the window back toward the beginning of the sample. This sort of moving-window estimate can help us determine the usefulness of past information in generating an ex ante forecast, using more or less of that information in the computation. We must use one of these three options when executing rollreg. ^{17.} One could imagine something like a 12-month window that is to be advanced to end-of-quarter months, but that could be achieved by merely discarding the intermediate window estimates from rolling. A moving-window regression will generate sequences of results corresponding to each assistation period. A Stata routine could store those sequences in the columns of a manus (which perhaps makes them easier to present in tabular format) or as additional striables in the current dataset (which perhaps makes them easier to include in competitions or in graphical presentations using taline). The latter, on balance, seems harder and is implemented in rolling via the mandatory stub(string) option, which specifies that new variables should be created with names beginning with string. All the features of rollreg (including built-in graphics with the graph() option) are accessible with panel data when applied to one time series within the panel by using an it cap or in cange qualifier. However, rolling regressions certainly have their uses with a full panel. For instance, a finance researcher may want to calculate a "CAPM beta" for each firm in a panel using a moving window of observations, simulating the information set used by the investor at each point in time. Therefore, rollreg has been designed to operate with panels where the same sequence of rolling regressions is computed for each time series within the panel. ¹⁸ In this context, the routine's graphical output is not available. Although rollreg does not produce graphics when multiple time series are included from a panel, it is easy to generate graphics using the results left behind is the routine. For example, ``` use http://www.stata-press.com/data/ineus/invest2, clear , keep if company (5 (20 observations deleted) . tsset company time panel variable: company, I to 4 time variable: time, 1 to 20 . rollreg market L(0/1).invest time, move(8) stub(mktM). . local dv 'r(depvar)' . local rl 'r(reglist)' . local stub 'r(stub)' . local wantcoef invest . local m "'r(rolloption)"('r(rollobs)")" . generate fullsample = . (80 missing values generated) forvalues i = 1/4 { qui regress 'de' 'rl' if company="'i' qui replace fullsample = _b['wantcoef'] if company=n'i' & time > 8 . label var 'stub' 'wantcoef' "moving beta" ttline 'stub' 'wantcoef', saving("'wantcoef' gph', replace) > byopta(title(Moving coefficient of market on invest) > subtitle("Full-sample coefficient displayed") prescale legeni(off)) adoptet(line fullsample time if fullsample < .) (file invest.gph saved) ``` Here an 8-year moving window is used to generate the regression estimates of a model where the firm's market value is regressed on current and once-lagged investment ex- it I think Todd Prono for suggesting that this feature be added to the routine. penditures and a time trend. The trajectory of the resulting coefficient for correct investment expenditures is graphed in figure 9.1 for each firm. ### Moving coefficient of market on invest Full-sample coefficient displayed Figure 9.1: Moving-window regression estimates Companies 1 and 2 display broadly similar trajectories, as do companies 3 and 4; the second pair is different from the first pair. A clear understanding of the temporal stability of the coefficient estimates is perhaps more readily obtained graphically. Although they are not displayed on this graph, rollreg also creates series of coefficients' standard errors, from which we can compute confidence intervals, as well as the Root MSE of the equation and its \mathbb{R}^2 . Or we could use Stata's rolling prefix to specify that the moving-window regression be run over each firm. 19 Below we save the estimated coefficients (_b) in a new datase, which we may then merge with the original dataset for further analysis or produced graphics. . keep if company<5 (20 observations deleted) [.] use http://www.stata-press.com/data/ineus/invest2, clear . keep if company<5 ^{19.} The add and drop options of rolling are available using the rolling prefix as options respectively. ``` . tsset company time panel variable: company, 1 to 4 time variable: time, 1 to 20 rolling _b, window(8) saving(roll_invest, replace) nodots: > regress market L(0/1) invest time file roll_invest.dta saved use http://www.stata-press.com/data/imeus/roll_invest, clear (rolling: regress) . tsset company start panel variable: company, 1 to 4 time variable: start, 1 to 13 . describe Contains data from roll_invest.dta 52 rolling: regress vars: 9 Jun 2006 14:08 1,664 (99.8% of memory free) size: storage display value variable name format type label variable label float %9.0g company start float %9.0g float %9.0g float %9:0g _b_invest _b[invest] float %9.0g _stat_2 _b[L.invest] _b_time float %9.0g _b[time] float %9.0g _b_cons _b[_cons] Sorted by: company start ``` We could produce a graph of each firm's moving coefficient estimate for invest with the commands ``` . label var _b_invest "moving beta" ``` xtline _b_invest, byopts(title(Moving coefficient of market on invest)) using the roll invest dataset produced by rolling. ### Exercises - 1. The cigconsump dataset contains 48 states' annual data for 1985-1995. Fit an FE model of demand for cigarettes, packpc, as a function of price (avgprs) and per capita income (incpc). What are the expected signs? Are they borne out by the estimates? If not, how might you explain the estimated coefficients? Can you reject the pooled OLS model of demand? - 2. Store the estimates from the FE model, and refit the model with RE. How do these estimates compare? Does a Hausman test accept RE as the more appropriate estimator? - 3. Refit the FE model in constant-elasticity form by using lpackpc, lavgprs, and lincpc. How do the results compare to those on the levels variables? Is this form of the model more in line with economic theory? - 4. Refit the constant-elasticity form of the model as a dynamic model, including L.packpc as a regressor. Use the two-step robust DPD estimator of xtaboad2 with lpackpc as a GMM instrument and year, L.avgprs as IV instruments. Do the results support the dynamic formulation of the model? Is the model more in line with economic theory than the static form? Is it adequate for the test of overidentifying restrictions and second-order serial correlation? - 5. The cigconsumpNE dataset contains the log demand, price, and per capita incomvariables for the six New England states in wide format. Use that dataset to fit the constant-elasticity form of the model for the six states as a seemingly unrelated regression model with sureg. Are there meaningful correlations across the equations' residuals? How do the results differ state by
state? # 10 Models of discrete and limited dependent variables This chapter deals with models for discrete and limited dependent variables. Discrete dependent variables arise naturally from discrete-choice models in which individuals discrete from a finite or countable number of distinct outcomes and from count processes that record how many times an event has occurred. Limited dependent variables have a restricted range, such as the wage or salary income of non-self-employed individuals, which runs from 0 to the highest level recorded. Discrete and limited dependent variables cannot be modeled by linear regression. These models require more computational effort to fit and are harder to interpret. This chapter discusses models of binary choice, which can be fitted by binomial logit or probit techniques. The following section takes up their generalization to ordered logit or ordered probit in which the response is one of a set of values from an ordered scale. I then present techniques appropriate for truncated and censored data and their extension to sample-selection models. The final section of the chapter considers bivariate probit and probit with selection.² # 0.1 Binomial logit and probit models In models of Boolean response variables, or binary-choice models, the response variable is coded as 1 or 0, corresponding to responses of true or false to a particular question: - Did you watch the seventh game of the 2004 World Series? - Were you pleased with the outcome of the 2004 presidential election? - Did you purchase a new car in 2005? 1. Most surveys "top-code" certain responses like income, meaning that all responses greater than or equal to a value x are recorded as having the value x. I will not discuss models of "count data" in which the response variable is the count of some item's examine for each observation. The methodology appropriate for these data is not a standard linear examines for each observation. The methodology appropriate for these data (and the model's predictions) againsts because it cannot take into account the constraint that the data (and the model's predictions) as take as only nonnegative integer values. State provides comprehensive facilities for modeling count face via Poisson regression and its generalization, the negative binomial regression; see [R] poisson to [R] integer respectively. The "publisher's device" (incorrectly termed the colophen) of State Presiders to a Poisson model. See the title page of this book. We could develop a behavioral model of each of these phenomena, including several explanatory factors (we should not call them regressors) that we expect to influence the respondent's answer to such a question. But we should readily spot the flaw in the linear probability model $r_i = \mathbf{x}_i \boldsymbol{\beta}_i + u_i \tag{10.1}$ where we place the Boolean response variable in r and regress it upon a set of $\mathbf x$ variables. All the observations we have on r are either 0 or 1 and may be viewed as the expost probabilities of responding "yes" to the question posed. But the predictions of a linear regression model are unbounded, and the model of (10.1), fitted with regress, can produce negative predictions and predictions exceeding unity, neither of which can be considered probabilities. Because the response variable is bounded, restricted to take on values of $\{0,1\}$, the model should generate a predicted probability that individual i will choose to answer "yes" rather than "no". In such a framework, if $\beta_j > 0$, individuals with high values of x_j will be more likely to respond "yes", but their probability of doing so must respect the upper bound. For instance, if higher disposable income makes a new car purchase more probable, we must be able to include a wealthy person in the sample and find that his or her predicted probability must be bounded by 0. Although we can fit (10.1) with OLS, the model is likely to produce point predictions outside the unit interval. We could arbitrarily constrain them to either 0 or 1, but this linear probability model has other problems: the error term cannot satisfy the assumption of homoskedasticity. For a given set of \mathbf{x} values, there are only two possible values for the disturbance, $-\mathbf{x}\boldsymbol{\beta}$ and $(1-\mathbf{x}\boldsymbol{\beta})$: the disturbance follows a binomial distribution. Given the properties of the binomial distribution, the variance of the disturbance process, conditioned on \mathbf{x} , is $$Var[u|\mathbf{x}] = \mathbf{x}\boldsymbol{\beta} (1 - \mathbf{x}\boldsymbol{\beta})$$ No constraint can ensure that this quantity will be positive for arbitrary x values. Therefore, we cannot use regression with a binary-response variable but must follow a different strategy. Before developing that strategy, let us consider another formulation of the model from an economic standpoint. #### 10.1.1 The latent-variable approach Using a latent variable is a useful approach to such an econometric model. Express the model of (10.1) as $$y_i^* = \mathbf{x}_i \boldsymbol{\beta}_i + u_i \tag{10.2}$$ where y^* is an unobservable magnitude, which can be considered the net benefit to individual i of taking a particular course of action (e.g., purchasing a new car). We cannot observe that net benefit, but we can observe the outcome of the individual having followed the decision rule œ $$y_i = 0 \text{ if } y_i^* < 0$$ $y_i = 1 \text{ if } y_i^* \ge 0$ That is, we observe that the individual did (y = 1) or did not (y = 0) purchase a new that is, we observe it is In the latent model, we model the probability of an individual making each choice. (sing (10.2) and (10.3), we have $$\Pr(y^* > 0|\mathbf{x}) =$$ $$\Pr(u > -\mathbf{x}\boldsymbol{\beta}|\mathbf{x}) =$$ $$\Pr(u < \mathbf{x}\boldsymbol{\beta}|\mathbf{x}) =$$ $$\Pr(y = 1|\mathbf{x}) = \Psi(y_i^*)$$ (10.4) where $\Psi(\cdot)$ is a cumulative distribution function (CDF). We can estimate the parameters of binary-choice models by using maximum likelihood techniques. For each observation, the probability of observing y conditional on x may be written as $$Pr(y|\mathbf{x}) = {\{\Psi(\mathbf{x}_i\beta)\}}^{y_i} {\{1 - \Psi(\mathbf{x}_i\beta)\}}^{1-y_i}, y_i = 0.1$$ (10.5) The log likelihood for observation i may be written as $$\ell_i(\boldsymbol{\beta}) = y_i \log \left\{ \Psi(\mathbf{x}_i \boldsymbol{\beta}) \right\} + (1 - y_i) \log \left\{ 1 - \Psi(\mathbf{x}_i \boldsymbol{\beta}) \right\}$$ and the log likelihood of the sample is $L(\beta) = \sum_{i=1}^{N} \ell_i(\beta)$, to be numerically maximized with respect to the k elements of β . The two common estimators of the binary-choice model are the binomial probit and bluomial logit models. For the probit model, $\Psi(\cdot)$ is the CDF of the normal distribution function (Stata's normal () function). For the logit model, $\Psi(\cdot)$ is the CDF of the logistic distribution:⁴ $$Pr(y = 1|\mathbf{x}) = \frac{\exp(\mathbf{x}\boldsymbol{\beta})}{1 + \exp(\mathbf{x}\boldsymbol{\beta})}$$ The CDFs of the normal and logistic distributions are similar. In the latent-variable wodel, we must assume that the disturbance process has a known variance, σ_a^2 . Unlike the linear regression problem, we do not have enough information in the data to estimate A For a discussion of maximum likelihood estimation, see Greene (2003, chap. 17) and Gould, Pit-ido, and Seq. blelo, and Sribney 2006. ^{4.} The probability density function of the logistic distribution, which is needed to calculate marginal. [Rech. is v(z)] where is $\psi(z) = \exp(z)/\{1 + \exp(z)\}^2$. its magnitude. Because we can divide (10.2) by any positive σ without altering the estimation problem, σ is not identified. σ is set to one for the probit model and $\pi/\sqrt{3}$ in the logit model. The logistic distribution has fatter tails, resembling the Student t distribution with 7 degrees of freedom. The two models will produce similar results if the distribution of sample values of y_i is not too extreme. However, a sample in which the proportion $y_i = 1$ (or the proportion $y_i = 0$) is very small will be sensitive to the choice of CDF. Neither of these cases is really amenable to the binary-choice model. If an unusual event is modeled by y_i , the "naïve model" that it will not happen in any event is hard to beat. The same is true for an event that is almost ubiquitous: the naïve model that predicts that all people have eaten a candy bar at some time in their lives is accurate. We can fit these binary-choice models in Stata with the commands probit and logit. Both commands assume that the response variable is coded with zeros indicating a negative outcome and a positive, nonmissing value corresponding to a positive outcome (i.e., I purchased a new car in 2005). These commands do not require that the variable be coded {0,1}, although that is often the case. #### 10.1.2 Marginal effects and predictions One major challenge in working with limited dependent variable models is the complexity of explanatory factors' marginal effects on the result of interest, which arises from the nonlinearity of the relationship. In (10.4), the latent measure is translated by $\Psi(y_i^*)$ to a probability that $y_i=1$. Although (10.2) is a linear relationship in the β parameters, (10.4) is not. Therefore, although x_j has a linear effect on y_i^* , it will not have a linear effect on the resulting probability that y=1: $$\frac{\partial \Pr(y=1|\mathbf{x})}{\partial x_j} = \frac{\partial \Pr(y=1|\mathbf{x})}{\partial \mathbf{x}\boldsymbol{\beta}} \cdot \frac{\partial \mathbf{x}\boldsymbol{\beta}}{\partial x_j} = \Psi'(\mathbf{x}\boldsymbol{\beta}) \cdot \beta_j = \psi(\mathbf{x}\boldsymbol{\beta}) \cdot \beta_j$$ (10.6) Via the chain rule, the effect of an increase in x_j on the probability is the product of two factors: the effect of x_j on the latent variable and the derivative of the CDF evaluated at
y_i^* . The latter term, $\psi(\cdot)$, is the probability density function of the distribution- In a linear regression model, the coefficient β_j measures the marginal effect $\partial y/\partial x_j$ and that effect is constant over the sample. In a binary-outcome model, a change in factor x_j does not induce a constant change in the $\Pr(y=1|\mathbf{x})$ because $\Psi()$ is a nonlinear function of \mathbf{x} . As discussed above, one of the reasons that we use $\Psi()$ in the binary-outcome model is to keep the predicted probabilities inside the interval [0,1]. This boundedness property of $\Psi()$ implies that the marginal effects must go to zero as the absolute value of x_j gets large. Choosing smooth distribution functions, [0,1] have the normal and logistic, implies that the marginal effects vary continuously with each x_j ^{5.} Other distributions, including nonsymmetric distributions, may be used in this context. For any ple, Stata's cloglog command (see [R] cloglog) fits the complementary log-log model $Pr(y = |y|) = 1 + \exp\{\exp(-x\beta)\}$. #### and probit can also use dprobit to display the marginal effect $\partial \Pr(y=1|\mathbf{x})/\partial x_j$, that is, the set of an infinitesimal change in x_j . We can use probit with no arguments following set of an infinitesimal change in x_j . We can use probit with no arguments following set of an infinitesimal to "replay" the probit results in this format. Using probit this set of an infinitesimal to "replay" the probit results in this format. Using probit this set of an infinitesimal to "replay" the probit results in this format. Using probit this set of the estimated coefficients. Because model is nonlinear, the dF/dx reported by dprobit will vary through the sample of the explanatory variables. By default, the marginal effects are calculated at the set of the explanatory variables are calculated at other points via the at() option. After fitting the model with either probit or logit, we can use mfx to compute the marginal effects. A probit estimation followed by mfx calculates the dF/dx values identical to those from dprobit). We can use mfx's at() option to compute the effects at a particular point in the sample space. As discussed in section 4.7, mfx can also calculate elasticities and semielasticities. By default, the dF/dx effects produced by dprobit or mfx are the marginal effects for an average individual. Some argue that it would be more preferable to compute the average marginal effect: that is, the average of each individual's marginal effect. The marginal effect computed at the average x is different from the average of the marginal effect computed at the individual x_i . Increasingly, current practice is moving to looking at the distribution of the marginal effects computed for each individual in the sample. Stata does not have such a capability, but a useful margeff routine written by Bartus (2005) adds this capability for probit, logit, and several other Stata commands discussed in this chapter (although not dprobit). Its dummies() option signals the presence of categorical explanatory variables. If some explanatory variables are integer variables, the count option should be used. After fitting a probit model, the predict command, with the default option p, computes the predicted probability of a positive outcome. Specifying the xb option calculates the predicted value of y_i^* . The following example uses a modified version of the womenwk dataset, which contains mormation on 2,000 women, 657 of which are not recorded as wage earners. The indicator variable work is set to zero for the nonworking and to one for those reporting positive wages. - use http://www.stata-press.com/data/imeus/womenwk, clear - Summarize work age married children education | Max | Min | Std. Dev. | Mean | Obs | Variable | |-------------------------|-------------------|---|--|--------------------------------------|---| | 1
59
1
5
20 | 0
20
0
0 | .4697852
8.28656
.4701492
1.398963
3.045912 | .6715
36.208
.6705
1.6445
13.084 | 2000
2000
2000
2000
2000 | work
age
married
children
education | an indicator variable cannot undergo an infinitesimal change, the default calculation for the available is the discrete change in the probability when the indicator is switched from 0 to 1. We fit a probit model of the decision to work depending on the woman's age, marital status, number of children, and level of education.⁷ | work | Coef. | Std. Err. | 22 | P> z | [95% Conf | . Interval] | |---------|-----------|-----------|--------|-------|-----------|-------------| | age | .0347211 | .0042293 | 8.21 | 0.000 | .0264318 | .0430105 | | sarried | .4308575 | .074208 | 5.81 | 0.000 | -2854125 | 5763025 | | hildren | .4473249 | .0287417 | 15,56 | 0.000 | .3909922 | .5036576 | | ucation | .0583645 | .0109742 | 5.32 | 0.000 | .0368555 | .0798735 | | _cons | -2.467365 | .1925635 | -12.81 | 0.000 | -2.844782 | -2.089948 | Surprisingly, the effect of more children in the household increases the likelihood that the woman will work. mfx computes marginal effects at the multivariate point of means, or we could generate them by using dprobit for the estimation. . mfx compute Marginal effects after probit y = Pr(work) (predict) = .71835948 | variable | dy/dx | Std. Err. | z | P> z | [95% | c.I. 3 | X | |----------|----------|-----------|-------|-------|---------|---------|--------| | age | .011721 | .00142 | 8.25 | 0.000 | .008935 | .014507 | 36,208 | | married* | -150478 | .02641 | 5.70 | 0.000 | .098716 | | .670 | | children | .1510059 | .00922 | 16.38 | 0.000 | .132939 | .169073 | 1,644 | | educat-n | -0197024 | .0037 | 5.32 | 0.000 | .012442 | .026963 | 13.00 | ^(*) dy/dx is for discrete change of dummy variable from 0 to 1 The marginal effects imply that married women have a 15% higher probability of labor force participation, whereas a marginal change in age from the average of 36.2 years is associated with a 1% increase in participation. Bartus's margeff routine computes average marginal effects, each of which is slightly smaller than that computed at the point of sample means by mfx. ^{7.} The nolog option is used to suppress the iteration log- mrital . margeff, dummies(married) count gverage marginal effects on Prob(work==1) after probit variables treated as counts: age children admonstra | 17.38 | 246-50 | Dalling to | The state of s | | | | | | |---|--|--|--|----------------------------------|---|---|--|--| | MOLK | Coef. | Std. Err. | 2 | Palzi | [95% Conf. | Tenning | | | | age
married
children
education | .0100178
.1292759
.1181349
.0167698 | .0011512
.0225035
.0057959
.0030658 | 8.70
5.74
20.38
5.49 | 0.000
0.000
0.000
0.000 | .0077618
.0851698
.106775
.0107806 | .0122742
-173382
-1294947
.0227591 | | | ### Binomial logit and grouped logit When the logistic CDF is used in (10.5), the probability of y=1, conditioned on x, is $\pi_i = \exp(\mathbf{x}_i \boldsymbol{\beta}) / \{1 + \exp(\mathbf{x}_i \boldsymbol{\beta})\}$. Unlike the CDF of the normal distribution, which lacks a closed-form inverse, this function can be inverted to yield $$\log \left(\frac{\pi_i}{1-\pi_i}\right) = \mathbf{x}_i \boldsymbol{\beta}$$ This expression is termed the logit of π_i , which is a contraction of the log of the odds ratio. The odds ratio reexpresses the probability in terms of the odds of y=1. It does not apply to microdata in which y_i equals zero or one, but it is well
defined for averages of such microdata. For instance, in the 2004 U.S. presidential election, the expost probability of a Massachusetts resident voting for John Kerry according to cnn.com was 0.62, with a logit of $\log\{0.62/(1-0.62)\}=0.4895$. The probability of that person voting for George W. Bush was 0.37, with a logit of -0.5322. Say that we had such data for all 50 states. It would be inappropriate to use linear regression on the probabilities voteKerry and voteBush, just as it would be inappropriate to run a regression on the voteKerry and voteBush indicator variables of individual voters. We can use glogit (grouped logit) to produce weighted least-squares estimates for the model on state-level data. As an alternative, we can use blogit to produce maximum likelihood estimates of that model on grouped (or "blocked") data, or we could use the equivalent commands gprobit and bprobit to fit a probit model to grouped data. What if we have microdata in which voters' preferences are recorded as indicator variables, for example voteKerry = 1 if that individual voted for John Kerry, and vice versa? Instead of fitting a probit model to that response variable, we can fit a logit model with the logit command. This command will produce coefficients that, like those of probit, express the effect on the latent variable y^* of a change in \mathbf{x}_j ; see (10.6). As with dprobit, we can use logistic to compute coefficients that express the effects of the explanatory variables in terms of the odds ratio associated with that explanatory factor. Given the algebra of the model, the odds ratio is merely $\exp(\hat{\beta}_j)$ for the jth coefficient estimated by logit and may also be requested by specifying the or option on the logit command. Logistic regression is intimately related to the binomial logit model and is not an alternative econometric technique to logit. The documentation for logistic states that the computations are carried out by calling logit. hat ans, or urs tes he As with probit, by default predict after logit calculates the probability of a positive outcome. mfx produces marginal effects expressing the effect of an infinitesimal positive outcome, mfx produces marginal effects expressing the effect of an infinitesimal positive outcome, evaluated by default at the change in each x on the probability of a positive outcome, evaluated by default at the multivariate point of means. We can also calculate elasticities and semielasticities. We can use Bartus's margeff routine to calculate the average marginal effects over the sample observations after either logit or logistic. # 10.1.3 Evaluating specification and goodness of fit We can apply both the binomial logit and binomial probit estimators, so we might wonder which to use. The CDFs underlying these models differ most in the tails, producing similar predicted probabilities for nonextreme values of $x\beta$. Because the likelihood functions of the two estimators are not nested, there is no obvious way to test one against the other. The coefficient estimates of probit and logit from the same model will differ because they are estimates of (β/σ_u) . Whereas the variance of the standard normal distribution is unity, the variance of the logistic distribution is $\pi^2/3$, causing reported logit coefficients to be larger by a factor of about $\pi/\sqrt{3}=1.814$. However, we often want the marginal effects generated by these models rather than their estimated coefficients. The magnitude of the marginal effects generated by mfx or Bartus's margeff routine are likely to be similar for both estimators. We use logit to fit the same model of women's probability of working: | Interval | [95% Conf. | P> z | 7 | Std. Err. | Coef. | work | |---|------------|----------------------------------|---|---|---|--| | .0720833
