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Introduction

SUMMARY

This book focuses on developing methodologies for estimating stochastic
volatility (SV) parameters from the stock-price time series under a classical
framework. The text contains three chapters structured as follows.

In Chapter 1, we shall introduce and discuss the concept of various
parametric SV models. This chapter represents a brief survey of the existing
literature on the subject of nondeterministic volatility.

We start with the concept of log-normal distribution and historic volatil-
ity. We then introduce the Black-Scholes [38] framework. We also mention
alternative interpretations as suggested by Cox and Rubinstein [66]. We
state how these models are unable to explain the negative skewness and the
leptokurticity commonly observed in the stock markets. Also, the famous
implied-volatility smile would not exist under these assumptions.

At this point we consider the notion of level-dependent volatility as
advanced by researchers, such as Cox and Ross [64] and [65], as well as
Bensoussan, Crouhy, and Galai [33]. Either an artificial expression of the
instantaneous variance will be used, as is the case for constant elasticity
variance (CEV) models, or an implicit expression will be deduced from a
firm model, similar to Merton’s [189], for instance.

We also bring up the subject of Poisson jumps [190] in the distributions
providing a negative skewness and larger kurtosis. These jump-diffusion
models offer a link between the volatility smile and credit phenomena.

We then discuss the idea of local volatility [36] and its link to the instant-
aneous unobservable volatility. Work by researchers such as Dupire [89] and
by Derman and Kani [74] will be cited. We also describe the limitations of this
idea owing to an ill-poised inversion phenomenon, as revealed by Avellaneda
[16] and others.

Unlike nonparametric local volatility models, parametric stochastic
volatility (SV) models [140] define a specific stochastic differential equa-
tion for the unobservable instantaneous variance. We therefore introduce the
notion of two-factor stochastic volatility and its link to one-factor general-
ized autoregressive conditionally heteroskedastic (GARCH) processes [40].
The SV model class is the one we focus upon. Studies by scholars, such as

xvii



xviii INTRODUCTION

Engle [94], Nelson [194], and Heston [134], are discussed at this juncture.
We briefly mention related works on stochastic implied volatility by Schon-
bucher [213], as well as uncertain volatility by Avellaneda [17].

Having introduced SV, we then discuss the two-factor partial differential
equations (PDE) and the incompleteness of the markets when only cash and
the underlying asset are used for hedging.

We then examine option pricing techniques, such as inversion of the
Fourier transform and mixing Monte Carlo, as well as a few asymptotic
pricing techniques, as explained, for instance, by Lewis [177].

At this point we tackle the subject of pure-jump models, such as Madan’s
variance gamma [182] or its variants VG with stochastic arrivals (VGSA)
[48]. The latter adds to the traditional VG a way to introduce the volatil-
ity clustering (persistence) phenomenon. We mention the distribution of
the stock market as well as various option-pricing techniques under these
models. The inversion of the characteristic function is clearly the method of
choice for option pricing in this context.

In Chapter 2, we tackle the notion of inference (or parameter estimation)
for parametric SV models. We first briefly analyze cross-sectional inference
and then focus upon time-series inference.

We start with a concise description of cross-sectional estimation of SV
parameters in a risk-neutral framework. A least-square estimation (LSE)
algorithm is discussed. The direction-set optimization algorithm [204] is
introduced at this point. The fact that this optimization algorithm does not
use the gradient of the input function is important because we shall later
deal with functions that contain jumps and are not necessarily differentiable
everywhere.

We then discuss the parameter inference from a time series of the under-
lying asset in the real world. We do this in a classical (non-Bayesian) [240]
framework, and in particular we will estimate the parameters via a maxi-
mization of likelihood estimation (MLE) [127] methodology. We explain the
idea of MLE, its link to the Kullback-Leibler [100] distance, as well as
the calculation of the likelihood function for a two-factor SV model.

We see that unlike GARCH models, SV models do not admit an analytic
(integrated) likelihood function. This is why we need to introduce the concept
of filtering [129].

The idea behind filtering is to obtain the best possible estimation of
a hidden state given all the available information up to that point. This
estimation is done in an iterative manner in two stages: The first step is a time
update in which the prior distribution of the hidden state at a given point in
time is determined from all the past information via a Chapman-Kolmogorov
equation. The second step would then involve a measurement update where
this prior distribution is used together with the conditional likelihood of
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the newest observation in order to compute the posterior distribution of the
hidden state. The Bayes rule is used for this purpose. Once the posterior
distribution is determined, it can be exploited for the optimal estimation of
the hidden state.

We start with the Gaussian case where the first two moments characterize
the entire distribution. For the Gaussian-linear case, the optimal Kalman fil-
ter (KF) [129] is introduced. Its nonlinear extension, the extended KF (EKF),
is described next. A more suitable version of KF for strongly nonlinear cases,
the unscented KF (UKF) [166], is also analyzed. In particular, we see how
this filter is related to Kushner’s nonlinear filter (NLF) [173] and [174].

The unscented KF uses a first-order Taylor approximation on the non-
linear transition and observation functions, in order to bring us back into
a simple KF framework. On the other hand, UKF uses the true nonlinear
functions without any approximation. It, however, supposes that the Gaus-
sianity of the distribution is preserved through these functions. The UKF
determines the first two moments via integrals that are computed upon a few
appropriately chosen “sigma points.” The NLF does the same exact thing
via a Gauss-Hermite quadrature. However, NLF often introduces an extra
centering step, which will avoid poor performance owing to an insufficient
intersection between the prior distribution and the conditional likelihood.

As we observe, in addition to their use in the MLE approach, the filters
can be applied to a direct estimation of the parameters via a joint filter (JF)
[133]. The JF would simply involve the estimation of the parameters together
with the hidden state via a dimension augmentation. In other words, one
would treat the parameters as hidden states. After choosing initial conditions
and applying the filter to an observation data set, one would then disregard a
number of initial points and take the average upon the remaining estimations.
This initial rejected period is known as the “burn-in” period.

We test various representations or state space models of the stochastic
volatility models, such as Heston’s [134]. The concept of observability [205]
is introduced in this context. We see that the parameter estimation is not
always accurate given a limited amount of daily data.

Before a closer analysis of the performance of these estimation methods,
we introduce simulation-based particle filters (PF) [79] and [122], which can
be applied to non-Gaussian distributions. In a PF algorithm, the importance
sampling technique is applied to the distribution. Points are simulated via a
chosen proposal distribution, and the resulting weights proportional to the
conditional likelihood are computed. Because the variance of these weights
tends to increase over time and cause the algorithm to diverge, the simulated
points go through a variance reduction technique commonly referred to as
resampling [14]. During this stage, points with too small a weight are dis-
regarded and points with large weights are reiterated. This technique could
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cause a sample impoverishment, which can be corrected via a Metropolis-
Hastings accept/reject test. Work by researchers such as Doucet [79] and
Smith and Gordon [122] are cited and used in this context.

Needless to say, the choice of the proposal distribution could be funda-
mental in the success of the PF algorithm. The most natural choice would be
to take a proposal distribution equal to the prior distribution of the hidden
state. Even if this makes the computations simpler, the danger would be a
nonalignment between the prior and the conditional likelihood as we pre-
viously mentioned. To avoid this, other proposal distributions taking into
account the observation should be considered. The extended PF (EPF) and
the unscented PF (UPF) [229] precisely do this by adding an extra Gaussian
filtering step to the process. Other techniques, such as auxiliary PF (APF),
have been developed by Pitt and Shephard [203].

Interestingly, we will see that PF brings only marginal improvement to
the traditional KF’s when applied to daily data. However, for a larger time
step where the nonlinearity is stronger, the PF does help more.

At this point, we also compare the Heston model with other SV models,
such as the “3/2” model [177] using real market data, and we see that the
latter performs better than the former. This is in line with the findings of
Engle and Ishida [95]. We can therefore apply our inference tools to perform
model identification.

Various diagnostics [129] are used to judge the performance of the esti-
mation tools. Mean price errors (MPE) and root mean square errors (RMSE)
are calculated from the residual errors. The same residuals could be submit-
ted to a Box-Ljung test, which will allow us to see whether they still contain
auto correlation. Other tests, such as the chi-square normality test as well as
plots of histograms and variograms [110], are performed.

Most importantly, for the inference process, we back-test the tools upon
artificially simulated data, and we observe that although they give the correct
answer asymptotically, the results remain inaccurate for a smaller amount of
data points. It is reassuring to know that these observations are in agreement
with work by other researchers, such as Bagchi [19].

Here, we attempt to find an explanation for this mediocre performance.
One possible interpretation comes from the fact that in the SV problem,
the parameters affect the noise of the observation and not its drift. This is
doubly true of volatility-of-volatility and stock-volatility correlation, which
affect the noise of the noise. We should, however, note that the product of
these two parameters enters in the equations at the same level as the drift
of the instantaneous variance, and it is precisely this product that appears in
the skewness of the distribution.

Indeed, the instantaneous volatility is observable only at the second order
of a Taylor (or Ito) expansion of the logarithm of the asset price. This also
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explains why one-factor GARCH models do not have this problem. In their
context, the instantaneous volatility is perfectly known as a function of pre-
vious data points. The problem therefore seems to be a low signal-to-noise
ratio (SNR). We could improve our estimation by considering additional
data points. Using a high frequency (several quotes a day) for the data does
help in this context. However, one needs to obtain clean and reliable data
first.

Furthermore, we can see why a large time step (e.g., yearly) makes the
inference process more robust by improving the observation quality. Still,
using a large time step brings up other issues, such as stronger nonlinearity
as well as fewer available data points, not to mention the inapplicability of
the Girsanov theorem.

We analyze the sampling distributions of these parameters over many
simulations and see how unbiased and efficient the estimators are. Not sur-
prisingly, the inefficiency remains significant for a limited amount of data.

One needs to question the performance of the actual optimization algo-
rithm as well. It is known that the greater the number of the parameters we
are dealing with, the flatter the likelihood function and therefore the more
difficult to find a global optimum. Nevertheless, it is important to remember
that the SNR and therefore the performance of the inference tool depend on
the actual value of the parameters. Indeed, it is quite possible that the real
parameters are such that the inference results are accurate.

We then apply our PF to a jump-diffusion model (such as the Bates
[28] model), and we see that the estimation of the jump parameters is more
robust than the estimation of the diffusion parameters. This reconfirms that
the estimation of parameters affecting the drift of the observation is more
reliable.

We finally apply the PF to non-Gaussian models such as VGSA [48],
and we observe results similar to those for the diffusion-based models. Once
again the VG parameters directly affecting the observation are easier to
estimate, whereas the arrival rate parameters affecting the noise are more
difficult to recover.

Although as mentioned we use a classical approach, we briefly dis-
cuss Bayesian methods [34], such as Markov Chain Monte Carlo (MCMC)
[163]—including the Gibbs Sampler [55] and the Metropolis-Hastings (MH)
[58] algorithm. Bayesian methods consider the parameters not as fixed num-
bers, but as random variables having a prior distribution. One then updates
these distributions from the observations similarly to what is done in the
measurement update step of a filter. Sometimes the prior and posterior dis-
tributions of the parameters belong to the same family and are referred to as
conjugates. The parameters are finally estimated via an averaging procedure
similar to the one employed in the JF. Whether the Bayesian methods are
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actually better or worse than the classical ones has been a subject of long
philosophical debate [240] and remains for the reader to decide.

Other methodologies that differ from ours are the nonparametric (NP)
and the semi-nonparametric (SNP). These methods are based on kernel inter-
polation procedures and have the obvious advantage of being less restrictive.
However, parametric models, such as the ones used by us, offer the possi-
bility of comparing and interpreting parameters such as drift and volatility
of the instantaneous variance explicitly. Researchers, such as Gallant and
Tauchen [109] and Aït-Sahalia [6], use NP/SNP approaches.

Finally, in Chapter 3, we apply the aforementioned parametric inference
methodologies to a few assets and will question the consistency of informa-
tion contained in the options markets on the one hand, and in the stock
market on the other hand.

We see that there seems to be an excess negative skewness and kurtosis in
the former. This is in contradiction with the Girsanov theorem for a Heston
model and could mean either that the model is misspecified or that there is
a profitable transaction to be made. Another explanation could come from
the peso theory [12] (or crash-o-phobia [155]), where an expectation of a
so-far absent crash exists in the options markets.

Adding a jump component to the distributions helps to reconcile
the volatility-of-volatility and correlation parameters; however, it remains
insufficient. This is in agreement with statements made by Bakshi, Cao, and
Chen [20].

It is important to realize that, ideally, one should compare the infor-
mation embedded in the options and the evolution of the underlying asset
during the life of these options. Indeed, ordinary put or call options are for-
ward (and not backward) looking. However, given the limited amount of
available daily data through this period, we make the assumption that the
dynamics of the underlying asset do not change before and during the exist-
ence of the options. We therefore use time series that start long before the
commencement of these contracts.

This assumption allows us to consider a skewness trade [6], in which
we would exploit such discrepancies by buying out-of-the-money (OTM)
call options and selling OTM put options. We see that the results are not
necessarily conclusive. Indeed, even if the trade often generates profits, occa-
sional sudden jumps cause large losses. This transaction is therefore similar
to “selling insurance.”

We also apply the same idea to the VGSA model in which despite the
non-Gaussian features, the volatility of the arrival rate is supposed to be the
same under the real and risk-neutral worlds.

Let us be clear on the fact that this chapter does not constitute a thorough
empirical study of stock versus options markets. It rather presents a set of
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examples of application for our previously constructed inference tools. There
clearly could be many other applications, such as model identification as
discussed in the second chapter.

Yet another application of the separate estimations of the statistical and
risk-neutral distributions is the determination of optimal positions in deriva-
tives securities, as discussed by Carr and Madan [52]. Indeed, the expected
utility function to be maximized needs the real-world distribution, whereas
the initial wealth constraint exploits the risk-neutral distribution. This can
be seen via a self-financing portfolio argument similar to the one used by
Black and Scholes [38].

Finally, we should remember that in all of the foregoing, we are assuming
that the asset and options dynamics follow a known and fixed model, such as
Heston or VGSA. This is clearly a simplification of reality. The true markets
follow an unknown and, perhaps more importantly, constantly changing
model. The best we can do is to use the information hitherto available and
hope that the future behavior of the assets is not too different from that of
the past. Needless to say, as time passes by and new information becomes
available, we need to update our models and parameter values. This could
be done within either a Bayesian or classical framework.

Also, we apply the same procedures to other asset classes, such as foreign
exchange and fixed income. It is noteworthy that although most of the text
is centered on equities, almost no change whatsoever is necessary in order
to apply the methodologies to these asset classes, which shows again how
flexible the tools are.

In the Bibliography, many but not all relevant articles and books are
cited. Only some of them are directly referred to in the text.

CONTRIBUTIONS AND FURTHER RESEARCH

The contribution of the book is in presenting a general and systematic way
to calibrate any parametric SV model (diffusion based or not) to a time
series under a classical (non-Bayesian) framework. Although the concept
of filtering has been used for estimating volatility processes before [130],
to my knowledge, this has always been for specific cases and was never
generalized. The use of particle filtering allows us to do this in a flexible and
simple manner. We also study the convergence properties of our tools and
show their limitations.

Whether the results of these calibrations are consistent with the infor-
mation contained in the options markets is a fundamental question. The
applications of this test are numerous, among which the skewness trade is
only one example.
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What else can be done?—a comparative study between our approach
and Bayesian approaches on the one hand, and nonparametric approaches
on the other hand. Work by researchers such as Johannes, Polson, and Aït-
Sahalia would be extremely valuable in this context.

DATA AND PROGRAMS

This book centers on time-series methodologies and exploits either artificially
generated inputs or real market data. When real market data is utilized, the
source is generally Bloomberg. However, most of the data could be obtained
from other public sources available on the Internet.

All numeric computations are performed via routines implemented in
the C++ programming language. Some algorithms, such as the direction-set
optimization algorithm are taken from Numerical Recipes in C [204]. No
statistical packages, such as S-Plus or R, have been used.

The actual C++ code for some of the crucial routines (such as EKF or
UPF) is provided in this text.



CHAPTER 1
The Volatility Problem

Suppose we use the standard deviation of possible future returns
on a stock as a measure of its volatility. Is it reasonable to take
that volatility as a constant over time? I think not.

— Fischer Black

INTRODUCTION

It is widely accepted today that an assumption of a constant volatility fails
to explain the existence of the volatility smile as well as the leptokurtic
character (fat tails) of the stock distribution. The above Fischer Black quote,
made shortly after the famous constant-volatility Black-Scholes model was
developed, proves the point.

In this chapter, we will start by describing the concept of Brownian
motion for the stock price return as well as the concept of historic volatility.
We will then discuss the derivatives market and the ideas of hedging and
risk neutrality. We will briefly describe the Black-Scholes partial derivatives
equation (PDE) in this section. Next, we will talk about jumps and level
dependent volatility models. We will first mention the jump diffusion process
and introduce the concept of leverage. We will then refer to two popular level
dependent approaches: the constant elasticity variance (CEV) model and the
Bensoussan-Crouhy-Galai (BCG) model. At this point, we will mention local
volatility models developed in the recent past by Dupire and Derman-Kani,
and we will discuss their stability.

Following this, we will tackle the subject of stochastic volatility, where
we will mention a few popular models, such as the square-root model and
the general autoregressive conditional heteroskedasticity (GARCH) model.
We will then talk about the pricing PDE under stochastic volatility and the

1
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risk-neutral version of it. For this we will need to introduce the concept of
market price of risk.

The generalized Fourier transform is the subject of the following section.
This technique was used by Alan Lewis extensively for solving stochastic
volatility problems. Next, we will discuss the mixing solution, both in cor-
related and uncorrelated cases. We will mention its link to the fundamental
transform and its usefulness for Monte Carlo–based methods. We will then
describe the long-term asymptotic case, where we get closed-form approxi-
mations for many popular methods, such as the square-root model. Lastly,
we will talk about pure-jump models, such as variance gamma and variance
gamma with stochastic arrival.

THE STOCK MARKET

The Stock Price Process

The relationship between the stock market and the mathematical concept
of Brownian motion goes back to Bachelier [18]. A Brownian motion cor-
responds to a process, the increments of which are independent stationary
normal random variables. Given that a Brownian motion can take negative
values, it cannot be used for the stock price. Instead, Samuelson [211] sug-
gested using this process to represent the return of the stock price, which
will make the stock price a geometric (or exponential) Brownian motion.

In other words, the stock price S follows a log-normal process1

dSt = µStdt + σStdBt (1.1)

where dBt is a Brownian motion process, µ the instantaneous expected total
return of the stock (possibly adjusted by a dividend yield), and σ the instant-
aneous standard deviation of stock price returns, called the volatility in finan-
cial markets.

Using Ito’s lemma,2 we also have

d ln(St) =
(

µ − 1

2
σ2

)
dt + σdBt (1.2)

The stock return µ could easily become time dependent without changing
any of our arguments. For simplicity, we will often refer to it as µ even if we
mean µt. This remark holds for other quantities, such as rt, the interest-rate,
or qt, the dividend yield.

Equation (1.1) represents a continuous process. We can either take this
as an approximation of the real discrete tick-by-tick stock movements or

1For an introduction to stochastic processes, see Karatzas [167] or Oksendal [197].
2See, for example, Hull [146].
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consider it the real unobservable dynamics of the stock price, in which case
the discrete prices constitute a sample from this continuous ideal process.
Either way, the use of a continuous equation makes the pricing of financial
instruments more analytically tractable.

The discrete equivalent of (1.2) is

ln St+�t = ln St +
(

µ − 1

2
σ2

)
�t + σ

√
�tBt (1.3)

where (Bt) is a sequence of independent normal random variables with zero
mean and variance of 1.

Historic Volatility

This suggests a first simple way to estimate the volatility, σ, namely the his-
toric volatility. Considering S1↪ ...↪ SN as a sequence of known historic daily
stock close prices, calling Rn = ln(Sn+1/Sn) the stock price return between
two days and R̄ = 1

N

∑N−1
n=0 Rn the mean return, the historic volatility would

be the annualized standard deviation of the returns, namely

σhist =
√√√√ 252

N − 1

N−1∑
n=0

(Rn − R̄)2 (1.4)

Because we work with annualized quantities, and we are using daily
stock closing prices, we needed the factor 252, supposing that there are
approximately 252 business days in a year.3

Note that N , the number of observations, can be more or less than one
year; therefore when talking about a historic volatility, it is important to
know what time horizon we are considering. We can indeed have three-
month historic volatility or three-year historic volatility. Needless to say,
taking too few prices would give an inaccurate estimation. Similarly, the
begin and end date of the observations matter. It is preferable to take the
end date as close as possible to today so that we include recent observations.

An alternative was suggested by Parkinson [200] in which instead of
daily closing prices we use the high and the low prices of the stock on that
day, and Rn = ln(S

high
n /Slow

n ). The volatility would then be

σparkinson =
√√√√ 252

N − 1

1

4 ln(2)

N−1∑
n=0

(Rn − R̄)2

This second moment estimation derived by Parkinson is based upon the
fact that the range Rn of the asset follows a Feller distribution.

3Clearly the observation frequency does not have to be daily.



4 INSIDE VOLATILITY ARBITRAGE

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0 50 100 150 200 250 300 350 400 450 500

H
is

to
ric

 V
ol

at
ili

ty

Days

Historic Volatility

Historic Volatility

FIGURE 1.1 The SPX Historic Rolling Volatility from 01/03/2000 to 12/31/2001.
As we can see, the volatility is clearly nonconstant.

Plotting, for instance, the one-year rolling4 historic volatility (1.4) of the
S&P 500 Stock Index, it is easily seen that this quantity is not constant over
time (Figure 1.1). This observation was made as early as the 1960s by many
financial mathematicians and followers of the chaos theory. We therefore
need time-varying volatility models.

One natural extension of the constant volatility approach is to make σt

a deterministic function of time. This is equivalent to giving the volatility a
term structure, by analogy with interest rates.

THE DERIVATIVES MARKET

Until now, we have mentioned the stock price movements independently
from the derivatives market, but we now are going to include the financial
derivatives (especially options) prices as well. These instruments became very
popular and as liquid as the stocks themselves after Black and Scholes intro-
duced their risk-neutral pricing formula in [38].

4By rolling we mean that the one-year interval slides within the total observation
period.
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The Black-Scholes Approach

The Black-Scholes approach makes a number of reasonable assumptions
about markets being frictionless and uses the log-normal model for the
stock price movements. It also supposes a constant or deterministically time-
dependent stock drift and volatility. Under these conditions, they prove that
it is possible to hedge a position in a contingent claim dynamically by taking
an offsetting position in the underlying stock and hence become immune to
the stock movements. This risk neutrality is possible because, as they show,
we can replicate the financial derivative (for instance, an option) by taking
positions in cash and the underlying security. This condition of the possibility
of replication is called market completeness.