.9896549
.8654827
.1348089
-3.508462 | .6634938 | 0.000
0.000
0.000
0.000 | 8.02
5.87
14.84
5.27
-12.53 | .007221
.1264704
.0815287
.0186522
.3320397 | .0579303
.7417775
.7644882
.0982513
-4.159247 | age
married
children
education
_cons | Although the logit coefficients' magnitudes differ considerably from their probit counterparts, the marginal effects at the multivariate point of means are similar to those computed after probit. ^{8.} An approach similar to the Davidson-MacKinnon J test described in section 4.5.5 has been posed but has been shown to have low power. marginal effects after logit y = Pr(work) (predict) = .72678588 | variable | dy/dx | Std. Err. | z | P>lzl | f orm | | | |----------------------------------|---------------------------------|---------------------------|-----------------------|-------|--|---------|-------------------------------------| | age | .0115031 | -00142 | 8.08 | 0.000 | E CONTRACTOR OF THE PARTY TH | C.I. 1 | x | | married*
children
educat-n | .1545671
.151803
.0195096 | .02703
.00938
.0037 | 5.72
16.19
5.27 | 0.000 | .008713
.101592
.133425
.01226 | .207642 | 36.208
.6708
1.6448
13.084 | (*) dy/dx is for discrete change of dummy variable from 0 to 1 We illustrate the at () option, evaluating the estimated logit function at children = 0. The magnitudes of each of the marginal effects are increased at this point in the x space, with the effect of an additional year of education being almost 5% higher (0.0241 versus 0.0195) for the childless woman. . mfx compute, at(children=0) warning: no value assigned in at() for variables age married education; means used for age married education Marginal effects after logit y = Pr(work) (predict) = .43074191 | variable | dy/dx | Std. Err. | z | P> z | I | 95% | C.I. | 3 | X | |----------|----------|-----------|-------|-------|------|--------|------|------|--------| | age | .0142047 | .00178 | 7.97 | 0.000 | | 01071 | .0 | 177 | 36.208 | | married* | .1762562 | .02825 | 6.24 | 0.000 | 1000 | 120897 | .231 | 615 | .6705 | | children | .1874551 | .01115 | 16.82 | 0.000 | 197 | 165609 | .209 | 301 | 0 | | educat-n | .0240915 | .00458 | 5.26 | 0.000 | -5 | 015115 | .033 | 8068 | 13.084 | (*) dy/dx is for discrete change of dummy variable from 0 to 1 We can test for appropriate specification of a subset model, as in the regression context, with the test command. The test statistics for exclusion of one or more explanatory variables are reported as χ^2 rather than F statistics because Wald tests from ML estimators have large-sample χ^2 distributions. We can apply the other postestimation commands—tests of linear expressions with test or lincom and tests of nonlinear expressions with testnl or nlcom—the same way as with regress. How can we judge the adequacy of a binary-choice model fitted with probit or logit? Just as the "ANOVA F" tests a regression specification against the null model in which all regressors are omitted, we may consider a null model for the binary-choice specification to be $\Pr(y=1)=\overline{y}$. Because the mean of an indicator variable is the sample proportion of 1s, it may be viewed as the unconditional probability that y=1. We can contrast that with the conditional probabilities generated by the model that takes into account the explanatory factors \mathbf{x} . Because the likelihood function for the null model can readily be evaluated in either the probit or logit context, both ^{9.} For instance, the estimate of the constant in a constant-only probit model is invnormal(y). commands produce a likelihood-ratio test 10 [LR chi2(k-1)] where (k-1) is the number of explanatory factors in the model (presuming the existence of a constant term). As mentioned above, the null
model is hard to beat if \bar{y} is very close to 0 or 1. Although this likelihood-ratio test provides a statistical basis to reject the null model versus the fitted model, there is no measure of goodness of fit analogous to R^2 for linear regression. Stata produces a measure called Pseudo R2 for both commands and for all commands estimated by maximum likelihood; see [R] maximize. Let L_1 be the log-likelihood value for the fitted model, as presented on the estimation output after convergence. Let L_0 be the log-likelihood value for the null model excluding all explanatory variables. This quantity is not displayed but is available after estimation as e(11.0). The LR chi2(k-1) likelihood-ratio test is merely $2(L_1-L_0)$, and it has a large-sample $\chi^2(k-1)$ distribution under the null hypothesis that the explanatory factors are jointly uninformative. If we rearrange the log-likelihood values, we may define the pseudo R2 as $(1-L_1/L_0)$, which like regression R^2 is on a [0,1] scale, with 0 indicating that the explanatory variables failed to increase likelihood and 1 indicating that the model perfectly predicts each observation. We cannot interpret this pseudo- R^2 , as we can for linear regression, as the proportion of variation in y explained by x, but in other aspects it does resemble an R^2 measure. Adding more explanatory factors to the model does not always result in perfect prediction, as it does in linear regression. In fact, perfect prediction may inadvertently occur because one or more explanatory factors are perfectly correlated with the response variable. Stata's documentation in probit and logit discusses this issue, which Stata will detect and report. Several other measures based on the predictions of the binary-choice model have been proposed, but all have their weaknesses, particularly if there is a high proportion of 0s or 1s in the sample. estat gof and estat clas compute many of these measures. With a constant term included, the binomial logit model will produce $\widehat{y} = \overline{y}$, as does regression: the average of predicted probabilities from the model equals the sample proportion \overline{y} , but that outcome is not guaranteed in the binomial probit model. ### 10.2 Ordered logit and probit models Chapter 7 discussed the issues related to using ordinal independent variables, which indicate a ranking of responses, rather than a cardinal measure, such as the codes of a Likert scale of agreement with a statement. Since the values of such an ordered response are arbitrary, we should not treat an ordinal variable as if it can be measured in a cardinal sense and entered into a regression, either as a regressor or as a response variable. If we want to model an ordinal variable as a function of a set of explanatory factors, we can use a generalization of the binary-choice framework known as ordered probit or ordered logit estimation techniques. ^{10,} I introduce the concept of likelihood-ratio tests in section 4.5. For more information, see Greene (2003, chap. 17). ^{11.} Stata's documentation attributes this measure to Judge et al. (1985), but other sources describe it as the likelihood-ratio index of McFadden (1974) In the latent-variable approach to the binary-choice model, we observe $y_i=1$ if $y_i^*>0$. The ordered-choice model generalizes this concept to the notion of multiple directions. For instance, a variable recorded on a five-point Likert scale will have four thresholds over the latent variable. If $y^* \leq \kappa_1$, we observe y=1; if $\kappa_1 < y^* \leq \kappa_2$, we observe y=2; if $\kappa_2 < y^* \leq \kappa_3$, we observe y=3, and so on, where the κ values are the thresholds. In a sense, this is imprecise measurement: we cannot observe y^* directly, but only the range in which it falls. Imprecise measurement is appropriate for many forms of microeconomic data that are "bracketed" for privacy or summary reporting purposes. Alternatively, the observed choice might reveal only an individual's relative preference. The parameters to be estimated are a set of coefficients β corresponding to the explanatory factors in x, as well as a set of (I-1) threshold values κ corresponding to the I alternatives. In Stata's implementation of these estimators in oprobit and ologit, the actual values of the response variable are not relevant. Larger values are taken to correspond to higher outcomes. If there are I possible outcomes (e.g., 5 for the Likert scale), a set of threshold coefficients or cutpoints $\{\kappa_1, \kappa_2, \ldots, \kappa_{I-1}\}$ is defined, where $\kappa_0 = -\infty$ and $\kappa_I = \infty$. The model for the jth observation defines $$Pr(y_j = i) = Pr(\kappa_{i-1} < \mathbf{x}_j \boldsymbol{\beta} + u_j < \kappa_i)$$ where the probability that individual j will choose outcome i depends on the product $\mathbf{x}_j\beta$ falling between cutpoints (i-1) and i. This is a direct generalization of the two-outcome binary-choice model, which has one threshold at zero. As in the binomial probit model, we assume that the error is normally distributed with variance unity (or distributed logistic with variance $\pi^2/3$ for ordered logit). Prediction is more complex in ordered probit (logit) because there are I possible predicted probabilities corresponding to the I possible values of the response variable. The default option for predict is to compute predicted probabilities. If I new variable names are given in the command, they will contain the probability that i=1, the probability that i=2, and so on. The marginal effects of an ordered probit (logit) model are also more complex than their binomial counterparts because an infinitesimal change in \mathbf{x}_j will not only change the probability within the current cell (for instance, if $\kappa_2 < \widehat{y}^* \le \kappa_3$) but will also make it more likely that the individual crosses the threshold into the adjacent category. Thus if we predict the probabilities of being in each category at a different point in the sample space (for instance, for a family with three rather than two children), we will find that those probabilities have changed, and the larger family may be more likely to choose the jth response and less likely to choose the (j-1)st response. We can calculate the average marginal effects with margeff. We illustrate the ordered probit and logit techniques with a model of corporate bond ratings. The dataset contains information on 98 U.S. corporations' bond ratings and financial characteristics where the bond ratings are AAA (excellent) to C (poor). The integer codes underlying the ratings increase in the quality of the firm's rating, such that an increase in the response variable indicates that the firm's bonds are a more attractive investment opportunity. The bond rating variable (rating83c) is coded as integers 2-5, with 5 corresponding to the highest quality (AAA) bonds and 2 to the lowest. The tabulation of rating83c shows that the four ratings categories contain a similar number of firms. We model the 1983 bond rating as a function of the firm's income-to-asset ratio in 1983 (ia83: roughly, return on assets) and the change in that ratio from 1982 to 1983 (dia). The income-to-asset ratio, expressed as a percentage, varies widely around a mean of 10%. . use http://www.stata-press.com/data/imeus/panel84extract, clear | summarize | 915 FT | SHIMB30 | 4 483 | 24.4 W | |----------------|---------|---------|----------|--------| | STATE TEHRIBLE | 4.00.00 | LHKOOL | AND OVER | W.E.O. | | Max | Min | Std. Dev. | Mean | Obs | Variable | |----------|-----------|-----------|----------|-----|-----------| | 5 | 2 | 1.17736 | 3.479592 | 98 | rating83c | | 30.74564 | -13.08016 | 7.441946 | 10.11473 | 98 | ia83 | | 20.05367 | -10.79014 | 4.711211 | .7075242 | 98 | dia | #### . tabulate rating83c | Bond
rating,
1983 | Freq. | Percent | Cum. | |-------------------------|-------|---------|--------| | BA_B_C | 26 | 26.53 | 26.53 | | BAA | 28 | 28.57 | 55.10 | | AA_A | 15 | 15.31 | 70.41 | | AAA | 29 | 29.59 | 100.00 | | Total | 98 | 100.00 | | We fit the model with ologit; the model's predictions are quantitatively similar if we use oprobit. . ologit rating83c ia83 dia, nolog Ordered logistic regression avanta salvante relitabilità Number of obs = 98 LR chi2(2) = 11.54 Prob > chi2 = 0.0031 Pseudo R2 = 0.0434 Log likelihood = -127.27146 | rating83c | Coef. | Std. Err. | 2 | P>[z] | [95% Conf. | Interval] | |-------------------------|---------------------------------|----------------------------------|------|-------|------------|----------------------------------| | ia83
dia | .0939166
0866925 | .0296196 | 3.17 | 0.002 | .0358633 | .1519699
.0014646 | | /cut1
/cut2
/cut3 | 1853053
1.185726
1.908412 | -3571432
-3882098
-4164895 | | | 4248489 | .5146825
1.946603
2.724717 | 1a83 has a significant positive effect on the bond rating, but somewhat surprisingly the change in that ratio (dia) has a negative effect. The model's ancillary parameters _cut1 to _cut3 indicate the thresholds for the ratings categories. Following the ologit estimation, we use predict to compute the predicted probabilities of achieving each rating. We then examine the firms who were classified as most likely to have an "AAA" (excellent) rating and "BA.B.C" (poor quality) rating respectively. Firm 31 has a 75% predicted probability of being rated "AAA", whereas firm 67 has a 72% predicted probability of being rated "BA" or below. The former probability is in accordance with the firm's rating, whereas the latter is a substantial misclassification. However, many factors enter into a bond rating, and that firm's level and change of net income combined to produce a very low prediction. ``` predict spBA_B_C spBAA spAA_A spAAA (option pr assumed; predicted probabilities) summarize spAAA, mean list sp* rating83c if spAAA==r(max) ``` | | spBA_B_C | spBAA | spAA_A | spAAA
| rati-83c | |---|----------|----------|----------|----------|----------| | 6 | .0388714 | .0985567 | .1096733 | .7528986 | AAA | - summarize spBA_B_C, mean - . list sp* rating83c if spBA_B_C==r(max) | | spBA_B_C | spBAA | spAA_A | SPAAA | rati-83c | |-----|----------|----------|----------|----------|----------| | 67. | .7158453 | .1926148 | .0449056 | .0466343 | AAA | Economic research also uses response variables, which represent unordered discrete alternatives, or multinomial models. For a discussion of how to fit and interpret unordered discrete-choice models in Stata, see Long and Freese (2006). ### 10.3 Truncated regression and tobit models I now discuss a situation where the response variable is not binary or necessarily integer but has limited range. This situation is a bit trickier, because the restrictions on the range of a limited dependent variable (LDV) may not be obvious. We must fully understand the context in which the data were generated, and we must identify the restrictions. Modeling LDVs by OLS will be misleading. #### 10.3.1 Truncation Some LDVs are generated by truncated processes. For truncation, the sample is drawn from a subset of the population so that only certain values are included in the sample. We lack observations on both the response variable and explanatory variables. For instance, we might have a sample of individuals who have a high school diploma, some college experience, or one or more college degrees. The sample has been generated by interviewing those who completed high school. This is a truncated sample, relative to the population, in that it excludes all individuals who have not completed high school. The excluded individuals are not likely to have the same characteristics as those in our sample. For instance, we might expect average or median income of dropouts to be lower than that of graduates. The effect of truncating the distribution of a random variable is clear. The expected value or mean of the truncated random variable moves away from the truncation point, and the variance is reduced. Descriptive statistics on the level of education in our sample should make that clear: with the minimum years of education set to 12, the mean education level is higher than it would be if high school dropouts were included. and the variance will be smaller. In the subpopulation defined by a truncated sample, we have no information about the characteristics of those who were excluded. For instance, we do not know whether the proportion of minority high school dropouts exceeds the proportion of minorities in the population. We cannot use a sample from this truncated population to make inferences about the entire population without correcting for those excluded individuals' not being randomly selected from the population at large. Although it might appear that we could use these truncated data to make inferences about the subpopulation, we cannot even do that A regression estimated from the subpopulation will yield coefficients that are biased toward zero—or attenuated—as well as an estimate of σ_u^2 that is biased downward. If we are dealing with a truncated normal distribution, where $y = x_i \beta + u_i$ is observed only if it exceeds τ , we can define $$\alpha_i = \frac{\tau - \mathbf{x}_i \boldsymbol{\beta}}{\sigma_u}$$ $$\lambda(\alpha_i) = \frac{\phi(\alpha_i)}{\{1 - \Phi(\alpha_i)\}}$$ where σ_u is the standard error of the untruncated disturbance u, $\phi(\cdot)$ is the normal density function, and $\Phi(\cdot)$ is the normal CDF. The expression $\lambda(\alpha_i)$ is termed the inverse Mills ratio (IMR). Standard manipulation of normally distributed random variables shows that $$E[y_i|y_i > \tau, \mathbf{x}_i] = \mathbf{x}_i \boldsymbol{\beta} + \sigma_u \lambda(\alpha_i) + u_i$$ (10.7) The above equation implies that a simple OLS regression of y on x suffers from the exclusion of the term $\lambda(\alpha_i)$. This regression is misspecified, and the effect of that misspecification will differ across observations, with a heteroskedastic error term whose variance depends on \mathbf{x}_i . To deal with these problems, we include the IMR as an additional regressor, so we can use a truncated sample to make consistent inferences about the subpopulation. If we can justify the assumption that the regression errors in the population are normally distributed, we can estimate an equation for a truncated sample with the Stata command truncreg. 12 Under the assumption of normality, we can make inferences for the population from the truncated regression model. The truncreg option 11(#) indicates that values of the response variable less than or equal to # are truncated. We might have a sample of college study might have a sample of college students with yearsEduc truncated from below at 12 ^{12.} More details on the truncated regression model with normal errors are available in Greene (2023, 756-761). 756-761). years. Upper truncation can be handled with the ul(#) option; for instance, we may have a sample of individuals whose income is recorded up to \$200,000. We can specify both lower and upper truncation by combining the options. In the example below, we consider a sample of married women from the laborsub dataset whose hours of work (whrs) are truncated from below at zero. Other variables of interest are the number of preschool children (k16), number of school-aged children (k618), age (wa), and years of education (we). - . use http://www.stata-press.com/data/imeus/laborsub, clear - summarize whrs k16 k618 wa we | Obs | Mean | Std. Dev. | Min | Max | |-----|--------------------------|--|--|---| | 250 | 799.84 | 915.6035 | 0 | 4950 | | 250 | .236 | .5112234 | 927 | 3 | | 250 | 1.364 | 1.370774 | | 8 | | 250 | 42.92 | 8.426483 | | 60 | | 250 | 12.352 | 2.164912 | 5 | 17 | | | 250
250
250
250 | 250 799.84
250 .236
250 1.364
250 42.92 | 250 799.84 915.6035
250 .236 .5112234
250 1.364 1.370774
250 42.92 8.426483 | 250 799.84 915.6035 0
250 .236 .5112234 0
250 1.364 1.370774 0
250 42.92 8.426483 30 | To illustrate the consequences of ignoring truncation, we fit a model of hours worked with OLS, including only working women. | 82 | regress | whrs | kl6 | k618 | wa. | We: | if | whrs>0 | |----|---------|------|-----|------|-----|-----|----|--------| | Source | SS | df | | MS | | Number of obs | = | 150 | |-------------------|--------------------------|----------|------------|------------------|-------|-------------------------------------|----|--------------------------| | Model
Residual | 7326995.15
94793104.2 | 4
145 | | 748.79
45.546 | | F(4, 145)
Prob > F
R-squared | | 2.80
0.0281
0.0717 | | Total | 102120099 | 149 | 685369.794 | | | Adj R-squared
Root MSE | | 0.0461
808.55 | | whrs | Coef. | Std. | Err. | t | P> t | [95% Conf. | In | terval] | | k16 | -421.4822 | 167.9 | 734 | -2.51 | 0.013 | -753.4748 | -8 | 9.48953 | | k618 | -104.4571 | 54.18 | 616 | -1.93 | 0.056 | -211.5538 | 2 | . 639668 | | wa | -4.784917 | 9.690 | 502 | -0.49 | 0.622 | -23.9378 | 1 | 4.36797 | | we | 9.353195 | 31.23 | 793 | 0.30 | 0.765 | -52.38731 | | 71.0937 | | _cons | 1629.817 | 615.1 | 301 | 2.65 | 0.009 | 414.0371 | 2 | 845.597 | We now refit the model with truncreg, taking into account that 100 of the 250 observations have zero recorded whrs: . truncreg whrs k16 k618 wa we, 11(0) nolog (note: 100 obs. truncated) Truncated regression Limit: lower = 0 upper = +inf Log likelihood = -1200.9157 Number of obs = 150 Wald chi2(4) = 10.05 Prob > chi2 = 0.0395 | | whra | Coef. | Std. Err. | z | P>(z) | [95% Conf. | Interval] | |---------|-------|-----------|--------------|-------|-------------|-------------|------------| | eq1 | | | 000011800004 | | 25.17679125 | 10000000000 | 2000000000 | | 0.07000 | k16 | -803.0042 | 321.3614 | -2.50 | 0.012 | -1432.861 | -173.1474 | | | k618 | -172.875 | 88.72898 | -1.95 | 0.051 | -346.7806 | 1.030578 | | | wa | -8.821123 | 14.36848 | -0.61 | 0.539 | -36.98283 | 19.34059 | | | ve | 16.52873 | 46.50375 | 0.36 | 0.722 | -74.61695 | 107.6744 | | | _cons | 1586.26 | 912.355 | 1.74 | 0.082 | -201.9233 | 3374.442 | | sigma | | | | | | | | | 0.50 | _cons | 983.7262 | 94.44303 | 10,42 | 0.000 | 798.6213 | 1168.831 | Some of the attenuated coefficient estimates from regress are no more than half as large as their counterparts from truncreg. The parameter sigma _cons, comparable to Root MSE in the OLS regression, is considerably larger in the truncated regression, reflecting its downward bias in a truncated sample. We can use the coefficient estimates and marginal effects from truncreg to make inferences about the entire population, whereas we should not use the results from the misspecified regression model for any purpose. #### 10.3.2 Censoring Censoring is another common mechanism that restricts the range of dependent variables. Censoring occurs when a response variable is set to an arbitrary value when the variable is beyond the censoring point. In the truncated case, we observe neither the dependent nor the explanatory variables for individuals whose y_i lies in the truncation region. In contrast, when the data are censored we do not observe the value of the dependent variable for individuals whose y_i is beyond the censoring point, but we do observe the values of the explanatory variables. A common example of censoring is "top coding", which occurs when a variable that takes on values of x or more is recorded as x. For instance, many household surveys top code reported income at \$150,000 or \$200,000. There is some discussion in the literature about how to interpret some LDVs that appear to be censored. As Wooldridge (2002) points out, censoring is a problem with
how the data were recorded, not how they were generated. For instance, in the above top-coding example, if the survey administrators chose not to top code the data, the data would not be censored. In contrast, some LDVs result from corner solutions to choice problems. For example, the amount an individual spends on a new car in a given year may be zero or positive. Wooldridge (2002) argues that this LDV is a corner solution not a censored variable. He also shows that the object of interest for a corner solution model can be different from that for a censored model. Fortunately, both the censoring and corner-solution motivations give rise to the same ML estimator. Furthermore, the and constant postestimation tools can be used to interpret the results from censored and A solution to the problem with censoring at 0 was first proposed by Tobin (1958) as the censored regression model; it became known as "Tobin's probit" or the tobit model. 13 The model can be expressed in terms of a latent variable: $$y_i^* = \mathbf{x}_i \boldsymbol{\beta} + u_i$$ $y_i = \begin{cases} 0 & \text{if } y_i^* \le 0 \\ y_i^* & \text{if } y_i^* > 0 \end{cases}$ (10.8) y, contains either zeros for nonpurchasers or a positive dollar amount for those who chose to buy a car last year. The model combines aspects of the binomial probit for the distinction of $y_i = 0$ versus $y_i > 0$ and the regression model for $E[y_i|y_i > 1, \mathbf{x}_i]$. Of course, we could collapse all positive observations on y_i and treat this as a binomial probit (or logit) estimation problem, but doing so would discard the information on the dollar amounts spent by purchasers. Likewise, we could throw away the $y_i = 0$ observations, but we would then be left with a truncated distribution, with the various problems that creates. 14 To take account of all the information in y_i properly, we must fit the model with the tobit estimation method, which uses maximum likelihood to combine the probit and regression components of the log-likelihood function. We can express the log likelihood of a given observation as $$\begin{array}{lcl} \ell_i(\beta,\sigma_u) & = & I(y_i=0)\log\left\{1-\Phi\left(\frac{\mathbf{x}_i\beta}{\sigma_u}\right)\right\} + \\ & & I(y_i>0)\left\{\log\phi\left(\frac{y_i-\mathbf{x}_i\beta}{\sigma_u}\right) - \frac{1}{2}\log\left(\frac{\sigma_u^2}{u}\right)\right\} \end{array}$$ where $I(\cdot) = 1$ if its argument is true and is zero otherwise. We can write the likelihood function, summing ℓ_i over the sample, as the sum of the probit likelihood for those observations with $y_i = 0$ and the regression likelihood for those observations with $y_i > 0$. We can define tobit models with a threshold other than zero. We can specify censoring from below at any point on the y scale with the 11(#) option for left censoring. Similarly, the standard tobit formulation may use an upper threshold (censoring from above, or right censoring) using the ul(#) option to specify the upper limit. Stata's tobit command also supports the two-limit tobit model where observations on y are censored from both left and right by specifying both the 11(#) and ul(#) options. Even with one censoring point, predictions from the tobit model are complex, since we may want to calculate the regression-like xb with predict, but we could also compute ^{13.} The term "censored regression" is now more commonly used for a generalization of the tobit model in which the censoring values may vary from observation to observation. See [R] cnreg- ^{14.} The regression coefficients estimated from the positive y observations will be attenuated relative to the tobit coefficients, with the degree of bias toward zero increasing in the proportion of "limit observations" in the sample. the predicted probability that y (conditional on x) falls within a particular interval (which may be open ended on the left or right). We can do so with the pr(a,b)option, where arguments a, b specify the limits of the interval; the missing-value code (.) is taken to mean infinity (of either sign). Another predict option, e(a, b), calculates the $E[\mathbf{x}_i\widehat{\boldsymbol{\beta}} + u_i|a < \mathbf{x}_i\widehat{\boldsymbol{\beta}} + u_i < b]$. Last, the ystar (a,b) option computes the prediction from (10.8): a censored prediction, where the threshold is taken into account. The marginal effects of the tobit model are also complex. The estimated coefficients are the marginal effects of a change in x_j on y^* , the unobservable latent variable $$\frac{\partial E[y^*|\mathbf{x}]}{\partial x_j} = \beta_j$$ but that information is rarely useful. The effect on the observable y is $$\frac{\partial E[y|\mathbf{x}]}{\partial x_j} = \beta_j \times \Pr(a < y_i^* < b)$$ where a, b are defined as above for predict. For instance, for left censoring at zero, $a=0, b=+\infty$. Since that probability is at most unity (and will be reduced by a larger proportion of censored observations), the marginal effect of x_i is attenuated from the reported coefficient toward zero. An increase in an explanatory variable with a positive coefficient implies that a left-censored individual is less likely to be censored. The predicted probability of a nonzero value will increase. For an uncensored individual, an increase in x_j will imply that E[y|y>0] will increase. So, for instance, a decrease in the mortgage interest rate will allow more people to be homebuyers (since many borrowers' incomes will qualify them for a mortgage at lower interest rates) and allow prequalified homebuyers to purchase a more expensive home. The marginal effect captures the combination of those effects. Since newly qualified homebuyers will be purchasing the cheapest homes, the effect of the lower interest rate on the average price at which homes are sold will incorporate both effects. We expect that it will increase the average transactions price, but because of attenuation, by a smaller amount than the regression function component of the model would indicate. We can calculate the marginal effects with mfx or, for average marginal effects, with Bartus's margeff. For an empirical example, we return to the womenwk dataset used to illustrate binomial probit and logit. We generate the log of the wage (1w) for working women and set lwf equal to lw for working women and zero for nonworking women. 16 We first fit the model with OLS, ignoring the censored nature of the response variable: ^{15.} For more information, see Greene (2003, 764-773). ^{16.} This variable creation could be problematic if recorded wages less than \$1.00 were present in the data, but in these data the minimum wage recorded is \$5.88. | une http | p:// | ARR'I | stata-pre | ans.com/da | ta/ineus/womenwk, | el ann | |----------|------|-------|-----------|------------|-------------------|--------| | regress | luf | age | married | children | education | Creat | | Source | SS | df | | MS | | Number of obs | = 2000 | |--|---|---------------------------------|--------------|--|---|--|--| | Model