In this situation, everything happens as if we were replacing the stock
drift µt with the risk-free rate of interest rt in (1.1) or rt − qt if there is a
dividend-yield qt. The contingent claim f (S↪ t) having a payoff G(ST) will
satisfy the famous Black-Scholes equation

rf = ∂f

∂t
+ (r − q)S

∂f

∂S
+ 1

2
σ2S2 ∂2f

∂S2
(1.5)

Indeed the hedged portfolio � = f − ∂f
∂S

S is immune to the stock random
movements and, according to Ito’s lemma, verifies

d� =
(

∂f

∂t
+ 1

2
σ2S2 ∂2f

∂S2

)
dt

which must also be equal to r�dt or else there would be possibility of Risk-
less arbitrage.5

Note that this equation is closely related to the Feynman-Kac equation
satisfied by F (S↪ t) = Et(h(ST)) for any function h under the risk-neutral
measure; F (S↪ t) must be a Martingale6 under this measure and therefore
must be driftless, which implies dF = σS ∂F

∂S
dBt and

0 = ∂F

∂t
+ (r − q)S

∂F

∂S
+ 1

2
σ2S2 ∂2F

∂S2

This would indeed be a different way to reach the same Black-Scholes equa-
tion, by using f (S↪ t) = exp(−rt)F (S↪ t) , as was done, for instance, in Shreve
[218].

Let us insist again on the fact that the real drift of the stock price does
not appear in the preceding equation, which makes the volatility σt the only

5For a detailed discussion, see Hull [146].
6For an explanation, see Shreve [218] or Karatzas [167].
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unobservable quantity. As we said, the volatility could be a deterministic
function of time without changing the foregoing argument, in which case all
we need to do is to replace σ2 with 1

t

∫ t

0 σ2
s ds, and keep everything else the

same.
For calls and puts, where the payoffs G(ST) are respectively MAX(0↪ ST−

K) and MAX(0↪ K − ST) and where K is the strike price and T the maturity
of the option, the Black-Scholes partial derivatives equation is solvable and
gives the celebrated Black-Scholes formulae

callt = Ste
−q(T −t)�(d1) − Ke−r(T −t)�(d2) (1.6)

and
putt = −Ste

−q(T −t)�(−d1) + Ke−r(T −t)�(−d2) (1.7)

where

�(x) = 1√
2π

∫ x

−∞
e− u2

2 du

is the cumulative standard normal function and

d1 = d2 + σ
√

T − t and d2 = ln
(

St
K

) + (
r − q − 1

2σ2
)
(T − t)

σ
√

T − t

Note that using the well-known symmetry property for normal distributions
�(−x) = 1 −�(x) in the above formulae, we could reach the put-call parity
relationship

callt − putt = Ste
−q(T −t)− Ke−r(T −t) (1.8)

which we can also rearrange as

Ste
−q(T −t)− callt = Ke−r(T −t) − putt

The left-hand side of this last equation is called a covered call and is
equivalent to a short position in a put combined with a bond.

The Cox-Ross-Rubinstein Approach

Later, Cox, Ross, and Rubinstein [66] developed a simplified approach using
the binomial law to reach the same pricing formulae. The approach com-
monly referred to as the binomial tree uses a tree of recombining spot prices,
in which at a given time step n we have n + 1 possible S[n][j ] spot prices,
with 0 ≤ j ≤ n. Calling p the upward transition probability and 1 − p
the downward transition probability, S the stock price today, and Su = uS
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and Sd = dS upper and lower possible future spot prices, we can write the
expectation equation7

E[S] = puS + (1 − p)dS = er�tS

which immediately gives us

p = a − d

u − d

with a = exp(r�t).
We can also write the variance equation

V ar[S] = pu2S2 + (1 − p)d2S2 − e2r�tS2 ≈ σ2S2�t

which after choosing a centering condition, such as ud = 1, will provide us
with u = exp

(
σ
√

�t
)

and d = exp
(−σ

√
�t

)
. Using the values for u, d, and p

we can build the tree, and using the final payoff we can calculate the option
price by backward induction.8 We can also build this tree by applying an
explicit finite difference scheme to the PDE (1.5), as was done in Wilmott
[238]. An important advantage of the tree method is that it can be applied
to American options (with early exercise) as well.

It is possible to deduce the implied volatility of call and put options by
solving a reverse Black-Scholes equation, that is, find the volatility that would
equate the Black-Scholes price to the market price of the option. This is a
good way to see how derivatives markets perceive the underlying volatility.
It is easy to see that if we change the maturity and strike prices of options
(and keep everything else fixed) the implied volatility will not be constant. It
will have a linear skew and a convex form as the strike price changes. This
famous “smile” cannot be explained by simple time dependence, hence the
necessity of introducing new models (Figure 1.2).9

JUMP DIFFUSION AND LEVEL-DEPENDENT VOLATILITY

In addition to the volatility smile observable from the implied volatilities of
the options, there is evidence that the assumption of a pure normal distribu-
tion (also called pure diffusion) for the stock return is not accurate. Indeed
“fat tails” have been observed away from the mean of the stock return. This

7The expectation equation is written under the risk-neutral probability.
8For an in-depth discussion on binomial trees, see Cox [67].
9It is interesting to note that this smile phenomenon was practically nonexistent
prior to the 1987 stock-market crash. Many researchers therefore believe that the
markets have learnt to factor-in a crash possibility, which creates the volatility smile.
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FIGURE 1.2 The SPX Volatility Smile on February 12, 2002 with Index = $1107.50,
1 Month and 7 Months to Maturity. The negative skewness is clearly visible. Note
how the smile becomes flatter as time to maturity increases.

phenomenon is called leptokurticity and could be explained in many differ-
ent ways.

Jump Diffusion

Some try to explain the smile and the leptokurticity by changing the under-
lying stock distribution from a diffusion process to a jump-diffusion process.
A jump diffusion is not a level-dependent volatility process; however, we
are mentioning it in this section to demonstrate the importance of the lever-
age effect. Merton [190] was first to actually introduce jumps in the stock
distribution. Kou [172] recently used the same idea to explain both the exist-
ence of fat tails and the volatility smile.

The stock price will follow a modified stochastic process under this
assumption. If we add to the Brownian motion, dBt; a Poisson (jump) pro-
cess10 dq with an intensity11 λ, and then calling k = E(Y − 1) with Y − 1

10See, for instance, Karatzas [167].
11The intensity could be interpreted as the mean number of jumps per time unit.
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the random variable percentage change in the stock price, we will have

dSt = (µ − λk)Stdt + σStdBt + Stdq (1.9)

or equivalently,

St = S0 exp

[(
µ − σ2

2
− λk

)
t + σBt

]
Yn

where Y0 = 1 and Yn = ∏n
j=1 Yj, with Yj ’s independently identically distri-

buted random variables and n a Poisson random variable with a parameter λt.
It is worth noting that for the special case where the jump corresponds

to total ruin or default, we have k = −1, which will give us

dSt = (µ + λ)Stdt + σStdBt + Stdq (1.10)

and

St = S0 exp

[(
µ + λ − σ2

2

)
t + σBt

]
Yn

Given that in this case E(Yn) = E(Y 2
n ) = e−λt, it is fairly easy to see that in

the risk-neutral world
E(St) = S0ert

exactly as in the pure diffusion case, but

V ar(St) = S2
0e2rt

(
e(σ2+λ)t − 1

) ≈ S2
0

(
σ2 + λ

)
t (1.11)

unlike the pure diffusion case, where V ar(St) ≈ S2
0σ2t.

Proof: Indeed

E(St) = S0 exp((r + λ)t) exp

(
−σ2

2
t

)
E[exp(σBt)]E(Yn)

= S0 exp((r + λ)t) exp

(
−σ2

2
t

)
exp

(
σ2

2
t

)
exp(−λt) = S0 exp(rt)

and

E(S2
t ) = S2

0 exp(2(r + λ)t) exp
(−σ2t

)
E[exp(2σBt)]E(Y 2

n )

= S2
0 exp(2(r + λ)t) exp

(−σ2t
)

exp

(
(2σ)2

2

)
exp(−λt)

= S2
0 exp((2r + λ)t) exp

(
σ2t

)
and as usual

V ar(St) = E
(
S2

t

) − E2(St)

(QED)
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Link to Credit Spread Note that for a zero-coupon risky bond Z with no recov-
ery, a credit spread C and a face value X paid at time t we have

Z = e−(r+C)tX = e−λt(e−rtX) + (1 − e−λt)(0)

consequently λ = C and using (1.11) we can write

σ̃2(C) = σ2 + C

where σ is the fixed (pure diffusion) volatility and σ̃ is the modified jump dif-
fusion volatility. The preceding equation relates the volatility and leverage,
a concept we will see later in level-dependent models as well.

Also, we could see that everything happens as if we were using the Black-
Scholes pricing equation but with a modified “interest rate,” which is r + C.
Indeed the hedged portfolio � = f − ∂f

∂S
S now satisfies

d� =
(

∂f

∂t
+ 1

2
σ2S2 ∂2f

∂S2

)
dt

under the no-default case, which occurs with a probability of e−λdt ≈ 1 − λdt
and

d� = −�

under the default case, which occurs with a probability of 1 − e−λdt ≈ λdt .
We therefore have

E(d�) =
(

∂f

∂t
+ 1

2
σ2S2 ∂2f

∂S2
− λ�

)
dt

and using a diversification argument we can always say that E(d�) = r�dt
which provides us with

(r + λ)f = ∂f

∂t
+ (r + λ)S

∂f

∂S
+ 1

2
σ2S2 ∂2f

∂S2
(1.12)

which again is the Black-Scholes PDE with a “risky rate.”
A generalization of the jump diffusion process would be the use of the

Levy process. A Levy process is a stochastic process with independent and
stationary increments. Both the Brownian motion and the Poisson process
are included in this category. For a description, see Matacz [186].

Level-Dependent Volatility

Many assume that the smile and the fat tails are due to the level dependence
of the volatility. The idea would be to make σt level dependent or a function
of the spot itself; we would therefore have

dSt = µtStdt + σ(S↪ t)StdBt (1.13)
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Note that to be exact, a level-dependent volatility is a function of the spot
price alone. When the volatility is a function of the spot price and time, it is
referred to as local volatility, which we shall discuss further.

The Constant Elasticity Variance Approach One of the very first attempts to use
this approach was the constant elasticity variance (CEV) method realized
by Cox [64] and [65] (Figure 1.3). In this method we would suppose an
equation of the type

σ(S↪ t) = CS
γ
t (1.14)

where C and γ are parameters to be calibrated either from the stock price
returns themselves or from the option prices and their implied volatilities.
The CEV method was recently analyzed by Jones [165] in a paper in which
he uses two γ exponents.

This level-depending volatility represents an important feature that is
observed in options markets as well as in the underlying prices: the negative
correlation between the stock price and the volatility, also called the leverage
effect.

The Bensoussan-Crouhy-Galai Approach Bensoussan, Crouhy, and Galai (BCG)
[33] try to find the level dependence of the volatility in a manner that differs
from that of Cox and Ross (Figure 1.4). Indeed in the CEV model, Cox and
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FIGURE 1.3 The CEV Model for SPX on February 12, 2002 with Index = $1107.50,
1 Month to Maturity. The smile is fitted well, but the model assumes a perfect
(negative) correlation between the stock and the volatility.
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Ross first suppose that σ(S↪ t) has a certain exponential form and only then
try to calibrate the model parameters to the market. Alternatively, BCG try
to deduce the functional form of σ(S↪ t) by using a firm structure model.

The idea of firm structure is not new and goes back to Merton [189],
when he considers that the firm assets follow a log-normal process

dV = µVV dt + σVV dBt (1.15)

where µV and σV are the asset’s return and volatility. One important point
is that σV is considered constant. Merton then argues that the equity S of
the firm could be considered a call option on the assets of the firm with a
strike price K equal to the face value of the firm liabilities and an expiration
T equal to the average liability maturity.

Using Ito’s lemma, it is fairly easy to see that

dS = µSdt + σ(S↪ t)SdBt (1.16)

=
(

∂S

∂t
+ µVV

∂S

∂V
+ 1

2
σ2

VV 2 ∂2S

∂V 2

)
dt + σVV

∂S

∂V
dBt

which immediately provides us with

σ(S↪ t) = σV
V

S

∂S

∂V
(1.17)

which is an implicit functional form for σ(S↪ t).
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FIGURE 1.4 The BCG Model for SPX on February 12, 2002 with Index = $1107.50,
1 Month to Maturity. The smile is fitted well.
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Next, BCG eliminate the asset term in the preceding functional form and
end up with a nonlinear PDE

∂σ

∂t
+ 1

2
σ2S2 ∂2σ

∂S2
+ (

r + σ2
)

S
∂σ

∂S
= 0 (1.18)

This PDE gives the dependence of σ on S and t .

Proof: A quick sketch of the proof is as follows: With S being a contingent
claim on V , we have the risk-neutral Black-Scholes PDE

∂S

∂t
+ rV

∂S

∂V
+ 1

2
σ2

VV 2 ∂2S

∂V 2
= rS

and using ∂S
∂V

= 1/ ∂V
∂S

as well as ∂S
∂t

= − ∂S
∂V

∂V
∂t

and ∂2S
∂V 2 = − ∂2V

∂S2 /
(

∂V
∂S

)3
we have

the reciprocal Black-Scholes equation

∂V

∂t
+ rS

∂V

∂S
+ 1

2
σ2S2 ∂2V

∂S2
= rV

Now posing �(S↪ t) = ln V (S↪ t), we have ∂V
∂t

= V ∂�
∂t

as well as ∂V
∂S

= V ∂�
∂S

and ∂2V
∂S2 = V

(
∂2�
∂S2 + ( ∂�

∂S
)2

)
, and we will have the new PDE

r = ∂�

∂t
+ rS

∂�

∂S
+ 1

2
σ2S2

(
∂2�

∂S2
+

(
∂�

∂S

)2
)

and the equation

σ = σV/

(
S

∂�

∂S

)

This last identity implies that ∂�
∂S

= σV
Sσ as well as ∂2�

∂S2 = −σV (σ+S ∂σ
∂S )

S2σ2 , and
therefore the PDE becomes

r = ∂�

∂t
+ rσV/σ + 1

2

(
σ2

V − σV

(
σ + S

∂σ

∂S

))

taking the derivative with respect to S and using ∂2�
∂S∂t

= − σV

Sσ2
∂σ
∂t

we get the
final PDE

∂σ

∂t
+ 1

2
σ2S2 ∂2σ

∂S2
+ (

r + σ2
)

S
∂σ

∂S
= 0

as previously stated. (QED)
We therefore have an implicit functional form for σ(S↪ t), and, just as

for the CEV case, we need to calibrate the parameters to the market data.
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LOCAL VOLATILITY

In the early 1990s, Dupire [89], as well as Derman and Kani [74], developed
a concept called local volatility, in which the volatility smile was retrieved
from the option prices.

The Dupire Approach

The Breeden & Litzenberger Identity This approach uses the options prices to get
the implied distribution for the underlying stock. To do this we can write

V (S0↪ K↪ T ) = call(S0↪ K↪ T ) = e−rT

∫ +∞

0
(S − K)+p(S0↪ S↪ T )dS (1.19)

where S0 is the stock price at time t = 0 and K the strike price of the call, and
p(S0↪ S↪ T ) is the unknown transition density for the stock price. As usual,
x+ = MAX(x↪ 0)

Using Equation (1.19) and differentiating with respect to K twice, we
get the Breeden and Litzenberger [44] implied distribution

p(S0↪ K↪ T ) = erT ∂2V

∂K2
(1.20)

Proof: The proof is straightforward if we write

erTV (S0↪ K↪ T ) =
∫ +∞

K

Sp(S0↪ S↪ T )dS − K

∫ +∞

K

p(S0↪ S↪ T )dS

and take the first derivative

erT ∂V

∂K
= −Kp(S0↪ K↪ T ) + Kp(S0↪ K↪ T ) −

∫ +∞

K

p(S0↪ S↪ T )dS

and the second derivative in the same manner. (QED)

The Dupire Identity Now, according to the Fokker-Planck (or forward
Kolmogorov) equation12 for this density, we have

∂p

∂T
= 1

2

∂2(σ2(S↪ t)S2p)

∂S2
− r

∂(Sp)

∂S

12See, for example, Wilmott [237] for an explanation on Fokker-Planck equation.
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and therefore after a little rearrangement have

∂V

∂T
= 1

2
σ2K2 ∂2V

∂K2
− rK

∂V

∂K

which provides us with the local volatility formula

σ2(K↪ T ) =
∂V
∂T

+ rK ∂V
∂K

1
2 K2 ∂2V

∂K2

(1.21)

Proof: For a quick proof of the above let us use the zero interest rates case
(the general case could be done similarly). We would then have

p(S0↪ K↪ T ) = ∂2V

∂K2

as well as Fokker-Planck

∂p

∂T
= 1

2

∂2(σ2(S↪ t)S2p)

∂S2

Now

∂V

∂T
=

∫ +∞

0
(ST − K)+ ∂p

∂T
dST

=
∫ +∞

0
(ST − K)+ 1

2

∂2
(
σ2(S↪ T )S2p

)
∂S2

dST

and integrating by parts twice and using the fact that

∂2(ST − K)+

∂K2
= δ(ST − K)

with δ(.), the Dirac function, we will have

∂V

∂T
= 1

2
σ2(K↪ T )K2p(S0↪ K↪ T ) = 1

2
K2σ2(K↪ T )

∂2V

∂K2

as stated. (QED)
It is also possible to use the implied volatility, σBS , from the Black-

Scholes formula (1.6) and express the foregoing local volatility in terms of
σBS instead of V. For a detailed discussion, we could refer to Wilmott [237].



16 INSIDE VOLATILITY ARBITRAGE

Local Volatility vs. Instantaneous Volatility Clearly, the local volatility is related
to the instantaneous variance vt, as Gatheral [113] shows; the relationship
could be written as

σ2(K↪ T ) = E[vT |ST = K] (1.22)

that is, local variance is the risk-neutral expectation of the instantaneous
variance conditional on the final stock price being equal to the strike price.13

Proof: Let us show the above identity for the case of zero interest rates.14

As mentioned, we have

σ2(K↪ T ) =
∂V
∂T

1
2 K2 ∂2V

∂K2

On the other hand, using the call payoff V (S0↪ K↪ t = T ) = E[(ST − K)+]
we have

∂V

∂K
= E[H(ST − K)]

with H(.), the heaviside function and

∂2V

∂K2
= E[δ(ST − K)]

with δ(.), the Dirac function.
Therefore the Ito lemma at t = T would provide

d(ST − K)+ = H(ST − K)dST + 1

2
vTS2

Tδ(ST − K)dT

Using the fact that the forward price (here with zero interest rates, the stock
price) is a Martingale under the risk-neutral measure

dV = dE[(ST − K)+] = 1

2
E

[
vTS2

Tδ(ST − K)
]

dT

Now we have

E[vTS2
Tδ(ST − K)] = E[vT |ST = K]K2E[δ(ST − K)]

= E[vT |ST = K]K2 ∂2V

∂K2

13Note that this is independent from the process for vt , meaning that any stochastic
volatility model satisfies this property, which is an attractive feature of local volatility
models.
14For the case of nonzero rates, we need to work with the forward price instead of
the stock price.
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Putting all this together

∂V

∂T
= 1

2
K2 ∂2V

∂K2
E[vT |ST = K]

and by the preceding expression of σ2(K↪ T ), we will have

σ2(K↪ T ) = E[vT |ST = K]

as claimed. (QED)

The Derman-Kani Approach

The Derman-Kani technique is very similar to the above approach, except
that it uses the binomial (or trinomial) tree framework instead of the continu-
ous one. Using the binomial tree notations, their upward transition prob-
ability pi from the spot si at time tn to the upper node Si+1 at the following
time-step tn+1, is obtained from the usual

pi = Fi − Si

Si+1 − Si
(1.23)

where Fi is the stock forward price known from the market and Si the lower
spot at the step tn+1.

In addition, we have for a call expiring at time step tn+1

C(K↪ tn+1) = e−r�t
n∑

j=1

[
λj pj + λj+1

(
1 − pj+1

)]
MAX(Sj+1 − K↪ 0)

where λj ’s are the known Arrow-Debreu prices corresponding to the dis-
counted probability of getting to the point sj at time tn from S0, the initial
stock price. These probabilities could easily be derived iteratively.

This allows us after some calculation to obtain Si+1 as a function of si

and Si , namely

Si+1 = Si [er�tC(si ↪ K↪ tn+1) − �] − λi si (Fi − Si )

[er�tC(si ↪ K↪ tn+1) − �] − λi (Fi − Si )

where the term � represents the sum
∑n

j = i+1 λj (Fj − si ). This means that
after choosing the usual centering condition for the binomial tree

s2
i = SiSi+1

we have all the elements to build the tree and deduce the implied distribution
from the Arrow-Debreu prices.
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Stability Issues

The local volatility models are very elegant and theoretically sound; how-
ever, they present in practice many stability issues. They are ill-posed inver-
sion problems and are extremely sensitive to the input data.15 This might
introduce arbitrage opportunities and in some cases negative probabilities
or variances. Derman and Kani suggest overwriting techniques to avoid such
problems.

Andersen [13] tries to improve this issue by using an implicit finite dif-
ference method; however, he recognizes that the negative variance problem
could still happen.

One way to make the results smoother is to use a constrained optimiza-
tion. In other words, when trying to fit theoretical results Ctheo to the market
prices Cmrkt, instead of minimizing

N∑
j=1

(
Ctheo

(
Kj

) − Cmrkt

(
Kj

))2

we could minimize

λ
∂σ

∂t
+

N∑
j=1

(
Ctheo

(
Kj

) − Cmrkt

(
Kj

))2

where λ is a constraint parameter, which could also be interpreted as a
Lagrange multiplier. However, this is an artificial way to smoothen the results
and the real issue remains that, once again, we have an inversion problem that
is inherently unstable. Furthermore, local volatility models imply that future
implied volatility smiles will be flat relative to today’s, which is another lim-
itation.16 As we will see in the following section, stochastic volatility models
offer more time-homogeneous volatility smiles.

An alternative approach suggested in [16] would be to choose a prior
risk-neutral distribution for the asset (based on a subjective view) and then
minimize the relative entropy distance between the desired surface and this
prior distribution. This approach uses the Kullback-Leibler distance (which
we will discuss in the context of maximum likelihood estimation [MLE])
and performs the minimization via dynamic programming [35] on a tree.

15See Tavella [226] or Avellaneda [16].
16See Gatheral [114].
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Calibration Frequency

One of the most attractive features of local-vol models is their ability to
match plain-vanilla puts and calls exactly. This will avoid arbitrage situ-
ations, or worse, market manipulations by traders to create “phantom”
profits. As explained in Hull [147], these arbitrage-free models were devel-
oped by researchers with a single calibration (SC) methodology assumption.
However, in practice, traders use them with a continual recalibration (CR)
strategy. Indeed if they used the SC version of the model, significant errors
would be introduced from one week to the following as shown by Dumas
et al. [88]. However, once this CR version is used, there is no guarantee
that the no-arbitrage property of the original SC model is preserved. Indeed
the Dupire equation determines the marginal stock distribution at different
points in time, but not the joint distribution of these stock prices. There-
fore a path-dependent option could very well be mispriced, and the more
path-dependent this option, the greater the mispricing.

Hull [147] takes the example of a bet option, a compound option, and a
barrier option. The bet option depends on the distribution of the stock at one
point in time and therefore is correctly priced with a continually recalibrated
local vol model. The compound option has some path dependency, and hence
a certain amount of mispricing compared with a stochastic volatility (SV)
model. Finally, the barrier option has a strong degree of path dependency
and will introduce large errors. Note that this is due to the discrete nature
of the data. Indeed, the maturities we have are limited. If we had all possible
maturities in a continuous way, the joint distribution would be determined
completely. Also, when interpolating in time, it is customary to interpolate
upon the true variance tσ2

t rather than the volatility σt given the equation

T2σ
2(T2) = T1σ

2(T1) + (T2 − T1)σ2(T1↪ T2)

Interpolating upon the true variance will provide smoother results as shown
by Jackel [152].

Proof: Indeed, calling for 0 ≤ T1 ≤ T2, the spot return variances

V ar(0↪ T2) = T2σ
2(T2)

V ar(0↪ T1) = T1σ
2(T1)

for a Brownian motion, we have independent increments and therefore a
forward variance V ar(T1↪ T2) such that

V ar(0↪ T1) + V ar(T1↪ T2) = V ar(0↪ T2)

which demonstrates the point. (QED)



20 INSIDE VOLATILITY ARBITRAGE

STOCHASTIC VOLATILITY

Unlike nonparametric local volatility models, parametric stochastic volatility
(SV) models define a specific stochastic differential equation for the unobserv-
able instantaneous variance. As we shall see, the previously defined CEV
model could be considered a special case of these models.

Stochastic Volatility Processes

The idea would be to use a different stochastic process for σ altogether. Mak-
ing the volatility a deterministic function of the spot is a special “degenerate”
two-factor, a natural generalization of which would precisely be to have two
stochastic processes with an imperfect correlation.17

Several different stochastic processes have been suggested for the volatil-
ity. A popular one is the Ornstein-Uhlenbeck (OU) process:

dσt = −ασtdt + βdZt (1.24)

where α and β are two parameters, remembering the stock equation

dSt = µtStdt + σtStdBt

there is a (usually negative) correlation ρ between dZt and dBt, which can
in turn be time or level dependent. Heston [134] and Stein [223] were
among those who suggested the use of this process. Using Ito’s lemma, we
can see that the stock-return variance vt = σ2

t satisfies a square-root or Cox-
Ingersoll-Ross (CIR) process

dvt = (ω − θvt)dt + ξ
√

vtdZt (1.25)

with ω = β2, θ = 2α, and ξ = 2β.
Note that the OU process has a closed-form solution

σt = σ0e−αt + β

∫ t

0
e−α(t−s)dZs

17Note that here the instantaneous volatility is stochastic. Recent work by research-
ers such as Schonbucher supposes a stochastic implied-volatility process, which
is a completely different approach. See, for instance, [213]. On the other hand,
Avellaneda et al. [17] use the concept of uncertain volatility for pricing and hedging
derivative securities. They make the volatility switch between two extreme values
based on the convexity of the derivative contract and obtain a nonlinear Black-
Scholes-Barenblatt equation, which they solve on a grid.
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which means that σt follows in law �
(
σ0e−αt↪ β2

2α

(
1−e−2αt

))
, with � again the

normal distribution. This was discussed in Fouque [104] and Shreve [218].
Heston and Nandi [137] show that this process corresponds to a special

case of the general auto regressive conditional heteroskedasticity (GARCH)
model, which we will discuss next. Another popular process is the GARCH
(1,1) process, where we would have

dvt = (ω − θvt)dt + ξvtdZt (1.26)

GARCH and Diffusion Limits

The most elementary GARCH process, called GARCH(1,1), was developed
originally in the field of econometrics by Engle [94] and Bollerslev [40] in a
discrete framework. The stock discrete equation (1.3) could be rewritten by
taking �t = 1 and vn = σ2

n as

ln Sn+1 = ln Sn +
(

µ − 1

2
vn+1

)
+ √

vn+1Bn+1 (1.27)

calling the mean adjusted return

un = ln

(
Sn

Sn−1

)
−

(
µ − 1

2
vn

)
= √

vnBn (1.28)

the variance process in GARCH(1,1) is supposed to be

vn+1 = ω0 + βvn + αu2
n = ω0 + βvn + αvnB2

n (1.29)

where α and β are weight parameters and ω0 is a parameter related to the
long-term variance.18

Nelson [194] shows that as the time interval length decreases and
becomes infinitesimal, Equation (1.29) becomes precisely the previously cited
Equation (1.26). To be more accurate, there is a weak convergence of the dis-
crete GARCH process to the continuous diffusion limit.19 For a GARCH(1,1)
continuous diffusion, the correlation between dZt and dBt is zero.

18It is worth mentioning that as explained in [100], a GARCH(1,1) model could be
rewritten as an autoregressive moving average model of first order, ARMA(1,1), and
therefore an auto regressive model of infinite order, AR(+∞). GARCH is therefore
a parsimonious model that can fit the data with only a few parameters. Fitting the
same data with an ARCH or AR model would require a much larger number of
parameters. This feature makes the GARCH model very attractive.
19For an explanation on weak convergence, see, for example, Varadhan [230].
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It might appear surprising that even if the GARCH(1,1) process has
only one source of randomness, namely Bn, the continuous version has two
independent Brownian motions. This is understandable if we consider Bn a
standard normal random variable and An = B2

n −1 another random variable.
It is fairly easy to see that An and Bn are uncorrelated even if An is a function
of Bn. As we go toward the continuous version, we can use Donsker’s the-
orem,20 by letting the time interval �t → 0, to prove that we end up with two
uncorrelated and therefore independent Brownian motions. This is a limi-
tation of the GARCH(1,1) model–hence the introduction of the nonlinear
asymmetric GARCH (NGARCH) model.

Duan [83] attempts to explain the volatility smile by using the NGARCH
process expressed by

vn+1 = ω0 + βvn + α
(
un − c

√
vn

)2 (1.30)

where c is a parameter to be determined.
The NGARCH process was first introduced by Engle [97]. The continu-

ous counterpart of NGARCH is the same equation (1.26), except unlike the
equation resulting from GARCH(1,1) there is a nonzero correlation between
the stock process and the volatility process. This correlation is created pre-
cisely because of the parameter c that was introduced, and is once again
called the leverage effect. The parameter c is sometimes referred to as the
leverage parameter.

We can find the following relationships between the discrete process and
the continuous diffusion limit parameters by letting the time interval become
infinitesimal

ω = ω0

dt2

θ = 1 − α
(
1 + c2

) − β

dt

ξ = α

√
κ − 1 + 4c2

dt

and the correlation between dBt and dZt

ρ = −2c√
κ − 1 + 4c2

where κ represents the Pearson kurtosis21 of the mean adjusted returns (un).
As we can see, the sign of the correlation ρ is determined by the parameter c.

20For a discussion on Donsker’s theorem, similar to the central limit theorem, see,
for instance, Whitt [235].
21The kurtosis corresponds to the fourth moment. The Pearson kurtosis for a normal
distribution is equal to 3.
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Proof: A quick proof of the convergence to diffusion limit could be outlined
as follows. Let us assume that c = 0 for simplicity; we therefore are dealing
with the GARCH(1,1) case. As we saw

vn+1 = ω0 + βvn + αvnB2
n

therefore

vn+1 − vn = ω0 + βvn − vn + αvn − αvn + αvnB2
n

or
vn+1 − vn = ω0 − (1 − α − β)vn + αvn(B2

n − 1)

Now, allowing the time-step �t to become variable and posing Zn =
(B2

n − 1)/
√

κ − 1

vn+�t − vn = ω�t2 − θ�tvn + ξvn

√
�tZn

and annualizing vn by posing vt = vn/�t , we shall have

vt+�t − vt = ω�t − θ�tvt + ξvt

√
�tZn

and as �t → 0, we get

dvt = (ω − θvt)dt + ξvtdZt

as claimed. (QED)
Note that the discrete GARCH version of the square-root process (1.25 )

is
vn+1 = ω0 + βvn + α(Bn − c

√
vn)2 (1.31)

as Heston and Nandi show22 in [137] (Figure 1.5).
Also, note that having a diffusion process dvt = b(vt)dt + a(vt)dZt we

can apply an Euler approximation23 to discretize and obtain a Monte Carlo
process, such as vn+1 − vn = b(vn)�t + a(vn)

√
�tZn. It is important to note

that if we use a GARCH process and go to the continuous diffusion limit, and
then apply an Euler approximation, we will not necessarily find the original
GARCH process again. Indeed, there are many different ways to discretize
the continuous diffusion limit and the GARCH process corresponds to one
special way. In particular, if we use (1.31) and allow �t → 0 to get to the
continuous diffusion limit, we shall obtain (1.25). As we will see later in

22For a detailed discussion on the convergence of different GARCH models toward
their diffusion limits, also see Duan [85].
23See, for instance, Jones [165].
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FIGURE 1.5 The GARCH Monte Carlo Simulation with the Square-Root Model for
SPX on February 12, 2002 with Index = $1107.50, 1 Month to Maturity. The Powell
optimization method was used for least-square calibration.

the section on mixing solutions, we can then apply a discretization to this
process and obtain a Monte Carlo simulation

vn+1 = vn + (ω − θvn)�t + ξ
√

vn

√
�tZn

which is again different from (1.31) but obviously has to be consistent in
terms of pricing. However, we should know which method we are working
with from the very beginning to perform our calibration on the correspond-
ing specific process.

Corradi [61] explains this in the following manner: The discrete GARCH
model could converge either toward a two-factor continuous limit if one
chooses the Nelson parameterization, or could very well converge to a one-
factor diffusion limit if one chooses another parameterization. Furthermore,
an appropriate Euler discretization of the one-factor continuous model will
provide a GARCH discrete process, while as previously mentioned the dis-
cretization of the two-factor diffusion model provides a two-factor discrete
process. This distinction is fundamental and could explain why GARCH and
SV behave differently in terms of parameter estimation.

THE PRICING PDE UNDER STOCHASTIC VOLATILITY

A very important issue to underline here is that, because of the unhedgeable
second source of randomness, the concept of market completeness is lost.



The Volatility Problem 25

We can no longer have a straightforward risk-neutral pricing. This is where
the market price of risk will come into consideration.

The Market Price of Volatility Risk

Indeed, taking a more general form for the variance process

dvt = b(vt)dt + a(vt)dZt (1.32)

as we previously said, using the Black-Scholes risk-neutrality argument,
Equation (1.1) could be replaced with

dSt = (rt − qt)Stdt + σtStdBt (1.33)

This is equivalent to changing the probability measure from the real one
to the risk-neutral one.24 We therefore need to use (1.33) together with the
risk-adjusted volatility process

dvt = b̃(vt)dt + a(vt)dZt (1.34)

where
b̃(vt) = b(vt) − λa(vt)

with λ the market price of volatility risk. This quantity is closely related to
the market price of risk for the stock λe = (µ − r)/σ. Indeed, as Hobson
[140] and Lewis [177] both show, we have

λ = ρλe +
√

1 − ρ2λ∗ (1.35)

where λ∗ is the market price of risk associated with dBt − ρdZt, which can
also be regarded as the market price of risk for the hedged portfolio.

The passage from Equation (1.32) to Equation (1.34) and the introduc-
tion of the market price of volatility risk could also be explained by the
Girsanov theorem, as was done for instance in Fouque [104].

It is important to underline the difference between the real and the risk-
neutral measures here. If we use historic stock prices together with the real
stock-return drift µ to estimate the process parameters, we will obtain the
real volatility drift b(v). An alternative method would be to estimate b̃(v) by
using current option prices and performing a least-square estimation. These
calibration methods will be discussed in detail in the following chapters.

24See Hull [146] or Shreve [218] for more detail.
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The risk-neutral version for a discrete NGARCH model would also
involve the market price of risk and instead of the usual

ln Sn+1 = ln Sn +
(

µ − 1

2
vn+1

)
+ √

vn+1Bn+1

vn+1 = ω0 + βvn + αvn(Bn − c)2

we would have

ln Sn+1 = ln Sn +
(

r − 1

2
vn+1

)
+ √

vn+1B̃n+1 (1.36)

vn+1 = ω0 + βvn + αvn

(
B̃n − c − λe

)2

where B̃n = Bn + λe, which could be regarded as the discrete version of
the Girsanov theorem. Note that the market price of risk for the stock λe is
not separable from the leverage parameter c in the above formulation. Duan
shows in [84] and [86] that risk-neutral GARCH system (1.36) will indeed
converge toward the continuous risk-neutral GARCH

dSt = Strdt + St
√

vtdBt

dvt = (ω − θ̃vt)dt + ξvtdZt

as we expected.

The Two-Factor PDE

From here, writing a two-factor PDE for a derivative security f becomes a
simple application of the two-dimensional Ito’s lemma. The PDE will be25

rf = ∂f

∂t
+ (r − q)S

∂f

∂S
+ 1

2
vS2 ∂2f

∂S2
+ b̃(v)

∂f

∂v

+1

2
a2(v)

∂2f

∂v2
+ ρa(v)

√
vS

∂2f

∂S∂v
(1.37)

Therefore, it is possible, after calibration, to apply a finite difference
method26 to the above PDE to price the derivative f (S↪ t↪ v) . An alterna-
tive would be to use directly the stochastic processes for dSt and dvt and
apply a two-factor Monte Carlo simulation. Later in the chapter we will
also mention other possible methods, such as the mixing solution or asymp-
totic approximations.

25For a proof of the derivation see Wilmott [237] or Lewis [177].
26See, for instance, Tavella [227] or Wilmott [237] for a discussion on finite
difference methods.
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Other possible approaches for incomplete markets and stochastic volatil-
ity assumption include super-replication and local risk minimization.27 The
super-replication strategy is the cheapest self-financing strategy with a termi-
nal value no less than the payoff of the derivative contract. This technique
was primarily developed by El-Karoui and Quenez in [91]. Local risk mini-
mization involves a partial hedging of the risk. The risk is reduced to an
“intrinsic component” by taking an offsetting position in the underlying
security as usual. This method was developed by Follmer and Sondermann
in [102].

THE GENERALIZED FOURIER TRANSFORM

The Transform Technique

One useful technique to apply to the PDE (1.37) is the generalized Fourier
transform.28 First, we can use the variable x = ln S in which case, using Ito’s
lemma, Equation (1.37) could be rewritten as

rf = ∂f

∂t
+

(
r−q− 1

2
v

)
∂f

∂x
+ 1

2
v

∂2f

∂x2
+b̃(v)

∂f

∂v
+ 1

2
a2(v)

∂2f

∂v2
+ρa(v)

√
v

∂2f

∂x∂v

(1.38)
Calling

f̂ (k↪ v↪ t) =
∫ +∞

−∞
eikxf (x↪ v↪ t)dx (1.39)

where k is a complex number,29 f̂ will be defined in a complex strip where
the imaginary part of k is between two real numbers α and β. Once f̂ is
suitably defined, meaning that ki = I(k) (the imaginary part of k) is within
the appropriate strip, we can write the inverse Fourier transform

f (x↪ v↪ t) = 1

2π

∫ iki +∞

iki −∞
e−ikxf̂ (k↪ v↪ t)dk (1.40)

where we are integrating for a fixed ki parallel to the real axis.
Each derivative satisfying (1.37) or equivalently (1.38) has a known

payoff G(ST) at maturity. For instance, as we said before, a call option has
a payoff MAX(0↪ ST − K) where K is the call strike price. It is easy to see

27For a discussion on both these techniques, see Frey [107].
28See Lewis [177] for a detailed discussion on this technique.
29As usual we note i = √−1.
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that for ki > 1 the Fourier transform of a call option exists and the payoff
transform is

− Kik+1

k2 − ik
(1.41)

Proof: Indeed, we can write∫ +∞

−∞
eikx(ex − K)+dx =

∫ +∞

ln K

eikx(ex − K)dx

= 0 −
(

Kik+1

ik + 1
− K

Kik

ik

)

= −Kik+1

(
1

ik + 1
− 1

ik

)
= −Kik+1 1

k2 − ik

as stated. (QED)
The same could be applied to a put option or other derivative securities.

In particular, a covered call (stock minus call) having a payoff MIN(ST↪ K)
will have a transform for 0 < ki < 1 equal to

Kik+1

k2 − ik
(1.42)

Applying the transform to the PDE (1.38) and introducing τ = T − t and

ĥ(k↪ v↪ τ) = e(r+ik(r−q))τf̂ (k↪ v↪ τ) (1.43)

and posing30 c(k) = 1
2 (k2 − ik), we get the new PDE equation

∂ĥ

∂τ
= 1

2
a2(v)

∂2ĥ

∂v2
+ (b̃(v) − ikρ(v)a(v)

√
v)

∂ĥ

∂v
− c(k)vĥ (1.44)

Lewis calls the fundamental transform a function Ĥ(k↪ v↪ τ) satisfying
the PDE (1.44) and satisfying the initial condition Ĥ(k↪ v↪ τ = 0) = 1. If we
know this fundamental transform, we can then multiply it by the derivative
security’s payoff transform and then divide it by e(r+ik(r−q))τ and apply the
inverse Fourier technique by keeping ki in an appropriate strip and finally
get the derivative as a function of x = ln S.

Special Cases

There are cases where the fundamental transform is known. The case of a
constant (or deterministic) volatility is the most elementary one. Indeed,

30We are following Lewis [177] notations.
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using (1.44) together with dvt = 0, we can easily find

Ĥ(k↪ v↪ τ) = e−c(k)vτ

which is analytic in k over the entire complex plane. Using the call payoff
transform (1.41), we can rederive the Black-Scholes equation. The same
can be done if we have a deterministic volatility dvt = b(vt)dt by using the
function Y (v↪ t) where dY = b(Y)dt.

The square-root model (1.25) is another important case where Ĥ(k↪ v↪ τ)

is known and analytic. We have for this process

dvt = (ω − θvt)dt + ξ
√

vtdZt

or under the risk-neutral measure

dvt = (ω − θ̃vt)dt + ξ
√

vtdZt

with θ̃ = (1 − γ)ρξ +
√

θ2 − γ(1 − γ)ξ2, where γ ≤ 1 represents the risk-
aversion factor.

For the fundamental transform, we get

Ĥ(k↪ v↪ τ) = exp [f1(t) + f2(t)v] (1.45)

with

t = 1

2
ξ2τ ω̃ = 2

ξ2 ω c̃ = 2

ξ2 c(k) and

f1(t) =
[
tg − ln

(
1 − hetd

1 − h

)]
ω̃

f2(t) =
[

1 − etd

1 − hetd

]
g

where

d =
√

θ̄2 + 4c̃ g = 1

2
(θ̄ + d) h = θ̄ + d

θ̄ − d
and

θ̄ = 2

ξ2

[
(1 − γ + ik)ρξ +

√
θ2 − γ(1 − γ)ξ2

]

The above transform has a cumbersome expression, but it can be seen
that it is analytic in k and therefore always exists. For a proof of the foregoing
refer to Lewis [177].
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TABLE 1.1 SPX Implied Surface as of 03/09/2004. T is the maturity and M = K/S
the inverse of the moneyness

T / M 0.70 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.30

1.000 24.61 21.29 19.73 18.21 16.81 15.51 14.43 13.61 13.12 12.94 13.23
2.000 21.94 18.73 18.68 17.65 16.69 15.79 14.98 14.26 13.67 13.22 12.75
3.000 20.16 18.69 17.96 17.28 16.61 15.97 15.39 14.86 14.38 13.96 13.30
4.000 19.64 18.48 17.87 17.33 16.78 16.26 15.78 15.33 14.92 14.53 13.93
5.000 18.89 18.12 17.70 17.29 16.88 16.50 16.13 15.77 15.42 15.11 14.54
6.000 18.46 17.90 17.56 17.23 16.90 16.57 16.25 15.94 15.64 15.35 14.83
7.000 18.32 17.86 17.59 17.30 17.00 16.71 16.43 16.15 15.88 15.62 15.15
8.000 17.73 17.54 17.37 17.17 16.95 16.72 16.50 16.27 16.04 15.82 15.40

The inversion of the Fourier transform for the square-root (Heston)
model is a very popular and powerful approach. It is appealing because of
its robustness and speed. The following example is based on SPX options as
of 03/09/2004 expiring in 1 to 8 years from the calibration date (Tables 1.1
and 1.2).

As we shall see further, the optimal Heston parameter set to fit this
surface could be found via a least-square estimation approach and for the
index at S = $1156.86 we find the optimal parameters v̂0 = 0.1940 and

�̂ = (ω̂↪ θ̂↪ ξ̂↪ ρ̂) = (0.052042332↪ 1.8408↪ 0.4710↪ −0.4677)

THE MIXING SOLUTION

The Romano-Touzi Approach

The idea of mixing solutions was probably presented for the first time by
Hull and White [149] for a zero correlation case. Later, Romano and Touzi

TABLE 1.2 Heston Prices Fitted to the 03/09/2004 Surface

T / M 0.70 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.30

1.000 30.67 21.44 17.09 13.01 9.33 6.18 3.72 2.03 1.03 0.50 0.13
2.000 31.60 22.98 18.98 15.25 11.87 8.89 6.37 4.35 2.83 1.78 0.66
3.000 32.31 24.18 20.44 16.98 13.82 11.00 8.55 6.47 4.77 3.43 1.66
4.000 33.21 25.48 21.93 18.66 15.63 12.91 10.50 8.39 6.61 5.10 2.93
5.000 33.87 26.54 23.20 20.09 17.22 14.63 12.30 10.21 8.39 6.82 4.36
6.000 34.56 27.55 24.34 21.36 18.60 16.08 13.79 11.73 9.89 8.26 5.64
7.000 35.35 28.61 25.52 22.64 19.96 17.49 15.24 13.19 11.35 9.70 6.97
8.000 35.77 29.34 26.39 23.64 21.07 18.69 16.51 14.51 12.68 11.04 8.24
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FIGURE 1.6 The SPX implied surface as of 03/09/2004. We can observe the negative
skewness as well as the flattening of the slope with maturity.

[209] generalized this approach for a correlated case. The basic idea is to
separate the random processes of the stock and the volatility, integrate the
stock process conditionally upon a given volatility, and finally end up with
a one-factor problem. Let us be reminded of the two processes we had:

dSt = (rt − qt)Stdt + σtStdBt

and
dvt = b̃(vt)dt + a(vt)dZt

under a risk-neutral measure.
Given a correlation ρt between dBt and dZt, we can introduce the

Brownian motion dWt independent of dZt and write the usual Cholesky31

factorization:

dBt = ρtdZt +
√

1 − ρ2
t dWt

We can then introduce the same Xt = ln St and write the new system of
equations:

dXt = (r − q)dt + dYt − 1

2

(
1 − ρ2

t

)
σ2

t dt +
√

1 − ρ2
t σtdWt (1.46)

dYt = −1

2
ρ2

t σ
2
t dt + ρtσtdZt

dvt = b̃tdt + atdZt

where, once again, the two Brownian motions are independent.

31See, for example, Press [204].
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It is now possible to integrate the stock process for a given volatility and
end up with an expectation on the volatility process only. We can think of
(1.46) as the limit of a discrete process, while the time step �t → 0.

For a derivative security f (S0↪ v0↪ T ) with a payoff32 G(ST), using the
bivariate normal density for two uncorrelated variables, we can write

f (S0↪ v0↪ T ) = e−rTE0[G(ST)] (1.47)

= e−rT lim
�t→0

∫ ∞

−∞
...