Residual | 937,873188
3485,34135 | 4
1995 | | 234.468297
1.74703827 | | F(4, 1995)
Prob > F
R-squared | | | Total | 4423.21454 | 1454 1999 | | 99 2.21271363 | | Adj R-squared
Root MSE | = 0.2105
= 1.3218 | | lwf | Coef. | Std. | Err. | t | P>iti | [95% Conf. | Interval] | | age
married
children
education
_cons | .0363624
.3188214
.3305009
.0843345
-1.077738 | .003
.0696
.0213
.0102 | 3143
2295 | 9.42
4.62
15.51
8.24
-6.33 | 0.000
0.000
0.000
0.000
0.000 | .0287885
.1833381
.2887004
.0642729 | .0439362
.4543046
.3723018
.1043961 | Refitting the model as a tobit and indicating that lwf is left censored at zero with the 11() option yields . tobit lwf age married children education, 11(0) | Number of obs | 196 | 2000 | |---------------|---------------------------|-------------------------------| | LR chi2(4) | - | 461.85 | | Prob > chi2 | 18 | 0.0000 | | Pseudo R2 | - | 0.0645 | | | LR chi2(4)
Prob > chi2 | LR chi2(4) =
Prob > chi2 = | | 1wf | Coef. | Std. Err. | t | P> t | [95% Conf. | Interval] |
--|-----------|-----------|--------|-------|------------|-----------| | age | .052157 | .0057457 | 9.08 | 0.000 | .0408888 | .0634252 | | married | 4841801 | .1035188 | 4.68 | 0.000 | .2811639 | .6871964 | | children | .4860021 | .0317054 | 15.33 | 0.000 | .4238229 | .5481812 | | CONTROL OF THE PARTY PAR | .1149492 | .0150913 | 7.62 | 0.000 | .0853529 | .1445454 | | _cons | -2.807696 | .2632565 | -10.67 | 0.000 | -3.323982 | -2.291409 | | /sigma | 1.872811 | .040014 | | | 1.794337 | 1.951288 | Obs. summary: 657 left-censored observations at lwf<=0 1343 uncensored observations 0 right-censored observations The tobit estimates of lwf show positive, significant effects for age, marital status, the number of children, and the number of years of education. We expect each of these factors to increase the probability that a woman will work as well as increase her wage conditional on employment status. Following tobit estimation, we first generate the marginal effects of each explanatory variable on the probability that an individual will have a positive log(wage) by using the pr(a,b) option of predict. mfx compute, predict(pr(0,.)) Marginal effects after tobit y = Pr(lwf>0) (predict, pr(0,.)) = .81920975 | variable | dy/dx | Std. Err. | z | P> z | 1 | 95% | C.I. | 1 | X | |-----------------------------|----------------------------------|----------------------------|-----------------------|-------------------------|----|---------------------------|----------------------|-----|---------------------------| | age
married*
children | .0073278
.0706994
.0682813 | .00083
.01576
.00479 | 8.84
4.48
14.26 | 0.000
0.000
0.000 | .0 | 05703
039803
058899 | .008
.101
.077 | 596 | 36.208
.6705
1.6445 | | educat-n | .0161499 | .00216 | 7.48 | 0.000 | .0 | 11918 | .020 | 382 | 13.084 | (*) dy/dx is for discrete change of dummy variable from 0 to 1 We then calculate the marginal effect of each explanatory variable on the expected log wage, given that the individual has not been censored (i.e., was working). These effects, unlike the estimated coefficients from regress, properly take into account the censored nature of the response variable. | variable | dy/dx | Std. Err. | Z | P>(z) | 1 | 95% | C.I. | 1 | X | |----------|----------|-----------|-------|-------|-----|-------|------|-----|--------| | age | .0314922 | .00347 | 9.08 | 0.000 | .0 | 24695 | .03 | 829 | 36.208 | | married* | .2861047 | .05982 | 4.78 | 0.000 | . 1 | 88855 | .403 | 354 | .6705 | | children | .2934463 | .01908 | 15.38 | 0.000 | .2 | 56041 | .330 | 852 | 1.6445 | | educat-n | .0694059 | .00912 | 7.61 | 0.000 | .0 | 51531 | .087 | 281 | 13.084 | (*) dy/dx is for discrete change of dummy variable from 0 to 1 Since the tobit model has a probit component, its results are sensitive to the assumption of homoskedasticity. Robust standard errors are not available for Stata's tobit command, although bootstrap or jackknife standard errors may be computed with the vce option. The tobit model imposes the constraint that the same set of factors x determine both whether an observation is censored (e.g., whether an individual purchased a car) and the value of a noncensored observation (how much a purchase spent on the car). Furthermore, the marginal effect is constrained to have the same sign in both parts of the model. A generalization of the tobit model, often termed the Heckit model (after James Heckman), can relax this constraint and allow different factors to enter the two parts of the model. We can fit this generalized tobit model with Stata's heckman command, as described in the next section of this chapter. # 10.4 Incidental truncation and sample-selection models For truncation, the sample is drawn from a subset of the population and does by contain observations on the dependent or independent variables for any other subset of the population. For example, a truncated sample might include only individuals with a permanent mailing address and exclude the homeless. For incidental truncation, is $_{\rm gample}$ is representative of the entire population, but the observations on the dependent variable are truncated according to a rule whose errors are correlated with the errors from the equation of interest. We do not observe y because of the outcome of some other variable, which generates the selection indicator, s. To understand the issue of sample selection, consider a population model in which the relationship between y and a set of explanatory factors \mathbf{x} can be written as a linear model with additive error u. That error is assumed to satisfy the zero-conditional-mean assumption of (4.2). Now consider that we observe only some of the observations on for whatever reason—and that indicator variable s_i equals 1 when we observe both y_i and \mathbf{x}_i and is zero otherwise. If we merely run a regression on the observations $$y_i = \mathbf{x}_i \boldsymbol{\beta} + u_i \tag{10.9}$$ on the full sample, those observations with missing values of y_i (or any elements of \mathbf{x}_i) will be dropped from the analysis. We can rewrite this regression as $$s_i y_i = s_i \mathbf{x}_i \boldsymbol{\beta} + s_i u_i \tag{10.10}$$ The OLS estimator $\widehat{\beta}$ of (10.10) will yield the same estimates as that of (10.9). They will be unbiased and consistent if the error term $s_i u_i$ has zero mean and is uncorrelated with each element of x_i . For the population, these conditions can be written as $$\begin{array}{rcl} E[su] & = & 0 \\ E[(s\mathbf{x})(su)] & = & E[s\mathbf{x}u] = 0 \end{array}$$ because $s^2 = s$. This condition differs from that of a standard regression equation (without selection), where the corresponding zero-conditional-mean assumption requires only that $E[\mathbf{x}u] = 0$. In the presence of selection, the error process u must be uncorrelated with $s\mathbf{x}$. Consider the source of the sample-selection indicator s_i . If that indicator is purely a function of the explanatory variables in x, we have exogenous sample selection. If the explanatory variables in x are uncorrelated with u_i and s is a function of xs, then it too will be uncorrelated with u_i as will the product sx_i . OLS regression estimated on a subset will yield unbiased and consistent estimates. For instance, if gender is one of the explanatory variables, we can estimate separate regressions for men and women with no difficulty. We have selected a subsample based on observable characteristics; e.g., s_i identifies the set of observations for females. We can also consider selection of a random subsample. If our full sample is a random sample from the population and we use Stata's sample command to draw a 10%, 20%, or 50% subsample, estimates from that subsample will be consistent as long as estimates from the full sample are consistent. In this case, s_i is set randomly. If s_i is set by a rule, such as $s_i = 1$ if $y_i \le c$, then as in section 10.3.1, OLS estimates will be biased and inconsistent. We can rewrite the rule as $s_i = 1$ if $u_i \le (c - x_i \beta)$, which makes it clear that s_i must be correlated with u_i . As shown above, we must use the truncated regression model to derive consistent estimates. Incidental truncation means that we observe y_i based not on its value but rather on the observed outcome of another variable. For instance, we observe hourly wage when an individual participates in the labor force. We can imagine fitting a binomial probit or logit model that predicts the individual's probability of participation. In this circumstance, s_i is set to zero or one based on the factors underlying that decision $$y_i = \mathbf{x}_i \boldsymbol{\beta} + u$$ (10.11) $$s_i = I(\mathbf{z}_i \gamma + v \ge 0) \tag{10.12}$$ where we assume that the explanatory factors in x satisfy the zero-conditional-mean assumption $E[\mathbf{x}u] = 0$. The $I(\cdot)$ function equals
1 if its argument is true and is zero otherwise. We observe y_i if $s_i = 1$. The selection function contains a set of explanatory factors z, which must be a superset of x. For us to identify the model, z contains all x but must also contain more factors that do not appear in x. 17 The error term in the selection equation, v, is assumed to have a zero-conditional mean: E[zv] = 0, which implies that E[xv] = 0. We assume that v follows a standard normal distribution. Incidental truncation arises when there is a nonzero correlation between u and v. If both these processes are normally distributed with zero means, the conditional expectation $E[u|v] = \rho v$, where ρ is the correlation of u and v. From (10.11), $$E[y|\mathbf{z}, v] = \mathbf{x}\beta + \rho v$$ (10.13) We cannot observe v, but s is related to v by (10.12). Equation (10.13) then becomes $$E[y|\mathbf{z}, s] = \mathbf{x}\boldsymbol{\beta} + \rho E[v|\mathbf{z}, s]$$ The conditional expectation $E[v|\mathbf{z}, s]$ for $s_i = 1$, the case of observability, is merely λ . the IMR defined in section 10.3.1. Therefore, we must augment (10.11) with that terms $$E[y|\mathbf{z}, s = 1] = \mathbf{x}\boldsymbol{\beta} + \rho\lambda(\mathbf{z}\boldsymbol{\gamma})$$ (10.14) If $\rho \neq 0$, OLS estimates from the incidentally truncated sample will not consistently estimate β unless the IMR term is included. Conversely, if $\rho = 0$, that old regression will yield consistent estimates. The IMR term includes the unknown population parameters γ , which may be fitted a binomial probit model. by a binomial probit model $$\Pr(s=1|\mathbf{z}) = \Phi(\mathbf{z}\boldsymbol{\gamma})$$ from the entire sample. With estimates of γ , we can compute the IMR term for each observation for which μ is observable. observation for which y_i is observed $(s_i = 1)$ and fit the model of (10.14). This two-step procedure, based on the work of W_i procedure, based on the work of Heckman (1976), is often termed the Heckit model. Instead, we can use a full massive that the model of the Heckit model. Instead, we can use a full maximum-likelihood procedure to jointly estimate β , γ , and ρ . ^{17.} As Wooldridge (2006) discusses, when z contains the same variables as x the parameters are theoretically identified, but this identification is theoretically identified, but this identification is usually too weak to be practically applied The Heckman selection model in this context is driven by the notion that some of the z factors for an individual are different from the factors in x. For instance, in the z equation, the number of preschool children in the family is likely to influence a wage a woman participates in the labor force but might be omitted from the wage determination equation: it appears in z but not x. We can use such factors to identify the model. Other factors are likely to appear in both equations. A woman's level of the labor and years of experience in the labor force will likely influence her decision participate as well as the equilibrium wage that she will earn in the labor market. Stata's heckman command fits the full maximum-likelihood version of the Heckit model with the following syntax: heckman depvar [indepvars] [if] [in], select(varlist2) where indepvars specifies the regressors in x and varlist2 specifies the list of Z factors expected to determine the selection of an observation as observable. Unlike with tobit. where the depvar is recorded at a threshold value for the censored observations, we should code the depvar as missing (.) for those observations that are not selected. 18 The model is fitted over the entire sample and gives an estimate of the crucial correlation ρ , along with a test of the hypothesis that $\rho = 0$. If we reject that hypothesis, a regression of the observed depvar on indepvars will produce inconsistent estimates of 3,19 The heckman command can also generate the two-step estimator of the selection model (Heckman 1979) if we specify the twostep option. This model is essentially the regression of (10.7) in which the IMR has been estimated as the prediction of a binomial probit (10.12) in the first step and used as a regressor in the second step. A significant coefficient of the IMR, denoted lambda, indicates that the selection model must be used to avoid inconsistency. The twostep approach, computationally less burdensome than the full maximum-likelihood approach used by default in heckman, may be preferable in complex selection models.20 The example below revisits the womenwk dataset used to illustrate tobit. To use these data in heckman, we define 1w as the log of the wage for working women and as missing for nonworking women. We assume that marital status affects selection (whether a woman is observed in the labor force) but does not enter the log(wage) equation. All factors in both the log(wage) and selection equations are significant. By using the selection model, we have relaxed the assumption that the factors determining participation and the wage are identical and of the same sign. The effect of more children increases the probability of selection (participation) but decreases the predicted wage, conditional on participation. The likelihood-ratio test for $\rho = 0$ rejects its null, so that ^{18.} An alternative syntax of heckman allows for a second dependent variable: an indicator that signals which observations of depour are observed. ^{19.} The output produces an estimate of /athrho, the hyperbolic arctangent of p. That parameter is microd in the log-likelihood function to enforce the constraint that $-1 < \rho < 1$. The point and interval stimates of p are derived from the inverse transformation. ²⁰ For more details on the two-step versus maximum likelihood approaches, see Wooldridge (2002, $\frac{1}{100}$) for the two-step versus maximum likelihood approaches, see Wooldridge (2002, (400-566) estimation of the log(wage) equation without taking selection into account would yield inconsistent results. | Heckman selection model (regression model with sample selection) Log likelihood = -1052.857 | | | | | of obs = d obs = red obs = d | 657 | |--|---|--|------------|-------|---------------------------------|-----------| | | | | | | Wald chi2(3) =
Prob > chi2 = | | | Coef. Std. Err. z | | | | | [95% Conf. | Interval] | | 10 | | Constitution of the last th | U este out | | | | | education | .0397189 | .0024525 | 16.20 | 0.000 | .0349121 | .0445256 | | age | .0075872 | .0009748 | 7.78 | 0.000 | .0056767 | .0094977 | | children | 0180477 | .0064544 | -2.80 | 0.005 | 0306981 | 0053973 | | _cons | 2.305499 | .0653024 | 35.30 | 0.000 | 2,177509 | 2,43349 | | select | A100-00-00-00-00-00-00-00-00-00-00-00-00- | | | | | .0433225 | | age | .0350233 | .0042344 | 8.27 | 0.000 | .0267241 | | | married | .4547724 | .0735876 | 6.18 | 0.000 | .3105434 | .5990014 | | children | .4538372 | .0288398 | 15.74 | 0.000 | .3973122 | .5103621 | | education | .0565136 | .0110025 | 5.14 | 0.000 | .0349492 | .0780781 | | _cons | -2.478055 | .1927823 | -12.85 | 0.000 | -2.855901 | -2.100208 | | /athrho | .3377674 | .1152251 | 2.93 | 0.003 | .1119304 | .5636045 | | /lnsigma | -1.375543 | .0246873 | -55.72 | 0.000 | -1.423929 | -1.327156 | | rho | .3254828 | .1030183 | | | .1114653 | .5106469 | | sigma | .2527024 | .0062385 | | | .2407662 | .2652304 | | lanbda | .0822503 | .0273475 | | | .0286501 | .1358505 | We also use the heckman two-step procedure, which makes use of the IMR from a probit equation for selection. | heckman lw education age children,
> select(age married children education) twoster | ip. | | | |--|----------------|----|--------| | Heckman
selection model two-step estimates (regression model with sample selection) | Number of obs | 18 | 2000 | | (regression | Censored obs | * | 657 | | | Uncensored obs | - | 1343 | | | Wald chi2(6) | | 737.21 | | | | | | | 0.0000 | |-----------|---|---|---|---|--| | Coef. | Std. Err. | z | P>izi | [95% Conf. | Interval] | | 0427067 | 002108 | 10.70 | 272200 | NEEDELVS | 26000000 | | | | | | | .0487944 | | | 100000000000000000000000000000000000000 | | 200000000000000000000000000000000000000 | | .0121333 | | | - C. | 100000000000000000000000000000000000000 | 100000000000000000000000000000000000000 | | .0206242 | | 2.124(8) | .1249789 | 17.00 | 0.000 | 1.879833 | 2.369741 | | | | | | | | | .0347211 | .0042293 | 8.21 | 0.000 | .0264318 | .0430105 | | .4308575 | .074208 | 5.81 | 0.000 | .2854125 | .5763025 | | .4473249 | .0287417 | 15.56 | 0.000 | .3909922 | -5036576 | | .0583645 | .0109742 | 5.32 | 0.000 | .0368555 | _0798735 | | -2.467365 | .1925635 | -12.81 | 0.000 | -2.844782 | -2.089948 | | | | | | | | | .1822815 | .0638285 | 2.86 | 0.004 | .05718 | .307383 | | 0.66698 | | | | | | | 27329216 | | | | | | | .18228151 | .0638285 | | | | | | | .0427067
.009322
0019549
2.124787
.0347211
.4308575
.4473249
.0583645
-2.467365
.1822815 | .0427067 .003106
.009322 .0014343
0019549 .0115202
2.124787 .1249789
.0347211 .0042293
.4308575 .074208
.4473249 .0287417
.0583645 .0109742
-2.467365 .1925635
.1822815 .0638285
0.66698
.27329216 | .0427067 .003106 13.75
.009322 .0014343 6.50
0019549 .0115202 -0.17
2.124787 .1249789 17.00
.0347211 .0042293 8.21
.4308575 .074208 5.81
.4473249 .0287417 15.56
.0583645 .0109742 5.32
-2.467365 .1925635 -12.81
.1822815 .0638285 2.86 | .0427067 .003106 13.75 0.000
.009322 .0014343 6.50 0.000
0019549 .0115202 -0.17 0.865
2.124787 .1249789 17.00 0.000
.0347211 .0042293 8.21 0.000
.4308575 .074208 5.81 0.000
.4473249 .0287417 15.56 0.000
.0583645 .0109742 5.32 0.000
-2.467365 .1925635 -12.81 0.000
.1822815 .0638285 2.86 0.004 | .0427067 .003106 13.75 0.000 .0366191 .009322 .0014343 6.50 0.000 .00651080019549 .0115202 -0.17 0.8650245341 2.124787 .1249789 17.00 0.000 1.879833 .0347211 .0042293 8.21 0.000 .0264318 .4308575 .074208 5.81 0.000 .2854125 .4473249 .0287417 15.56 0.000 .3909922 .0583645 .0109742 5.32 0.000 .0368555 -2.467365 .1925635 -12.81 0.000 -2.844782 .1822815 .0638285 2.86 0.004 .05718 0.66698 .27329216 | Although it also provides consistent estimates of the selection model's parameters, we see a qualitative difference in the log(wage) equation: the number of children is not significant in this formulation of the model. The maximum likelihood formulation, when computationally feasible, is attractive—not least because it can generate interval estimates of the selection model's ρ and σ parameters. ### 10.5 Bivariate probit and probit with selection Another example of a limited-dependent-variable framework in which a correlation of equations' disturbances plays an important role is the bivariate probit model. In its simplest form, the model may be written as $$y_1^* = \mathbf{x}_1 \boldsymbol{\beta}_1 + u_1$$ $$y_2^* = \mathbf{x}_2 \boldsymbol{\beta}_2 + u_2$$ $$\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \sim N \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \right\}$$ (10.15) The observable counterparts to the two latent variables y_1^* , y_2^* are y_1 , y_2 . These variables are observed as 1 if their respective latent variables are positive and zero otherwise. One formulation of this model, termed the seemingly unrelated bivariate probit model in biprobit, is similar to the SUR model that I presented in section 9.4. As in the regression context, we can view the two probit equations as a system and estimate them jointly if $\rho \neq 0$, but it will not affect the consistency of individual probit equations estimates. However, consider one common formulation of the bivariate probit model because it is similar to the selection model described above. Consider a two-stage process in which the second equation is observed conditional on the outcome of the first. For example, some fraction of patients diagnosed with circulatory problems undergoes multiple-bypass surgery $(y_1 = 1)$. For each patient, we record whether he or she died within 1 year of the surgery $(y_2 = 1)$. The y_2 variable is available only for those patients who are postoperative. We do not have records of mortality among those who chose other forms of treatment. In this context, the reliance of the second equation on the first is an issue of partial observability, and if $\rho \neq 0$ it will be necessary to take both equations' factors into account to generate consistent estimates. That correlation of errors may be likely in that unexpected health problems that caused the physician to recommend bypass surgery may recur and kill the patient. As another example, consider a bank deciding to extend credit to a small business. The decision to offer a loan can be viewed as $y_1 = 1$. Conditional on that outcome, the borrower will or will not default on the loan within the following year, where a default is recorded as $y_2 = 1$. Those potential borrowers who were denied cannot be observed defaulting because they did not receive a loan in the first stage. Again the disturbances impinging upon the loan offer decision may well be correlated (here negatively) with the disturbances that affect the likelihood of default. Stata can fit these two bivariate probit models with the biprobit command. The seemingly unrelated bivariate probit model allows $x_1 \neq x_2$, but the alternative form that we consider here allows only one varlist of factors that enter both equations. In the medical example, this varlist might include the patient's body mass index (a measure of obesity), indicators of alcohol and tobacco use, and age—all of which might affect both the recommended treatment and the 1-year survival rate. With the partial option, we specify that the partial observability model of Poirier (1981) be fitted. #### Binomial probit with selection 10.5.1 Closely related to the bivariate probit with partial observability is the binomial probit with selection model. This formulation, first presented by Van de Ven and Van Press (1981), has the same basic setup as (10.15) above: the latent variable y_1^* depends on factors \mathbf{x} , and the binary outcomes factors \mathbf{x} , and the binary outcome $y_1 = 1$ arises when $y_1^* > 0$. However, y_{1j} is observed only when $y_{2j} = (\mathbf{x}_2 \gamma + u_{2j} > 0)$ that is, when the selection equation generates a value of 1. This result could be viewed in the earlier example, as m_i is directly in the earlier example, as y_2 indicating whether the patient underwent by pass surger. We observe the following versely heavily We observe the following year's health outcome only for those patients who had the surgical procedure. As in (10.15), there is a potential correlation (ρ) between the errors of the two equations. If that correlation is nonzero, estimates of the y_1 equation will be biased unless we account for the selection. Here that suggests that focusing only on the patients who underwent surgery (for whom $y_2 = 1$) and studying the factors that contributed to survival is not appropriate if the selection process is nonrandom. In the medical example, selection is likely nonrandom in that those patients with less serious circulatory problems are not as likely to undergo heart surgery. In the second example, we consider small business borrowers' likelihood of getting a loan and for successful borrowers, whether they defaulted on the loan. We can observe only a default if they were selected by the bank to receive a loan $(y_2 = 1)$. Conditional on receiving a loan, they did or did not fulfill their obligations, as recorded in y_1 . If we focus only on loan recipients and whether they defaulted, we are ignoring the selection issue. Presumably, a well-managed bank is not choosing among loan applicants at random. Both deterministic and random factors influencing the extension of credit and borrowers' subsequent performance are likely to be correlated. Unlike the bivariate probit with partial observability, the probit with sample selection explicitly considers $x_1 \neq x_2$. The factors influencing the granting of credit and the borrowers' performance must differ to identify the model. Stata's heckprob command has a syntax similar to that of heckman, with an indepvars of the factors in x_1 and