∫ ∞

−∞
G(ST)

T −�t∏
t=0

exp

[
−1

2

(
Z2

t + W 2
t

)]dZtdWt

2π

If we know how to integrate the above over dWtfor a given volatility and
we know the result f ∗(S↪ v↪ T ) (for instance, for a European call option, we
know the Black-Scholes formula (1.6), there are many other cases where we
have closed-form solutions), then we can introduce the auxiliary variables33

Seff = S0eYT = S0 exp

(
−1

2

∫ T

0
ρ2

t σ
2
t dt +

∫ T

0
ρtσtdZt

)
(1.48)

and

veff = 1

T

∫ T

0

(
1 − ρ2

t

)
σ2

t dt (1.49)

and as Romano and Touzi prove in [209], we will have

f (S0↪ v0↪ T ) = E0[f ∗(Seff↪ veff↪ T )] (1.50)

where this last expectation is being taken on dZt only. Note that in the zero
correlation case discussed by Hull and White [149] we have Seff = S0 and
veff = vT = 1

T

∫ T

0 σ2
t dt, which makes the expression (1.50) a natural weighted

average.

A One-Factor Monte Carlo Technique

As Lewis suggests, this will enable us to run a single-factor Monte Carlo
simulation on the dZt and apply the known closed form for each simulated
path. The method does suppose, however, that the payoff G(ST) does not
depend on the volatility. Indeed, going back to (1.46) we can do a simulation
on Yt and vt using the random sequence of (Zt); then, after one path is
generated, we can calculate Seff = S0 exp(YT) and veff = 1

T

∑T −�t
t=0 (1−ρ2

t )vt�t

32The payoff should not depend on the volatility process.
33Again, all notations are taken from Lewis [177].
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FIGURE 1.7 Mixing Monte Carlo Simulation with the Square-Root Model for SPX
on February 12, 2002 with Index = $1107.50, 1 month and 7 months to Maturity.
The Powell optimization method was used for least-square calibration. As we can
see, both maturities are fitted fairly well.

and then apply the known closed form (e.g. Black-Scholes for a call or put)
with Seff and veff. Repeating this procedure for a large number of times and
averaging over the paths, as we usually do in Monte-Carlo methods, we will
have f (S0↪ v0↪ T ). This will give us a way to calibrate the model parameters
to the market data. For instance, using the square-root model

dvt = (ω − θvt)dt + ξ
√

vtdZt

we can estimate ω, θ, ξ, and ρ from the market prices via a least-square
estimation applied to theoretical prices obtained from the preceding Monte
Carlo method (Figure 1.7). We can either use a single calibration and sup-
pose we have time-independent parameters or perform one calibration per
maturity. The single calibration method is known to provide a bad fit, hence
the idea of adding jumps to the stochastic volatility process as described by
Matytsin [187]. However, this method will introduce new parameters for
calibration.34

34Eraker et al. [98] claim that a model containing jumps in the return and the
volatility process will fit the options and the underlying data well, and will have no
misspecification left.
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THE LONG-TERM ASYMPTOTIC CASE

In this section we will discuss the case in which the contract time to maturity
is very large, t → ∞. We will focus on the special case of a square-root
process because this is the model we will use in many cases.

The Deterministic Case

We shall start with the case of deterministic volatility and use that for the
more general case of the stochastic volatility.

We know that under the square-root model the variance follows

dvt = (ω − θvt)dt + ξ
√

vtdZt

As an approximation, we can drop the stochastic term and obtain

dvt

dt
= ω − θvt

which is an ordinary differential equation providing us immediately with

vt = ω

θ
+

(
v − ω

θ

)
e−θt (1.51)

where v is the initial variance for t = 0.
Using the results from the fundamental transform for a covered call

option and put-call parity, we have for 0 < ki < 1

call(S↪ v↪ τ) = Se−qτ − Ke−rτ 1

2π

∫ iki +∞

iki −∞
e−ikX Ĥ(k↪ v↪ τ)

k2 − ik
dk (1.52)

where τ = T − t and X = ln
(

Se−qτ

Ke−rτ

)
represent the adjusted moneyness of the

option. For the special “at-the-money”35 case, where X = 0, we have

call(S↪ v↪ τ) = Ke−rτ

[
1 − 1

2π

∫ iki +∞

iki −∞

Ĥ(k↪ v↪ τ)

k2 − ik
dk

]
(1.53)

As we previously said for a deterministic volatility case, we know the fun-
damental transform

Ĥ(k↪ v↪ τ) = exp[−c(k)U(v↪ τ)]

35This is different from the usual definition of at-the-money calls, where S = K .
This vocabulary is borrowed from Alan Lewis.
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With U(v↪ τ) = ∫ τ

0 v(t)dt and as before c(k) = 1
2 (k2 − ik), which in the

special case of the square-root model (1.51), will provide us with

U(v↪ τ) = ω

θ
τ +

(
v − ω

θ

)(
1 − e−θτ

θ

)

This shows once again that Ĥ(k) is analytic in k over the entire complex
plane.

Now if we let τ → ∞, we can write the approximation

call(S↪ v↪ τ)

Ke−rτ
≈ 1 − 1

2π

∫ iki +∞

iki −∞
exp

[
−c(k)

ω

θ
τ − c(k)

1

θ

(
v − ω

θ

)]
dk

k2 − ik

(1.54)

We can either calculate the above integral exactly using the Black-Scholes
theory, or take the minimum where c′(k0) = 0, meaning k0 = i

2, and perform
a Taylor approximation parallel to the real axis around the point k = kr + i

2 ,
which will give us

call(S↪ v↪ τ)

Ke−rτ
≈ 1 − 2

π
exp

(
− ω

8θ
τ

)
exp

[
− 1

8θ

(
v − ω

θ

)]∫ ∞

−∞
exp

(
−k2

r

ω

2θ
τ

)
dkr

the integral being a Gaussian we will get the result

call(S↪ v↪ τ)

Ke−rτ
≈ 1 −

√
8θ

πωτ
exp

[
− 1

8θ

(
v − ω

θ

)]
exp

(
− ω

8θ
τ

)
(1.55)

which finishes our deterministic approximation case.

The Stochastic Case

For the stochastic volatility case, Lewis uses the same Taylor expansion. He
notices that for the deterministic case we had

Ĥ(k↪ v↪ τ) = exp [−c(k)U(v↪ τ)]≈ exp[−λ(k)τ]u(k↪ v)

for τ → ∞, where
λ(k) = c(k)

ω

θ

and

u(k↪ v) = exp

[
−c(k)

1

θ

(
v − ω

θ

)]

If we suppose that this identity holds for the stochastic volatility case as
well, we can use the PDE (1.44) and interpret the result as an eigenvalue-
eigenfunction identity with the eigenvalue λ(k) and the eigenfunction u(k↪ v).
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This assumption is reasonable because the first Taylor approximation term
for the stochastic process is deterministic. Indeed, introducing the operator

	(u) = −1

2
a2(v)

d2u

dv2
−

[
b̃(v) − ikρ(v)a(v)

√
v
] du

dv
+ c(k)vu

we have
	(u) = λ(k)u (1.56)

Now the idea would be to perform a Taylor expansion around the min-
imum k0 where λ′(k0) = 0. Lewis shows that such k0 is always situated on
the imaginary axis. This property is referred to as the “ridge” property.

The Taylor expansion along the real axis could be written as

λ(k) = λ(k0 + kr) ≈ λ(k0) + 1

2
k2

r λ
′′(k0)

Note that we are dealing with a minimum, and therefore λ′′(k0) > 0. Using
the above second-order approximation for λ(k), we get

call(S↪ v↪ τ)

Ke−rτ
≈ 1 − u(k0↪ v)

k2
0 − ik0

1√
2πλ′′(k0)τ

exp[−λ(k0)τ]

We can then move from the special “at-the-money” case to the general case by
reintroducing X = ln

(
Se−qτ

Ke−rτ

)
, and we will finally obtain

call(S↪ v↪ τ)

Ke−rτ
≈ eX − u(k0↪ v)

k2
0 − ik0

1√
2πλ′′(k0)τ

exp[−λ(k0)τ − ik0X] (1.57)

which completes our determination of the asymptotic closed form in the
general case.

For the special case of the square-root model, taking the risk-neutral
case γ = 1, we have36

λ(k) = −ωg∗(k) = ω

ξ2

[√
(θ + ikρξ)2 + (k2 − ik)ξ2− (θ + ikρξ)

]

which also allows us to calculate λ′′(k). Also

u(k↪ v) = exp[g∗(k)v]

36We can go back to the general case γ ≤ 1 by replacing θ with√
θ2 − γ(1 − γ)ξ2 + (1 − γ)ρξ because this transformation is independent from

k altogether.



The Volatility Problem 37

where we use the notations from (1.45) and we pose

g∗ = g − d

The k0 such that λ′(k0) = 0 is

k0 = i

1 − ρ2

(
1

2
− ρ

ξ

[
θ − 1

2

√
4θ2 + ξ2 − 4ρθξ

])

which together with (1.57) provides us with the result for call(S↪ v↪ τ) in the
asymptotic case under the square-root stochastic volatility model.

Note that for ξ → 0 and ρ → 0, we find again the deterministic result
k0 → i

2 .

A Series Expansion on Volatility-of-Volatility

Another asymptotic approach for the stochastic volatility model suggested
by Lewis [177] is a Taylor expansion on the volatility-of-volatility. There are
two possibilities for this: We can perform the expansion either for the option
price or for the implied volatility directly. In what follows, we consider the
former approach. Once again, we use the fundamental transform H(k↪ V ↪ τ)
with H(k↪ V ↪ 0) = 1 and

∂H

∂τ
= 1

2
a2(v)

∂2H

∂v2
+ (

b̃(v) − ikρ(v)a(v)
√

v
)∂H

∂v
− c(k)vH

and c(k) = 1
2 (k2 − ik). We then pose a(v) = ξη(v) and expand H(k↪ V ↪ τ)on

powers of ξ and finally apply the inverse Fourier transform to obtain an
expansion on the call price.
With our usual notations τ = T − t, X = ln( S

K
) + (r − q)τ and Z(V ) = V τ,

the series will be

C(S↪ V ↪ τ) = cBS (S↪ v↪ τ) + ξτ−1J1R̃11
∂cBS (S↪ v↪ τ)

∂V

+ξ2

[
τ−2J3R̃20 + τ−1J4R̃12 + 1

2
τ−2J 2

1 R̃22

]
∂cBS (S↪ v↪ τ)

∂V
+ O(ξ3)

where v(V ↪ τ) is the deterministic variance

v(V ↪ τ) = ω

θ
+

(
V − ω

θ

)(
1 − e−θτ

θτ

)

and R̃pq = Rpq(X↪ v(V ↪ τ)↪ τ) with Rpq given polynomials of (X↪ Z) of degree
four at most, and Jn’s known functions of (V ↪ τ).
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The explicit expressions for all these functions are given in the third
chapter of the Lewis book [177].

The obvious advantages of this approach are its speed and stability.
The issue of lack of time homogeneity of the parameters � = (ω↪ θ↪ ξ↪ ρ)
could be addressed by performing one calibration per time interval. In this
case, for each time interval [tn↪ tn+1] we will have one set of parameters
�n = (ωn↪ θn↪ ξn↪ ρn) and depending on what maturity T we are dealing
with, we will use one or the other parameter set.

We compare the values obtained from this series-based approach with
those from a mixing Monte Carlo method in Figure 1.8. We are taking
the example that Heston studied in [134]. The graph shows the difference
C(S↪ V ↪ τ) − cBS (S↪ V ↪ τ) for a fixed K = $100 and τ = 0.50 year. The other
inputs are ω = 0.02, θ = 2.00, ξ = 0.10, ρ = −0.50, V = 0.01, and r = q = 0.
As we can see, the true value of the call is lower than the Black-Scholes value
for the out-of-the-money (OTM) region. The higher ξ and |ρ| are, the larger
this difference will be.
In Figures 1.9 and 1.10, we reset the correlation ρ to zero to have a symmet-
ric distribution, but we use a volatility-of-volatility of ξ = 0.10 and ξ = 0.20
respectively. As discussed, the parameter ξ is the one creating the leptokur-
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ticity phenomenon. A higher volatility-of-volatility causes higher valuation
for far-from-the-money options.37

Unfortunately, the foregoing series approximation becomes poor as soon
as the volatility-of-volatility becomes larger than 0.40 and the maturity
becomes of the order of 1 year. This case is not unusual at all and there-
fore makes the use of this method limited. This is why the method of choice
remains the inversion of the Fourier transform, as previously described.

PURE-JUMP MODELS

Variance Gamma

An alternative point of view is to drop the diffusion assumption altogether
and replace it with a pure-jump process. Note that this is different from
the jump-diffusion process previously discussed. Madan et al. suggested the
following framework, called variance-gamma (VG) in [182]. We would have
the log-normal-like stock process

d ln St = (µS + ω)dt + X(dt; σ↪ ν↪ θ)

where as before µS is the real-world statistical drift of the stock log return
and ω = 1

ν
ln(1 − θν − σ2ν/2).

As for X(dt; σ↪ ν↪ θ), it has the following meaning:

X(dt; σ↪ ν↪ θ) = B(γ(dt↪ 1↪ ν); θ↪ σ)

where B(dt; θ↪ σ) would be a Brownian motion with drift θ and volatility σ.
In other words

B(dt; θ↪ σ) = θdt + σ
√

dtN(0↪ 1)

and N(0↪ 1) is a standard Gaussian realization.
The time interval at which the Brownian motion is considered is not dt

but γ(dt↪ 1↪ ν) which is a random realization following a gamma distribution
with a mean 1 and variance rate ν. The corresponding probability density
function is

fν(dt↪ τ) = τ
dt
ν −1e− τ

ν

ν
dt
ν 
( dt

ν
)

where 
(x) is the usual gamma function.
Note that the stock log-return density could actually be integrated for the

VG model, and the density of ln (St/S0) is known and could be implemented

37Also note that the gap between the closed-form series and the Monte Carlo model
increases with ξ. Indeed, the accuracy of the expansion decreases as ξ becomes larger.
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via Kα(x), the modified Bessel function of the second kind. Indeed, calling
z = ln(Sk/Sk−1) and h = tk−tk−1 and posing xh = z−µSh− h

ν
ln(1−θν−σ2ν/2)

we have

p(z|h) = 2 exp(θxh/σ2)

ν
h
ν
√

2πσ
( h
ν
)

(
x2

h

2σ2/ν + θ2

) h
2ν − 1

4

K h
ν − 1

2

(
1

σ2

√
x2

h(2σ2/ν + θ2)

)

Moreover, as Madan et al. show, the option valuation under VG is fairly
straightforward and admits an analytically tractable closed form that can be
implemented via the above modified Bessel function of second kind and a
degenerate hypergeometric function. All details are available in [182].

Remark on the Gamma Distribution The gamma cumulative distribution function
(CDF) could be defined as

P (a↪ x) = 1


(a)

∫ x

0
e−tta−1dt

Note that with our notations

Fν(h↪ x) = F (h↪ x↪ µ = 1↪ ν)

with

F (h↪ x↪ µ↪ ν) = 1


(µ2h
ν

)

(µ

ν

)µ2h
ν

∫ x

0
e− µt

ν t
µ2h
ν −1dt

In other words

F (h↪ x↪ µ↪ ν) = P

(
µ2h

ν
↪
µx

ν

)

The behavior of this CDF is displayed in Figure 1.11 for different values of
the parameter a > 0 and for 0 < x < +∞.

Using the inverse of this CDF, we can have a simulated data set for the
gamma law:

x(i) = F −1
ν (h↪ U (i)[0↪ 1])

with 1 ≤ i ≤ Nsims and U (i)[0↪ 1] a uniform random realization between zero
and one.
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FIGURE 1.11 The Gamma Cumulative Distribution Function P (a↪ x) for Various
Values of the Parameter a. The implementation is based on code available in Numer-
ical Recipes in C [204].
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FIGURE 1.12 The Modified Bessel Function of Second Kind for a Given Parameter.
The implementation is based on code available in Numerical Recipes in C [204].

Stochastic Volatility vs. Time-Changed processes As mentioned in [23], this alter-
native formulation leading to time-changed processes is closely related to
the previously discussed stochastic volatility approach in the following way.
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Parameter. The implementation is based on code available in Numerical Recipes in
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Taking the foregoing VG stochastic differential equation

d ln St = (µS + ω)dt + θγ(dt↪ 1↪ ν) + σ
√

γ(dt↪ 1↪ ν)N(0↪ 1)

one could consider σ2γ(t↪ 1↪ ν) as the integrated variance and define vt(ν),
the instantaneous variance, as

σ2γ(dt↪ 1↪ ν) = vt(ν)dt

in which case, we would have

d ln St = (µS + ω)dt + (θ/σ2)vt(ν)dt + √
vt(ν)dtN(0↪ 1)

= (µS + ω + (θ/σ2)vt(ν))dt + √
vt(ν)dZt

where dZt is a Brownian motion. This last expression is a traditional stochas-
tic volatility equation.

Variance Gamma with Stochastic Arrival

An extension of the VG model would be a variance gamma model with
stochastic arrival (VGSA), which would include the volatility clustering effect.
This phenomenon (also represented by GARCH) means that a high (low)
volatility will be followed by a series of high (low) volatilities. In this
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approach, we replace the dt in the previously defined fν(dt↪ τ) with ytdt ,
where yt follows a square-root (CIR) process

dyt = κ(η − yt)dt + λ
√

ytdWt

where the Brownian motion dWt is independent from other processes in
the model. This is therefore a VG process in which the arrival time itself
is stochastic. The mean reversion of the square-root process will cause the
volatility persistence effect that is empirically observed. Note that (not count-
ing µS ) the new model parameter set is � = (κ↪ η↪ λ↪ ν↪ θ↪ σ).

Option Pricing under VGSA The option pricing could be carried out via a Monte
Carlo simulation algorithm under the risk-neutral measure, where, as before,
µS is replaced with r − q. We first would simulate the path of yt by writing

yk = yk−1 + κ(η − yk−1)�t + λ
√

yk−1

√
�tZk

then calculate

YT =
N−1∑
k=0

yk�t

and finally apply one-step simulations

T ∗ = F −1
ν (YT↪ U[0↪ 1])

and38

ln ST = ln S0 + (r − q + ω)T + θT ∗ + σ
√

T ∗Bk

Note that we have two normal random variables Bk, Zk as well as a gamma-
distributed random variable T ∗, and that they are all uncorrelated. Once the
stock price ST is properly simulated, we can calculate the option price as
usual.

The Characteristic Function As previously discussed, another way to tackle the
option-pricing issue would be to use the characteristic functions. For VG,
the characteristic function is

�(u↪ t) = E[eiuX(t)] =
(

1

1 − i ν
µ
u

)µ2
ν t

Therefore the log-characteristic function could be written as

ψ(u↪ t) = ln(�(u↪ t)) = tψ(u↪ 1)

38This means that T in VG is replaced with YT . The rest remains identical.
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In other words
E[eiuX(t)] = �(u↪ t) = exp(tψ(u↪ 1))

Using which, the VGSA characteristic function becomes

E
[
eiuX(Y(t))

] = E[exp(Y (t)ψ(u↪ 1))] = φ(−iψ(u↪ 1))

with φ() the CIR characteristic function, namely

φ(ut) = E[exp(iuYt)] = A(t↪ u) exp(B(t↪ u)y0)

where

A(t↪ u) = exp(κ2ηt/λ2)

[cosh(γt/2) + κ/γ sinh(γt/2)]
2κη

λ2

B(t↪ u) = 2iu

κ + γ coth(γt/2)

and
γ =

√
κ2 − 2λ2iu

This allows us to determine the VGSA characteristic function, which we can
use to calculate options prices via numeric Fourier inversion as described in
[48] and [51].

Variance Gamma with Gamma Arrival Rate

For the variance gamma with gamma arrival rate (VGG), as before, the stock
process under the risk-neutral framework is

d ln St = (r − q + ω)dt + X(h(dt); σ↪ ν↪ θ)

with ω = 1
ν

ln(1 − θν − σ2ν/2) and

X(h(dt); σ↪ ν↪ θ) = B(γ(h(dt)↪ 1↪ ν); θ↪ σ)

and the general gamma cumulative distribution function for γ(h↪ µ↪ ν) is

F (µ↪ ν; h↪ x) = 1



(µ2h

ν

) (µ

ν

)µ2h
ν

∫ x

0
e− µt

ν t
µ2h
ν −1dt

and here h(dt) = dYt with Yt is also gamma-distributed

dYt = γ(dt↪ µa↪ νa)

The parameter set is therefore � = (µa↪ νa↪ ν↪ θ↪ σ).



CHAPTER 2
The Inference Problem

In applying option pricing models, one always encounters the
difficulty that the spot volatility and the structural parameters are
unobservable.

— Gurdip Bakshi, Charles Cao, and Zhiwu Chen

INTRODUCTION

Regardless of which specific model we are using, it seems that we cannot
avoid the issue of calibration. There are two possible sets of data that we
can use for estimating the model parameters: options prices and historic
stock prices.1

Using options prices via a least-square estimator (LSE) has the obvious
advantage of guaranteeing that we will match the used option market prices
within a certain tolerance. However, the availability of option data is typi-
cally limited, which would force us to use interpolation and extrapolation
methods. These data manipulation approaches might deteriorate the qual-
ity and the smoothness of our inputs. More importantly, matching a set of
plain-vanilla option prices does not necessarily mean that we would obtain
the correct price for an exotic derivative.

Using stock prices has the disadvantage of offering no guarantee of
matching option prices. However, supposing that the model is right, we do
have a great quantity of data input for calibration, which is a powerful
argument in favor of this approach.

It is important, however, to note that in using historic stock prices we
are assuming that our time step �t is small enough that we are almost in

1Recently some researchers have also tried to use historic option prices. See, for
instance, Elliott [93] or Van der Merwe [229].

46
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a continuous setting. Further, we are assuming the validity of the Girsanov
theorem, which is applicable to a diffusion-based model. This also means we
are implicitly assuming that the market price of volatility risk is stable and
so are the risk-neutral volatility-drift parameters.

More accurately, having for instance a real-world model

dvt = (ω − θvt)dt + ξv
p
t dZt

with p = 0.5 corresponding to the Heston model, we know that the risk-
neutral volatility-drift parameter is

θ(r) = θ + λξv
p−1
t

As a result, supposing that θ(r) is a stable (or even constant) parameter
is equivalent to supposing that λ the market-price-of-volatility-risk2 verifies

λ = φv
1−p
t

with φ a constant coefficient. The implication of this assumption for a model
with a real-world parameter set � = (ω↪ θ↪ ξ↪ ρ) and a risk-neutral counter-
part �(r) = (ω(r)↪ θ(r)↪ ξ(r)↪ ρ(r)) is

ξ = ξ(r)

ρ = ρ(r)

ω = ω(r)

θ = θ(r) − φ

Let us insist on the fact that the above assumption3 is valid only for
a diffusion-based model. For some non-Gaussian pure-jump models, such
as VGG, we lose the comparability between the statistical and the risk-
neutral parameters. We could instead use the stock-price time series to deter-
mine the statistical density p(z) on the one hand, use the options prices to
determine the risk-neutral density q(z) on the other, and calculate the ratio

2Note that many call the market-price-of-volatility-risk the quantity λξv
p
t .

3Also as stated by Bakshi, Cao, and Chen [20]: When the risk-aversion coefficient of
the representative agent is bounded within a reasonable range, the parameters of the
true distributions will not differ significantly from their risk-neutral counterparts.
The direct implication of this is θ ≈ θ(r). More importantly, for daily data we
have �t = o(

√
�t) and therefore using either the real-world asset drift µS or the

dividend-adjusted risk-free rate r − q would not make a difference in parameter
estimation. Some [10] even ignore the stock drift term altogether.