a select (varlist2) option specifying the explanatory factors driving the selection outcome. I illustrate one form of this model with the Federal Reserve Bank of Boston HMDA dataset²¹ (Munnell et al. 1996), a celebrated study of racial discrimination in banks' home mortgage lending. Of the 2,380 loan applications in this subset of the dataset, 88% were granted, as approve indicates. For those 2,095 loans that were approved and originated, we may observe whether they were purchased in the secondary market by Fannie Mae (FNMA) or Freddie Mac (FHLMC), the quasigovernment mortgage finance agencies. The variable fanfred indicates that 33% (698) of those loans were sold to Fannie or Freddie. We seek to explain whether certain loans were attractive enough to the secondary market to be resold as a function of the loan amount (loanamt), an indicator of above-average vacant properties in that census tract (vacancy), an indicator of above-average median income in that tract (med_income), and the appraised value of the dwelling (appr_value). The secondary market activity is observable only if the loan was originated. The selection equation contains an indicator for black applicants, applicants' income, and their debt-to-income ratio (debt_inc_r) as predictors of loan approval. - . use http://www.stata-press.com/data/imeus/hmda, clear - replace fanfred=. if deny (285 real changes made, 285 to missing) - . rename s6 loanamt - rename vr vacancy ^{21.} Under the Home Mortgage Disclosure Act of 1975, as amended, institutions regulated by HMDA must report information on the disposition of every mortgage application and purchase as well as provide data on the race, income, and gender of the applicant or mortgagor. - . rename mi med_income - . rename s50 appr_value - . rename s17 appl_income - . replace appl_income = appl_income/1000 (2379 real changes made) - . rename s46 debt_inc_r - . summarize approve fanfred loanamt vacancy med_income appr_value - > black appl_income debt_inc_r, sep(0) | Variable | Obs | Mean | Std. Dev. | Min | Max | |-------------|------|----------|-----------|-----|----------| | approve | 2380 | .8802521 | .3247347 | 0 | 1 | | fanfred | 2095 | .3331742 | .4714608 | 0 | 1 | | loanamt | 2380 | 139.1353 | 83.42097 | 2 | 980 | | vacancy | 2380 | .4365546 | .4960626 | 0 | 1 | | med_income | 2380 | .8294118 | .3762278 | 0 | 1 | | appr_value | 2380 | 198.5426 | 152.9863 | 25 | 4316 | | black | 2380 | .142437 | .3495712 | 0 | 1 | | appl_income | 2380 | 13.9406 | 116.9485 | 0 | 999.9994 | | debt_inc_r | 2380 | 33.08136 | 10.72573 | 0 | 300 | | | | | | | | #### We fit the model with heckprob: - . heckprob fanfred loanamt vacancy med_income appr_value, - > select(approve= black appl_income debt_inc_r) nolog | Coaf Std Fee | - Palel FORM Co | 4 1 | etervall. | |------------------------------------|-----------------------------|-----|-----------| | Log likelihood = -2063.066 | Wald chi2(4)
Prob > chi2 | - | 0.0000 | | | Uncensored obs | * | 2095 | | | Censored obs | * | 285 | | Probit model with sample selection | Number of obs | = | 2380 | | Coef. | Std. Err. | Z | P> z | [95% Conf. | Interval] | |----------|---|---|---|---|---| | | | | | | | | 0026434 | .0008029 | -3.29 | 0.001 | 0042169 | 0010698 | | 2163306 | .0609798 | -3.55 | 0.000 | 3358488 | 0968124 | | .2671338 | .0893349 | 2.99 | 0.003 | .0920407 | .4422269 | | 0014358 | .0005099 | -2.82 | 0.005 | 0024351 | 0004364 | | .1684829 | -1182054 | 1.43 | 0.154 | 0631954 | .4001612 | | | | | | | | | 7343534 | .081858 | -8.97 | 0.000 | - 8947921 | 5739147 | | 0006596 | .000236 | | | | 0001971 | | 0262367 | .0036441 | | | | 0190944 | | 2.236424 | .1319309 | 16.95 | 0.000 | 1.977844 | 2.495004 | | 6006626 | .271284 | -2.21 | 0.027 | -1.132311 | 0690146 | | 5375209 | .1928809 | 11/6-2/5 | 111111111111111111111111111111111111111 | 8118086 | 0689052 | | | 0026434
2163306
.2671338
0014358
.1684829
7343534
0006596
0262367
2.236424
6006626 | 0026434 .00080292163306 .0609798 .2671338 .08933490014358 .0005099 .1684829 .1182064 7343534 .0818580006596 .0002360262367 .0036441 2.236424 .1319309 6006626 .271254 | 0026434 .0008029 -3.292163306 .0609798 -3.56 .2671338 .0893349 2.990014358 .0005099 -2.82 .1684829 .1182054 1.43 7343534 .081858 -8.970006596 .000236 -2.800262367 .0036441 -7.20 2.236424 .1319309 16.95 6006626 .271254 -2.21 | 0026434 .0008029 -3.29 0.0012163306 .0609798 -3.55 0.000 .2671338 .0893349 2.99 0.005 .0014358 .0005099 -2.82 0.005 .1684829 .1182054 1.43 0.154 7343534 .081858 -8.97 0.0000006596 .000236 -2.80 0.0050262367 .0036441 -7.20 0.000 2.236424 .1319309 16.95 0.000 6006626 .271264 -2.21 0.027 | 0026434 .0008029 -3.29 0.00100421692163306 .0609798 -3.55 0.0003358488 .2671338 .0893349 2.99 0.003 .09204070014358 .0005099 -2.82 0.0050024351 .1684829 .1182064 1.43 0.1540631954 7343534 .081858 -8.97 0.00089479210006596 .000236 -2.80 0.00500112210262367 .0036441 -7.20 0.000033379 2.236424 .1319309 16.95 0.000 1.977844 6006626 .271284 -2.21 0.027 -1.132311 | The model is successful, indicating that the secondary market sale is more likely to take place for smaller-value loans (or properties). The probability is affected negatively by nearby vacant properties and positively by higher income in the neighborhood. In the selection equation, the original researchers' findings of a strong racial effect on loan approvals is borne out by the sign and significance of the black coefficient. Applicants' income has an (unexpected) negative effect on the probability of approval, although the debt-to-income ratio has the expected negative sign. The likelihood-ratio test of independent equations conclusively rejects that null hypothesis with an estimated rho of -0.54 between the two equations' errors, indicating that ignoring the selection into approved status would render the estimates of a univariate probit equation for fanfred equation biased and inconsistent. ## Exercises - In section 10.3.1, we estimated an OLS regression and a truncated regression from the laborsub sample of 250 married women, 150 of whom work. This dataset can be treated as censored in that we have full information on nonworking women's characteristics. Refit the model with tobit and compare the results to those of OLS. - 2. In section 10.3.2, we fitted a tobit model for the log of the wage from womenwk, taking into account a zero wage recorded by 1/3 of the sample. Create a wage variable in which wages above \$25.00 per hour are set to that value and missing wage is set to zero. Generate the log of the transformed wage, and fit the model as a two-limit tobit. How do the tobit coefficients and their marginal effects differ from those presented in section 10.3.2? - 3. Using the dataset http://www.stata-press.com/data/r9/school.dta, fit a bivariate probit model of private (whether a student is enrolled in private school) and vote (whether the parent voted in favor of public school funding). Model the first response variable as depending on years and logptax, the tax burden; and estimate the second response variable as depending on those factors plus loginc. Are these equations successful? What do the estimate of ρ and the associated Wald test tell you? - 4. Using the HMDA dataset from section 10.5.1, experiment with alternative specifications of the model for loan approval (approve = 1). Should factors such as the loan amount or the ratio of the loan amount to the appraised value of the property be entered in the loan approval equation? Test an alternative heckprob model with your revised loan approval equation. # A Getting the data into Stata This appendix discusses problems you may have in inputting and managing economic and financial data. You can download source data from a web site, acquire it in spreadsheet format, or import it from some other statistical package. The two sections deal with those variations. ## A.1 Inputting data from ASCII text files and spreadsheets Before carrying out econometric analysis with Stata, many researchers must face several thorny issues in converting their foreign data into Stata-usable form. These issues range from the mundane (e.g., a text-file dataset may have coded missing values as 99) to the challenging (e.g., a text-file dataset may be in a hierarchical format, with master records and detail records). Although I cannot possibly cover all the ways in which external data may be organized and transformed for use in Stata, several rules apply: - Familiarize yourself with the various Stata commands for data input. Each has its use, and in the spirit of "don't pound nails with a screwdriver", data handling is much simpler if you use the correct tool. Reading [U] 21 Inputting data is well worth your time. - When you need to manipulate a text file, use a text editor, not a word processor or spreadsheet. - Get the data into Stata
as early as you can, and perform all manipulations via well-documented do-files that you can edit and reuse. I will not discuss input or the Data Editor, which allow you to interactively enter data, or various copy-andpaste strategies involving simultaneous use of a spreadsheet and Stata. Such a strategy is not reproducible and should be avoided. - Keep track of multiple steps of a data input and manipulation process through good documentation. If you ever need to replicate or audit the data manipulation process, you will regret not properly documenting your research. - If you are working with anything but a simple rectangular data array, you will need to use append, merge, or reshape. Review chapter 3 to understand their capabilities. #### A.1.1 Handling text files Text files—often described as ASCII files—are the most common source of raw data in economic research. Text files may have any file extension: they may be labeled .raw (as Stata would prefer). .txt, .csv, or .asc. A text file is just that: text. Word-processing programs like Microsoft Word are inappropriate tools for working with text files because they have their own native, binary format and generally use features such as proportional spacing that will cause columns to be misaligned. Every operating system supports a variety of text editors, many of which are freely available. A useful summary of text editors of interest to Stata users is edited by Nicholas J. Cox and is available as a web page from ssc as the package texteditors. A good text editor—one without the memory limitations present in Stata's ado-file editor or the built-in routines in some operating systems—is much faster than a word processor when scrolling through a large data file. Many text editors colorize Stata commands, making them useful for developing Stata programs. Text editors are also useful for working with large microeconomic survey datasets that come with machine-readable codebooks, which are often many megabytes. Searching those codebooks for particular keywords with a robust text editor is efficient. #### Free format versus fixed format Text files may be free format or fixed format. A free-format file contains several fields per record, separated by delimiters: characters that are not to be found within the fields. A purely numeric file (or one with simple string variables such as U.S. state codes) may be space delimited; that is, successive fields in the record are separated by one or more space characters: AK 12.34 0.09 262000 AL 9.02 0.075 378000 AZ 102.4 0.1 545250 The columns in the file need not be aligned. These data may be read from a text file (by default with extension .raw) with Stata's infile command, which assigns names (and if necessary data types) to the variables: - . clear - . infile str2 state members prop potential using appA_1 (3 observations read) - . list | | state | members | prop | potent-1 | |----|-------|---------|------|----------| | 1. | AK | 12.34 | .09 | 262000 | | 2. | AL | 9.02 | .075 | 378000 | | 3. | AZ | 102.4 | .1 | 545250 | We must indicate that the first variable is a string variable of maximum length two We must (str2), or every record will generate an error that state cannot be read as daracters. We may even have a string variable with contents of various length in the . clear infile str2 state members prop potential str20 state_name key using appA_2 (3 observations read) list | i | state | members | prop | potent-1 | statee | key | |----|-------|---------|------|----------|---------|-----| | | AK | 12.34 | -09 | 262000 | Alaska | 1 | | 90 | AL | 9.02 | .075 | 378000 | Alabama | 2 | | 1 | AZ | 102.4 | -1 | 545250 | Arizona | 3 | However, this scheme will break down as soon as we hit New Hampshire. Stata will read the space within the state name as a delimiter. If you use string variables with embedded spaces in a space-delimited file, you must delimit the variable names (usually with quotation marks in the text file): . clear type appA_3.raw AK 12.34 0.09 262000 Alaska 1 AL 9.02 0.075 378000 Alabama 2 AZ 102.4 0.1 545250 Arizona 3 NH 14.9 0.02 212000 "New Hampshire" 4 . infile str2 state members prop potential str20 state_name key using appA_3 (4 observations read) . list | Ī | state | members | prop | potent-1 | state_name | key | |-------|----------------------|--------------------------------|-------------------|--------------------------------------|---|------------------| | 1 500 | AK
AL
AZ
NH | 12.34
9.02
102.4
14.9 | .09
.075
.1 | 262000
378000
545250
212000 | Alabka
Alabama
Arizona
New Hampshire | 1
2
3
4 | So what should you do if your text file is space delimited and contains string variables with embedded spaces? No mechanical transformation will generally solve this problem. For instance, using a text editor to change multiple spaces to one space and then each single space to a tab character will not help because it will then place a tab between "New" and "Hampshire". If you download the data from a web page that offers formatting choices, you should choose tab-delimited rather than space-delimited format. The other option, commadelimited text, or comma-separated values (.csv), has its own difficulties. Consider held contents (without quotation marks), such as "College Station, TX", "J. Arthur-Jones, Jr.", "F. Lee Bailey, Esq.", or "Ronald Anderson, S.J." If every city name is followed by a comma, there is no problem, since the city and state can then be read as separate variables: but if some are written without commas ("Brighton MA"), the problem returns. In any case, parsing proper names with embedded commas is problematic, but using tab-delimited text avoids most of these problems. #### The insheet command To read tab-delimited text files, we should use insheet rather than infile. Despite its name, insheet does not read binary spreadsheet files (e.g., .xls), and it reads a tab-delimited (or comma-delimited) text file, whether or not a spreadsheet program was used to create it. For instance, most database programs have an option for generating a tab-delimited or comma-delimited export file, and many datasets available for web download are in one of these formats. The insheet command is handy, as long as one observation in your target Stata dataset is contained on one record with tab or comma delimiters. Stata will automatically try to determine the delimiter (but options tab and comma are available), or you can specify any ASCH character as a delimiter with the delimiter (char) option. For instance, some European database exports use semicolon (:) delimiters because standard European numeric formats use the comma as the decimal separator. If the first line of the .raw file contains valid Stata variable names, these names will be used. If you are extracting the data from a spreadsheet, they will often have that format. To use the sample dataset above, now tab delimited with a header record of variable names, you could type - . clear . insheet using appA_4 (6 vars, 4 obs) - . list | state | nembers | prop | potent-1 | state_name | key | |-------|---------|------|----------|---------------|-----| | AK | 12.34 | .09 | 262000 | Alaska | 3 | | AL | 9.02 | .075 | 378000 | Alabama | 3 | | AZ | 102.4 | .1 | 545250 | Arizona | | | NH | 14.9 | .02 | 212000 | New Hampshire | 39 | The issue of embedded spaces or commas no longer arises in tab-delimited data. The first line of the file defines the variable names. Pay particular attention to informational or error messages produced by the data input commands. If you know how many observations are in the text file, check to see that the number Stata reports is correct. Likewise, you can use summarize to discern whether the number of observations, minimum, and maximum for each numeric variable are sensible. You can usually spot data-entry errors if a particular variable takes on nonsensical values, which usually means that one or more fields on that record have been omitted and should trigger an error message. For instance, leaving out a numeric field on a particular record will move an adjacent string field into that variable. Stata will then complain that it cannot read the string as a number. A distinct advantage of the tab- or comma-delimited formats is that missing values may be coded with two successive delimiters. As discussed in chapter 2, we can use assert to good advantage to ensure that reasonable values appear in the data. You can use infile with if exp and in range qualifiers to selectively input data, but not insheet. For instance, with a large text-file dataset, you could use in 1/1000 to read only the first 1,000 observations and verify that the input process is working properly. Using if gender=="M", we could read only the male observations; by using if uniform() <= 0.15 we could draw a 15% sample from the input data. You cannot use these qualifiers with insheet; but unless the text-file dataset is huge and the computer slow, you could always read the entire dataset and apply keep or drop conditions to mimic the action of infile. ### A.1.2 Accessing data stored in spreadsheets Above, I said that you should not copy and paste to transfer data from another application directly to Stata because you cannot replicate the process. For instance, you cannot guarantee that the first and last rows or columns of a spreadsheet were selected and copied to the clipboard without affecting the data. If the data are in a spreadsheet, copy the appropriate portion of that spreadsheet and paste it into a new blank sheet (in Excel, use Paste Special to ensure that only values are stored). If you are going to add Stata variable names, leave the first row blank so that you can fill them in later. Save that sheet, and that sheet alone, as Text Only—Tab delimited to a new filename. Using the file extension .raw will simplify reading the file into Stata. Both Excel and Stata read calendar dates
as successive integers from an arbitrary starting point. For Stata to read the dates into a Stata date variable, they must be formatted with a four-digit year, preferably in a format with delimiters (e.g., 12/6/2004 or 6-Dec-2004). It is much easier to make these changes in the spreadsheet program before reading the data into Stata. Macintosh OS X users of Excel should note that Excel's default is the 1904 Date System. If the spreadsheet was produced in Excel for Windows, and you used the steps above to create a new sheet with the desired data, the dates will be off by 4 years (the difference between Excel for Macintosh and Excel for Windows defaults). Uncheck the preference Use 1904 Date System before saving the file as text ## A.1.3 Fixed-format data files Many text-file datasets are composed of fixed-format records, which obey a strict columnar format in which a variable appears in a specific location in each record of the dataset. Such datasets are accompanied by codebooks, which define each variable's name, data type, location in the record, and possibly other information, such as missing values, value labels, or frequencies for integer variables. Here is a fragment of the codebook ^{1.} Stata itself can produce a codebook from a Stata dataset via the codebook command. for the study "National Survey of Hispanic Elderly People, 1988", available from the Inter-University Consortium for Political and Social Research, 2 | VAR 0001 | ICPSR STUDY NUMBER-9289 | NO MISSING DATA CODES
1 WIDTH 4 DK 1 CO | L 3- 6 | |-------------------|--|--|----------------| | AWK GOOT | REE 0001 LOC | 1 WIDIN O | 4 9- 0 | | VAR 0002 | TCDSR EDITION NUMBER-2 | NO MISSING DATA CODES | L 7 | | AWK OOOS | REF 0002 LOC | 5 WIDIN 1 | La Contraction | | 0002 | TCPSR PART NUMBER-001 | NO MISSING DATA CODES | IL B-10 | | VAR 0003 | REF 0003 LOC | e winin o | F 9-10 | | 0004 | TCPSR TD | NO MISSING DATA CODES | 4 74 14 | | VAR 0004 | ICPSR ID
REF 0004 LOC | 9 WIDIN 9 | IL 11-14 | | | ORIGINAL ID | NO MISSING DATA CODES | IL 15-18 | | VAR 0005 | ORIGINAL ID
REF 0005 LOC | 13 WIDIN 4 | L 10-16 | | 2002 100222 | PROXY
REF 0006 LOC | NO MISSING DATA CODES | i 10 | | VAR 0006 | ppp onne LOC | 17 WIDIN A |)L 19 | | 2012 2012 | TIME BEGUN-HOUR | MD=99 | | | VAR 0007 | REF 0007 LOC | IR WIDIN 2 | DL 20-21 | | 1000 2000 | TIME BEGUN-MINUTE | WD=88 | | | VAR 0008 | REF 0008 LOC | 20 MIDIN 2 | 01. 22-23 | | 10000000000 | TIME BEGUN-AM/PM | MD×9 | | | VAR 0009 | REF 0009 LOC | 22 WIDTH 1 | OL 24 | | (100 March 1997) | | NO MISSING DATA CODES | ne ne na | | VAR 0010 | REF 0010 LOC | 23 WIDTH 3 | OL 25-27 | | TO DESCRIPTION OF | HISPANIC GROUP | NO MISSING DATA CODES | . 20 | | VAR 0011 | REF 0011 LOC | 26 WIDIN 1 | OL 28 | | SOUTH THE SAME | HISPANIC GROUP-OTHER | MD=99 | or 00-25 | | VAR 0012 | REF 0012 LOC | 27 #1010 4 | OL 29-30 | | 100 DATE: | MARITAL STATUS | NO MISSING DATA CODES | me 1964 | | VAR 0013 | REF 0013 LOC | 29 WIDTH 1 DK 1 C | OL 31 | | | The state of s | | | ## Q.A3. ARE YOU NOW MARRIED, WIDOWED, DIVORCED, SEPARATED, OR HAVE YOU NEVER MARRIED? 1083 1. MARRIED 815 2. WIDDWED 160 3. DIVORCED | | 99 4. SEPARAT
14 5. NOT MAI
128 6. NEVER | RIED | | VING W | ITH PARTNER | | | | |----------|--|------|--------|--------|---------------|------------|-------|-------| | VAR 0014 | MARITAL STATUS-YE | ARS | | | MD=97 OR GE | | 1 COL | 22-33 | | VAR 0014 | | LOC | 30 | WIDTH | 2 | DK | 1 CUL | 34 | | VAR 0015 | RESIDENCE TYPE | 200 | | | | MD+7
DK | 1 COL | 34 | | | The same of sa | LOC | 32 | MIDTH | MD=GE | | | | | VAR 0016 | RESIDENCE TYPE-OT
REF 0016 | LOC | 33 | WIDTH | 2 | DK | 1 COL | 35-30 | | VAR 0017 | OWN/RENT | | | | | MD=7
DK | 1 COL | 37 | | | REF 0017
OWN/RENT-OTHER | LOC | 35 | MIDIH | | | 1 COL | | | VAR 0018 | REF 0018 | LOC | 36 | WIDTH | 2 | | 1 COL | 30. | | VAR 0019 | LIVE ALONE | | 120.00 | | ISSING DATA C | DK | 1 COL | 40 | | | HOW LONG LIVE ALC | LOC | -38 | WIDTH | MD=7 DR G | | - | 41 | | VAR 0020 | | LOC | 39 | WIDTH | 1 200000 | DK | 1 COL | 100 | | VAR 0021 | PREFER LIVE ALON | | | | MD=7 OR C | E S | 1 COL | 42 | | | REF 0021 | LBC | 40 | WIDTH | 1 | 3466 | | | $^{2.\} Study no.\ 9289, \ http://webspp.icpsr.umich.edu/cocoon/ICPSR-STUDY/09289.sml$ The codebook specifies the column in which each variable starts (LOC) and the number of columns it spans (WIDTH).³ In this fragment of the codebook, only integer numeric variables appear. The missing-data (MD) codes for each variable are also specified. The listing above provides the full codebook detail for variable 13, marital status, quoting the question posed by the interviewer, coding of the six possible responses, and the frequency counts of each response. In fixed-format data files, fields need not be separated: above, for example, the single-column fields of variables 0019, 0020, and 0021 are stored as three successive integers. We must tell Stata to interpret each of those digits as a separate variable, which we can do with a data dictionary: a separate Stata file, with file extension .dct, specifying the necessary information to read a fixed-format data file. The information in the codebook may be translated, line for line, into the Stata data dictionary. The Stata data dictionary need not be comprehensive. You might not want to read certain variables from the raw data file, so you would merely ignore those columns. This ability to select data might be particularly important when you are working with Intercooled Stata and its limit of 2,047 variables. Many survey datasets contain many more than 2,000 variables. By judiciously specifying only the subset of variables that are of interest in your research, you may read such a text file by using Intercooled Stata. Stata supports two different formats of data dictionaries. The simpler format, used by infix, requires only that the
starting and ending columns of each variable be given along with any needed data type information. To illustrate, I specify the information needed to read a subset of fields in this codebook into Stata variables, using the description of the data dictionary in [D] infix (fixed format): (Continued on next page) ^{3.} The COL field should not be considered. ``` . clear . infix using 09289-infix infix dictionary using 09289-0001-Data.raw (dictionary to read extract of ICPSR study 9289 1-4 int vi 5 int v2 6-8 int v3 9-12 int v4 13-16 int v5 17 int vo 18-19 int v7 20-21 int v8 22 int v9 23-25 int vio 26 int vii 27-28 int v12 29 int v13 30-31 int v14 int vis int v16 35 int v17 36-37 int v18 38 int v19 39 int v20 40 int v21 (2299 observations read) ``` We could instead set up a dictionary file for the fixed-format version of infile. This is the more powerful command, as it allows us to attach variable labels and specify value labels. However, rather than specifying the column range of each field, we must indicate where it starts and its field width, given as the "linfmt" for that variable. With a codebook like that displayed above, we have the field widths available. We could also calculate the field widths from the starting and ending column numbers. We must not only specify which are string variables but also give their data storage type. The storage type could differ from the "linfmt" for that variable. You might read a six-character code into a 10-character field, knowing that other data use the latter width for that variable. ``` . clear . infile using 09289-0001-Data infile dictionary using 09289-0001-Data.ray (_lines(1) _line(1) "ICPSR STUDY NUMBER-9289" _column(1) int VI 7,4± "ICPSR EDITION NUMBER-2" _column(5) int V2 :V2 %1f "ICPSR PART NUMBER-001" _column(6) V3 %3f _column(9) "ICPSR ID" 7,41 _column(13) int V5 %AE "ORIGINAL ID" _column(17) int V6 : 16 7,11 _column(18) V7 "TIME BEGUN-HOUR" Ant : V7 %2± "TIME BEGUN-MINUTE" _column(20) int N8 :V8 %2£ _column(22) V9 "TIME BEGUN-AM-PM" eV9 7.1£ _column(23) int V10 : 110 %3f "AGE" _column(26) _column(27) "HISPANIC GROUP" VII :V11 %1± "HISPANIC GROUP-OTHER" V12 :V12 1V13 %1± "MARITAL STATUS" ``` | column(30) column(32) column(33) column(35) column(36) column(38) column(39) column(40) } | int
int
int
int
int
int
int | V14
V15
V16
V17
V18
V19
V20
V21 | :V14
:V15
:V16
:V17
:V18
:V19
:V20
:V21 | %2f
%1f
%2f
%1f
%2f
%1f
%1f
%1f
%1f | "MARITAL STATUS-YEARS" "RESIDENCE TYPE" "RESIDENCE TYPE-OTHER" "OWN-RENT" "OWN-RENT-OTHER" "LIVE ALONE" "HOW LONG LIVE ALONE" "PREFER LIVE ALONE" | |---|---|--|--|---|---| |---|---|--|--|---|---| The _column() directives in this dictionary are used where dictionary fields are not adjacent. Indeed, you could skip back and forth along the input record since the columns read need not be in ascending order. But then we could achieve the same result with the order command after data input. We can define variable labels and value labels for each variable by using infile. In both examples above, the dictionary file specifies the name of the data file, which need not be the same as that of the dictionary file. For instance, highway.dct could read highway.raw, and if so, we need not specify the latter filename. But we might want to use the same dictionary to read more than one .raw file, and we can do that by changing the name specified in the .dct file. After loading the data, we can describe its contents: . describe Contains data obs: 2,299 vars: 21 size: 105,754 (98.9% of memory free) | variable name | torage display | value
label | variable label | |--|---|--|---| | V1
V2
V3
V4
V5
V6
V7
V8
V9
V10
V11
V12
V13
V14
V15
V16
V17
V18
V19
V20
V21 | int %8.0g | V2 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 | ICPSR STUDY NUMBER-9289 ICPSR EDITION NUMBER-2 ICPSR PART NUMBER-001 ICPSR ID ORIGINAL ID PROXY TIME BEGUN-HOUR TIME BEGUN-HOUR TIME BEGUN-MINUTE TIME BEGUN-MINUTE TIME BEGUN-AM-PM AGE HISPANIC GROUP HISPANIC GROUP-OTHER MARITAL STATUS MARITAL STATUS RESIDENCE TYPE RESIDENCE TYPE RESIDENCE TYPE-OTHER OWN-RENT OWN-RENT OWN-RENT-OTHER LIVE ALONE HOW LONG LIVE ALONE PREFER LIVE ALONE | Sorted by: Note: dataset has changed since last saved The dictionary indicates that value labels are associated with the variables but does not define those labels. We use a command such as . label define V13 1 "MARRIED" 2 "WIDOWED" 3 "DIVORCED" 4 "SEPARATED" > 5 "NOT MAR COHABITG" 6 "NEVER MARRIED" to create those labels. Another advantage of the more elaborate infile data dictionary format comes when you are working with a large survey dataset with variables that are real or floating-point values, such as a wage rate in dollars and cents or a percent interest rate such as 6.125%. To save space, the decimal points are excluded from the text file, and the codebook indicates how many decimal digits are included in the field. You could read these data as integer values and perform the appropriate division in Stata, but a simpler solution would be to build this information into the data dictionary. By specifying that a variable has an %infmt of, for example, %6.2f, a value such as 1234 may be read properly as an hourly wage of \$12.34. Stata's data dictionary syntax can handle many more complicated text datasets, including those with multiple records per observation, or those with header records that are to be ignored. See [D] infile (fixed format) for full details. ## A.2 Importing data from other package formats The previous section discussed how foreign data files could be brought into Stata. Often the foreign data are already in the format of some other statistical package or application. For instance, several economic and financial data providers make SAS-formatted datasets readily available, whereas socioeconomic datasets are often provided in SPSS format. The easiest and cheapest way to deal with these package formats is to use Stat/Transfer, a product of Circle Systems, which you can purchase from StataCorp. If you do not have Stat/Transfer, you will need a working copy of the other statistical package and know how to export a dataset from that format to ASCII format.⁴ But this is a rather cumbersome solution, because (like Stata) packages such as SAS and SPS have their own missing-data formats, value labels, data types, and the like. Although you can export the raw data to ASCII format, these attributes of the data will have to be recreated in Stata. For a large survey dataset with many hundred (or several thousand!) variables, that prospect is unpalatable. A transformation utility like Stat/Transfer performs all those housekeeping chores, placing any attributes attached to the data (extended missing-value codes, value labels, etc.) in the Stata-format file. Of course, the mapping between packages is not always one to one. In Stata, a value label stands alone and can be attached to any variable or set of variables, whereas in other packages it is generally an attribute of a variable and must be duplicated for similar variables. ^{4.} If SAS datasets are available in the SAS Transport (.xpt) format, they may be read by Stalla's fidause command. One difference between Stata and SAS and SPSS is Stata's flexible set of data types. One are the C language in which its core code is written, offers five numeric data types. Stata. Inc. Stata opes (see the property of data types but str 1-str 244. Most other packages do float and support this broad array of data types but store all numeric data in one data type: got support. "Raw data come in many different forms, but SAS simplifies this issue, for example of the same pust two data types: numeric and character" (Delwiche and Slaughter In San This simplicity is costly, because an indicator variable requires only 1 byte of storage, whereas a double-precision floating-point variable requires 8 bytes to hold of states of decimal digits of accuracy. Stata allows you to specify the data type based on the contents of each variable, which can result in considerable savings in disk space and
execution time when reading or writing those variables to disk. You can instruct Stat/Transfer to optimize a target Stata-format file in the transfer process, or you can use Stata's compress command to automatically perform that optimization. In any case, you should always take advantage of this optimization, since it will reduce the size of files and require less of your computer's memory to work with them. Stat/Transfer lets you generate a subset of a large file while transferring it from SAS or SPSS format. Above I mentioned the possibility of reading only certain variables from a text file to avoid Intercooled Stata's limitation of 2,047 variables. You can always use Stat/Transfer to transfer a large survey data file from SAS to Stata format, but if there are more than 2,047 variables in the file, the target file must be specified as a Stata/SE file. If you do not have Stata/SE, you will have to use Stat/Transfer to read a list of variables that you would like to keep (or a list of variables to drop), which will generate a subset file on the fly. Because Stat/Transfer can generate a machine-readable list of variable names, you can edit that list to produce the keep list or drop list. Although I have spoken of SAS and SPSS, Stat/Transfer can exchange datasets with many other packages, including GAUSS, Excel, MATLAB, and others; see http://stattransfer.com for details. Stat/Transfer is available for Windows, Mac OS X, and Unix, To transfer data between databases that support Structured Query Language (SQL), Stata can perform Open Data Base Connectivity (ODBC) operations with databases that support ODBC (see [D] odbc for details). Most SQL databases and non-SQL data structures, such as Excel and Microsoft Access, support ODBC, so you can use ODBC to deal with foreign data. The computer system on which you are running Stata must be equipped with ODBC drivers. Excel and Microsoft Access are installed by default on Windows systems with Microsoft Office, but for Mac OS X or Linux systems, you may have to buy a third-party driver to connect to your particular data source. If you have database connectivity, Stata's odbc is a full-featured solution that allows you to query external databases and insert or update records in those databases. ^{5,} edbe is not currently available in Stata for Unix, other than Linux. ## The basics of Stata programming This appendix discusses some key aspects of programming in Stata. As I discussed in section 3.9.1, you can place any sequence of Stata commands into a text file or dofile and execute them by using Stata's do command (or the Do-file Editor). The last two sections discuss Stata programs, which are stand-alone routines that create new commands in the Stata language. A program can also be contained in a text file, called an automatic do-file or ado-file, and can be invoked by the name of the ado-file that defines it. Most of this appendix describes how you can apply Stata's programming tools in using do-files. As discussed in section 3.9.1, you can often use a Stata do-file to work more efficiently by simplifying repetitive tasks and reducing the need to retype computed quantities. To enhance your knowledge of Stata programming, you should have a copy of the Stata Programming Reference Manual, as many key commands related to do-file construction appear in that volume. The manual also documents more advanced commands used in writing ado-files. To learn from the masters, you can take one or more of the Stata NetCourses about programming to learn good programming techniques. If you participate in Statalist—even as a passive reader—you can take advantage of the many good problem-solving tips that are exchanged in the list's questions and answers. You can also dissect Stata's own code. More than 80% of official Stata's commands are written in its own programming language, as are virtually all user-written routines available from the SSC archive.2 Although you may not be interested in writing your own ado-files, it is invaluable to read through some of Stata's code and borrow from the techniques used there in your own do-files. Official Stata's ado-files are professionally written and tested and reflect best practices in Stata programming at the time of their construction. Since Stata's programming language is continually evolving, even parts of official Stata may be legacy code. You can use the findfile command to locate any Stata command's ado-file on your machine,3 To examine an ado-file, you can use the viewsource command.4 You may use the ssc type command to inspect any ado-file hosted on the SSC archive. 1. See http://www.stata.com/statalist/. 3. Before Stata 9, you could use the which command for this task. An extended version of which is wallable from ssc: Thomas Steichen's witch: Before Stata 9, the author's routine adotype, available from suc, could be used for this purpose. ² But not all: support for plugins in Stata 8.1 has made it possible for users to write C-language code to increase computational efficiency. Likewise, some Stata 9 routines are now written in Mata code, which need not be accessible in source form. Future development will likely use Mata rather than C-language plugins. You can edit any ado-file up to 32 KB in the Do-file Editor by using the user-written routine adoedit provided by Dan Blanchette. You can use any external text editor on an ado-file since it is merely a text file.5 Do not modify official Stata's ado-files or place your own files in the official ado-directories! Stata users often clone an official or user-written command by adding 2 to its name. If I want to create my own version of summarize, I would make a copy of summarize. ado as summarize2. ado in one of my own directories on the ado-path. I would then edit the copy to change the program define line to program define summarize2, In that way, I can compare the answers produced by summarize and my modified summarize2 routine and not tamper with any official Stata elements. ### B.1 Local and global macros If you are familiar with lower-level programming languages, such as FORTRAN, C. or Pascal, you may find Stata's terminology for various objects rather confusing. In those languages, you refer to a variable with statements such as x = 2. Although you might have to declare x before using it-for instance, as integer or float-the notion of a variable in those languages refers to an entity that can be assigned one value, either numeric or string. In contrast, the Stata variable refers to one column of the data matrix that contains maxobs values, one per observation. So what corresponds to a fortran or C variable in Stata's command language? Either a Stata macro or a scalar, to be discussed below.⁶ But that correspondence is not one to one, since a Stata macro may contain multiple elements. In fact, a macro may contain any combination of alphanumeric characters and can hold more than 8,000 characters in all versions of Stata. The Stata macro is really an alias that has both a name and a value. When its name is dereferenced, it returns its value. That operation may be carried out at any time. Alternatively, the macro's value may be modified by another command. The following is an example of the first concept: ``` . local country US UK DE FR , local ctycode 111 112 136 134 . display "'country'" US UK DE FR . display "'ctycode'" 111 112 136 134 ``` The Stata command for defining the macro is local (see [P] macro). A macro may be either local or global in its scope, defining where its name will be recognized. A local macro is created in a do-file or in an ado-file and ceases to exist when that do-file terminates, either normally or abnormally. A global macro exists for the duration of the Stata program or interactive session. There are good reasons to use global macros, but like any global definition at the session. like any global definition, they may have unintended consequences, so we will discuss local macros in most of the local macros in most of the examples below. Stata's scalars were purely numeric through version 8.0, as described in scalar. The ability is tore strings in scalars was added in the store strings in scalars was added in the executable update of 1 July 2004. The first local command names the macro—as country—and then defines its value to be the list of four two-letter country codes. The following local statement does the same for macro ctycode. To work with the value of the macro, we must dereference it 'macroname' refers to the value of the macro named macroname. The macro's name is preceded by the left tick character (') and followed by the apostrophe ('). Most errors in using macros are caused by not following this rule. To dereference the macro, correct punctuation is vital. In the example's display statements, we must wrap the dereferenced macro in double quotes since display expects a double-quoted string argument or the value of a scalar expression such as display log(14). In both cases, the local statement is written without an equals sign (=). You can use an equals sign following the macro's name, but do not make a habit of doing so unless it is required. The equals sign causes the rest of the expression to be evaluated, rather than merely aliased to the macro's name. This behavior is a common cause of head-scratching, when a user will complain, "My do-file worked when I had eight regressors, but not when I had nine." Defining a macro with an equals sign will cause Stata to evaluate the rest of the command as a numeric expression or as a character string. A character string, representing the contents of a string variable, cannot contain more than 244 characters. In evaluating local mybadstring = "This is an example of a string that will not all end up in the macro that it was intended to populate, which clearly, definitively, and unambiguously indicates that writing short, concise strings is a definite advantage to
people who use macros in Stata", where the quotation marks are now required, Stata will truncate the string mybadstring at 244 characters without error or warning. We should use an equals sign in a local statement when we must evaluate the macro's value. In this example, we show a macro used as a counter, which fails to do what we had in mind: ``` . local count 0 . local country US UK DE FR . foreach c of local country { 2. local count 'count'+1 3. display "Country 'count' : 'c'" 4. } Country 0+1 : US Country 0+1+1 : UK Country 0+1+1+1 : DE Country 0+1+1+1+1 : FR ``` ^{7.} Prior to version 9.1, the limit was 80 characters for Small Stata and Intercooled Stata. We must use the equals sign to request evaluation rather than concatenation: ``` . local count 0 . local country US UK DE FR . foreach c of local country { 2. local count = 'count'+1 3. display "Country 'count' : 'c'" 4. } Country 1 : US Country 2 : UK Country 3 : DE Country 4 : FR ``` The corrected example's local statement contains the name of the macro twice: first without punctuation to define its name, and on the right-hand side of the equals sign with its current value dereferenced by 'count'. It is crucial to understand why the statement is written this way. Here we are redefining the macro in the first instance and referencing its current value in the second. At other times, we want to construct a macro within a loop, repeatedly redefining its value, so we should always avoid the equals sign: ``` . local count 0 . local country US UK DE FR . foreach c of local country { 2. local count = 'count'+1 3. local newlist "'newlist' 'count' 'c'" 4. } . display "'newlist'" 1 US 2 UK 3 DE 4 FR ``` The local newlist statement is unusual in that it defines the local macro newlist as a string containing its own current contents, space, value of count, space, value of c. The foreach statement defines the local macro c with the value of each biliteral country code in turn. The first time through the loop, newlist does not exist, so how can we refer to its current value? Easily: every Stata macro has a null value unless it has explicitly been given a nonnull value. Thus the value takes on the string " 1 US" the first time, and then the second time through concatenates that string with the new string " 2 UK", and so on. In this example, using the equals sign in the local newlist statement truncates newlist at 244 characters. This truncation would not cause trouble in this example, but it would be a serious problem if we had a longer list of countries or if country names were spelled out. From these examples, you can see that Stata's macros are useful in constructing lists, or as counters and loop indices, but they play a much larger role in Stata do-files and ado-files and in the return values of virtually all Stata commands as I discussed in section 4.3.6. Macros are one of the key elements of Stata's language that allow you to avoid repetitive commands and the retyping of computed results. For instance, the macro defined by local country US UK DE FR may be used to generate a set of graphs with country-specific content and labels. Using macros makes the do-file easier to maintain because changes require only altering the contents of the local macro. To produce these graphs for a different set of countries, you alter just one command: the list of codes. You can thus make your do-file general, and you can easily reuse or adapt that set of Stata commands for use in similar tasks. #### B.1.1 Global macros Global macros are distinguished from local macros by the way they are created (with the global statement) and their means of reference. We obtain the value of the global macro george as \$george, with the dollar sign taking the place of the punctuation surrounding the local macro's name when it is dereferenced. Global macros are often used to store items parametric to a program, such as a character string containing today's date to be embedded in all filenames created by the program or the name of a default directory in which your datasets and do-files are to be accessed. Unless you really need a global macro—a symbol with global scope—you should use a local macro. It is easy to forget that a global symbol was defined in do-file A. By the time you run do-file G or H in that session of Stata, you may find that they do not behave as expected, since they now pick up the value of the global symbol. Such problems are difficult to debug. Authors of Fortran or C programs have always been encouraged to "keep definitions local unless they must be visible outside the module." That is good advice for Stata programmers as well. #### B.1.2 Extended macro functions and list functions Stata has a versatile library of functions that you can apply to macros: the extended functions (see help extended_fcn, or [P] macro). These functions allow you to easily retrieve and manipulate the contents of macros. For instance, ``` . local country US UK DE FR . local wds: word count 'country' . display "There are 'wds' countries:" There are 4 countries: ``` ``` . forvalues i = 1/'wds' { 2. local wd: word 'i' of 'country' 3. display "Country 'i' is 'wd'" 4. } Country 1 is US Country 2 is UK Country 3 is DE Country 4 is FR ``` Here we use the word count and word # of extended functions, both of which operate on strings. We do not enclose the macro's value ('country') in double quotes, for it then would be considered one word. This do-file will work for any definition of the country list in local country without the need to define a separate count variable. Many extended macro functions (help extended_fcn) perform useful tasks, such as extracting the variable label or value label from a variable or determining its data type or display format; extracting the row or column names from a Stata matrix; or generating a list of the files in a particular directory that match a particular pattern (e.g., *.dta). The handy subinstr function allows you to substitute a particular pattern in a macro, either the first time the pattern is encountered or always. Other functions let you manipulate lists held in local macros; see help macrolists or [P] macro lists. You can use them to identify the unique elements of a list or the duplicate entries; to sort a list; and to combine lists with Boolean operators such as "and" (&) or "or" (1). List functions allow one list's contents to be subtracted from another, identifying the elements of list A that are not duplicated in list B. You can test lists for equality, defined for lists as containing the identical elements in the same order, or for weak equality, which does not consider ordering. A list macrolist directive (posof) may be used to determine whether a particular entry exists in a list, and if so, in which position in the list. An excellent discussion of many of these issues may be found in Cox (2003). ### B.2 Scalars The distinction between macros and Stata's scalars is no longer numeric content since both macros and scalars may contain string values. However, the length of a string scalar is limited to the length of a string variable (244 bytes: see help limits), whereas a macro's length is for most purposes unlimited. Stata's scalars are normally used in a numeric context. When a numeric quantity is stored in a macro it must be converted from its internal (binary) representation into a printable form. That conversion is done with maximum accuracy but incurs some overhead if the numeric quantity is not an integer. By storing the result of a computation—for instance, a variable's mean of standard deviation—in a scalar, you need not convert its value and the result is held in Stata's full numeric precision. A scalar is also much more useful for storing one numeric In this context a word is a space-delimited token in the string. Actually a macro is limited to 67,784 characters in Intercooled Stata but can handle more than 1 million characters in Stata/SE. result rather than storing that value in a Stata variable containing maxobs copies of the same number. Most of Stata's statistical and estimation commands return various numeric results as scalars. A scalar may be referred to in any Stata command by its name: scalar root2 = sqrt(2.0) generate double rootGDP = gdp*root2 The difference between a macro and a scalar appears when it is referenced. The macro must be dereferenced to refer to its value, whereas the scalar is merely named. 10 However, a scalar can appear only in an expression where a Stata variable or a numeric expression could be used. For instance, you cannot specify a scalar as part of an in range qualifier since its value will not be extracted. It may be used in an if exp qualifier since that contains a numeric expression. Stata's scalars may play a useful role in a complicated do-file. By defining scalars at the beginning of the program and referring to them throughout the code, you make the program parametric. Doing so avoids the difficulties of changing various constants in the program's statements everywhere they appear. You may often need to repeat a complex data transformation task for a different category, such as when you want to work with 18- to 24-year-old subjects rather than 25- to 39-year-old subjects. Your do-files contain the qualifiers for minimum and maximum age throughout the program. If you define those age limits as scalars at the program's outset, the do-file becomes much simpler to modify and maintain. #### B.3 Loop constructs One of Stata's most powerful features is that it lets you write a versatile Stata program without many repetitive statements. Many Stata commands contribute to this flexibility. As discussed in section 2.2.8, using egen with a by prefix makes it possible to avoid many explicit statements such as compute mean of age for race==1 or compute mean of age for race==2. Two of Stata's most useful commands are found in the Stata Programming Reference Manual: forvalues and foreach. These versatile tools have
essentially supplanted other mechanisms in Stata for looping. You could use while to construct a loop, but you must furnish the counter as a local macro. The for command is now obsolete and is no longer described in the manuals. The for command allowed only one command to be included in a loop structure (or multiple commands with a tortuous syntax) and rendered nested loops almost impossible. In contrast, the forvalues and foreach commands use a syntax familiar to users of C or other modern programming languages. The command is followed by a left brace ({), one or more following command lines, and a terminating line containing only a right brace (}). In Stata 8 and 9, you must separate the braces from the body of the loop. ^{10.} Stata can work with scalars of the same name as Stata variables. Stata will not become confused, but you well may, so you should avoid using the same names for both entities. You may place as many commands in the loop body as you wish. A simple numeric loop may thus be constructed as | 3. summ | /4 {
erate doub
earize lng | le lngdp'i'
dp'i' | = log(gdp'i' |) | | |---------------|----------------------------------|----------------------|--------------|----------|----------| | 4. } Variable | Obs | Mean | Std. Dev. | Min | Max | | lngdp1 | 400 | 7.931661 | .59451 | 5.794211 | 8.768936 | | Variable | Obs | Mean | Std. Dev. | Min | Max | | lngdp2 | 400 | 7.942132 | .5828793 | 4.892062 | 8.760156 | | Variable | Obs | Mean | Std. Dev. | Min | Max | | lngdp3 | 400 | 7.987095 | .537941 | 6.327221 | 8.736859 | | Variable | Obs | Mean | Std. Dev. | Min | Max | | lngdp4 | 400 | 7.886774 | .5983831 | 5.665983 | 8.729272 | Here the local macro i is defined as the loop index. Following an equals sign, we give the range of values that i is to take on as a Stata numlist. A range may be as simple as 1/4; or 10(5)50, indicating 10 to 50 in steps of 5; or 100(-10)20, from 100 to 20 counting down by 10s. Other syntaxes for the range are available. See [P] forvalues for details. This example provides one of the most important uses of forvalues: looping over variables where the variables have been given names with an integer component so that you do not need separate statements to transform each of the variables. The integer component need not be a suffix. We could loop over variables named ctyNgdp just as readily. Or, say that we have variable names with more than one integer component: | | | ·y, | | alues i = | . forvalues y = 1:
2. forv.