48 INSIDE VOLATILITY ARBITRAGE

r(z) = p(z)/q(z) corresponding to the Radon-Nikodym derivative of the
two measures for this model.

The central question of this chapter is therefore the inference of the
parameters embedded in a stochastic volatility model. The logical subdivi-
sions of the problem are summarized as follows.

1. Cross-Sectional vs. Time Series: The former uses options prices at a given
point in time, and the latter a series of the underlying prices for a given
period. As mentioned earlier, the former provides an estimation of the
parameters in the risk-neutral universe and the latter estimation takes
place in the statistical universe.

2. Classical vs. Bayesian: Using time series, one could suppose that there
exists an unknown but fixed set of parameters and try to estimate them
as closely as possible. This is a classical (frequentist) approach. Alterna-
tively, one could use a Bayesian approach, in which the parameters are
supposed to be random variables and have their prior distributions that
one can update via the observations.

3. Learning vs. Likelihood Maximization: Under the classical hypothe-
sis, one could try to estimate the instantaneous variance together with
the fixed parameters, which corresponds to a learning process. A more
robust way would be to estimate the likelihood function and maximize
it over all the possible values of the parameters.

4. Gaussian vs. Non-Gaussian: In any of the preceding approaches, the
stochastic volatility (SV) model could be diffusion based or not. As
we will see further, this will affect the actual estimation methodology.
Among the Gaussian SV models we consider are Heston, GARCH, and
3/2. Among the Non-Gaussian ones are Bates, VGSA, and VGG.

5. State-Space Representation: For each of the above approaches and for
each SV model, we have a number of ways of choosing a state and
represent the instantaneous variance as well as the spot price. Needless
to say, a more parsimonious and lower-dimension state is preferable.

6. Diagnostics and Sampling Distribution: Once the inference process is
finished, one has to verify its accuracy via various tests. Quantities such
as MPE, RMSE, Box-Ljung, or χ2 numbers correspond to some of the
possible diagnostics. Observing the sampling distribution over various
paths is another way of checking the validity of the inference methodol-
ogy.

Finally, it is worth noting that our entire approach is based on parametric
stochastic volatility models. This model class is more restrictive than the non-
or semiparametric; however, it has the advantage of offering the possibility
of a direct interpretation of the resulting parameters.
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USING OPTION PRICES

Using a set of current vanilla option prices, we can perform an LSE and assess
the risk-neutral model parameters. Taking a set of J strike prices Kj’s with
their corresponding option prices Cmkt(Kj ) for a given maturity, we would
try to minimize

J∑
j=1

(Cmodel(Kj ) − Cmkt(Kj ))2

The minimization4 could, for example, be done via the direction set
(Powell) method, the conjugate gradient (Fletcher-Reeves-Polak-Ribiere)
method, or the Levenberg-Marquardt (LM) method. We will now briefly
describe the Powell optimization algorithm.

Direction Set (Powell) Method

The optimization method we will use later is the direction set (Powell)
method and does not require any gradient or Hessian computation.5 This is a
quadratically convergent method producing mutually conjugate directions.

Most multi dimensional optimization algorithms require a one-dimen-
sional line minimization routine that does the following: Given as input the
vectors P and n and the function f, find the scalar λ that minimizes f(P+λn),
and then replace P with P+λn and n with λn. The idea would be to take a set
of directions that are as noninterfering as possible in order to avoid spoil-
ing one minimization with the subsequent one. This way an interminable
cycling through the set of directions will not occur. This is why we seek con-
jugate directions. Calling the function to be minimized f(x), with x a vector
of dimension N , we can write the second-order Taylor expansion around a
particular point P

f (x) ≈ f (P) + ∇f (P)x + 1

2
xHx

where Hij = ∂2f
∂xi ∂xj

is the Hessian matrix of the function at point P. We there-

fore have for the variation of the gradient δ(∇f ) = Hδx, and, in order to

4Some consider that this minimization will give more importance to the ATM
options, and they try therefore to correct by introducing weights into the summa-
tion. There are also entropy-based techniques as discussed in [16] applied to local
volatility models, which are different from our parametric models.
5This is an important feature when the function to be optimized contains disconti-
nuities.
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have a noninterfering new direction, we choose v such that the motion along
v remains perpendicular to our previous direction u

uδ(∇f ) = uHv = 0

In this case, the directions u and v are said to be conjugate.
Powell suggests a quadratically convergent method that produces a set

of N mutually conjugate directions. The following description is taken from
Press [204], where the corresponding source code could be found as well.

1. Initialize the set of directions ui to the basis vectors for i = 1↪ ...↪ N
2. Save the starting point as P0

3. Move Pi−1 to the minimum along direction ui and call it Pi

4. Set ui to ui + 1 for i = 1↪ ...↪ N − 1 and set uN to PN − P0

5. Move PN to the minimum along uN and call this point P0, and go back
to Step 2

For a quadratic form, k iterations of this algorithm will produce a set of
directions whose last k members are mutually conjugate. The idea is to repeat
the steps until the function stops decreasing. However, this procedure tends
to produce directions that are linearly dependent and therefore provides us
with the minimum only over a sub space —hence—the idea of discarding the
direction along which f makes the largest decrease. This seems paradoxical;
we are dropping our best direction in the new iteration. However, this is the
best chance of avoiding a buildup of linear dependence.

In what follows we apply the Powell algorithm to SPX options valued
via the mixing Monte Carlo method.

Numeric Tests

We apply the Powell algorithm to SPX options valued via the mixing Monte
Carlo method. The optimization is performed across close-to-the-money
strike prices as of t0 = 05/21/2002 with the index S0 = 1079.88 and
maturities T = 08/17/2002, T = 09/21/2002, T = 12/21/2002, and T =
03/22/2003 (Figures 2.1 through 2.5).

As we see in Table 2.1, the estimated parameters are fairly stable for
different maturities and therefore the stochastic volatility model seems to be
fairly time homogeneous.

The Distribution of the Errors

Because the parameter set � contains only a few elements and we can have
many options prices, it is clear that the matching of the model and market
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FIGURE 2.1 The S&P 500 Volatility Surface as of 05/21/2002 with Index =
$1079.88. The surface will be used for fitting via the direction set (Powell) opti-
mization algorithm applied to a square-root model implemented with a one-factor
Monte Carlo mixing method.
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FIGURE 2.2 Mixing Monte Carlo Simulation with the Square-Root Model for SPX
on 05/21/2002 with Index = $1079.88, Maturity 08/17/2002. Powell (direction set)
optimization method was used for least-square calibration. Optimal parameters ω̂ =
0.081575, θ̂ = 3.308023, ξ̂ = 0.268151, ρ̂ = −0.999999.
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FIGURE 2.3 Mixing Monte Carlo Simulation with the Square-Root Model for SPX
on 05/21/2002 with Index = $1079.88, Maturity 09/21/2002. Powell (direction set)
optimization method was used for least-square calibration. Optimal parameters ω̂ =
0.108359, θ̂ = 3.798900, ξ̂ = 0.242820, ρ̂ = −0.999830.
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FIGURE 2.4 Mixing Monte Carlo Simulation with the Square-Root Model for SPX
on 05/21/2002 with Index = $1079.88, Maturity 12/21/2002. Powell (direction
set) optimization method was used for least-square calibration. Optimal parameters
ω̂ = 0.126519, θ̂ = 3.473910, ξ̂ = 0.222532, ρ̂ = −0.999991.
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FIGURE 2.5 Mixing Monte-Carlo Simulation with the Square-Root Model for SPX
on 05/21/2002 with Index = $1079.88, Maturity 03/22/2003. Powell (direction set)
optimization method was used for least-square calibration. Optimal parameters ω̂ =
0.138687, θ̂ = 3.497779, ξ̂ = 0.180010, ρ̂ = −1.000000.

prices is not perfect. Thus, we observe the distribution of the errors

Cmkt(Kj ) = Cmodel(Kj↪ �̂) exp

{
−1

2
ϒ2 + ϒN (j ) (0↪ 1)

}

with 1 ≤ j ≤ J and ϒ the error standard deviation and �̂ the optimal
parameter set. As usual, N (0↪ 1) is the standard normal distribution. Note
that our previously discussed LSE approach is not exactly equivalent to
the maximization of a likelihood function based on the above distribution

TABLE 2.1 The Estimation is Performed for SPX on t = 05/21/2002 with Index
= $1079.88 for Different Maturities T.

T ω̂ θ̂ ξ̂ ρ̂

08172002 0.081575 3.308023 0.268151 −0.999999

09212002 0.108359 3.798900 0.242820 −0.999830

12212002 0.126519 3.473910 0.222532 −0.999991

03222003 0.138687 3.497779 0.180010 −1.000000
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because the latter would correspond to the minimization of the sum of the
squared log returns.

A good bias test would be to check for the predictability of the errors.
For this, one could run a regression of the error

ej = Cmkt(Kj ) − Cmodel(Kj↪ �̂)

on a few factors corresponding, for instance, to moneyness or maturity. A low
R2 for the regression would prove that the model errors are not predictable
and there is no major bias. For a detailed study, see [182] for instance.

USING STOCK PRICES

The Likelihood Function

If, as in the previous section, we use European options with a given maturity
T and with different strike prices, then we will be estimating

q(ST |S0; �)

which corresponds to the risk-neutral density, given a known current stock
price S0 and given a constant parameter set �. As discussed, least-squares
estimation (LSE) is used to find the best guess for the unknown ideal param-
eter set. Alternatively, if we use a time series of stock prices (St)0≤t≤T, we
would be dealing with the joint probability

p(S1↪ ...↪ ST |S0; �)

which we can rewrite as

p(S1↪ ...↪ ST |S0; �) =
T∏

t=1

p(St|St−1↪ ...↪ S0; �)

It is this joint probability that is commonly referred to as the likelihood
function L0:T(�). Maximizing the likelihood over the parameter set � would
provide us with the best parameter set for the statistical density p(ST |S0; �).
Note that we are using a classical (frequentist) approach, in which we
assume that the parameters are unknown but are fixed over [0↪ T ]. In other
words, we would be dealing with the same parameter set for any of the
p(St|St−1↪ ...↪ S0; �) with 1 ≤ t ≤ T.

It is often convenient to work with the log of the likelihood function
since this will produce a sum

ln L0:T(�) =
T∑

t=1

ln p(St|St−1↪ ...↪ S0; �)
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The Justification for the MLE As explained, for instance, in [100], one justifi-
cation of the maximization of the (log) likelihood function comes from the
Kullback-Leibler (KL) distance. The KL distance is defined as6

d(p∗↪ p) =
∫

p∗(x)
(
ln p∗(x) − ln p(x)

)
dx

where p∗(x) is the ideal density, and p(x) is the density under estimation. We
can write

d(p∗↪ p) = E∗ ln
(
p∗(x)/p(x)

)
Note that using the Jensen (log convexity) inequality

d(p∗↪ p) = −E∗ ln
(
p(x)/p∗(x)

) ≥ − ln
(
E∗(p(x)/p∗(x))

)
so

d(p∗↪ p) ≥ − ln
∫

p∗(x)p(x)/p∗(x)dx = 0

and d(p↪ p∗) = 0 if and only if p = p∗, which confirms that d(.↪ .) is a distance.
Now minimizing d(p↪ p∗) over p() would be equivalent to minimizing the
term

−
∫

p∗(x) ln p(x)dx

since the rest of the expression depends on p∗() only. This latter expression
could be written in the discrete framework, having T observations S1↪ ...↪ ST

as

−
T∑

t=1

ln p(St)

because the observations are by assumption distributed according to the ideal
p∗(). This justifies our maximizing

T∏
t=1

p(St)

Note that in a pure parameter estimation, this would be the MLE
approach. However, the minimization of the KL distance is more general
and can allow for model identification.

Maximum likelihood estimation has many desirable asymptotic attri-
butes as explained, for example, in [127]. Indeed, ML estimators are consist-
ent and converge to the right parameter set as the number of observations

6Hereafter when the bounds are not specified, the integral is taken on the entire
space of the integrand argument.
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increases. They actually reach the lower bound for the error, referred to
as the Cramer-Rao bound, which corresponds to the inverse of the Fisher
information matrix.

Calling the first derivative of the log likelihood the score function

h(�) = ∂ ln L0:T(�)

∂�

it is known that MLE could be interpreted as a special case of the general
method of moments (GMM), where the moment g(�) such that

E[g(�)] = 0

is simply taken to be the above score function. Indeed we would then have

E[h(�)] =
∫

∂ ln L0:T(�)

∂�
L0:T(�)dz0:T = 0

which means that ∫
∂L0:T(�)

∂�
dz0:T = 0

as previously discussed in the MLE.
Note that taking the derivative of the above with respect to the parameter

set (using one-dimensional notations for simplicity)∫
∂

∂�
(h(�)L0:T(�)) dz0:T = 0

which will give us

∫
∂2 ln L0:T(�)

∂�2
L0:T(�)dz0:T = −

∫ ∂L0:T(�)
∂�

L0:T(�)

∂L0:T(�)

∂�
dz0:T

= −
∫ (

∂ ln L0:T(�)

∂�

)2

L0:T(�)dz0:T

meaning that

J = −E

[
∂2 ln L0:T(�)

∂�2

]
= E

[(
∂ ln L0:T(�)

∂�

)2
]

which is referred to as the information matrix identity. As previously stated,
asymptotically we have for the optimal parameter set �̂ and the ideal �∗

�̂ − �∗ ∼ N (0↪ J −1
)
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Likelihood Evaluation and Filtering For GARCH models, the likelihood is known
under an integrated form. Indeed, calling ut the mean-adjusted stock return,
vt the variance, and (Bt) a Gaussian sequence, we have for any GARCH
model

ut = h(vt↪ Bt)

and
vt = f (vt−1↪ ut−1; �)

where f () and h() are two deterministic functions. This will allow us to
directly determine and optimize7

L1:T(�) ∝ −
T∑

t=1

ln(vt) + u2
t

vt

This is possible because GARCH models have one source of randomness
and there is a time shift between the variance and the spot equations.

Unlike GARCH, most stochastic volatility models have two (imperfectly
correlated) sources of randomness (Bt) and (Zt) and have equations of the
form

ut = h(vt↪ Bt)

vt = f (vt−1↪ Zt; �)

which means that the likelihood function is not directly known under an
integrated form, and we need filtering techniques for its estimation and
optimization.

Another justification for filtering is its application to parameter learning.
As we shall see, in this approach we use the joint distribution of the hidden
state and the parameters. In order to obtain the optimal value of the hidden
state vt given all the observations z1:t, we need to use a filter.

Filtering

The idea here is to use the filtering theory for the estimation of stochastic
volatility model parameters. What we are trying to do is to find the prob-
ability density function (pdf) corresponding to a state xk at time step k given
all the observations z1:k up to that time. Looking for the pdf p(xk|z1:k), we
can proceed in two stages.

7We generally drop constant terms in the likelihood function because they do not
affect the optimal arguments, hence the notation L1:T(�) ∝ ....
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1. First we can write the time update iteration by applying the Chapman-
Kolmogorov equation8

p(xk|z1:k−1) =
∫

p(xk|xk−1↪ z1:k−1)p(xk−1|z1:k−1)dxk−1

=
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1

by using the Markov property.
2. Following this, for the measurement update we use the Bayes rule

p(xk|z1:k) = p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)

where the denominator p(zk|z1:k−1) could be written as

p(zk|z1:k−1) =
∫

p(zk|xk)p(xk|z1:k−1)dxk

and corresponds to the likelihood function for the time-step k.

Proof: Indeed we have

p(xk|z1:k) = p(z1:k|xk)p(xk)

p(z1:k)

= p(zk↪ z1:k−1|xk)p(xk)

p(zk↪ z1:k−1)

= p(zk|z1:k−1↪ xk)p(z1:k−1|xk)p(xk)

p(zk|z1:k−1)p(z1:k−1)

= p(zk|z1:k−1↪ xk)p(xk|z1:k−1)p(z1:k−1)p(xk)

p(zk|z1:k−1)p(z1:k−1)p(xk)

= p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)

(QED)
Note that we use the fact that at time step k the value of z1:k is perfectly

known.
The Kalman Filter (detailed below) is a special case where the distribu-

tions are normal and could be written as

p(xk|zk−1) = N (x̂−
k ↪ P −

k )

p(xk|zk) = N (x̂k↪ Pk)

8See Shreve [218], for instance.
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In the special Gaussian case, each distribution could be entirely charac-
terized via its first two moments. However, it is important to remember that
the Kalman filter (KF) is optimal in the Gaussian linear case. In the nonlinear
case, it will always be suboptimal.

Interpretation of the Kalman Gain The basic idea behind the KF is the following
observation. Having x a normally distributed random variable with a mean
mx and variance Sxx, having z a normally distributed random variable with
a mean mz and variance Szz, as well as Szx = Sxz the covariance between x
and z, the conditional distribution of x|z is also normal with

mx|z = mx + K(z − mz)

with
K = SxzS

−1
zz

Interpreting x as the hidden-state and z as the observation, the above
matrix K would correspond to the Kalman filter in the linear case. We also
have

Sx|z = Sxx − KSxz

An alternative interpretation of the Kalman filter could be based on
linear regression. Indeed, if we knew the time-series of (zk) and (xk), then
the regression could be written as

xk = βzk + α + εk

with β the slope, α the intercept, and (εk) the residuals. It is known that
under a least-square regression, we have

β = SxzS
−1
zz

which again is the expression for the Kalman gain.
We now will describe various nonlinear extensions of the Kalman filter.

The Simple and Extended Kalman Filters

The first algorithms we choose here are the simple and extended Kalman
filters,9 owing to their well-known flexibility and ease of implementation.
The simple or traditional Kalman filter (KF) applies to linear Gaussian cases,
whereas the extended KF (EKF) could be used for nonlinear Gaussian cases
via a first-order linearization. We shall therefore describe EKF and consider

9For a description see, for instance, Welch [233] or Harvey [129].
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the simple KF as a special case. In order to clarify the notations, let us briefly
rewrite the EKF equations. Given a dynamic process xk following a possibly
nonlinear transition equation

xk = f(xk−1↪ wk) (2.1)

we suppose we have a measurement zk via a possibly nonlinear observation
equation

zk = h(xk↪ uk) (2.2)

where wk and uk are two mutually uncorrelated sequences of temporally
uncorrelated normal random variables with zero means and covariance
matrices Qk, Rk, respectively.10 Moreover, wk is uncorrelated with xk−1 and
uk uncorrelated with xk.

We define the linear a priori process estimate as

x̂−
k = E[xk] (2.3)

which is the estimation at time step k − 1 prior to measurement. Similarly,
we define the linear a posteriori estimate

x̂k = E[xk|zk] (2.4)

which is the estimation at time step k after the measurement.
We also have the corresponding estimation errors e−

k = xk − x̂−
k and

ek = xk − x̂k and the estimate error covariances

P−
k = E[e−

k e−t

k ] (2.5)

Pk = E[eket
k] (2.6)

where the superscript t corresponds to the transpose operator.
We now define the Jacobian matrices of f with respect to the system

process and the system noise as Ak and Wk respectively. Similarly, we define
the gradient matrices of h with respect to the system process and the meas-
urement noise as Hk and Uk respectively. More accurately, for every row i
and column j we have

Aij =∂fi /∂xj (x̂k−1↪ 0) Wij =∂fi /∂wj (x̂k−1↪ 0)

Hij =∂hi /∂xj (x̂−
k ↪ 0) Uij =∂hi /∂uj (x̂−

k ↪ 0)

10Some prefer to write xk = f(xk−1↪ wk−1). Needless to say, the two notations are
equivalent.
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We therefore have the following time update equations

x̂−
k = f(x̂k−1↪ 0) (2.7)

and
P−

k = AkPk−1At
k + WkQk−1Wt

k (2.8)

We define the Kalman gain as the matrix Kk used in the measurement
update equations

x̂k = x̂−
k + Kk(zk − h(x̂−

k ↪ 0)) (2.9)

and
Pk = (I − KkHk)P−

k (2.10)

where I represents the identity matrix.
The optimal Kalman gain corresponds to the mean of the conditional

distribution of xk upon the observation zk or, equivalently, the matrix that
would minimize the mean square error Pk within the class of linear estima-
tors. This optimal gain is

Kk = P−
k Ht

k(HkP−
k Ht

k + UkRkUt
k)−1 (2.11)

The foregoing equations complete the Kalman filter algorithm.

Another Interpretation of the Kalman Gain Note that an easy way to observe that
Kk minimizes the a posteriori error covariance Pk is to consider the one-
dimensional linear case

x̂k = x̂−
k + Kk(zk − Hkx̂−

k ) = x̂−
k + Kk(zk − Hkxk + Hke−

k )

so
ek = xk − x̂k = e−

k − Kk(uk + Hke−
k )

Therefore

Pk = E(e2
k) = P −

k + K2
k(Rk + H 2

k P −
k + 0) − 2KkHkP −

k

and taking the derivative with respect to Kk and setting it to zero, we get

Kk = P −
k Hk

H 2
k P −

k + Rk

which is the one-dimensional expression for the linear Kalman gain.
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Residuals, Mean Price Error (MPE) and Root Mean Square Error (RMSE) In what
follows we shall call the estimated observations ẑ−

k . For the simple and
extended Kalman filters, we have

ẑ−
k = h(x̂−

k ↪ 0)

The residuals are the observation errors, defined as

z̃k = zk − ẑ−
k

Needless to say, the smaller these residuals, the higher the quality of the filter.
Therefore, to measure the performance, we define the mean price error (MPE)
and root mean square error (RMSE) as the mean and standard deviation of
the residuals

MP E = 1

N

N∑
k=1

z̃k

RMSE =
√√√√ 1

N

N∑
k=1

(z̃k − MP E)2

The Unscented Kalman Filter

Recently, Julier and Uhlmann [166] proposed a new extension of the Kalman
filter to nonlinear systems, one that is completely different from the EKF.
They argue that EKF could be difficult to implement and, more importantly,
difficult to tune and that it would be reliable only for systems that are al-
most linear within the update intervals. The new method, called the un-
scented Kalman filter (UKF), will calculate the mean to a higher order of
accuracy than the EKF and the covariance to the same order of accuracy.
Unlike the EKF, this method does not require any Jacobian calculation since
it does not approximate the nonlinear functions of the process and the ob-
servation. Therefore, it uses the true nonlinear models but approximates the
distribution of the state random variable xk by applying an unscented trans-
formation to it. As we will see in the following, we construct a set of sigma
points that capture the mean and covariance of the original distribution and,
when propagated through the true nonlinear system, capture the posterior
mean and covariance accurately to the third order.

Similarly to the EKF, we start with an initial choice for the state vector
x̂0 = E[x0] and its covariance matrix P0 = E[(x0 − x̂0)(x0 − x̂0)t]. We then
concatenate the space vector with the system noise and the observation
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noise11 and create an augmented state vector for each step k greater than
one

xa
k−1 =


 xk−1

wk−1

uk−1




and therefore

x̂a
k−1 =


 x̂k−1

0
0




and

Pa
k−1 =


 Pk−1 Pxw(k − 1|k − 1) 0

Pxw(k − 1|k − 1) Pww(k − 1|k − 1) 0
0 0 Puu(k − 1|k − 1)




for each iteration k. The augmented state will therefore have a dimension
na = nx + nw + nu.