3. | 4 | |----------|----------|-----------|----------|-----------|--------------------------------------|---| | Max | Min | Std. Dev. | Mean | Obs | 4. } 5. } Variable | | | 6431.328 | 328.393 | 1532.497 | 3226.703 | 400 | gdp1_1995 | - | | Max | Min | Std. Dev. | Mean | Obs | Variable | | | 6375.105 | 133.2281 | 1525.788 | 3242.162 | 400 | gdp2_1995 | | | Max | Min | Std. Dev. | Mean | Obs | Variable | | | 6228.302 | 559.5993 | 1457.716 | 3328.577 | 400 | gdp3_1995 | | | Max | Min | Std. Dev. | Mean | 0bs | Variable | | | 6181.229 | 288.8719 | 1490.646 | 3093,778 | 400 | gdp4_1995 | | | Variable | Obs | Mean | Std. Dev. | Min | Max | |-----------|-----|----------|-----------|----------|-----------------| | gdp1_1997 | 400 | 3597.038 | 1686.571 | 438.5756 | 7083.191 | | Variable | Obs | Mean | Std. Dev. | Min | 7003.191
Max | | gdp2_1997 | 400 | 3616.478 | 1677.353 | 153.0657 | 7053.826 | | Variable | 0bs | Mean | Std. Dev. | Min | Max | | gdp3_1997 | 400 | 3710.242 | 1603.25 | 667.2679 | 6948.194 | | Variable | 0bs | Mean | Std. Dev. | Min | Max | | gdp4_1997 | 400 | 3454.322 | 1639.356 | 348.2078 | 6825.981 | | Variable | Obs | Mean | Std. Dev. | Min | Max | | gdp1_1999 | 400 | 3388.038 | 1609.122 | 344.8127 | 6752.894 | | Variable | Obs | Mean | Std. Dev. | Min | Max | | gdp2_1999 | 400 | 3404.27 | 1602.077 | 139.8895 | 6693.86 | | Variable | Obs | Mean | Std. Dev. | Min | Max | | gdp3_1999 | 400 | 3495.006 | 1530.602 | 587.5793 | 6539.717 | | Variable | Obs | Mean | Std. Dev. | Min | Max | | gdp4_1999 | 400 | 3248.467 | 1565.178 | 303.3155 | 6490.291 | As we see here, a nested loop is readily constructed with two forvalues statements. #### B.3.1 foreach As useful as forvalues may be, the foreach command is even more useful in constructing efficient do-files. This command interacts perfectly with some of Stata's most common constructs: the macro, the variet, and the number. Like forvalues, a local macro is defined as the loop index. Rather than cycling through a set of numeric values, foreach specifies that the loop index iterate through the elements of a local (or global) macro, the variable names of a varlist, or the elements of a number. The list can also be an arbitrary list of elements on the command line or a newvarlist of valid names for variables not present in the dataset. This syntax allows foreach to be used flexibly with any set of items, regardless of pattern. Several of the examples above used foreach with the elements of a local macro defining the list. I illustrate its use here with a varlist from the lifeexp Graphics Reference Manual dataset. We compute summary statistics, compute correlations with popgrowth, and generate scatterplots for each element of a varlist versus popgrowth: ``` summarize 'v' correlate popgrowth 'v' scatter popgrowth 'v' 5. } Variable Std. Dev. Obs Mean Min Max lexp 68 72,27941 4.715315 54 79 (obs=68) lexp popgro-h popgrowth 1.0000 -0.4360 1.0000 lexp Variable Obs Mean Std. Dev. Min Max 63 8674.857 10634.68 370 39980 gnppc (obs=63) popgro-h gnppc popgrowth 1.0000 -0.3580 1.0000 gnppc Variable Obs Mean Std. Dev. Min Max safevater 40 76.1 17.89112 28 (obs=40) popgro-h safewa-r popgrowth 1.0000 safewater -0.4280 1.0000 ``` The following example automates the construction of a recode statement. The resulting statement could just be typed out for four elements, but imagine its construction if we had 180 country codes! local ++i is a shorthand way of incrementing the counter variable within the loop. 11 ``` . local ctycode 111 112 136 134 . local i 0 . foreach c of local ctycode { 2. local ++i 3. local rc "'rc" ('i'='c')" 4. } . display "'rc'" (1=111) (2=112) (3=136) (4=134) . recode cc 'rc', gen(newcc) (400 differences between cc and newcc) ``` . foreach v of varlist lexp-safevater (^{11.} Serious Stata programmers would avoid that line and write the following line as local sc *'gs' ('='++i''='c')". | RECODE of cc | Freq. | Percent | Cum. | |--------------------------|--------------------------|----------------------------------|-----------------------------------| | 111
112
134
136 | 100
100
100
100 | 25.00
25.00
25.00
25.00 | 25.00
50.00
75.00
100.00 | | Total | 400 | 100.00 | | You can also use the foreach statement with nested loops. You can combine foreach and forvalues in a nested loop structure, as illustrated here: ``` . local country US UK DE FR . local yrlist 1995 1999 . forvalues i = 1/4 { 2. local cname: word 'i' of 'country' 3. foreach y of local yrlist { 4. rename gdp'i'_'y' gdp'cname'_'y' 5. } 6. } summ gdpUS* ``` | Max | Min | Dev. | Std. | Mean | Obs | Variable | |----------|----------|------|------|----------|-----|------------| | 6431.328 | 328.393 | | 1532 | 3226.703 | 400 | gdpUS_1995 | | 6752.894 | 344.8127 | | 1609 | 3388.038 | 400 | gdpUS_1999 | It is a good idea to use indentation—either spaces or tabs—to align the loop body statements as shown here. Stata does not care, as long as the braces appear as required, but it makes the do-file much more readable and easier to revise later. In summary, the foreach and forvalues statements are essential components of any do-file writer's toolkit. Whenever you see a set of repetitive statements in a Stata do-file, it probably means that its author did not understand how one of these loop constructs could have made the program, its upkeep, and her life simpler. For an excellent discussion of the loop commands, see Cox (2002a). ### **B.4** Matrices Stata has always provided a full-featured matrix language that supports a broad range of matrix operations on real matrices, as described in [P] matrix. Stata 9 also provides a dedicated matrix language, Mata, which operates in a separate environment within Stata. I discuss Mata later in this appendix. First, I discuss the traditional matrix language as implemented within Stata with the matrix commands. With Stata's traditional matrix commands, matrix size is limited. In Intercooled Stata, you cannot have more than 800 rows or 800 columns in a matrix. 12 Thus many ¹² Limits in Stata/SE are considerably larger, but large matrices use much computer memory. Mata provides a more efficient solution. matrix tasks cannot be handled easily by using traditional matrix commands. For instance, mkmat (see [P] matrix mkmat) can create a Stata matrix from a varlist of variables, but the number of observations that may be used is limited to 800 in Intercooled Stata. If you do not plan to use Mata, two points should be made. First, Stata contains specialized operators, such as matrix accum, that can compute cross-product matrices from any number of observations. A regression of 10,000 observations on five variables (including constant) involves a 5×5 cross-products matrix, regardless of N. Variations on this command such as matrix glsaccum, matrix vecaccum, and matrix opaccum generate other useful summaries. In that sense, the limitation on matrix dimension is not binding. The matrix accum command and corr() matrix function are also useful for generating correlation matrices from the data. For instance, mat accum C = varlist, dev nocons will compute a covariance matrix, and mat Corr = corr(C) will transform it into a correlation matrix. The correlate command can display a correlation matrix but cannot be used to save its elements. Second, the brute-force approach is rarely appropriate when working with complex matrix expressions. For example, the SUR estimator (discussed
in section 9.4) is presented in textbooks as a GLS estimator involving large block-diagonal X and large Ω matrices of enormous dimension. Given the algebra of partitioned matrices, every statistical package that performs SUR writes this expression as the product of several terms, one per equation in the system. In that expression, each term is no more than one equation's regression. A huge matrix computation can be simplified to a loop over the individual equations. Although you might be tempted to copy the matrix expression straight from the textbook or journal article into code, that method will usually not work—not only in Stata's traditional matrix commands or in Mata but in any matrix language, as limited by the computer's available memory. It may take some effort when implementing complicated matrix expressions to reduce the problem to a workable size. If you are not developing your own programs (ado-files) or learning to use Mata-Stata matrices are likely to be useful with saved results and as a way of organizing information for presentation. Many of Stata's statistical commands and all estimation commands generate one or more matrices behind the scenes. As discussed in section 4.3.6, regress—like all Stata estimation commands—produces matrices e(b) and e(V) as the row vector of estimated coefficients (a $1 \times k$ matrix) and the estimated variance—covariance matrix of the coefficients (a $k \times k$ symmetric matrix), respectively. You can examine those matrices with the matrix list command or copy them for use in your do-file with the matrix statement. The command matrix beta = e(b) will create a matrix beta in your program as a copy of the last estimation command's coefficient vector. References to matrix elements appear in square brackets. Since there is no vector data type, all Stata matrices have two subscripts, and both subscripts must be given in any reference. You can specify a range of rows or a range of columns in an expression: see [P] matrix for details. Stata's traditional matrices are unique in that their elements may be addressed both conventionally by their row and column numbers (counting from 1, not 0) and by their row and column names. The command sat ve , v["gdp2", "gdp3"] will extract the estimated covariance of the coefficients on gdp2 and gdp3 as a 1 \times 1 matrix. Stata's matrices are often useful for housekeeping purposes, such as accumulating results that are to be presented in tabular form. The tabstat command may generate descriptive statistics for a set of by-groups. Likewise, you can use statsmat (Cox and Baum, available from ssc) to generate a matrix of descriptive statistics for a set of variables or for one variable over by-groups. You can then use Baum and de Azevedo's outtable to generate a LATEX table. You can use Michael Blasnik's mat2txt to generate tab-delimited output. You can change Stata matrices' row and column labels with matrix rownames, matrix colnames, and several macro extended functions (described in section B.1.2), which allow you to control the row and column headings on tabular output. Stata's traditional matrix operators make it possible to assemble a matrix from several submatrices. For instance, you may have one matrix for each country in a multicountry dataset. In summary, judicious use of Stata's traditional matrix commands ease the burden of many housekeeping tasks and make it easy to update material in tabular form without retyping. ### B.5 return and ereturn Each of Stata's commands reports its results, sometimes noisily, as when a nonzero return code is accompanied by an error message (help_rc), but usually silently. Stored results from Stata commands can be useful. Using stored results can greatly simplify your work with Stata, since you can create a do-file to use the results of a previous statement in a computation, title, graph label, or even a conditional statement. Each Stata command belongs to a class—r-class, e-class, or less commonly s-class. These classes apply both to those commands that are built in (such as summarize) and to the 80% of official Stata commands that are implemented in the ado-file language. The e-class commands are estimation commands, which return e(b) and e(V)—the estimated parameter vector and its variance—covariance matrix, respectively—to the calling program, as well as other information (see help ereturn). Almost all other official Stata commands are r-class commands, which return results to the calling program (help return). Let us deal first with the simpler r-class commands. Virtually every Stata command—including those you might not think of as generating results—places items in the return list that may be displayed by the command of the same name. 14 For instance, consider describe: ^{13.} If this distinction interests you, findfile will report that a command is either built in (i.e., compiled C or Mata code) or located in a particular ado-file on your hard disk. ^{14.} Significant exceptions are generate and egen- ``` . use http://www.stata-press.com/data/imeus/abdata, clear ``` . describe Contains data from http://www.stata-press.com/data/r9/abdata.dta 1,031 vars: 3 Mar 2005 01:13 105,162 (98.9% of memory free) size: value display storage variable label label format variable name type %9s str9 ci %9.0g float ind float %9.0g year %9.0g float emp %9.0g float wage %9.0g float cap float 7,9.0g indoutpt %9.0g float n float %9.0g 70 %9.0g float k %9.0g float ys %9.0g float rec %9.0g float yearm1 %9.0g float id %9.0g float nL1 float %9.0g nL2 %9.0g float wLl 1,9.0g float kL1 %9.0g float kL2 float %9.0g yaL1 float %9.0g ysL2 1976.0000 year== %8.0g byte yr1976 1977.0000 year %8.0g byte yr1977 1978.0000 year byte %8.0g yr1978 1979.0000 years= byte 1/8.0g yr1979 1980.0000 year == %8.0g byte 1981.0000 yr1980 year %8.0g byte yr1981 1982.0000 year == %8.0g byte yr1982 1983.0000 yearss %8.0g byte yr1983 1984.0000 year == byte %8.0g yr1984 Sorted by: id year ``` . return list scalars: r(changed) = 0 9148 r(widthmax) = r(k_max) = 2048 r(N_max) = 89028 r(width) = 98 r(k) = r(N) = . local sb: sortedby display "dataset sorted by : 'sb'" dataset sorted by : id year ``` The return list for the describe command contains scalars, as described in appendix H.2 r(N) and r(N) provide the number of cl. r(N) and r(k) provide the number of observations and variables present in the dataset in memory. r(changed) is an indicator variable that will be set to 1 as soon as a in the dataset. I also demonstrate here how to retrieve information about the dataset's sort order by using one of the extended macro functions discussed in section B.1.2. Any scalars defined in the return list may be used in a following statement without displaying the return list. A subsequent r-class command will replace the contents of the return list with its return values so that if you want to use any of these tems, you should save them to local macros or named scalars. For a more practical example, consider summarize; | 1000 | Percentiles | Smallest | | | |-------|----------------------------------|---------------|-------------|----------| | 1% | .142 | .104 | | | | 5% | .431 | .122 | | | | 10% | .665 | .123 | Obs | 1031 | | 25% | 1.18 | .125 | Sum of Wgt. | 1031 | | 50% | 2.287 | | Mean | 7.891677 | | 30% | | Largest | Std. Dev. | 15.93491 | | 75% | 7.036 | 101.04 | | | | 90% | 17.919 | 103.129 | Variance | 253.921 | | 95% | 32.4 | 106.565 | Skewness | 3.92273 | | 99% | 89.2 | 108.562 | Kurtosis | 19.4698 | | retu | rn list | | | | | calar | s: | | | | | | r(N) | | | | | | r(sum_w) | | | | | | r(mean) | | | | | | r(Var) | | | | | | r(sd) | | | | | | r(skewness) | | | | | | r(kurtosis) | | | | | | r(sum) | | | | | | r(min) | | | | | | r(max) | | | | | | r(p1) | = ,14200000 | | | | | r(p5) | = .43099999 | | | | | r(p10) | = .66500002 | | | | | r(p25) | = 1.1799999 | | | | | r(p50) | = 2.2869999 | | | | | r(p75) | = 7.0359997 | 74932861 | | | | r(p90) | = 17.919000 | 62561035 | | | | r(p95) | | 52587891 | | | | | = 89.199996 | 94824219 | | | scal | ar iqr = r(p75) | | | | | | lay "IQR = " iq | | | | | QR = | 5.8559998 | | | | | scal | ar semean = r(s | d)/sqrt(r(N)) | 200 | | | disp | lay "Mean = " r
7.891677 S.E. | (mean) " S.E. | = " semean | | The detail option displays the full range of results available—here, all in the form of scalars—after the summarize command. We compute the interquartile range (IQR) of the summarized variable and its standard error of mean as scalars and display those quantities. We often need the mean of a variable for more computations but do not wish to display the results of summarize. Here the meanonly option of summarize suppresses both the output and the calculation of the variance or standard deviation of the series. The scalars r(N), r(mean), r(min), and r(max) are still available. When working with time-series or panel data, you will often need to know whether the data have been tsset, and if so, what variable is serving as the calendar variable and which is the panel variable (if defined). For instance, ``` . use http://www.stata-press.com/data/imeus/abdata, clear . tsset panel variable: id, 1 to 140 time variable: year, 1976 to 1984 . return list scalars: r(tmax) = 1984 r(tmin) = 1976 r(imax) = 140 r(imin) = 1 macrost r(panelvar) : "id" r(timevar) : "year" r(unit1) : "," r(tsfmt) : "%9.0g" r(tmaxs) : "1984" r(tmins) : "1976" ``` Here the returned scalars include the first and last periods in this panel dataset (1976 and 1984) and the range of the id variable, which is designated as r(panelvar). The macros also include the time-series calendar variable r(timevar) and the range of that variable in a form that can be readily manipulated, for instance, for graph titles. Many statistical commands are r-class since they do not fit a model. correlate will return one estimated correlation coefficient, irrespective of the number of variables in the command's varlist: the correlation of the last and next-to-last
variables. ¹⁵ The ttest command is also r-class, so we can access its return list to retrieve all the quantities it computes: ^{15.} If a whole set of correlations is required for further use, use nat accum C = corriest, der narots followed by mat Corr = corr(C). 10.83107 8.103779 ``` generate lowind = (indc6) ttest emp, by(lowind) Two-sample t test with equal variances Group Oba Mean Std. Err. Std. Dev. [95% Conf. Interval] O. 434 8.955942 .9540405 19.87521 7.080816 597 7.11799 .5019414 12.26423 6.132201 ``` ``` 1031 combined 7.891677 496273 15.93492 6.917856 8.865498 diff 1.837952 1.004043 -.1322525 3.808157 diff = mean(0) - mean(1) t = 1.8306 Ho: diff = 0 degrees of freedom = Ha: diff < 0 Ha: diff != 0 Ha: diff > 0 Pr(T < t) = 0.9663 Pr(|T| > |t|) = 0.0675 Pr(T > t) = 0.0337 , return list scalars: r(sd) = 15.93492193741317 r(sd_2) = 12.26422618476487 r(sd 1) = 19.87520847697869 r(se) = 1.004042693732077 r(p_u) = .0337282628926395 r(p_1) = .9662717371073605 r(p) = .0674565257852791 r(t) = 1.83055206312211 r(df_t) = 1029 r(mu_2) = 7.117989959978378 r(N_2) = 597 r(mu_1) = 8.955942384452314 ``` The return list contains scalars representing each of the displayed values from ttest except the total number of observations, which can be computed as r(N_1)+r(N_2), the standard errors of the group means, and the confidence interval limits. $r(N_1) = 434$ #### B.5.1 ereturn list Even more information is provided after any e-class (estimation) command as displayed by ereturn list. Most e-class commands return four types of Stata objects: scalars, such as e(N), summarizing the estimation process; macros, providing such information as the name of the response variable (e(depvar)) and the estimator used (e(model)); matrices e(b) and e(V) as described above; and a Stata function, e(sample), which will return 1 for each observation included in the estimation sample and zero otherwise. For example, consider a simple regression: | Source | SS | df | | MS | | Number of obs
F(2, 1028) | = 1031
= 1160.71 | |-------------------|---------------------------------|-----------|----------------------|------------------------|-------------------------|--|----------------------------------| | Model
Residual | 181268.08
80271.3092 | 2
1028 | | 34.04
49311 | | Prob > F
R-squared
Adj R-squared | = 0.0000
= 0.6931
= 0.6925 | | Total | 261539.389 | 1030 | 253.9 | 21737 | | Root MSE | = 8.8366 | | emp | Coef. | Std. | Err. | t | P> t | [95% Conf. | Interval] | | wage
cap | 3238453
2.104883
10.35982 | .044 | 7472
0642
2309 | -6.64
47.77
8.62 | 0.000
0.000
0.000 | 4195008
2.018417
8.000557 | 2281899
2.191349
12.71908 | . ereturn list ncalars: e(N) = 1031 $e(df_m) = 2$ $e(df_r) = 1028$ e(F) = 1160.711019312048 e(r2) = .6930813769821942e(rmse) = 8.83656783747737 e(mss) = 181268.0800475577 e(rss) = 80271.30921843699e(r2.a) = .6924842590385798e(11) = -3707.867843699609 -4316.762338658647 e(11_0) = macros: e(title) : "Linear regression" e(depvar) : "emp" e(cmd) : "regress" e(properties) : "b V" e(predict) : "regres_p" e(model) : "ols" e(estat_cmd) : "regress_estat" matrices: e(b): 1 x 3 e(V) : 3 x 3 functions: e(sample) . local regressors: colnames e(b) . display "Regressors: 'regressors'" Regressors: wage cap _cons Two particularly useful scalars on this list are e(df_m) and e(df_r): the model and residual degrees of freedom, respectively—the numerator and denominator d.f. for e(F). The e(rmse) allows you to retrieve the Root MSE of the equation. Two of the scalars do not appear in the existed set of the equation. not appear in the printed output: e(11) and e(11.0), the likelihood function evaluated for the fitted model and for the for the fitted model and for the null model, respectively. Although the name of the response variable is available in response variable is available in macro e(depvar), the names of the regressors are not shown here. They may be calculated as a complete the regressors are not shown here. shown here. They may be retrieved from the matrix e(b), as shown in the example. ^{16.} For OLS regression with a constant term, the null model is that considered by the ANOVA F: the intercept-only model with all slope coefficient. Since the estimated parameters are returned in a $1 \times k$ row vector, the variable names are column names of that matrix. Many official Stata commands, as well as many user-written routines, use the information available from ereturn list. How can a command like estat ovtest (see [R] regress postestimation), as described in section 5.2.7, compute the necessary quantities after regress? It can retrieve all relevant information—the names of the regressors, dependent variable, and the net effect of all if exp or in range conditions (from e(sample))—from the results left behind as e-class scalars, macros, matrices, or functions by the e-class command. Any do-file you write can perform the same magic if you use ereturn list to find the names of each quantity left behind for your use and store the results you need in local macros or scalars immediately after the e-class command. As noted above, retaining scalars as scalars helps to maintain full precision. You should not store scalar quantities in Stata variables unless there is good reason to do so. The e-class commands may be followed by any of the estimates suite of commands described in section 4.3.6. Estimates may be saved in sets, manipulated, and combined in tabular form, as described in section 4.4. Most estimation commands can be followed by any of the estat commands, which generate postestimation statistics. For instance, estat vce will display the variance covariance matrix of the estimated parameters (e(V)) with flexibility over its formatting, estat ic computes Akaike's information criterion (AIC) and Schwarz's Bayesian information criteria (BIC). Each estimation command documents the commands that may be used following estimation. For example, [R] regress postestimation describes commands that may be given after regress. Some of these commands are types of estat, whereas others are standard postestimation commands, such as predict, test, and mfx. ## B.6 The program and syntax statements This section discusses the basics of a more ambitious task: writing your own ado-file, or Stata command. The distinction between our prior examples of do-file construction and an ado-file is that if you have written myprog.do, you run it with the Stata command do myprog. But if you have written myrealprog.ado, you may execute it as the Stata command myrealprog as long as your new command is defined on the ado-path. There are more profound differences. Ado-file programs may accept arguments in the form of a varlist, if exp or in range conditions, or options. Nevertheless, we do not have to go far beyond the do-file examples above to define a new Stata command. We learned above that the summarize command does not compute the standard error of the mean. We might need that quantity for several variables, and despite other ways of computing it with existing commands, let's write a program to do so. Here we ways of computing it with existing commands, let's write a program to do so. Here we ways of computing it with existing commands, let's write a program in its own file, define the program in a do-file. In practice, we would place the program in its own file, ``` . capture program drop semean . *! semean v1.0.1 CFBaum 04aug2005 . program define semean, rclass version 9.0 syntax varlist(max=1 numeric) 1. quietly summarize 'varlist' 2. scalar semean = r(sd)/sqrt(r(N)) display _n "Mean of 'varlist' = " r(mean) " S.E. = " semean 5. return scalar semean = semean 6. return scalar mean = r(mean) 7. return local var 'varlist' 8. 9. end . use http://www.stata-press.com/data/imeus/abdata, clear . semean emp Mean of emp = 7.891677 S.E. = .49627295 . return list scalars: r(mean) = 7.891677013539667 r(semean) = .4962729540865196 macros: r(var) : "emp" ``` We start with a capture program drop programe command. Once a program has been loaded into Stata's memory, it is usually retained for the duration of the session. Since we will be repeatedly defining our program during its development, we want to make sure that we're working with the latest version. The following comment line starting with *! (termed star-bang in geekish) is a special comment that will show up in the file command. It is always a good idea to document an ado-file with a sequence number, author name, and date. The program statement identifies the program name as semean. We have checked to see that semean is not the name of an existing Stata command. Since findit semean locates no program by that name, the name is not used by an official Stata command, a routine in the Stata Technical Bulletin or Stata Journal, or by any ssc routine. We define the program as rclass. Unless a program is defined as rclass or eclass, it cannot return values. The following version line states that the ado-file requires Stata 9 and ensures that the program will obey Stata 9 syntax when executed by Stata 10 or Stata 11. The following line, syntax, allows a Stata program to parse its command line and extract the program's arguments for use within the program. In this simple example, we use only one element of syntax: specifying that the program has a mandatory warkst with at most one numeric element. Stata will enforce the constraint that one name appear on the command line referring to an existing numeric variable. The following lines echo those of the do-file example above by computing the scalar semean as the standard error of the mean. The following lines use return to place two scalars (semean and mean) and one macro (the variable name) in the return array. This is all well and good, but to be useful, a statistical command should accept if exp and in range qualifiers. We might also want to use this program as a calculator.
without printed output. We could always invoke it quietly, but an option to suppress output would be useful. Not much work is needed to add these useful features to our program. The definition of if exp and in range qualifiers and program options is all handled by the syntax statement. In the improved program, [if] and [in] denote that each of these qualifiers may be used. Square brackets [] in syntax signify an optional component of the command. The [, noPRInt] indicates that the command has a "noprint" option and that it is truly optional (you can define nonoptional or required options on a Stata command). Here is the revised program: ``` . capture program drop semean *! semean v1.0.2 CFBaum 04aug2005 , program define semean, rclass version 9.0 1: syntax varlist(max=1 numeric) [if] [in] [, noPRInt] marksample touse quietly summarize 'varlist' if 'touse' scalar semean = r(sd)/sqrt(r(N)) 5. if ("'print'" != "noprint") { 6: display _n "Mean of 'varlist' = " r(mean) 7. " S.E. = " semean 5 8. return scalar semean = semean 9. return scalar mean = r(mean) 10. return scalar N = r(N) 11. return local var 'varlist' 12. 13. end ``` Since with an if exp or in range qualifier, something less than the full sample will be analyzed, we have returned r(N) to indicate the sample size used in the computations. The marksample touse command makes the if exp or in range qualifier operative if one was given on the command line. The command marks those observations that should enter the computations in an indicator variable touse, equal to 1 for the desired observations. The touse variable is a tempvar, or temporary variable, which like a local macro will disappear when the ado-file ends. You can explicitly create these temporary variables with the tempvar command. When you need a variable within a program, use a tempvar to avoid possible name conflicts with the contents of the dataset. Since the a tempvar to avoid possible name conflicts with the contents of the dataset. Since the variable is temporary, we refer to it as we would a local macro as 'touse', which is an variable is internal (arbitrary) name. We must add if 'touse' to each statement in alias to its internal (arbitrary) name. We must add if 'touse' to each statement in statement. Let's try out the revised program using the abdata dataset: ``` . semean emp Hean of emp = 7.891677 S.E. = .49627295 . return list scalars: r(N) = 1031 r(mean) = 7.891677013539667 r(semean) = .4962729540865196 macros: r(var) : "emp" . semean emp if year < 1982, noprint . return list scalars: r(N) = 778 r(mean) = 8.579679950573757 r(semean) = .6023535944792725 macros: r(var) ; "emp" ``` The if exp qualifier works, and we can use noprint to suppress the printed output. Two other features would be useful in this program. First, we would like it to be byable: to permit its use with a by varlist: prefix. Since we are creating no new variables with this program, we can make the program byable just by adding byable(recall) to the program statement (see [P] byable for details). Second, we might like to use time-series operators (L., D., F.) with our program. Adding the ts specifier to varlist will enable that. The improved program becomes ``` . capture program drop semean . *! semean v1.0.3 CFBaum 04aug2005 . program define semean, rclass byable(recall) sortpreserve version 9.0 syntax varlist(max=1 ts numeric) [if] [in] [, noPRInt] 2. marksample touse quietly summarize 'varlist' if 'touse' 4. scalar semean = r(sd)/sqrt(r(N)) if ("'print'" != "noprint") { display _n "Mean of 'varlist' = " r(mean) 7 - " S.E. = " semean 8. return scalar semean = semean return scalar mean = r(mean) return scalar N = r(N) 11. return local var 'varlist' 12- ``` We can try out the new byable feature, first using an if exp to calculate for one year and then checking to see that the same result appears under the control of by varist: ``` . senean D.emp Mean of D.emp = -.30018408 S.E. = .0677383 semean emp if year == 1982 Mean of emp = 6.9304857 S.E. = 1.2245105 . by year, sort: semean emp -> year = 1976 Mean of emp = 9.8449251 S.E. = 2.1021706 -> year = 1977 Mean of emp = 8.5351159 S.E. = 1.393463 -> year = 1978 Mean of emp = 8.6443428 S.E. = 1.3930028 -> year = 1979 Mean of emp = 8.7162357 S.E. = 1.4311206 -> year = 1980 Mean of emp = 8.5576715 S.E. = 1.4611882 -> year = 1981 Mean of emp = 7.7214 S.E. = 1.3467025 -> year = 1982 Mean of emp = 6.9304857 S.E. = 1.2245105 -> year = 1983 Mean of emp = 5.2992564 S.E. = 1.3286027 -> year = 1984 Mean of emp = 2.2205143 S.E. = .48380791 ``` Finally, for pedagogical purposes, I demonstrate how to add an interesting capability to the program: the ability to operate on a transformation of the varist without first generating that variable.¹⁷ We use the temporar statement to allocate a temporary variable, target, which will be equated to the varlist in the absence of the function() argument or that function of varlist if function() is specified. The local macro tgt is used to store the target of the command and is used later to display the variable of interest and the returned local macro r(var). We place the if 'touse' qualifier on the generate statement and capture the result of that statement to catch any errors. For instance, the user might specify an undefined function. The rc (return code) is tested for a nonzero value, which will trap an error in the generate command. The revised program reads ^{17.} This task mimics the behavior of Stata's time-series operators, which allow you to specify D-emp without explicitly creating that variable in your dataset. ``` , capture program drop semean . *! semean v1.1.0 CFBaum 04aug2005 . program define semean, rclass byable(recall) sortpreserve version 9.0 syntax varlist(max=1 ts numeric) [if] [in] 2. [, noPRInt FUNCtion(string)] marksample touse 3. tempvar target if "'function'" == "" { 5. local tgt "'varlist'" 6. 7. else { local tgt "'function'('varlist')" 9. 10. capture tsset capture generate double 'target' = 'tgt' if 'touse' 11. display as err "Error: bad function 'tgt'" 13. 14. error 198 15. 16. quietly summarize 'target' 17. scalar semean = r(sd)/sqrt(r(N)) 18. if ("'print'" != "noprint") { display _n "Mean of 'tgt' = " r(mean) 19. " S.E. = " semean 7 21. return scalar semean = semean 22. return scalar mean = r(mean) 23: return scalar N = r(N) 24. return local var 'tgt' 25. 26. end ``` As the example below demonstrates, the program operates properly when applying a transformation that reduces the sample size. The log of D emp is defined only for positive changes in employment, and most of the 140 firms in this sample suffered declines in employment in 1982. ``` return list scalars: r(N) = 22 r(mean) = -2.774394169773632 r(semean) = .3994465211383764 sacros: r(var) : "log(D.emp)" ``` The program can now emulate many of the features of an official Stata command while remaining brief. We have only scratched the surface of what you can do in your own ado-file. For instance, many user-written programs generate new variables or perform computations based on the values of options, which may have their own default values. User-written programs may also be used to define additional egan functions. Their names (and the file in which they reside) will start with _g: that is, _gfoo.ado will define the foo() function to egen. Although many Stata users may become familiar with the program and its capabilities without ever writing an ado-file program, others will find that they are constantly rewriting quick-and-dirty code that gets the job done today, with minor variations, to perform a similar task tomorrow. With that epiphany, knowledgeable Stata users will recognize that it is a short leap to becoming more productive by learning how to write their own ado-files, whether or not those programs are of general use or meant to be shared with other Stata users. As suggested earlier, the would-be programmer should investigate StataCorp's NetCourses to formally learn these skills. ## B.7 Using Mata functions in Stata programs This last section briefly introduces the Mata matrix programming language added to Stata in version 9.18 As Mata's online documentation indicates, you can use Mata in a purely interactive mode like other matrix languages, such as GAUSS, MATLAB, or Ox. However, the greatest benefit of Mata for applied economists is that it can speed up Stata programs that take advantage of its facilities by executing compiled code rather than the interpreted commands of an ado-file. There is no difference in computing speed between executing commands in a do-file and the same commands in an ado-file. But with Mata, functions can be compiled—a one-time task—and the resulting bytecode will execute many times faster than similar commands in the interpreted language. Two widely used SSC routines contributed by Stata users—Leuven and Sianesi's psmatch2 for propensity score matching 19 and Roodman's xtabond2 for extended Arellano—Bond estimation and bave been rewritten by their authors to take advantage of Mata's efficiency and speed. Given that many common econometric procedures can be written concisely in matrix notation, Mata may make it easier to program a particular procedure for use in Stata. ^{18.} If you are interested in using Mata, you should follow William Gould's "Mata Matters" columns in the Stata Journal, beginning in volume 5, number 3. See http://ideas.repec.org/c/boc/bocode/s432001.html. See http://ideas.repec.org/c/boc/bocode/s435901.html. Code written in other languages—Fortran, C, or one of the matrix languages mentioned above—can readily be translated into Mata; for an excellent example, see Gould (2005). The suite of Mata functions contains the standard set of linear algebra functions (e.g., LAPACK and EISPACK) as well as all the matrix handling capabilities available in other programming environments. Mata does not make a Stata program stored in an ado-file obsolete. Most new features are added to Stata as ado-file programs serving as
wrappers for one or more Mata functions, so you can use each language—ado-file code and Mata—for what it does best. The high-level parsing functions available with the syntax statement provide important tools for creating Stata commands with an elegant user interface, error checking, and the like. Once the task is assembled in ado-file code, it can then be passed to Mata for rapid processing. As we shall see, Mata can both access Stata's variables, macros, and scalars and place results back into those objects. We now construct a Mata function that solves a data transformation problem posed by a Statalist contributor. This user had a set of variables, each containing N observations, and wanted to create a new set of variables in the same dataset. Each new variable's observations are the average of two consecutive observations. Thus the average of observations 1 and 2 of x becomes observation 1 of the new variable, the average of observations 3 and 4 becomes observation 2, and so on. If this transformation could be done, discarding the original data, the collapse statement could be used after defining an indicator variable that identifies the subgroups. Alternatively, the egen group() function would generate the averages but would align them with the even-numbered observations with missing values interspersed. In contrast, the Mata function we construct will perform this task as originally specified. Since there may be limited use for such a specific tool, the function is designed to solve a more general problem. When working with time-series data, we often want to construct averages of p consecutive values of a variable as consecutive observations. We may want to juxtapose quarterly national income data with the average inflation rate during the quarter, with inflation reported monthly. Likewise, we may want to convert monthly data to annual format, quarterly data to annual format, or business daily data to weekly data. Any of these tasks is generically similar to the more specific need expressed on Statalist.²² To meet this need, we write a Mata function named averageper(), which is called with three arguments: the name of a Stata variable, the number of consecutive periods (p) to be averaged, and the name of a touse variable. As discussed in section B.6, the touse construct allows us to specify which observations to include in a computation, as expressed by if exp and in range conditions. Here is the averageper() function: ^{21.} See http://www.hsph.harvard.edu/cgi-bin/lwgate/STATALIST/archives/statalist.0507/Subject/article-296.html. ^{22.} For the official Stata date frequencies (see section 2.2.5) this problem has already been solved by the author's tacollap routine (Baum 2000). However, that routine (like collapse) destroys the original higher-frequency data, requiring another merge step to emulate the Mata routine developed below. ``` . * define the Mata averageper function . mata: void averageper(string scalar vname, real scalar per, string scalar t > oune) > // define objects used in function string scalar vnew real scalar divisor real scalar resindex real matrix vi real matrix v3 > // construct the new variable name from original name and per vnew = vname + "A" + strofreal(per) > // access the Stata variable, honoring any if or in conditions v1=st_data(.,vname,touse) > // verify that per is appropriate if (per<=0 | per > rows(v1)) { _error("per must be > 0 and < nobs.") > // verify that nobs is a multiple of per if (mod(rows(v1),per) != 0) { _error("nobs must be a multiple of per.") > // reshape the column vector into nobs/per rows and per columns > // postmultiply by a per-element row vector with values 1/per divisor = 1/per v3 = colshape(v1',per) * J(per,1,divisor) > // add the new variable to the current Stata data set resindex = st_addvar("float", vnew) > // store the calculated values in the new Stata variable st_store((1,rows(v3)),resindex,v3) : end ``` The mata: command invokes Mata, allowing us to give Mata commands. Following the function definition, we declare several objects used within the function that are local to the function. These declarations are not required, but they are always a good idea. We first construct a new variable name from the vname passed to the routine with A and the value of per concatenated. Thus, if we specify variable price with a per of 3, the new variable name (vnew) will be priceA3. We then use Mata's st_data() function to access that Stata variable and copy its values to Mata matrix v1. Mata also provides an st_view() function, which would allow us to create a view of that variable, or any subset of Stata's variables. In this function, we must use st_data(). This function will honor any if exp and in range conditions that have been stored in touse. The following lines check for various errors. Is per less than one or greater than N? The function also verifies that N, the number of observations available for v1, is an even multiple of per. If any of these conditions is violated, the function will abort. After these checks have been passed, we turn to the heart of the computation. The solution to the problem is a type of reshape. We can reshape the N-element column vector into which vname has been copied into a matrix v3 with q rows and per columns, q = N/per is the number of averaged observations that will result from the computation. If we postmultiplied the transpose of matrix v3 by a per-element column vector ϵ , we would compute the sum over the per values for each new observation. The average would be 1/per times that vector. Thus we define the column vector's elements as divisor = 1/per. The resulting column vector, v3, is our averaged series of length q. To illustrate, let x be the N elements of the Stata variable. Each element becomes a column of the reshaped matrix: $$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{\text{per}} \\ x_{\text{per}+1} \\ x_{\text{per}+2} \\ \vdots \\ x_{2\text{per}} \\ x_{2\text{per}} \end{pmatrix} \implies \begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,q} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,q} \\ \vdots & & \ddots & \vdots \\ x_{\text{per},1} & x_{\text{per},2} & \cdots & x_{\text{per},q} \end{pmatrix}$$ We then transpose the reshaped matrix and postmultiply by a per-element column vector to construct the per-period average: $$\begin{pmatrix} x_{1,1} & x_{2,1} & \cdots & x_{\mathsf{per},1} \\ x_{1,2} & x_{2,2} & \cdots & x_{\mathsf{per},2} \\ \vdots & & \ddots & \vdots \\ x_{1,q} & x_{2,q} & \cdots & x_{\mathsf{per},q} \end{pmatrix} \begin{pmatrix} \frac{1}{\mathsf{per}} \\ \frac{1}{\mathsf{per}} \\ \vdots \\ \frac{1}{\mathsf{per}} \end{pmatrix} = \begin{pmatrix} x_1^* \\ x_2^* \\ \vdots \\ x_q^* \end{pmatrix}$$ The column vector x^* , labeled v3 in the Mata function, contains the averages of each per element of the original Stata variable. Finally, we attempt to add the variable vnew, declared as a float, to the Stata dataset with st_addvar(). This attempt will fail if this variable name already exists if we are successful, we store the q elements of v3 in the values of the new variable with the st_store() function, defining other elements of v3 as missing. We then exit Mata back to Stata with the end command. Stata will interpret this Mata code and flag any syntax errors. None having appeared, we are ready to compile this function and store it in object-code form. When you call a Mata function, Stata looks on the ado-path for the object code of that function, here, averageper.mo. The mata mosave command creates (or revises) the object file: ``` . // save the compiled averageper function mata: mata mosave averageper(), replace (file averageper.mo created) ``` Now that our Mata function has been completed, we can write the ado-file wrapper routine. Strictly speaking, this task is not necessary; we could call the Mata function directly from Stata as mata: averageper(...). But we want to take advantage of syntax and other features of the ado-file language described in section B.6. Our program defining the averageper command to Stata is simple. We specify that one numeric varname must be provided, as well as the required per() option, necessarily an integer. We use marksample to handle if exp or in range conditions. The three arguments required by the Mata function are passed: the varlist and touse as strings, whereas the per is passed as a numeric value. ``` . define the Stata averageper wrapper command , *! averageper 1.0.0 OSaug2005 CFBaum . program averageper, rclass 1. version 9 syntax varlist(max=1 numeric) [if] [in], per(integer) 3. // honor if and in conditions if provided marksample touse 4. // pass the variable name, per, and touse to the Mata function mata: averageper("'varlist'", 'per', "'touse'") 5. end ``` Or we could have placed the Mata function definition in our ado-file rather than placing it in a separate .mata file and creating a .mo object file. If it is included in the ado-file, the Mata code will be compiled the first time that the averageper adofile is called in your Stata session. Subsequent calls to the ado-file will not require compilation of the Mata function (or functions). An exchange on Statalist²³ suggests that if the Mata functions amount to fewer than 2,000 lines of code, incorporating them in ado-files will yield acceptable performance. However, if your Mata functions are to be called by several different ado-files, you will want to store their compiled code in .mo object files rather than duplicating the Mata code. We now are ready to test the averageper command. We use the Stata Time-Series Reference Manual dataset urates, containing monthly unemployment rates for several U.S. states. We apply averageper to one variable—tenn, the Tennessee unemployment rate—using both per(3) and per(12) to calculate quarterly and annual averages, respectively. ^{23.} See http://www.hsph.harvard.edu/cgi-bin/lwgate/STATALIST/archives/statalist.050s/date/ article-358.html el - . use
http://www.stata-press.com/data/imeus/urates, clear - . tsset time variable: t, 1978m1 to 2003m12 describe tenn | . describe ter | m | | | | | |----------------|---------|-------------------|----------|----------|-----| | | storage | display
format | value | variable | lab | | variable name | type | 101880 | 1444-147 | | - | float %9.0g tenn - . averageper tenn, per(3) // calculate quarterly averages - . averageper tenn, per(12) // calculate annual averages - . summarize tenn* | , summarize tenn* | Obs | Mean | Std. Dev. | Min | Max | |-------------------|-----|----------|-----------|----------|----------| | tenn | 312 | 6.339744 | 2.075308 | 3.7 | 12.8 | | tennA3 | 104 | 6.339744 | 2.078555 | 3.766667 | 12.56667 | | tennA12 | 26 | 6.339744 | 2.078075 | 3.908333 | 11.83333 | The summarize command shows that the original series and two new series have identical means, which they must. To display how the new variables appear in the Stata data matrix, we construct two date variables with the tsmktim command (Baum and Wiggins 2000) and list the first 12 observations of Tennessee's data. You can verify that the routine is computing the correct quarterly and annual averages. - . tsmktim quarter, start(1978q1) // create quarterly calendar var time variable: quarter, 1978q1 to 2055q4 - // create annual calendar var . tsmktim year, start(1978) time variable: year, 1978 to 2289 - . list t tenn quarter tennA3 year tennA12 in 1/12, sep(3) | tennA12 | year | tennA3 | quarter | tenn | t | |---------------|------|----------|---------|---------|---| | 5.8 | 1978 | 5.966667 | 2490 | -0.000 | TOTAL CONTRACTOR | | 5.791667 | 1979 | | 1978q1 | 5.9 | 1978m1 | | 7.3 | 1980 | 5.766667 | 1978q2 | 5.9 | 1978m2 | | | 1900 | 5.733333 | 1978q3 | 6.1 | 1978m3 | | 9.083333 | 1981 | 5.733333 | | 0400000 | THE PERSON NAMED IN | | 11.83333 | 1982 | | 1978q4 | 5.9 | 1978m4 | | 11.45833 | 1983 | 5.733333 | 1979q1 | 5.8 | 1978m5 | | | 1900 | 5.7 | 1979q2 | 5.6 | 1978m6 | | 8.55 | 1984 | 5.733333 | | | CONTRACTOR OF THE PARTY | | 7.983334 | 1985 | | 1979q3 | 5.7 | 1978m7 | | 8.041667 | 1986 | 6 | 1979q4 | 5.7 | 1978m8 | | | 1900 | 6.166667 | 1980q1 | 5.8 | 1978m9 | | 6.591667 | 1987 | 7.066667 | 0.2020 | 84 | | | 5.778 | 1988 | 7.000007 | 1980q2 | 5.9 | 1978m10 | | 5.108333 | 1989 | | 1980q3 | 5.7 | 1978a11 | | - CARLESTANIA | 1909 | 7.966667 | 1980q4 | 5.6 | 1978m12 | Finally, we return to the original Statalist question: how can we perform this transmation for a whole set of handle formation for a whole set of variables? Rather than generalizing averageper to handle multiple variables, we into multiple variables, we just use a foreach loop over the variables: ``` foreach v of varlist tenn-arkansas { 2. averageper 'v', per(3) 3. } ``` summarize illinois* | Variable | Obs | Mean | Std. Dev. | Min | Max | |------------|-----|----------|-----------|-----|----------| | illinois | 312 | 6.865064 | 1.965563 | 4.1 | 12.9 | | illinoisA3 | 104 | 6.865064 | 1.964652 | | 12.76667 | Although we could do much to improve this routine, it gets the job done efficiently. This short excursion into the new world of Mata programming should give you some idea of the powerful capabilities added to Stata by this versatile matrix language. If you are going to write Mata functions, you should have a copy of the Mata Reference Manual. ## References - Akaike, H. 1974. A new look at statistical model identification. IEEE Transactions on Automatic Control 19: 716–722. - Anderson, T. W. 1984. Introduction to Multivariate Statistical Analysis. New York: Wiley. - Arellano, M., and S. Bond. 1991. Some tests of specification in panel data: Monte Carlo evidence and an application to employment equations. Review of Economic Studies 58: 277–297. - Arellano, M., and O. Bover. 1995. Another look at the instrumental variables estimation of error components models. *Journal of Econometrics* 68: 29–52. - Bai, J., and P. Perron. 2003. Computation and analysis of multiple structural change models. Journal of Applied Econometrics 18: 1–22. - Baltagi, B. H. 2001. Econometric Analysis of Panel Data. 2nd ed. New York: Wiley. - Bartus, T. 2005. Estimation of marginal effects using margeff. Stata Journal 5: 309-329. - Basmann, R. 1960. On finite sample distributions of generalized classical linear identifiability test statistics. Journal of the American Statistical Association 55: 650–659. - Baum, C. F. 2000. sts17: Compacting time series data. Stata Technical Bulletin 57: 44–46. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 369–370. College Station, TX: Stata Press. - 2001. Residual diagnostics for cross-section time series regression models. Stata Journal 1: 101–104. - ———. 2005. Stata: The language of choice for time series analysis? Stata Journal 5: 46-63. - Baum, C. F., N. J. Cox, and V. Wiggins. 2000. sg137: Tests for heteroskedasticity in regression error distribution. Stata Technical Bulletin 55: 15–17. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 147–149. College Station, TX: Stata Press. - Baum, C. F., M. E. Schaffer, and S. Stillman. 2003. Instrumental variables and GMM: Estimation and testing. Stata Journal 3: 1–31. - 2005. Software update: st0030_2. Instrumental variables and GMM: Estimation and testing. Stata Journal 5: 607. - Baum, C. F., and V. Wiggins. 2000. dm81: Utility for time series data. Stata Technical Bulletin 57: 2-4. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 29-30. College Station, TX: Stata Press. - Belsley, D. A. 1991. Conditioning Diagnostics: Collinearity and Weak Data in Regression. New York: Wiley. - Belsley, D. A., E. Kuh, and R. E. Welsch. 1980. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. New York: Wiley. - Blackburn, M., and D. Neumark. 1992. Unobserved ability, efficiency wages, and interindustry wage differentials. Quarterly Journal of Economics 107: 1421–1436. - Blundell, R., and S. Bond. 1998. Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics 87: 115–143. - Bond, S. 2002. Dynamic panel data models: a guide to microdata methods and practice. Technical Report CWP09/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies. - Bound, J., D. A. Jaeger, and R. Baker. 1995. Problems with instrumental variables estimation when the correlation between the instruments and the endogenous explanatory variable is weak. Journal of the American Statistical Association 90: 443–450. - Box, G. E. P., and D. A. Pierce. 1970. Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. Journal of the American Statistical Association 65: 1509–1526. - Breusch, T. S., and A. R. Pagan. 1979. A simple test for heteroskedasticity and random coefficient variation. Econometrica 47: 1287–1294. - ———. 1980. The Lagrange Multiplier test and its applications to model specification in econometrics. Review of Economic Studies 47: 239–253. - Brown, M., and A. Forsythe. 1992. Robust test for the equality of variances. Journal of the American Statistical Association 69: 364–367. - Chao, J. C., and N. R. Swanson. 2005. Consistent estimation with a large number of weak instruments. Econometrica 73: 1673–1692. - Cochrane, D., and G. H. Orcutt. 1949. Application of least-squares regression to relationships containing autocorrelated error terms. Journal of the American Statistical Association 44: 32–61. - Cook, R. D., and S. Weisberg. 1983. Diagnostics for heteroscedasticity in regression. Biometrika 70: 1–10. - 1994. An Introduction to Regression Graphics. New York: Wiley- - Cox, D. R. 1961. Tests of separate families of hypotheses. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1. Berkeley, CA: University of California Press. - . 1962. Further results on tests of separate families of hypotheses. Journal of the Royal Statistical Society,