We then need to calculate the corresponding sigma points through the
unscented transformation:

χa
k−1(0) = x̂a

k−1

For i = 1↪ ...↪ na

χa
k−1(i) = x̂a

k−1 +
(√

(na + λ)Pa
k−1

)
i

and for i = na + 1↪ ...↪ 2na

χa
k−1(i) = x̂a

k−1 −
(√

(na + λ)Pa
k−1

)
i−na

where the above subscripts i and i − na correspond to the ith and i − nth
a

columns of the square-root matrix.12 This prepares us for the time update
and the measurement update equations, similarly to the EKF.

The time update equations are

χk|k−1(i) = f(χx
k−1(i)↪ χ

w
k−1(i))

11This space augmentation will not be necessary if we have additive noises as in
xk = f (xk−1) + wk−1 and zk = h(xk) + uk.
12The square-root matrix is calculated via singular value decomposition (SVD) and
Cholesky factorization [204]. In case Pa

k−1 is not positive-definite, one could, for
example, use a truncation procedure.
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for i = 0↪ ...↪ 2na + 1 and

x̂−
k =

2na∑
i=0

W (m)
i χk|k−1(i)

and

P−
k =

2na∑
i=0

W (c)
i (χk|k−1(i) − x̂−

k )(χk|k−1(i) − x̂−
k )t

where the superscripts x and w respectively correspond to the state and
system-noise portions of the augmented state.

The W (m)
i and W (c)

i weights are defined as

W (m)
0 = λ

na + λ

and

W (c)
0 = λ

na + λ
+ (1 − α2 + β)

and for i = 1↪ ...↪ 2na

W (m)
i = W (c)

i = 1

2(na + λ)

The scaling parameters α, β, κ and λ = α2(na + κ) − na will be chosen
for tuning.

We also define within the time update equations

Zk|k−1(i) = h(χk|k−1(i)↪ χ
u
k−1(i))

and

ẑ−
k =

2na∑
i=0

W (m)
i Zk|k−1(i)

where the superscript u corresponds to the observation-noise portion of the
augmented state.

As for the measurement update equations, we have

Pzkzk =
2na∑
i=0

W (c)
i (Zk|k−1(i) − ẑ−

k )(Zk|k−1(i) − ẑ−
k )t

and

Pxkzk =
2na∑
i=0

W (c)
i (χk|k−1(i) − x̂−

k )(Zk|k−1(i) − ẑ−
k )t
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which gives us the Kalman gain

Kk = PxkzkP
−1
zkzk

and we get as before
x̂k = x̂−

k + Kk(zk − ẑ−
k )

where again zk is the observation at time (iteration) k. Also, we have

Pk = P−
k − KkPzkzkK

t
k

which completes the measurement update equations.

Kushner’s Nonlinear Filter

It would be instructive to compare this algorithm to the nonlinear filter-
ing algorithm based on an approximation of the conditional distribution by
Kushner et al. [174]. In this approach, the authors suggest using a Gaussian
quadrature in order to calculate the integral at the measurement update (or
the time update) step.13 As the Kushner paper indicates, having an
N -dimensional normal random variable X = N (m↪ P), with m and P the
corresponding mean and covariance, for a polynomial G of degree 2M − 1,
we can write14

E[G(X)] = 1

(2π)
N
2 |P| 1

2

∫
G(y) exp

[
− (y − m)tP−1(y − m)

2

]
dy

which is equal to

E[G(X)] =
M∑

i1=1

...

M∑
iN=1

wi1 ...wiN G
(
m + √

Pζ
)

where ζt = (ζi1
↪ ...↪ ζiN

) is the vector of the Gauss-Hermite roots of order
M and wi1 ↪ ...↪ wiN are the corresponding weights. Note that even if both
Kushner’s NLF and UKF use Gaussian qadratures, UKF only uses 2N + 1
sigma points, whereas NLF needs MN points for the integral computation.

Kushner and Budhiraja suggest using this technique primarily for the
measurement update (filtering) step. They claim that provided this step is
properly implemented, the time update (prediction) step can be carried out
via a linearization similar to the EKF.

13The analogy between Kushner’s nonlinear filter and the unscented Kalman filter,
has already been studied in Ito & Xiong [151].
14A description of the Gaussian quadrature can be found in Press et al. [204].
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Details of the Kushner algorithm Let us use the same notations as for the UKF
algorithm. We therefore have the augmented state xa

k−1 and its covariance
Pa

k−1 as before. Here, for a quadrature order of M on an N -dimensional
variable, the sigma points are defined for j = 1↪ ...↪ N and ij = 1↪ ...↪ M as

χa
k−1(i1↪ ...↪ iN) = x̂a

k−1 +
√

Pa
k−1ζ(i1↪ ...↪ iN)

where the square root here corresponds to the Cholesky factorization, and
again ζ(i1↪ . . . ↪ iN)[j ] = ζij

for each j between 1 and the dimension N and
each ij between 1 and the quadrature order M. Similarly to the UKF, we
have the time update equations

χk|k−1(i1↪ ...↪ iN) = f
(
χx

k−1(i1↪ ...↪ iN)↪ χw
k−1(i1↪ ...↪ iN)

)
but now

x̂−
k =

M∑
i1=1

...

M∑
iN=1

wi1 ...wiN χk|k−1(i1↪ ...↪ iN)

and

P−
k =

M∑
i1=1

...

M∑
iN=1

wi1 ...wiN (χk|k−1(i1↪ ...↪ iN) − x̂−
k )(χk|k−1(i1↪ ...↪ iN) − x̂−

k )t

Again, we have

Zk|k−1(i1↪ ...↪ iN) = h
(
χk|k−1(i1↪ ...↪ iN)↪ χu

k−1(i1↪ ...↪ iN)
)

and

ẑ−
k =

M∑
i1=1

...

M∑
iN=1

wi1 ...wiN Zk|k−1(i1↪ ...↪ iN)

Therefore, the measurement update equations will be

Pzkzk =
M∑

i1=1

...

M∑
iN=1

wi1 ...wiN (Zk|k−1(i1↪ ...↪ iN) − ẑ−
k )(Zk|k−1(i1↪ ...↪ iN) − ẑ−

k )t

and

Pxkzk =
M∑

i1=1

...

M∑
iN=1

wi1 ...wiN (χk|k−1(i1↪ ...↪ iN) − x̂−
k )(Zk|k−1(i1↪ ...↪ iN) − ẑ−

k )t
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which gives us the Kalman gain

Kk = PxkzkP
−1
zkzk

and we get as before
x̂k = x̂−

k + Kk(zk − ẑ−
k )

where again zk is the observation at time (iteration) k.
Also, we have

Pk = P−
k − KkPzkzkK

t
k

which completes the measurement update equations.
When N = 1 and λ = 2, the numeric integration in the UKF will corres-

pond to a Gauss-Hermite quadrature of order M = 3. However, in the UKF
we can tune the filter and reduce the higher term errors via the previously
mentioned parameters α and β.

Note that when h(x↪ u) is strongly nonlinear, the Gauss Hermite integra-
tion is not efficient for evaluating the moments of the measurement update
equation, since the term p(zk|xk) contains the exponent zk − h(xk↪ uk). The
iterative methods based on the idea of importance sampling proposed in
[174] correct this problem at the price of a strong increase in computation
time. As suggested in [151], one way to avoid this integration would be to
make the additional hypothesis that xk↪ h(xk↪ uk)|z1:k−1 is Gaussian.

Parameter Learning

One important issue to realize is that the Kalman filter can be used either for
state estimation (filtering) or for parameter estimation (machine learning).
When we have both state estimation and parameter estimation, we are deal-
ing with a dual estimation or a joint estimation. The latter case is the one
concerning us because we are estimating the state volatility as well as the
model parameters. As explained in Haykin’s book [133], in a dual filter we
separate the state vector from the parameters and we apply two intertwined
filters to them. By contrast, in a joint filter, we concatenate the state vector
and the parameters and apply one filter to this augmented state. Note that
in the dual filter we need to compute recurrent derivatives with respect to
parameters, whereas in a joint filter no such step is needed.

It is possible to interpret the joint filter in the following way. In a regular
filter, that is, filtering of the state xk for a fixed set of parameters �0, we are
maximizing the conditional density

p(x1:k|z1:k↪ �0)
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and as we said, to do that we write

p(x1:k|z1:k↪ �0) = p(z1:k|x1:k↪ �0)p(x1:k|�0)

p(z1:k|�0)

so we maximize the above with respect to the state xk for a given set of
parameters. This means that the optimal state x̂1:k for a given parameter set
is given by

x̂1:k = argmax[p(z1:k↪ x1:k|�0)]

As we will see, in an MLE approach we use this optimal state filtering
for each iteration of the likelihood maximization over the parameter set �.

In a joint filter, we are directly optimizing the joint conditional density

p(x1:k↪ �|z1:k)

which we can also write as

p(x1:k↪ �|z1:k) = p(z1:k|x1:k↪ �)p(x1:k|�)p(�)

p(z1:k)

given that the denominator is functionally independent of x1:k and �, and
given that p(�) contains no prior information,15 the maximization will be
upon

p(z1:k|x1:k↪ �)p(x1:k|�) = p(z1:k↪ x1:k|�)

That is to say, in a joint filter, the optimal state x̂1:k and parameter set �̂

are found by writing

(x̂1:k↪ �̂) = argmax [p(z1:k↪ x1:k|�)]

In what follows, we apply the joint EKF methodology to a few examples.

An Illustration Before using this technique for the stochastic volatility model,
let us take a simple example

ξk = ξk−1 + π + 0.10wk

and
zk = ξk + 0.10uk

where π ≈ 3.14159 and wk, uk are independent Gaussian random variables.
The linear state-space system could be written as

xk =
(

ξk

πk

)
=
(

1 1
0 1

)
xk−1 + 0.10

(
wk

0

)

15Again, we are in a frequentist framework, not Bayesian.
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FIGURE 2.6 A Simple Example for the Joint Filter. The convergence toward the con-
stant parameter π happens after a few iterations.

and
zk = (1 0) xk + 0.10uk

We choose the initial values ξ0 = z0 = 0 and π0 = 1.0. We also take Q
= 0.1I2 and R = 0.10 . Applying the Kalman filter to an artificially generated
data set, we plot the resulting πk in Figure 2.6. As we can see, the parameter
converges very quickly to its true value.

Even if we associated a noise of 0.10 to the constant parameter π, we can
see that for 5000 observations, taking the mean of the filtered state between
observations 20 and 5000 we get

π̂ = 3.141390488

which is very close to the value 3.14159 used in data generation process.

Joint Filtering Examples After going through this simple example, we now
apply the JF technique to our stochastic volatility problem. We shall study a
few examples in order to find the best state-space representation.

Example 1 Our first example would be the square-root stochastic volatil-
ity model

ln Sk = ln Sk−1 +
(

µS − 1

2
vk−1

)
�t + √

vk−1

√
�tBk−1

vk = vk−1 + (ω − θvk−1)�t + ξ
√

vk−1

√
�tZk−1
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To simplify we suppose that the value of µS is known. We can now define
the state variable16

xk =




ln Sk

vk

ω
θ
ξ
ρ




and the system noise

wk =
(

Bk

Zk

)
with its covariance matrix

Qk =
(

1 ρ
ρ 1

)

and therefore

xk = f(xk−1↪ wk−1) =




ln Sk−1 + (µS − 1
2 vk−1)�t + √

vk−1

√
�tBk−1

vk−1 + (ω − θvk−1)�t + ξ
√

vk−1

√
�tZk−1

ω
θ
ξ
ρ




and therefore the Jacobian Ak is

Ak =




1 − 1
2 �t 0 0 0 0

0 1 − θ�t �t −vk−1�t 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




and

Wk =




√
vk−1

√
�t 0

0 ξ
√

vk−1

√
�t

0 0
0 0
0 0
0 0




16In reality we should write the estimation parameters ωk, θk, ξk, and ρk. However,
we drop the indexes for simplifying the notations.
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FIGURE 2.7 The EKF Estimation (Example 1) for the Drift Parameter ω. The SPX
index daily close prices were used over five years from 10/01/1996 to 09/28/2001.
The convergence is fairly good.

having the measurement zk = ln Sk we can write

Hk = (1 0 0 0 0 0
)

and Uk = 0.
We could, however, introduce a measurement noise R corresponding to

the intraday stock price movements and the bid-ask spread, in which case we
would have zk = ln Sk + Rεk, where εk represents a sequence of uncorrelated
standard normal random variables. This means that Rk = R and Uk = 1. We
can then tune the value of R in order to get more stable results (Figures 2.7
through 2.10).

Example 2 The same exact methodology could be used in the GARCH
framework. We define the state variable xt

k = (ln Sk↪ vk↪ ω0↪ α↪ β↪ c) and take
for observation the logarithm of the actual stock price Sk. The system could
be written as

xk = f(xk−1↪ wk−1)
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FIGURE 2.8 The EKF Estimation (Example 1) for the Drift Parameter θ. The SPX
index daily close prices were used over five years from 10/01/1996 to 09/28/2001.
The convergence is fairly good.
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FIGURE 2.9 The EKF Estimation (Example 1) for the Volatility-of-Volatility Param-
eter ξ. The SPX index daily close prices were used over five years from 10/01/1996
to 09/28/2001. The convergence is rather poor. We shall explain this via the concept
of observability.
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FIGURE 2.10 The EKF Estimation (Example 1) for the correlation parameter ρ.
The SPX index daily close prices were used over five years from 10/01/1996 to
09/28/2001. The convergence is rather poor. We shall explain this via the concept of
observability.

with wk = Bk a one-dimensional source of noise with a variance Qk = 1 and

f(xk−1↪ wk−1) =




ln Sk−1 + (µS − 1
2 vk−1

)+ √
vk−1Bk−1

ω0 + βvk−1 + α(Bk−1 − c
√

vk−1)
2

ω0

α
β
c




and the Jacobian

Ak =




1 − 1
2 0 0 0 0

0 β + αc2 1 c2vk−1 vk−1 2αcvk−1

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
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and

Wk =




√
vk−1

−2αc
√

vk−1

0
0
0
0




The observation zk will be

zk = h(xk) = ln(Sk)

exactly as in the previous example. The rest of the algorithm would therefore
be identical to the one included in Example 1.

Example 3 In Examples 1 and 2, we included all the variables in the
system process and we observed part of the system. It is also possible to
separate the measurement and the system variables as follows.

Taking a general discrete stochastic volatility process as17

ln Sk = ln Sk−1 +
(

µS − 1

2
vk

)
�t + √

vk

√
�tBk

vk = vk−1 + b(vk−1)�t + a(vk−1)
√

�tZk

with Bk and Zk two Normal random sequences with a mean of zero and
variance one, with a correlation equal to ρ.

Posing yk = √
vkZk and performing the usual Cholesky factorization

Bk = ρZk + √1 − ρ2Xk, where Zk and Xk are uncorrelated, we can now
take the case of a square-root process and write

xk =




vk

yk

ω
θ
ξ
ρ




and xk = f(xk−1↪ Zk) with

f(xk−1↪ Zk) =




vk−1 + (ω − θvk−1)�t + ξ
√

vk−1

√
�tZk(

vk−1 + (ω − θvk−1)�t + ξ
√

vk−1

√
�tZk

)1
2

Zk

ω + QZk

θ + QZk

ξ + QZk

ρ + QZk




17Note that the indexing here is slightly different from the previous examples.
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which provides us with the Jacobian

Ak =




1 − θ�t 0 �t −vk−1�t 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




and

Wk =




ξ
√

vk−1

√
�t

(vk−1 + (ω − θvk−1)�t)
1
2

Q
Q
Q
Q




The measurement equation is

zk = ln

(
Sk

Sk−1

)
=
(

µS − 1

2
vk

)
�t + ρ

√
�tyk +

√
1 − ρ2

√
vk

√
�tXk

and therefore
Hk = (− 1

2 �t ρ
√

�t 0 0 0 0
)

with uk = Xk and Uk = √1 − ρ2√vk

√
�t, which completes our set of equa-

tions. Again we could tune the system noise Q in order to obtain more stable
results.

Observability From the preceding tests, it seems that the EKF provides us with
a nonrobust calibration methodology. Indeed the results are very sensitive
to the choice of system noise Q and observation noise R. We chose for this
case Q = 10−3 and R ≈ 0.

This brings to attention the issue of observability. A nonlinear system
with a state vector xk of dimension n is observable if

O =




H
HA
HA2

...
HAn−1




has a full rank of n. For an explanation, refer to Reif et al. [205].
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It is fairly easy to see that among the foregoing examples, the first and
third (corresponding to the stochastic volatility formulation) have for the
observation matrix O a rank of four and therefore are not observable. This
explains why they do not converge well and are so sensitive to the tuning
parameters Q and R. This means that the choices of the state variables for
Examples 1 and 3 were rather poor. One reason is that in our state-space
choice, we considered

zk = h(vk−1↪ ...)

and
xk = (...↪ vk↪ ...) = f (xk−1↪ ...)

which implies that
∂h

∂vk
= 0

We shall see how to correct this in the next section by choosing a more
appropriate state-space representation.

The One-Dimensional State within the Joint Filter Considering the state equation

vk = vk−1 + (ω − θvk−1)�t + ξ
√

vk−1

√
�tZk−1

− ρξ

[
ln Sk−1 +

(
µS − 1

2
vk−1

)
�t + √

vk−1

√
�tBk−1 − ln Sk

]

posing for every k

Z̃k = 1√
1 − ρ2

(Zk − ρBk)

we will have as expected Z̃k uncorrelated with Bk. Therefore, considering
the augmented state

xk =




vk

ω
θ
ξ
ρ




we will have the state transition equation

f (xk−1↪ Z̃k−1)

=




vk−1 + [(ω − ρξµS ) −
(

θ − 1
2 ρξ

)
vk−1]�t + ρξ ln

(
Sk

Sk−1

)
+ ξ
√

1 − ρ2√vk−1
√

�tZ̃k−1

ω

θ

ξ

ρ
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and the measurement equation would be

zk = ln Sk+1 = ln Sk +
(

µS − 1

2
vk

)
�t + √

vk

√
�tBk

The corresponding EKF Jacobians for this system are

Ak =




1 −
(
θ − 1

2 ρξ
)

�t �t −vk−1�t ρ
(

ln
(

Sk
Sk−1

)
−
(
µS − 1

2 vk−1

)
�t
)

ξ
(

ln
(

Sk
Sk−1

)
−
(
µS − 1

2 vk−1

)
�t
)

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




Wk =




ξ
√

1 − ρ2√vk−1

√
�t

0
0
0
0




Hk = (− 1
2 �t 0 0 0 0

)
Uk = √

vk

√
�t

It is easy to check that this system is observable since the observation matrix
Ok is of full rank. This shows that our state-space choice is better than the
previous ones.

The UKF would be implemented in a fashion similar to that of the tran-
sition and observation equations above. Again, for the UKF, we would not
need to compute any Jacobians.

An important issue to consider is that of tuning. We could add extra
noise to the observation and hence lower the weight associated with the
observations. In which case, after choosing a tuning parameter R, we would
write

Uk = (√vk

√
�t R

)
and

UkUt
k = vk�t + R2

The choice of the initial conditions and the tuning parameters could make
the algorithm fail or succeed. It therefore seems that there is little robustness
in this procedure.

We consider the example of 5000 data points artificially produced via a
Heston stochastic volatility process with a parameter set

�∗ = (ω = 0.10↪ θ = 10.0↪ ξ = 0.03↪ ρ = −0.50)
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FIGURE 2.11 Joint EKF Estimation for the Parameter ω. Prices were simulated with
�∗ = (0.10↪ 10.0↪ 0.03↪ −0.50). The convergence remains mediocre. We shall explain
this in the following section.

with a given µS = 0.025 . We then choose a tuning parameter R = 0.10 and
take a reasonable guess for the initial conditions

�0 = (ω0 = 0.15↪ θ0 = 10.0↪ ξ0 = 0.02↪ ρ0 = −0.51)

and apply the joint filter. The results are displayed in Figures 2.11 to 2.14.
As we can see, the convergence for ω and θ is better than it was for the two
others. We shall see later why this is.

Allowing a burn-in period of 1000 points, we can calculate the mean
(and the standard deviation) of the generated parameters, after the simula-
tion 1000.

Joint Filters and Time Interval One difficulty with the application of the joint
filter (JF) to the stochastic volatility problem is the following: Unless we are
dealing with a longer time interval, such as �t = 1, the observation error√

vk

√
�tBk is too large compared with the sensitivity of the filter with respect

to the state through −0.5vk�t . Indeed, for a �t = 1/252 we have18

�t = o(
√

�t)

18Hereafter xh = o(yh) means xh/yh → 0 as h → 0, or, more intuitively, xh is much
smaller than yh for a tiny h.
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FIGURE 2.12 Joint EKF Estimation for the Parameter θ. Prices were simulated with
�∗ = (0.10↪ 10.0↪ 0.03↪ −0.50) . The convergence remains mediocre. We shall explain
this in the following section.
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FIGURE 2.13 Joint EKF Estimation for the Parameter ξ. Prices were simulated with
�∗ = (0.10↪ 10.0↪ 0.03↪ −0.50) . The convergence remains mediocre. We shall explain
this in the following section.

A simple Monte Carlo test will allow us to verify this. We simulate
a Heston model and another model in which we multiply both Brownian
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FIGURE 2.14 Joint EKF Estimation for the Parameter ρ. Prices were simulated with
�∗ = (0.10↪ 10.0↪ 0.03↪ −0.50) . The convergence remains mediocre. We shall explain
this in the following section.

motions by a factor �t . This will make the errors smaller by a factor of 252 for
the daily case. We call this model the modified model. After generating 5000
data points with a parameter set (ω∗ = 0.10↪ θ∗ = 10.0↪ ξ∗ = 0.03↪ ρ∗ = −0.50)
and a drift µS = 0.025, we suppose we know all parameters except ω.

We then apply the JKF to find the estimate ω̂. We can observe in
Figure 2.15 that the filter diverges when applied to the Heston model but
converges fast when applied to the modified model. However, in reality we
have no control over the observation error, which is precisely the volatility!
In a way, this brings up a more fundamental issue regarding the stochastic
volatility estimation problem: By definition, volatility represents the noise of
the stock process. If we had taken the spot price Sk as the observation and
the variance vk as the state, we would have

Sk = Sk−1 + Sk−1µS�t + Sk−1
√

vk

√
�tBk

we would then have an observation function gradient H = 0 and the system
would be unobservable! It is precisely because we use a Taylor second-order
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FIGURE 2.15 Joint EKF Estimation for the Parameter ω Applied to the Heston Model
as Well as to a Modified Model Where the Noise is Reduced by a Factor 252. As
we can see, the convergence for the modified model is improved dramatically. This
justifies our comments on large observation error.

expansion

ln(1 + R) ≈ R − 1

2
R2

that we obtain access to vk through the observation function. However, the
error remains dominant as the first order of the expansion.

Some [130] have tried

ln

(
ln2(

Sk

Sk−1
)

)
≈ ln(vk) + ln(�t) + ln(B2

k)

and
ln(B2

k) ∼ −1.27 + π√
2
N (0↪ 1)

but the latter approximation may or may not be valid depending on the
problem under study.