Series B 24: 406–424. - Cox, N. J. 1999. dm70: Extensions to generate, extended. Stata Technical Bulletin 50: 9-17. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 34-45. College Station, TX: Stata Press. - 2000. dm70.1: Extensions to generate, extended: corrections. Stata Technical Bulletin 57: 2. Reprinted in Stata Technical Bulletin Reprints, vol. 10, p. 9. College Station, TX: Stata Press. - . 2002a. Speaking Stata: How to face lists with fortitude. Stata Journal 2: 202-222. - ———. 2003. Speaking Stata: Problems with lists. Stata Journal 3: 185-202. - Cox, N. J., and J. Weesie. 2001. dm88: Renaming variables, multiply and systematically. Stata Technical Bulletin 60: 4–6. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 41–44. College Station, TX: Stata Press. - ———. 2005. Software update: dm88_1: Renaming variables, multiply and systematically. Stata Journal 5: 607. - Cragg, J. G., and S. G. Donald. 1993. Testing identifiability and specification in instrumental variables models. Econometric Theory 9: 222–240. - Cumby, R. E., J. Huizinga, and M. Obstfeld. 1983. Two-step two-stage least squares estimation in models with rational expectations. *Journal of Econometrics* 21: 333– 355. - Davidson, R., and J. MacKinnon. 1981. Several tests for model specification in the presence of alternative hypotheses. Econometrica 49: 781–793. - Davidson, R., and J. G. MacKinnon. 1993. Estimation and Inference in Econometrics. 2nd ed. New York: Oxford University Press. - ———. 2004. Econometric Theory and Methods. New York: Oxford University Press. - De Hoyos, R. E., and V. Sarafidis. 2006. XTCSD: Stata module to test for cross-sectional dependence in panel data models. http://www.econ.cam.ac.uk/phd/red29/research.htm. - Delwiche, L. D., and S. J. Slaughter, 1998. The Little SAS Book. 2nd ed. Cary, NC, SAS Insitute. - Durbin, J. 1970. Testing for serial correlation in least squares regression when some of the regressors are lagged dependent variables. Econometrica 38: 410–421. - Durbin, J., and G. Watson. 1950. Testing for serial correlation in least squares regression I. Biometrika 37: 409–428. - Eichenbaum, M. S., L. P. Hansen, and K. J. Singleton. 1988. A time series analysis of representative agent models of consumption and leisure. Quarterly Journal of Economics 103: 51–78. - Godfrey, L. G. 1978. Testing for multiplicative heteroskedasticity. Journal of Econometrics 8: 227–236. - ———. 1988. Misspecification Tests in Econometrics: The Lagrange Multiplier Principle and Other Approaches. Cambridge: Cambridge University Press. - 1999. Instrument relevance in multivariate linear models. Review of Economics and Statistics 81: 550–552. - Gould, W. 2005. Mata Matters: Translating Fortran. Stata Journal 5: 421-441. - Gould, W., J. Pitblado, and W. Sribney. 2006. Maximum Likelihood Estimation with Stata. 3rd ed. College Station, TX: Stata Press. - Greene, W. H. 2000. Econometric Analysis. 4th ed. Upper Saddle River, NJ: Prentice-Hall. - ———. 2003. Econometric Analysis. 5th ed. Upper Saddle River, NJ: Prentice-Hall. - Griliches, Z. 1976. Wages of very young men. Journal of Political Economy 84: S69-S85. - Hahn, J., and J. Hausman. 2002a. A new specification test for the validity of instrumental variables. Econometrica 70: 163–189. - 2002b. Notes on bias in estimators for simultaneous equation models. Economics Letters 75: 237-241. - Hall, A. R., and F. P. M. Peixe. 2000. A consistent method for the selection of relevant instruments. In Contributed Papers, Econometric Society World Congress 2000. http://econpapers.repec.org/paper/ecmwc2000/0790.htm: EconPapers. - Hall, A. R., G. D. Rudebusch, and D. W. Wilcox. 1996. Judging instrument relevance in instrumental variables estimation. International Economic Review 37: 283–298. - Hansen, L. 1982. Large sample properties of generalized method of moments estimators. Econometrica 50: 1029–1054. - Hardle, W. 1990. Applied Nonparametric Regression. Cambridge: Cambridge University Press. - Hausman, J. 1978. Specification tests in econometrics. Econometrica 46: 1251–1271- - Hausman, J. A., and W. E. Taylor. 1981. Panel data and unobservable individual effects. Econometrica 49: 1377–1398. - Hayashi, F. 2000. Econometrics. Princeton, NJ: Princeton University Press. - Heckman, J. 1976. The common structure of statistical models of truncation, sample selection, and limited dependent variables and a simple estimator for such models. Annals of Economic and Social Measurement 5: 475–492. - Hildreth, C., and J. Y. Lu. 1960. Demand relations with autocorrelated disturbances. Technical Report 276, Michigan State University Agricultural Experiment Station - Hill, R. C., and L. C. Adkins. 2003. Collinearity. In A Companion to Theoretical Econometrics, ed. B. H. Baltagi. Malden, MA: Blackwell Publishing. - Hsiao, C. 1986. Analysis of Panel Data. New York: Cambridge University Press. - Huber, P. J. 1967. The behavior of maximum likelihood estimates under non-standard conditions. In Proceedings of the Fifth Berkeley Symposium in Mathematical Statistics and Probability, vol. 1, 221–233. Berkeley, CA: University of California Press. - Jann, B. 2005. Making regression tables from stored estimates. Stata Journal 5: 288–308. - Johnston, J., and J. DiNardo. 1997. Econometric Methods. 4th ed. New York: McGraw-Hill. - Judge, G. G., R. C. Hill, W. E. Griffiths, H. Lütkepohl, and T. C. Lee. 1985. The Theory and Practice of Econometrics. 2nd ed. New York: Wiley. - Koenker, R. 1981. A note on Studentizing a test for heteroskedasticity. Journal of Econometrics 17: 107–112. - Levene, H. 1960. Robust tests for equality of variances. In Contributions to Probability and Statistics, ed. I. Olkin, 278–292. Palo Alto, CA: Stanford University Press. - Ljung, G. M., and G. E. P. Box. 1979. On a measure of lack of fit in time series models. Biometrika 65: 297–303. - Long, J. S., and J. Freese. 2006. Regression Models for Categorical and Limited Dependent Variables using Stata. 2nd ed. College Station, TX: Stata Press. - McFadden, D. 1974. The measurement of urban travel demand. Journal of Public Economics 3: 303–328. - Mitchell, M. 2004. A Visual Guide to Stata Graphics. College Station, TX: Stata Press. - Munnell, A. H., G. Tootell, L. Browne, and J. McEneaney. 1996. Mortgage lending in Boston: Interpreting HMDA Data. American Economic Review 86: 25–53. - Newey, W. K., and K. D. West. 1987. A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55: 703–708. - Nickell, S. 1981. Biases in dynamic models with fixed effects. Econometrica 49: 1417–1426. - Pagan, A. R., and D. Hall. 1983. Diagnostic tests as residual analysis. Econometric Reviews 2: 159–218. - Pesaran, M. 1974. On the general problem of model selection. Review of Economic Studies 41: 153–171. - Pesaran, M., and A. Deaton. 1978. Testing non-nested nonlinear regression models. Econometrica 46: 677–694. - Poi, B. P. 2002. From the help desk: Demand system estimation. Stata Journal 2: 403-410. - Poirier, D. 1981. Partial observability in bivariate probit models. Journal of Econometrics 12: 209–217. - Prais, S. J., and C. B. Winsten. 1954. Trend estimators and serial correlation. Technical Report 383, Cowles Commission Discussion Paper Series. - Ruud, P. A. 2000. An Introduction to Classical Econometric Theory. Oxford: Oxford University Press. - Sargan, J. 1958. The estimation of economic relationships using instrumental variables. Econometrica 26: 393–415. - Schwarz, G. 1978. Estimating the dimension of a model. Annals of Statistics 6: 461-464. - Shea, J. 1997. Instrument relevance in multivariate linear models: A simple measure. Review of Economics and Statistics 79: 348–352. - Staiger, D., and J. H. Stock. 1997. Instrumental variables regression with weak instruments. Econometrica 65: 557–586. - Stock, J., and M. Watson. 2006. Introduction to Econometrics. 2nd ed. Reading, MA: Addison-Wesley. - Stock, J. H., J. H. Wright, and M. Yogo. 2002. A survey of weak instruments and weak identification in generalized method of moments. Journal of Business and Economic Statistics 20: 518–529. - Tobin, J. 1958. Estimation of relationships for limited dependent variables. Econometrica 26: 24–36. - Van de Ven, W., and B. M. S. Van Pragg. 1981. The demand for deductibles in private health insurance: A probit model with sample selection. Journal of Econometrics 17: 229–252. - Welsch, R., and E. Kuh. 1977. Linear regression diagnostics. Technical Report 923–977. Sloan School of Management, MIT. - White, H. 1980. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48: 817–838. - ______. 1982. Instrumental variables regression with independent observations. Econometrica 50: 483–499. - Windmeijer, F. 2005. A finite sample correction for the variance of linear efficient two-step GMM estimators. Journal of Econometrics 126: 25-51. - Wooldridge, J. M. 2002. Econometric Analysis of Cross Section and Panel Data. Cambridge, MA: MIT Press. - _______. 2006. Introductory Econometrics: A Modern Approach. 3rd ed. New York: Thomson. - Zellner, A. 1962. An efficient method of estimating seemingly unrelated regressions and tests of aggregation bias. Journal of the American Statistical Association 57: 500–509. ## **Author index** | A | D | |---
---| | Adkins, L. C | Davidson, R 100, 142, 177, 178, 189,
196, 197, 201 | | Anderson, T. W | De Hoyos, R. E | | Arellano, M | Deaton, A | | Alenano, Americano, and | Delwiche, L. D287 | | | DiNardo, J79 | | Baker, R | Donald, S. G208 | | Baltagi, B. H | Durbin, J | | Bartus, T251 | | | Basmann, R | E | | Baum, C. F | Eichenbaum, M. S | | 54, 90, 102, 141, 146, 191, 194, | | | 205, 211, 242, 301, 314, 318 | F | | Belsley, D. A | Forsythe, A150 | | Blackburn, M | Freese, J | | Blanchette, D | | | Blasnik, M301 | G | | Blundell, R | Godfrey, L. G 145, 156, 201, 208 | | Blunden, R | Gould W | | Bond, S | Greene, W. H 189, 222, 242, 249, | | Bound, J | 256, 260, 264 | | Bover, O234 | Criffiths W. E | | Box, G. E. P | Griliches, Z | | Breusch, T. S 145, 156, 229 | | | Brown, M | Н | | Browne, L | Holon I | | | er ti A D | | C | | | Chao, J. C | TO D | | Cochrane, D | | | Cook B. D | | | Cox D R | | | Cox. N. J | | | 31, 51, 53, 54, 61, 90, 91, 146, | | | 294 299 301 | | | Crago 1 G208 | Hendry, D | | Cumby, R. E | TIME STATE OF THE | | Hill, R. C 87, 256 | P | |--|-------------------------------------| | Hsiao, C224 | Pagan, A145, 205, 229 | | Hsiao, C | Peixe, F. P. M 208 | | Huber, P | Pesaran, M. H | | Huizinga, J | Pierce, D | | | | | I | Pitblado, J249 | | Impavido, G | Poi, B. P242 | | Imparison or extended the control of | Poirier, D272 | | | Prais, S. J | | J | | | Jaeger, D. A | R | | Jann, B89 | Roodman, D. M234, 313 | | Johnston, J | Rudebusch, G. D 208 | | Judge, G. G | Ruud, P. A 201, 202 | | | Kuud, F. A | | K | | | Koenker, R | S | | Kuh, E126, 128, 130 | Sarafidis, V222 | | Kun, E | Sargan, J | | | Schaffer, M. E 123, 141, 191, 194, | | L | 205, 211 | | Lütkepohl, H | Schwarz, G | | Lee, T. C | Shea. J | | Leuven, E313 | Signesi B | | Levene, H | Simpleton K I | | Ljung, M | Slavehter S 1 | | Long, J. S | Cribnay W | | Lu. J. Y 159 | Ctairen D | | AMINE PROPERTY OF THE | Steichen, T | | M | Stillman, S 141, 191, 194, 205, 211 | | MacKinnon, J. G 100, 142, 177, 178, | Stock, J. H xvii, 73, 187, 207, 211 | | 189, 196, 197, 201 | Swanson, N. R | | McEneaney, J | Swanson, IV. IV. | | MCEReancy, J | - | | McFadden, D | Taylor, W. E | | Mitchell, M. N 23, 24, 48, 54, 106, | Taylor, W. E | | 110 | Tobin, J | | Munnell, A. H | Tootell, G | | | | | N 100 | V Van de Ven, W | | Neumark, D | Van de Ven, W | | Newey, W. K | Van de Ven, W | | Nickell, S | | | | W 156
Watson, G | | 0 | Watson, G | | Obstfeld, M | Watson, Ixvii, 73 Watson, Mxvii, 73 | | Orcutt, G. H159 | watson, M | | Weesie, J21, 61 | |---| | Weisberg, S | | Welsch, R. E 126, 128, 130 | | West, K. D | | White, H | | Wiggins, V 50, 146, 314, 318 | | Wilcox, D. W | | Windmeijer, F | | Winsten, C. B 159 | | Wooldridge, J. M xvii, 73, 74, 93, 99, 104, 211 | | | | Wright, J. H 187, 207, 211 | | Y | | Yogo, M187, 207, 211 | | Z | | Zellner, A236 | ## Subject index | Symbols & (and operator) | average marginal effects 251 avplot command | |--|---| | A ac command | B b[] vector | | heteroskedasticity 144
auxiliary regression | for seemingly unrelated regressio | | built-in commands301 | csv files279 | |-------------------------------------|--| | business-daily data | cut() function9 | | byable | D | | | D4 | | byte data type | data dictionary28 | | | data mining | | C | data validation | | C statistic201 | | | calendar variable 304 | date formats4 | | canonical correlations208 | date() function | | cardinal measurements161 | Davidson-MacKinnon J test10 | | casewise deletion | .dct file28 | | censoring | decode command2 | | centered indicators | delimiters | | Chow predictive test184 | demand system | | Chow test | describe command30 | | cloglog command250 | destring command2 | | cluster estimator of the VCE138-139 | detrending | | cnsreg command96-97 | dfbeta command | | Cobb-Douglas production function 80 | DEBETA statistic | | Cochrane-Orcutt estimator159 | DFITS statistic | | codebook command | dbms() function | | codebooks281 | difference operator see D. | | coldiag2 command | difference-in-Sargan statistic | | collapse command 36, 46-48 | differentiability | | collinearity84 | do-file 02-05, 200 | | diagnostics86 | D. Cl. Editor | | comma-delimited files279 | - d dd + commonel | | comma-delimited mes | | | command syntax | | | hypotheses | double-log model | | compress command | DPDsee dyamic panel-data models | | cond() function22 | dprobit command | | condition number86 | drop command | | consistency74 | drop command | | constraint command96-97, 238 | dummy variable. See indicates 58 duplicates command | | contemporaneous correlation236 | duplicates command | | continuity see piecewise continuous | Durom watson test | | functions | Durbin-Wu-Hausman 011-214 | | corr() function | Durbin-Wu-Hausman tests for
endogeneity | | correlate command 25, 304 | endogeneity | | corrgram command | | | count() function | E e(b) matrix | | Cox-Pesaran-Deaton test101 | e(b) matrix | | eross-sectional data | o (Sumpre) South | cross-sectional data......43-44 | e(sample) vector83 | FEGMMsee | |--|---| | e(V) matrix 82 | feasible efficient two-step gen- | | e-class | eralized methods of moments | | efficiency | FGLS see feasible generalized least | | egen command 25, 30-33, 313 | squares | | egenmore package31, 53 | filter() function | | eigenvalue | financial ratios149 | | elap() function | findfile command289, 301 | | elap2() function32 | first-order Markov process see AR(1) | | elasticity 80, 107–111 | process | | embedded spaces | fixed effect | | encode command | fixed format | | endogeneity132, 185 | foreach command 2, 37-38, 295-299 | | eom() function 32 | forecast
confidence interval see | | eomd() function | standard error of prediction | | epsfloat() function30 equality of variances see robvar | forvalues command2, 37–38, 175, 295–299 | | ereturn list command 82, 301-307 | fractional dates | | errors-in-variables217-218 | free format | | estadd command89 | full column rank | | estat bgodfrey command156-158 | functional form misspecification122 | | estat durbinalt command157 | | | estat dwstat command157 | G | | estat hettest command145-147 | gaps in time series | | estat ic command79 | GARCH see generalized autoregressive | | | conditional heteroskedasticity | | estat imtest command146 | general-to-specific approach121 | | estat ovtest command 122-124, | generalized autoregressive conditional | | 307 | heteroskedasticity 144 | | estat summarize command83-84 | neteroskedasticity | | estat vce command84 | generalized least-squares estimator | | estat vif command | 142, 237 | | estimates command87-89, 212, 230, | with random effects | | 307 | generalized linear regression model | | estimation commands301 | 134 | | estout command | generalized method of moments194- | | estout command | 214 | | ewma() function32 | generate command | | exact identification | elabal command | | extended macro functions 293–294 | -logit command | | | gmean() function | | F | GMMsee generalized method of | | F | moments | | feasible efficient two-step generalized | momens | | method of moments 196 | Goldfeld-Quandt test for heteroskedas- | | feasible generalized least squares142- | ticity | | 142 147 140 151-154 238 | goodness of fit | | probit command253 | IMR see inverse Mills ratio | |--|--| | raph matrix command117 | in qualifier11-1 | | graphics | incidental truncation 266-27 | | grid search | independently distributed disturbance | | group() function29 | | | rouped data | indicator variables 13-15, 161-18 | | grouped logit | infile command21-22, 62, 278-286
285 | | 173 | infix command | | gsort command | influential data | | gsort command | inlist() function | | H | inrange() function2 | | HAC standard errors | insheet command21-22, 280-28 | | see heteroskedasticity and | instrument redundancy | | autocorrelation consistent | instrumental-variables estimator 18 | | Hansen <i>J</i> statistic | int() function 2 | | hat matrix126 | integer division2 | | hausman command212, 230 | integer variables2 | | Hausman test212 | interaction effects | | for random effects230 | interaction terms125-12 | | Heckit model 266, 268 | intraday values | | heckman command | inverse Mills ratio | | Heckman two-step modelsee | desetted (1 () function | | Heckman model | Ser() function | | heckprob command273-275 | irranded command | | heteroskedasticity and autocorrelation | ivreg command | | consistent | immed command | | heteroskedasticity in grouped data | ivreset command12 | | heteroskedasticity in groups | | | Hildreth-Lu estimator 159 | J | | hmean() function | | | hmm() function | joint testg | | hmmss() function | A CONTRACTOR OF THE | | hms() function | K a | | Hodrick-Prescott filter178 | K keep command | | homogeneous relationship81 | keep command | | bemockedasticity | kernel estimator | | byrascott command | knot points | | HTML89 | Kronecker product | | I tallanan codes | L | | I(1) process see nonstationary series | L | | identification problem 186 if qualifier | L | | inplied decimal286 | label commandsee L- | | for groupwise heteroskedasticity | marksample command | |--|---------------------------------------| | | Mata and | | latent variable132, 248-250 | Mata | | ETEX output 89 | mata: command317 | | lead operator see F. | match-merge | | least-squares dummy variable model | matrix accum command300 | | | matrix colnames command307 | | left-censoring see censoring | matrix colnames commands301 | | leverage | matrix language299–301 | | likelihood function306 | matrix list command 84, 300 | | likelihood-ratio test | matrix rownames command. 301, 307 | | Likert scale | matrix statement300 | | limited dependent variables 247–275 | max() function31 | | lincom command94-96, 255 | maxbyte() function29 | | linear combination of coefficients96 | maxdouble() function 30 | | linear filtersee filter() function, 53 | maxfloat() function30 | | linear probability model 248 | maximization likelihood optimization | | linear restrictions 96 | | | linear splines | maximum-likelihood random-effects es- | | Ljung-Box Q test | timator229 | | local command36, 290-294 | maxint() function29 | | logistic command | maxlong() function29 | | logit command250 | mdev() function31 | | log-linear model | mdy() function | | long-format data 55-58 | mean command162-163 | | long model | mean() function31 | | longitudinal data see panel data | measurement error 132, 216-218 | | loop constructs295–299 | median() function31 | | LSDVsee least-squares dummy | merge command 57-58, 63 | | variable model | _merge variable57 | | lvr2plot command | mfx command107-111, 251-252, 254 | | teraprot command | min() function | | M | | | | missing values | | na() function32 | mkmat command | | Macintosh spreadsheet dates 281 | mkspline command | | nacro36, 290–294 | mod() function | | acro command 2 | mode() function | | nacro evaluation | moment conditions 190 | | nacro list functions294 | month() function17 | | ad() function | moving autocorrelations 5 | | akematrix command | moving-window correlation5 | | nany-to-many merge | moving-window regressions242-24 | | argeff command251, 254 | moving-window statistics 5 | | Darwing affects 107 111 | multiplicative seasonal17 | | | | | mutually exclusive and exhaustive163 | outlier126 | |--------------------------------------|---| | swcorr command54 | outshseet21 | | mvdecode command | outtable command91 | | mvencode command | outtable command301 | | mysumm command | overfitting | | mySumm Command | overid command191 | | | overidentification 191 | | N 947 | overlapping subsamples | | nbreg command247 | MISSELFE CO. | | nested loop | P | | NetCourse | pac command | | neweycommand 140-141 | Pagan-Hall test for heteroskedasticity | | Newey-West estimates199 | ragair-francescrot neterosaccasseny | | Newey-West estimator139-141 | pairwise correlation matrix 91 | | nlcom command99-100, 255 | panel data46 | | nnest command101 | panel data | | nonnested hypothesis 100 | panel variable | | nonstationary series 155 | partial R^2 test | | not seasonally adjusted | partial autocorrelation function156 | | notes command19-20 | partial observability | | NSAsee not seasonally adjusted | partial R-squared | | null model | partial regression | | numeric variables26-27 | pc() function | | | pctile() function | | 0 | per capita regressions | | ODBCsee Open Data Base | perfect prediction | | Connectivity | Phillips curve | | odbc | piecewise continuous functions 181 | | odds ratio | piecewise functions | | ologit command257 | piecewise linear see piecewise continuous functions | | omitted-variables bias 210 | 200 | | one-to-many merge | plugin | | one-to-one merge | poisson command | | one-way random effects 227-230 | pooled data | | one-way ANOVA 162 | pooled ordinary least squares 219 pooled ordinary least squares 241 | | Open Data Base Connectivity 287 | pooled ordinary least squares | | oprobit command257 | portfolio shares | | options | Prais command | | order condition | Prais-Winsten estimator. 175, 251
predict command . 102-107, 175, 251
102-107 | | ordered logit | predict command . 102-107, 102-107 predicted values | | ordered measurements | preserve commune 200 | | ordered probit | Drobit command. | | ordinal measurements | probit command | | orthogonality conditions | Droportionally | | outer join58 | relationship | | | | | proxy variable | rndint() function | |-----------------------------------
--| | psmatch2 command | robust estimator of the ver 126 126 | | publication-quality output 90 | robust option 126 | | p-value 77 | 150 151 | | pwcorr 25 | 10111ng prefix 944-945 | | 131 STREET STREET | Torrieg command | | Q | root MSE | | Q test | rowmax() function | | qualitative factors | rowmean() function | | quarter() function175 | rowmiss() function | | quasidemeaning transformation 228 | rownonmiss() function31 | | quasidifferencing159 | rowsd() function31 | | R | rowtotal() function | | R^2 78 | rowwise functions | | =2 | rvipiot command | | \overline{R}^2 78–79 | rvpplot command124 | | rall() function | | | random effect220 | S | | rank condition | S45 | | rank() function | SA see seasonally adjusted | | rany() function | SAAR see seasonally adjusted at an | | r-class 301–307 | annual rate | | rcount() function32 | sandwich estimator see robust | | real() function | standard errors | | recode command | Sargan test | | recode() function23 | save command | | record() function | scalar command 294-295 | | record value to date see record() | scalars | | function | scale heteroskedasticity 144 | | regime dummies | Schwarz information criterion see | | regressand71 | Bayesian information criterion | | regressors71 | (BIC) | | rename command21, 56, 61 | sd() function31 | | cenpfix command21 | sdtest command150 | | renvars command | _se[] vector82 | | eplace command10 | seasonal adjustment174-178 | | RESET 122–124 | seasonal difference operator see S. | | reshape command | seasonal dummies175 | | esiduals | seasonally adjusted | | eturn command | at an annual rate | | eturn list command 301-307 | seemingly unrelated regression 220 | | eturn values | 236-242 | | leview window | selection model | | ight censoring see censoring | semean() function35 | | SEE LEISUITIE | The state of s | | semielasticity 80, 107–111, 169 | SUR see seemingly unrelated | |--|--| | serial correlation | regression | | Shea partial-R ² test | sureg command238 | | short model | survivorship bias47 | | skew() function | syntax command308 | | sort command9-11 | | | sort command | T | | space delimited files | tab-delimited files 279–281 | | space delimited files | tabout command91 | | specification analysis71 | tabstat command90, 301 | | specification error | tabulate command 26-27, 163 | | specification search | tabulating results87 | | spells | temporary variable | | spline functions | temporary variable | | spreadsheet data | tempour | | SQL databases | test of overidentifying restrictions191 | | ssc command | test of overlies 1, 199–100, 255 | | st_addvar() function316 | testni command | | st_addvar() function | The state of s | | st_data() function | Class Class | | st_view() function | text mes | | standard error | time arithmetic | | of forecast | at and an landar | | E modiction | | | f serrossion See root MSE. | the amount are | | a deadward values See State | | | for cignificance | | | Canal Transfer | | | March 1972 | | | tatical discrimination | todate | | a statical independence | tostring command | | the sommand | total() function | | -totomat command90, 301 | trend | | std() function | truncation | | storage optimization | tsline command 50, 318 | | string () mincular | tsmktim command 47, 304 | | harmi breakpoints | tsset command | | total breaks | tssmooth ma tourne | | change 100 104 | tssmooth shwings 5000 | | the stability | tssperi communication | | a contract the contract to | two-limit tobitsee tobit in | | t attend regidingle | two-limit tobit see tobit two-stage least squares (28LS) 188-189 two-stage least squares (28LS) 224-226 | | sum() function | two-stage least squares (28LS). 1224-226
two-way fixed effects | | | | | U
unbalanced panel 46, 50 | |--| | underfitting | | underidentified | | unit root test | | update query3 | | use command | | v
 | var() function | | variance decomposition matrix86 | | variance inflation factor85 | | varlist | | version command308 | | VIFsee variance inflation factor | | volatility clustering 144 | | w | | Wald test | | weak instruments | | weighted least squares | | weighting matrix | | which command289 | | while command295 | | white noise | | White standard errors see robust | | standard errors | | White's test for heteroskedasticity146 | | whitetst command145-147 | | wide-format data | | | | wildcards | | Windmeijer correction for dynamic | | panel-data models 234 | | witch command289 | | within estimator221 | | wntestq command156-158 | | word processors278 | | v | | X 163 | | xi command | | **pose command | | xt commands49 | | xtabond command234 | | xtabond2 command234, 313 | | xtdes command | | xthtaylor command | 232 | |------------------------|--------| | xtivreg command | . 232 | | xtreg, be command | - 226 | | xtreg, fe command222 | -224 | | xtreg, re command | . 229 | | xtscd command | 999 | | xttest3 command | 222 | | Z | | | zero-conditional mean7 | 2, 185 | An Introduction to Modern Econometrics Using Stata surveys many of the econometric tools used in modern empirical research and how to use them in Stata. Baum presents the essential elements of working with economic and financial data, including cross-section, time-series, and panel-data structures; merge, append, and reshape tools, and data validation. He covers approaches such as linear regression, generalized least squares, regression with indicator variables, instrumental-variables methods, panel-data models, and models of limited dependent variables. Baum illustrates these techniques with examples from the applied literature, using datasets that are downloadable from the book's web site. An appendix presents the basics of Stata do-file programming. The book develops the necessary analytical results needed to understand using estimators, hypothesis tests, and tests of model validity. Readers need no prior experience with Stata. The book should be particularly useful for those who have had an econometrics course and some experience with statistical packages but who need a clear guide to using state-of-the-art econometric techniques in Stata. Christopher F. Baum is an economist at Boston College, where he codirects the undergraduate minor in scientific computation. He is an associate editor of the *Stata Journal* and co-organizer of Stata Users Group meetings in Boston. Baum has coauthored many Stata routines and stata the Statistical Software Components archive of downloadable Stata packages are has taught econometrics at the undergraduate and graduate levels, making extensive use of Stata, for many years. Telephone: 979-696-4600 800-782-8272 800-STATAPC FAX: 979-696-4601 Email: service@stata-press.com URL: http://www.stata-press.com