Parameter Estimation via MLE

As previously stated, one of the principal methods of estimation under the
classical framework is the maximization of the likelihood. Indeed this
estimation method has many desirable asymptotic properties. Therefore,
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instead of using the filters alone, we could separate the parameter set
� = (ω↪ θ↪ ξ↪ ρ) from the state vector (ln Sk↪ vk) and use the Kalman filter
for state filtering within each MLE iteration19 and estimate the parameters
iteratively.

An Illustration Let us first consider the case of the previous illustration

ξk = ξk−1 + π + 0.10wk

and
zk = ξk + 0.10uk

where π ≈ 3.14159 and wk, uk are independent Gaussian random variables.
Here we take

xk = ξk

and
Ak = Hk = 1

Wk = Uk = 0.1

The maximization of the Gaussian likelihood with respect to the parameter
π is equivalent to minimizing

L1:N =
N∑

k=1

[
ln(Fk) + z̃2

k

Fk

]

with residuals
z̃k = zk − ẑ−

k = zk − x̂−
k

and
Fk = Pzkzk = HkP −

k H t
k + UkRkUt

k

Note that we used scalar notations here, and in vectorial notations we
would have

L1:N =
N∑

k=1

[
ln(|Fk|) + z̃t

kF
−1
k z̃k

]
where |Fk| is the determinant of Fk. We use the scalar notations for simplicity
and also because in the stochastic volatility problem we usually deal with
one-dimensional observations (namely, the stock price).

19To be more accurate, since the noise process is conditionally Gaussian, we are
dealing with a quasi-maximum-likelihood (QML) Estimation. More detail can be
found, for instance, in Gourieroux [124].
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The minimization via a direction set (Powell) method over 500 artificially
generated observation points will provide

π̂ = 3.145953

very quickly.

Stochastic Volatility Examples For Example 1, the system state vector now
becomes

xk =
(

ln Sk

vk

)

which means the dimension of our state is now two, and

xk = f(xk−1↪ wk−1) =
(

ln Sk−1 + (µS − 1
2 vk−1

)
�t + √

vk−1

√
�tBk−1

vk−1 + (ω − θvk−1)�t + ξ
√

vk−1

√
�tZk−1

)

The system noise is still

wk =
(

Bk

Zk

)

and the corresponding covariance matrix is

Qk =
(

1 ρ
ρ 1

)

We have the measurement zk = ln Sk, and therefore we can write

Hk = (1 0
)

Now for a given set of parameters (ω↪ θ↪ ξ↪ ρ) we can filter this system with
the EKF (or the UKF) using

Ak =
(

1 − 1
2 �t

0 1 − θ�t

)

and

Wk =
(√

vk−1

√
�t 0

0 ξ
√

vk−1

√
�t

)

Note that the observation matrix is

Ok =
(

1 0
1 − 1

2 �t

)

which is of full rank. Our system is therefore observable.
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FIGURE 2.16 The SPX Historic Data (1996–2001) is Filtered via EKF and UKF. The
results are very close, however, the estimated parameters ˆ∣∣� = (ω̂↪ θ̂↪ ξ̂↪ ρ̂) differ.
Indeed we find (ω̂ = 0.073028↪ θ̂ = 1.644488↪ ξ̂ = 0.190461↪ ρ̂ = −1.000000) for
the EKF and (ω̂ = 0.540715↪ θ̂ = 13.013577↪ ξ̂ = 0.437523↪ ρ̂ = −1.000000) for
the UKF. This might be due to the relative insensitivity of the filters to the parameter
set � or the non-uniqueness of the optimal parameter set. We shall explain this low
sensitivity in more detail.

After filtering for this set of parameters, we calculate the sum to be
minimized

φ(ω↪ θ↪ ξ↪ ρ) =
N∑

k=1

[
ln(Fk) + z̃2

k

Fk

]

with

z̃k = zk − h(x̂−
k ↪ 0)

and

Fk = HkP−
k Ht

k + UkRkUt
k

The minimization could once again be done via a direction set (Powell)
method, as described previously. This will avoid a calculation of the gra-
dient ∇φ.

It is interesting to observe (cf. Figures 2.16 and 2.17) that the results
of the EKF and UKF are very close and the filter errors are comparable.



The Inference Problem 85

0

1e-05

2e-05

3e-05

4e-05

5e-05

6e-05

7e-05

8e-05

9e-05

0.0001

500 550 600 650 700

F
ilt

er
 E

rr
or

Days

EKF
UKF

FIGURE 2.17 EKF and UKF Absolute Filtering-Errors for the Same Time-Series. As
we can see, there is no clear superiority of one algorithm over the other.

However, the estimated parameter set � = (ω↪ θ↪ ξ↪ ρ) can have a different
set of values depending on which filter is actually used.20

This leads us to the question, how sensitive are these filters to �? In
order to answer, we can run an estimation for EKF and use the estimated
parameters in UKF and observe how good a fit we obtain. The results show
that this sensitivity is fairly low. Again, this might be due to the relative
insensitivity of the filters to the parameter set � or the non-uniqueness of
the optimal parameter set. As we will see, the answer to this question also
depends on the sample size.

Optimization Constraints for the Square Root Model In terms of the optimization
constraints, in addition to the usual

ω ≥ 0 (2.12)

θ ≥ 0

ξ ≥ 0

−1 ≤ ρ ≤ 1

20Note, however, that the values of the resulting long-term volatilities
√

ω
θ

are rather
close.



86 INSIDE VOLATILITY ARBITRAGE

we need to make sure that the value of the variance remains positive; that is,

vk + (ω − θvk)�t + ξ
√

vk

√
�tZk ≥ 0

for any vk ≥ 0 and any Gaussian random value Zk. For a Gaussian random
variable Zk and any positive real number Z∗, we can write Zk ≥ −Z∗ with a
probability P ∗. For instance if Z∗ = 4 then P ∗ = 0.999968. Therefore, fixing
a choice of Z∗, it is almost always enough for us to have

vk + (ω − θvk)�t − ξ
√

vk

√
�tZ∗ ≥ 0

for any vk ≥ 0.
Considering the function f (x) = x + (ω − θx)�t − ξ

√
x
√

�tZ∗, it is
fairly easy to see that f (0) = ω�t ≥ 0 by assumption, and for x very large
f (x) ≈ (1 − θ�t)x, which is positive if

θ ≤ 1

�t
(2.13)

This is most of the time realized for a small �t such as ours.
Now f (x) being a continuous function and having positive values at

zero and infinity, it would be sufficient to make sure that its one minimum
on [0↪ +∞] is also positive. A simple derivative computation shows that
xmin = ξ2�t(Z∗)2

4(1−θ�t)2 and therefore the positivity is realized if 21

ξ ≤ 2

Z∗
√

ω(1 − θ�t) (2.14)

which completes our set of constraints.

An Alternative Implementation We could also perform the same estimation, but
based on our previous third example. Again we have

ln Sk = ln Sk−1 +
(

µS − 1

2
vk

)
�t + √

vk

√
�tBk

vk = vk−1 + (ω − θvk−1)�t + ξ
√

vk−1

√
�tZk

with Bk and Zk two normal random sequences with a mean of zero, a variance
of one, and a correlation equal to ρ. However, since for a Kalman filter the
process noise and the measurement noise must be uncorrelated, we introduce

yk = √
vkZk

21Naturally we suppose that �t > 0.
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and performing the usual Cholesky factorization Bk = ρZk + √1 − ρ2Xk,
where Zk and Xk are uncorrelated, we can write

xk =
(

vk

yk

)

and xk = f(xk−1↪ Zk) with

f(xk−1↪ Zk) =
(

vk−1 + (ω − θvk−1)�t + ξ
√

vk−1

√
�tZk

(vk−1 + (ω − θvk−1)�t + ξ
√

vk−1

√
�tZk)

1
2 Zk

)

which provides us with the Jacobian

Ak =
(

1 − θ�t 0
0 0

)

and

Wk =
(

ξ
√

vk−1

√
�t

(vk−1 + (ω − θvk−1)�t)
1
2

)

The measurement equation is

zk = ln Sk = ln Sk−1 +
(

µS − 1

2
vk

)
�t + ρ

√
�tyk +

√
1 − ρ2

√
vk

√
�tXk

and therefore
Hk = ( − 1

2 �t ρ
√

�t
)

with uk = Xk and Uk = √1 − ρ2√vk

√
�t which completes our set of equa-

tions. Note that the observation matrix is

Ok =
( − 1

2 �t ρ
√

�t
− 1

2 �t(1 − θ�t) 0

)

which is of full rank. Our system is therefore observable.

The One-Dimensional State Finally, a simpler way of writing the state-space
system, which will be our method of choice hereafter, would be to subtract
from both sides of the state equation xk = f (xk−1↪ wk−1) a multiple of the
quantity h(xk−1↪ uk−1) − zk−1, which is equal to zero. This would allow us to
eliminate the correlation between the system and the measurement noises.

In fact, if the system equation is

ln Sk = ln Sk−1 +
(

µS − 1

2
vk−1

)
�t + √

vk−1

√
�tBk−1
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vk = vk−1 + (ω − θvk−1)�t + ξ
√

vk−1

√
�tZk−1

writing

vk = vk−1 + (ω − θvk−1)�t + ξ
√

vk−1

√
�tZk−1

− ρξ

[
ln Sk−1 +

(
µS − 1

2
vk−1

)
�t + √

vk−1

√
�tBk−1 − ln Sk

]

posing for every k

Z̃k = 1√
1 − ρ2

(Zk − ρBk)

we will have as expected Z̃k uncorrelated with Bk and

xk = vk = vk−1 +
[
(ω − ρξµS ) −

(
θ − 1

2
ρξ

)
vk−1

]
�t

+ ρξ ln

(
Sk

Sk−1

)
+ ξ
√

1 − ρ2√vk−1

√
�tZ̃k−1

(2.15)

and the measurement equation would be

zk = ln Sk+1 = ln Sk +
(

µS − 1

2
vk

)
�t + √

vk

√
�tBk (2.16)

With this system everything becomes one-dimensional and the computations
become much faster both for the EKF and UKF.

For the EKF we will have

Ak = 1 −
(

θ − 1

2
ρξ

)
�t

and
Wk = ξ

√
1 − ρ2√vk−1

√
�t

as well as

Hk = −1

2
�t

and
Uk = √

vk

√
�t

Again, for the MLE we will try to minimize

φ(ω↪ θ↪ ξ↪ ρ) =
N∑

k=1

[
ln(Fk) + z̃2

k

Fk

]
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with residuals
z̃k = zk − h(x̂−

k ↪ 0)

and
Fk = HkP−

k Ht
k + UkUt

k

The same time update and measurement update will be used with the UKF.
The ML estimator can be used as usual.

The following is a C++ routine for the implementation of the EKF applied
to the Heston model:

// log_stock_prices are the log of stock prices

// muS is the real-world stock drift

// n_stock_prices is the number of the above stock prices

// (omega, theta, xi, rho) are the Heston parameters

// u[] is the set of means of observation errors

// v[] is the set of variances of observation errors

// estimates[] are the estimated observations from the filter

void estimate_extended_kalman_parameters_1_dim(

double *log_stock_prices,

double muS,

int n_stock_prices,

double omega,

double theta,

double xi,

double rho,

double *u,

double *v,

double *estimates)

{

int i1;

double x, x1, W, H, A;

double P, P1, z, U, K;

double delt=1.0/252.0;

double eps=0.00001;

x = 0.04;

P=0.01;

u[0]=u[n_stock_prices-1]=0.0;

v[0]=v[n_stock_prices-1]=1.0;

estimates[0]=estimates[1]=log_stock_prices[0]+eps;

for (i1=1;i1<n_stock_prices-1;i1++)

{

if (x<0) x=0.00001;
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x1 = x + ( omega-rho*xi*muS - (theta-0.5*rho*xi) * x) * delt +

rho*xi* (log_stock_prices[i1]-log_stock_prices[i1-1]);

A = 1.0-(theta-0.5*rho*xi)*delt;

W = xi*sqrt((1-rho*rho) * x * delt);

P1 = W*W + A*P*A;

if (x1<0) x1=0.00001;

H = -0.5*delt;

U = sqrt(x1*delt);

K = P1*H/( H*P1*H + U*U);

z = log_stock_prices[i1+1];

x = x1 + K * (z - (log_stock_prices[i1] + (muS-0.5*x1)*delt));

u[i1] = z - (log_stock_prices[i1] + (muS-0.5*x1)*delt);

v[i1] = H*P1*H + U*U;

estimates[i1+1] = log_stock_prices[i1] + (muS-0.5*x1)*delt;

P=(1.0-K*H)*P1;

}

}

// Having u[] and v[] we can evaluate the (minus log) Likelihood as

// the sum of log(v[i1])+u[i1]*u[i1]/v[i1]

// and minimize the sum in order to obtain the optimal parameters

// the minimization could be done for instance via the direction set

routine

// available in the Numerical Recipes in C

And what follows next is the same routine for the unscented filter.

void estimate_unscented_kalman_parameters_1_dim(
double *log_stock_prices,
double muS,
int n_stock_prices,
double omega,
double theta, double xi,
double rho,
double *u,
double *v,
double *estimates)
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{
int i1,i2, i3, t1;
int ret;
int na=3;
double x, xa[3];
double X[7], Xa[3][7];
double Wm[7], Wc[7], Z[7];
double x1;
double prod, prod1;
double P, P1;
double **Pa, **proda;
double z, U, Pzz, K;
double delt=1.0/252.0;
double a=0.001 , b=0.0, k=0.0, lambda;
double eps=0.00001;

lambda = a*a*(na +k)-na;

proda= new double * [na];
Pa = new double * [na];
for (i1=0;i1<na;i1++)
{
Pa[i1]= new double [na];
proda[i1]= new double [na];

}

xa[1]=xa[2]=0.0;
x= 0.04;
u[0]=u[n_stock_prices-1]=0.0;
v[0]=v[n_stock_prices-1]=1.0;
estimates[0]=estimates[1]=log_stock_prices[0]+eps;
xa[0]=x;

Pa[0][0]= Pa[1][1]= Pa[2][2] = 1.0;
Pa[1][0]= Pa[0][1]= Pa[1][2]=Pa[2][1]= Pa[0][2]=Pa[2][0]=0;

for (i1=0;i1<na;i1++)
{
for (i2=0;i2<na;i2++)
{
proda[i1][i2]=0.0;

}
}

Wm[0]=lambda/(na+lambda);
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Wc[0]=lambda/(na+lambda) + (1-a*a+b);
for (i3=1;i3<(2*na+1);i3++)
{
Wm[i3]=Wc[i3]=1/(2*(na+lambda));

}

for (t1=1;t1<n_stock_prices-1;t1++)
{

for (i1=0;i1<na;i1++)
{
Xa[i1][0]= xa[i1];

}

for (i1=0;i1<na;i1++)
{
for (i2=0;i2<na;i2++)
{

if (i1==i2)
{
if (Pa[i1][i2] < 1.0e-10)
Pa[i1][i2]= 1.0e-10;

}
else
{
if (Pa[i1][i2] < 1.0e-10)
Pa[i1][i2]= 0.0;

}
}

}

ret = sqrt_matrix(Pa,proda,na);

for (i3=1;i3<(1+na);i3++)
{
for (i1=0;i1<na;i1++)
{
Xa[i1][i3]= xa[i1] + sqrt(na+lambda) * proda[i1][i3-1];
}

}
for (i3=(1+na);i3<(2*na+1);i3++)
{
for (i1=0;i1<na;i1++)
{
Xa[i1][i3]= xa[i1] - sqrt(na+lambda) * proda[i1][i3-na-1];
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}
}

for (i3=0;i3<(2*na+1);i3++)
{
if (Xa[0][i3]<0) Xa[0][i3]=0.0001;
X[i3]= Xa[0][i3] + (omega-muS*rho*xi -
(theta-0.5*rho*xi) *Xa[0][i3])*delt +

rho*xi* (log_stock_prices[t1]-log_stock_prices[t1-1]) +
xi*sqrt((1-rho*rho)*delt*Xa[0][i3])*Xa[1][i3];
}

x1 = 0;
for (i3=0;i3<(2*na+1);i3++)
{
x1 += Wm[i3]*X[i3];

}

P1=0.0;
for (i3=0;i3<(2*na+1);i3++)
{
P1 += Wc[i3]*(X[i3]-x1)*(X[i3]-x1);

}

z=0;
for (i3=0;i3<(2*na+1);i3++)
{
if (X[i3]<0) X[i3]=0.00001;
Z[i3] = log_stock_prices[t1] + (muS-0.5*X[i3])*delt +

sqrt(X[i3]*delt)*Xa[2][i3];
z += Wm[i3]*Z[i3];

}

Pzz=0;
for (i3=0;i3<(2*na+1);i3++)
{
Pzz += Wc[i3]*(Z[i3]-z)*(Z[i3]-z);

}

prod=0.0;
for (i3=0;i3<(2*na+1);i3++)
{
prod += Wc[i3]*(X[i3]-x1)* (Z[i3]-z);

}
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K= prod/Pzz;

u[t1] = log_stock_prices[t1+1] - z;
v[t1] = Pzz;
estimates[t1+1] = z;

x = x1 + K*(log_stock_prices[t1+1] - z);
P = P1 - K*K * Pzz;

xa[0]=x;
Pa[0][0] = P;

if (x<0) x=0.0001;

Pa[1][0]= Pa[0][1]= Pa[1][2]=Pa[2][1]= Pa[0][2]=Pa[2][0]=0;
}

for (i1=0;i1<na;i1++)
{
delete [] Pa[i1];
delete [] proda[i1];

}
delete [] Pa;
delete [] proda;

}

// the routine sqrt_matrix() can be constructed via the Cholesly
decomposition
// also available as choldc() in the Numerical Recipes in C

Other stochastic volatility models It is easy to generalize the above state-space
model to other stochastic volatility approaches. Indeed we could replace the
Heston equation with

vk = vk−1 + (ω − θvk−1)�t + ξv
p
k−1

√
�tZk

where p = 1/2 would naturally correspond to the Heston model, p = 1 to
the GARCH diffusion-limit model, and p = 3/2 to the 3

2 model described in
[177]. This idea will be developed further in the chapter.
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Diagnostics

After having estimated the parameter set �, we should test for model mis-
specification. Two important questions are

1. Do the normalized residuals (zk − ẑ−
k )/Fk follow a standard normal

N (0↪ 1) law?
2. Do these residuals have zero auto correlation?

Chi-Square Test The first question could be answered by performing a chi-
square test. We take a number NB of intervals or “bins” bounded by the
points x0↪ x1↪ ...↪ xJ . We then count the number of observations Nj within
each bin [xj ↪ xj+1 ] for j between zero and NB − 1. We then compare these
numbers with the theoretical numbers implied by the normal distribution
nj = [�(xj+1 ) − �(xj )]Nwith � the cumulative normal function and N the
total number of observations. The sum

NB−1∑
j=0

(Nj − nj )2

nj

asymptotically follows a χ2
ν law with degrees of freedom ν equal to NB − 1.

Box-Ljung Test The second question could be answered with a Box-Ljung test.
We should first calculate a number of autocorrelations

rk =
∑N−k

i=1 (z̃i − ¯̃z)(z̃i+k − ¯̃z)∑N
i=1(z̃i − ¯̃z)2

for k between one and a prespecified integer K. Once again, z̃i = zi − ẑ−
i and

¯̃z corresponds to their mean. We then consider the sum

N(N + 2)

K∑
k=1

r2
k

N − k

which asymptotically follows a χ2
ν law with degrees of freedom ν equal to

K − p where p = 4 is the numbers of parameters we estimated.

Test Results In the previously studied SPX examples, we had N = 1256 . For
the normality test, we choose NB = 21 and for the Box-Ljung test we take
K = 24; in both cases, we will have to compare the outputs to the crit-
ical threshold χ2

20, which for a confidence of 0.95 is around 31.5. For the
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FIGURE 2.18 Histogram for Filtered Data via EKF versus the Normal Distribution.
The residuals are fairly normal.

(one-dimensional) EKF, we obtain 27.738862 for the normality test and
0.007889 for the Box-Ljung test. For the (one-dimensional) UKF, we
obtain 22.657545 for the normality test and again 0.016053 for the
Box-Ljung test. This means that there is very little autocorrelation in our
system noise. Also, it seems reasonable to model the noise as approximately
normally distributed. The chi-square test proves that the normality assump-
tion is plausible and the Kalman filter can be used. A visual confirmation of
this could be achieved by plotting the corresponding histograms. As we can
see in Figure 2.18, there are no excessively “fat tails”; however, the central
value at zero is higher than the normal distribution.

Variogram Similarly to Fouque et al. [104], we can use a variogram to
visualize the volatility behavior of the model. As Galli [110] mentions, the
main reasons to use variograms instead of covariance or correlograms are
that variograms do not need to estimate the mean, and they are interpretable
under wider conditions than are covariances or correlograms.

The expression for the variogram of a process It is

γI (h) = 1

2
E[(I (t + h) − I (t))2] ≈ 1

2Nhi

Nhi∑
t=0

(I (t + hi ) − I (t))2

where Nhi is the total number of points such that I (t + hi ) exists.



The Inference Problem 97

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

10 20 30 40 50 60
Days

Variograms

EKF

UKF

FIGURE 2.19 Variograms for Filtered Data via EKF and UKF. The input corresponds
to a sequence of independent Gaussian random variables. As we can see, the vari-
ograms are close to one.

For instance, for a sequence of independent Gaussian random variables,
we should have

γI (h) = 1

2
E[I 2(t + h)] + 1

2
E[I 2(t)] − E[I (t)I (t + h)] = 1

2
+ 1

2
− 0 = 1

In our case, the process It could be defined, for instance, as

It = zt − ẑ−
t√

Ft

which should correspond to a sequence of independent Gaussian random
variables.

As we can see in Figure 2.19, the variogram is consistent with the Gaus-
sian assumption, which reconfirms what we observed from the histograms.
Another way of expressing the same idea is to build a Brownian motion from
the foregoing sequence. Calling the independent Gaussian random variables
(Bk), we can write

In = √
�t

n∑
k=0

Bk

and plot the variogram for the Brownian Motion In.
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FIGURE 2.20 Variograms for Filtered Data via EKF and UKF. The input corresponds
to a Brownian motion. As we can see, the variograms are close to x/2.

For a Brownian motion, it is easy to see that the variogram should be linear

γI (h) = 1

2
(t + h) + 1

2
t − t = 1

2
h

This could indeed be seen in Figure 2.20.

Particle Filtering

A different approach to filtering and parameter estimation has recently
become popular [79], [122], [171]. In this approach, we use Monte Carlo
simulations instead of Gaussian approximations for (xk|zk), as the Kalman
or Kushner filters do. This will precisely allow us to deal with fundamentally
non-Gaussian situations.22

22An existing (but less effective) alternative to the particle filtering method is the
grid-based approximation, such as the one suggested by Kitagawa [170], [108]. The
main advantage of the particle filter is that it will make the grid focus adaptively on
the state-space regions with higher relevance.
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Underlying Theory The idea is based on the Importance Sampling technique:
We can calculate an expected value

E[f (x0:k)] =
∫

f (x0:k)p(x0:k|z1:k)dx0:k (2.17)

by using a known and simple proposal distribution q().
More precisely, it is possible to write

E[f (x0:k)] =
∫

f (x0:k)
p(x0:k|z1:k)

q(x0:k|z1:k)
q(x0:k|z1:k)dx0:k

which could be also written as

E[f (x0:k)] =
∫

f (x0:k)
wk(x0:k)

p(z1:k)
q(x0:k|z1:k)dx0:k (2.18)

with

wk(x0:k) = p(z1:k|x0:k)p(x0:k)

q(x0:k|z1:k)

defined as the filtering non-normalized weight as step k.

Proof:
p(x0:k|z1:k)

q(x0:k|z1:k)
= p(z1:k|x0:k)p(x0:k)

p(z1:k)q(x0:k|z1:k)

= wk(x0:k)

p(z1:k)

(QED)
We therefore have

E[f (x0:k)] = Eq[wk(x0:k)f (x0:k)]

Eq[wk(x0:k)]
= Eq[w̃k(x0:k)f (x0:k)] (2.19)

with

w̃k(x0:k) = wk(x0:k)

Eq[wk(x0:k)]

defined as the filtering normalized weight as step k.

Proof: We write

E[f (x0:k)] = 1

p(z1:k)

∫
f (x0:k)wk(x0:k)q(x0:k|z1:k)dx0:k

=
∫

f (x0:k)wk(x0:k)q(x0:k|z1:k)dx0:k∫
p(z1:k|x0:k)p(x0:k) q(x0:k|z1:k)

q(x0:k|z1:k)
dx0:k
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=
∫

f (x0:k)wk(x0:k)q(x0:k|z1:k)dx0:k∫
wk(x0:k)q(x0:k|z1:k)dx0:k

which is the ratio of the expectations, as earlier stated. (QED)
Using Monte-Carlo sampling from the distribution q(x0:k|z1:k) we can

write in the discrete framework:

E[f (x0:k)] ≈
Nsims∑
i=1

w̃k

(
x(i)

0:k

)
f
(
x(i)

0:k

)
(2.20)

with again

w̃k(x
(i)
0:k) =

wk

(
x(i)

0:k

)
∑Nsims

j=1 wk

(
x

(j)
0:k

)
Now supposing that our proposal distribution q() satisfies the Markov prop-
erty, it can be shown that wk verifies the recursive identity

w(i)
k = w(i)

k−1

p
(
zk|x(i)

k

)
p
(
x(i)

k |x(i)
k−1

)
q
(
x(i)

k |x(i)
0:k−1↪ z1:k

) (2.21)

which completes the sequential importance sampling algorithm.

Proof: The Markov property just mentioned could be written as

q(x0:k|z1:k) = q(xk|x0:k−1↪ z1:k)q(x0:k−1|z1:k−1) (2.22)

We also assume that the state (xk) is a Markov process, meaning

p(xk|x0:k−1) = p(xk|xk−1)

and the observations (zk) are conditionally independent given the states, so
that

p(zk|x0:k) = p(zk|xk)

Finally we use the fact that at time-step k, all previous observations are
perfectly known, and

p(zk|xk↪ z1:k−1) = p(zk|xk)

Therefore

wk(xk) = p(z1:k|x0:k)p(x0:k)

q(x0:k|z1:k)
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= p(zk|xk)p(z1:k−1|x0:k−1)p(xk|xk−1)p(x0:k−1)

q(xk|x0:k−1↪ z1:k)q(x0:k−1|z1:k−1)

(QED)
It is important to note that what the foregoing means is that the state xk

cannot depend on future observations; that is, we are dealing with filtering
and not smoothing.

Resampling One major problem with this algorithm is that the variance of
the weights increases randomly over time. In order to solve this, we need to
use a resampling algorithm, which would map our unequally weighted xk’s
to a new set of equally weighted sample points. Various methods have been
suggested for this. See, for instance, Arulampalam [14], [171]. The basic
idea is to compare the cumulative distribution function (CDF) created from
the normalized weights with a CDF constructed from a uniformly simulated
number U[0↪ 1]. We would then eliminate the indices having too small a
weight and repeat those having a sufficiently large weight.

More accurately, at a given time step k, for 1 ≤ j ≤ Nsims, if

1

Nsims
(U[0↪ 1] + j − 1) ≥

i∑
l=1

w̃(l)
k

then increment and “skip” i; otherwise, take x(i)
k and set its weight to 1

Nsims
.

Note that the resampling algorithm could create a situation where the
resulting sample has many repeated points. This is known as sample impov-
erishment and could lead to an extreme case in which all points collapse to
a unique particle after a few iterations. This phenomenon is more likely if
the process noise is small. One possible solution to this problem is to add a
Markov chain Monte Carlo (MCMC) step after the resampling. As will be
described further, a Metropolis-Hastings (MH) sampling algorithm would
be suitable.

Needless to say, the choice of the proposal distribution is crucial. Many
suggest using

q(xk|x0:k−1↪ z1:k) = p(xk|xk−1)

since it will give us a simple weight identity

w(i)
k = w(i)

k−1p(zk|x(i)
k )

Based on this type of choice, hereafter we shall simplify and write

q(xk|x0:k−1↪ z1:k) = q(xk|xk−1↪ z1:k)

without any change to our arguments. However, this choice of the proposal
distribution does not take into account our most recent observation zk at
all and therefore could become inefficient. Hence aries the idea of using a
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Gaussian approximation for the proposal and, in particular, an approxima-
tion based on the Kalman filter, in order to incorporate the observations. We
therefore will have

q(xk|xk−1↪ z1:k) = N (x̂k↪ Pk) (2.23)

using the same notations as in the section on the Kalman filter. Such filters are
sometimes referred to as the extended particle filter (EPF) or the unscented
particle filter (UPF). This is similar to the iterative gentering algorithm in
Kushner’s NLF.

From here, in order to estimate the parameter set � we can either use
dual/Joint filter, or use an ML estimator. Note that since the particle filter
does not necessarily assume Gaussian noise, the likelihood function to be
maximized has a more general form than the one used in previous sections.
Given the likelihood at step k

lk = p(zk|z1:k−1) =
∫

p(zk|xk)p(xk|z1:k−1)dxk

the total likelihood is the product of the lk’s and therefore the log likelihood
to be maximized is

ln(L1:N) =
N∑

k=1

ln(lk) (2.24)

Now lk could be written as

lk =
∫

p(zk|xk)
p(xk|z1:k−1)

q(xk|xk−1↪ z1:k)
q(xk|xk−1↪ z1:k)dxk

and given that by construction the x(i)
k ’s are distributed according to q(), we

can write the Monte Carlo approximation

lk ≈
Nsims∑
i=1

p
(
zk|x(i)

k

)
p
(
x(i)

k |x(i)
k−1

)
q
(
x(i)

k |x(i)
k−1↪ z1:k

) (2.25)

which we already computed for the sequential importance sampling weight
update.

As we shall see in the next paragraph, it is also possible to interpret the
step k likelihood, as a quantity related to the total weight

Nsims∑
i=1

w(i)
k

Finally, we could interpret the particle filter as follows. We are using a Monte
Carlo simulation (via an importance sampling technique) to calculate the
integral

∫
f (xk)p(xk|z1:k)dxk. This is exactly what other filtering techniques
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try to do. The Kushner nonlinear filter (NLF) tries to calculate the integral
via a Gaussian quadrature. Indeed, NLF uses Hermite polynomials because
it treats the distributions as normal.23

Implementation Given the above theory, the algorithm for an extended or
unscented particle filter could be implemented in the following way:

1. For time step k = 0, choose x0 and P0 > 0.
For i such that 1 ≤ i ≤ Nsims, take

x(i)
0 = x0 +√P0Z(i)

where Z(i) is a standard Gaussian simulated number. Also take P (i)
0 = P0

and

w(i)
0 = 1

Nsims

While 1 ≤ k ≤ N
2. For each simulation index i

x̂(i)
k = KF(x(i)

k−1)

with P (i)
k the associated a posteriori error covariance matrix. (KF could

be either the EKF or the UKF.)
3. For each i between 1 and Nsims

x̃(i)
k = x̂(i)

k +
√

P (i)
k Z(i)

where again Z(i) is a standard Gaussian simulated number.
4. Calculate the associated weights for each i

w(i)
k = w(i)

k−1

p(zk|x̃(i)
k )p(x̃(i)

k |x(i)
k−1)

q(x̃(i)
k |x(i)

k−1↪ z1:k)

with q() the normal density with mean x̂(i)
k and variance P (i)

k .
5. Normalize the weights

w̃(i)
k = w(i)

k∑Nsims
i=1 w(i)

k

6. Resample the points x̃(i)
k and get x(i)

k and reset w(i)
k = w̃(i)

k = 1
Nsims

.

7. Increment k; go back to Step 2 and Stop at the end of the While loop.

23Other filters cited, for instance, in [79] use the more general Legendre polynomials.
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From Step 4 we have

l̄k =
Nsims∑
i=1

p
(
zk|x̃(i)

k

)
p
(
x̃(i)

k |x(i)
k−1

)
q
(
x̃(i)

k |x(i)
k−1↪ z1:k

)
where l̄k is a Monte Carlo proxy for the likelihood lk at the step k. As we
saw in the previous section, by minimizing

−
N∑

k=1

ln(l̄k)

using, for instance, the direction set algorithm, we will be maximizing the
likelihood function and hence we will be obtaining the optimal parameter
set �̂.

Given the resetting of w(i)
k to a constant 1

Nsims
during the resampling step,

we can also replace l̄k with

l̃k =
Nsims∑
i=1

w(i)
k

which will provide us with an interpretation of the likelihood as the total
weight.
An Illustration Let us consider once again the case of the previous illustration

ξk = ξk−1 + π + 0.10wk

and
zk = ξk + 0.10uk

where π ≈ 3.14159 and wk, uk are independent Gaussian random variables.
We apply the same Kalman filter and then apply the previous algorithm to
the system. Calling

n(x↪ m↪ s) = 1√
2πs

exp

(
− (x − m)2

2s2

)

the normal density with mean m and standard deviation s, we will have

q
(
x̃(i)

k |x(i)
k−1↪ z1:k

)
= n
(

x̃(i)
k ↪ m = x̂(i)

k ↪ s =
√

P (i)
k

)

as well as
p
(
zk|x̃(i)

k

)
= n
(
zk↪ m = x̃(i)

k ↪ s = 0.10
)
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and
p
(
x̃(i)

k |x(i)
k−1

)
= n
(
x̃(i)

k ↪ m = x(i)
k−1 + π↪ s = 0.10

)
Taking 100 particles and 500 observation points, the EPF converges very
quickly to π̂ = 3.148200 . Alternatively, the simple PF (with no Kalman com-
ponent) would converge to π̂ = 3.140266.

Note that this example is Gaussian and linear, and therefore the particle
filtering is not an improvement over the Kalman filter! Indeed the Kalman
filter is optimal for Gaussian linear cases.

Application to the Heston Model We could now apply the above particle filtering
algorithm to our one-dimensional state, where xk = vk and zk = ln Sk+1 as
before. Calling

n(x↪ m↪ s) = 1√
2πs

exp

(
− (x − m)2

2s2

)

the normal density with mean m and standard deviation s, we will have

q
(
x̃(i)

k |x(i)
k−1↪ z1:k

)
= n
(

x̃(i)
k ↪ m = x̂(i)

k ↪ s =
√

P (i)
k

)

as well as

p
(
zk|x̃(i)

k

)
= n
(

zk↪ m = zk−1 +
(

µS − 1

2
x̃(i)

k

)
�t↪ s =

√
x̃(i)

k

√
�t

)

and
p
(
x̃(i)

k |x(i)
k−1

)
=

n
(

x̃(i)
k ↪ m = x(i)

k−1 +
[
(ω − ρξµS ) −

(
θ − 1

2
ρξ

)
x(i)

k−1

]
�t + ρξ(zk−1 − zk−2)↪ s

)

with

s = ξ
√

1 − ρ2

√
x(i)

k−1

√
�t

which provides us with the densities we need for the filter implementation.
The estimation of the observable state zk is

ẑ−
k = 1

Nsims

Nsims∑
i=1

ẑ(i)
k

with ẑ(i)
k the estimation of zk from KF(x(i)

k−1).
Following is a C++ routine for the EPF applied to the Heston model;

1000 particles are being used.
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// log_stock_prices are the log of stock prices
// muS is the real-world stock drift
// n_stock_prices is the number of the above stock
prices
// (omega, theta, xi, rho) are the Heston parameters
// ll is the value of (negative log) Likelihood
function
// estimates[] are the estimated observations from the
filter

// The function ran2() is from Numerical Recipes in C
// and generates uniform random variables
// The function Normal_inverse() can be found from
many sources
// and is the inverse of the Normal CDF
// Normal_inverse(ran2(.)) generates a set of Normal
random variables

void estimate_particle_extended_kalman_parameters_1_dim(
double *log_stock_prices,
double muS,
int n_stock_prices,
double omega,
double theta,
double xi,
double rho,
double *ll,
double *estimates)
{
int i1, i2, i3;
double H, A, x0, P0, z;
int M=1000;
double x[1000], xx[1000], x1[1000], x2[1000];
double P[1000], P1[1000], U[1000], K[1000], W[1000];
double w[1000], u[1000], c[1000];
double q, pz, px, s, m, l;
double delt=1.0/252.0, x1_sum;
long idum=-1;

A = 1.0-(theta-0.5*rho*xi)*delt;
H = -0.5*delt;

x0 = 0.04;
P0 = 0.000001;
for (i2=0; i2<M; i2++)
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{
x[i2] = x0 + sqrt(P0)* Normal_inverse(ran2(&idum));
P[i2] = P0;
}

*ll=0.0;
for (i1=1;i1<n_stock_prices-1;i1++)
{
l = 0.0;
x1_sum=0.0;
for (i2=0; i2<M; i2++)
{
/* EKF for the proposal distribution */
if (x[i2]<0) x[i2]=0.00001;
x1[i2] = x[i2] + ( omega-rho*xi*muS - (theta-
0.5*rho*xi) * x[i2]) * delt + rho*xi*
(log_stock_prices[i1]-log_stock_prices[i1-1]);

W[i2] = xi*sqrt((1-rho*rho) * x[i2] * delt);
P1[i2] = W[i2]*W[i2] + A*P[i2]*A;
if (x1[i2]<0) x1[i2]=0.00001;
U[i2] = sqrt(x1[i2]*delt);
K[i2] = P1[i2]*H/( H*P1[i2]*H + U[i2]*U[i2]);
z = log_stock_prices[i1+1];
x2[i2] = x1[i2] + K[i2] * (z - (log_stock_prices[i1]
+ (muS-0.5*x1[i2])*delt));
x1_sum+= x1[i2];
P[i2]=(1.0-K[i2]*H)*P1[i2];
/* sample */
xx[i2] = x2[i2]+sqrt(P[i2])*Normal_inverse(ran2(&idum));
if (xx[i2]<0) xx[i2]=0.00001;
/* calculate weights */
m = x2[i2];
s = sqrt(P[i2]);
q = 0.39894228/s * exp( - 0.5* (xx[i2] - m)*

(xx[i2] - m)/(s*s) );
m = log_stock_prices[i1] + (muS-0.5*xx[i2])*delt;
s = sqrt(xx[i2]*delt);
pz = 0.39894228/s * exp( - 0.5* (z - m)*(z - m)/(s*s) );
m = x[i2] + ( omega-rho*xi*muS - (theta-0.5*

rho*xi) * x[i2]) * delt + rho*xi*
(log_stock_prices[i1]-log_stock_prices[i1-1]);

s = xi*sqrt((1-rho*rho) * x[i2] * delt);
px = 0.39894228/s * exp( - 0.5* (xx[i2] - m)*

(xx[i2] - m)/(s*s) );
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w[i2] = pz * px / MAX(q, 1.0e-10);
l += w[i2];

}
*ll += log(l);
estimates[i1+1]= log_stock_prices[i1] +

(muS-0.5*x1_sum/M)*delt;
/* normalize weights */
for (i2=0; i2<M; i2++)
w[i2] /= l;

/* resample and reset weights */
c[0]=0;
for (i2=1; i2<M; i2++)
c[i2] = c[i2-1] + w[i2];

i2=0;
u[0] = 1.0/M * ran2(&idum);
for (i3=0; i3<M; i3++)
{
u[i3] = u[0] + 1.0/M *i3;
while (u[i3] > c[i2])

i2++;
x[i3] = xx[i2];
w[i3] = 1.0/M;

}
}

*ll *= -1.0;

}

// *ll is the value of (negative log) Likelihood
function
// we can minimize it to obtain the optimal
parameter-set

Next is the same routine for the unscented filter.

void estimate_particle_unscented_kalman_parameters_1_dim(
double *log_stock_prices,
double muS,
int n_stock_prices,
double omega,
double theta,
double xi,
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double rho,

double *ll,
double *estimates)
{
int i1, i2, i3, i4;
int na=3;
double x0, P0;
double Wm[7], Wc[7];
int M=1000;
double x[1000], xx[1000], x1[1000], x2[1000],

zz[1000], Z[1000][7];
double X[1000][7], Xa[1000][3][7];
double xa[1000][3], prod[1000];
double P[1000], P1[1000], U[1000], K[1000],

W[1000], Pzz[1000];
double w[1000], u[1000], c[1000];
double ***Pa, ***proda;
double q, pz, px, s, m, l, z;
double delt=1.0/252.0;
long idum=-1;
int ret;
double a=0.001 , b=0.0, k=0.0, lambda;

proda= new double ** [M];
Pa = new double ** [M];
for (i2=0;i2<M;i2++)
{
Pa[i2]= new double * [na];
proda[i2]= new double * [na];
for (i1=0;i1<na;i1++)
{
Pa[i2][i1]= new double [na];
proda[i2][i1]= new double [na];

}
}

for (i2=0;i2<M;i2++)
{
for (i1=0;i1<na;i1++)
{
for (i3=0;i3<na;i3++)
{

proda[i2][i1][i3]=0.0;
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}
}

}

lambda = a*a*(na +k)-na;
Wm[0]=lambda/(na+lambda);
Wc[0]=lambda/(na+lambda) + (1-a*a+b);
for (i3=1;i3<(2*na+1);i3++)
{
Wm[i3]=Wc[i3]=1/(2*(na+lambda));

}

x0 = 0.04;
P0 = 0.000001;
for (i2=0; i2<M; i2++)
{
x[i2] = x0 + sqrt(P0)* Normal_inverse(ran2(&idum));
P[i2] = P0;

xa[i2][0]=x[i2];
xa[i2][1]=xa[i2][2]=0.0;

Pa[i2][0][0]= P[i2];
Pa[i2][1][1]= Pa[i2][2][2] = 1.0;
Pa[i2][1][0]= Pa[i2][0][1]= Pa[i2][1][2] =
Pa[i2][2][1] =

Pa[i2][0][2] = Pa[i2][2][0] = 0.0;
}

*ll=0.0;
for (i1=1;i1<n_stock_prices-1;i1++)
{
l = 0.0;
estimates[i1+1]=0.0;
for (i2=0; i2<M; i2++)
{
/* UKF for the proposal distribution */
for (i3=0;i3<na;i3++)
{

Xa[i2][i3][0]= xa[i2][i3];
}
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for (i3=0;i3<na;i3++)
{

for (i4=0;i4<na;i4++)
{
if (i3==i4)
{
if (Pa[i2][i3][i4] < 1.0e-10)
Pa[i2][i3][i4]= 1.0e-10;

}
else
{
if (Pa[i2][i3][i4] < 1.0e-10)
Pa[i2][i3][i4] = 0.0;

}
}

}

ret = sqrt_matrix(Pa[i2],proda[i2],na);

for (i3=1;i3<(1+na);i3++)
{

for (i4=0;i4<na;i4++)
{

Xa[i2][i4][i3]= xa[i2][i4] + sqrt(na+lambda) *
proda[i2][i4][i3-1];

}
}
for (i3=(1+na);i3<(2*na+1);i3++)
{

for (i4=0;i4<na;i4++)
{
Xa[i2][i4][i3]= xa[i2][i4] - sqrt(na+lambda) *

proda[i2][i4][i3-na-1];
}
}

for (i3=0;i3<(2*na+1);i3++)
{

if (Xa[i2][0][i3]<0) Xa[i2][0][i3]=0.0001;
X[i2][i3]= Xa[i2][0][i3] + (omega-muS*rho*xi -

(theta-0.5*rho*xi) *Xa[i2][0][i3])*delt +
rho*xi* (log_stock_prices[i1]-
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log_stock_prices[i1-1]) +
xi*sqrt((1-rho*rho)*delt*Xa[i2][0][i3])*
Xa[i2][1][i3];
}

x1[i2] = 0;
for (i3=0;i3<(2*na+1);i3++)
{
x1[i2] += Wm[i3]*X[i2][i3];
}

P1[i2]=0.0;
for (i3=0;i3<(2*na+1);i3++)
{
P1[i2] += Wc[i3]*(X[i2][i3]-x1[i2])*(X[i2][i3]-
x1[i2]);
}

zz[i2]=0;
for (i3=0;i3<(2*na+1);i3++)
{

if (X[i2][i3]<0) X[i2][i3]=0.00001;
Z[i2][i3] = log_stock_prices[i1] +

(muS-0.5*X[i2][i3])*delt + sqrt(X[i2][i3]*delt)*Xa[i2][2][i3];
zz[i2] += Wm[i3]*Z[i2][i3];
}

Pzz[i2]=0;
for (i3=0;i3<(2*na+1);i3++)
{
Pzz[i2] += Wc[i3]*(Z[i2][i3]-zz[i2])*(Z[i2][i3]-
zz[i2]);
}

prod[i2]=0.0;
for (i3=0;i3<(2*na+1);i3++)
{
prod[i2] += Wc[i3]*(X[i2][i3]-x1[i2])* (Z[i2][i3]-
zz[i2]);
}

K[i2]= prod[i2]/Pzz[i2];
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z = log_stock_prices[i1+1];
estimates[i1+1] += zz[i2]/M;

x2[i2] = x1[i2] + K[i2]*(z - zz[i2]);
P[i2] = P1[i2] - K[i2]*K[i2] * Pzz[i2];

xa[i2][0]=x2[i2];
Pa[i2][0][0] = P[i2];

if (x2[i2]<0) x2[i2]=0.0001;

Pa[i2][1][0]= Pa[i2][0][1]= Pa[i2][1][2]
=Pa[i2][2][1]= Pa[i2][0][2]=Pa[i2][2][0]=[0];
/* sample */
xx[i2] = x2[i2] + sqrt(P[i2])*
Normal_inverse(ran2(&idum));
if (xx[i2]<0) xx[i2]=0.00001;
/* calculate weights */
m = x2[i2];
s = sqrt(P[i2]);
q = 0.39894228/s * exp( - 0.5* (xx[i2] - m)*
(xx[i2] - m)/(s*s) );
m= log_stock_prices[i1] + (muS-0.5*xx[i2])*delt;
s= sqrt(xx[i2]*delt);
pz= 0.39894228/s * exp( - 0.5* (z - m)*
(z - m)/(s*s) );
m= x[i2] + ( omega-rho*xi*muS -
(theta-0.5*rho*xi) * x[i2]) * delt +

rho*xi* (log_stock_prices[i1]-
log_stock_prices[i1-1]);

s= xi*sqrt((1-rho*rho) * x[i2] * delt);
px= 0.39894228/s * exp( - 0.5* (xx[i2] - m)*
(xx[i2] - m)/(s*s) );

w[i2]= MAX(pz, 1.0e-10) *
MAX(px, 1.0e-10) / MAX(q, 1.0e-10);
l += w[i2];

}
*ll += log(l);
/* normalize weights */
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for (i2=0; i2<M; i2++)
w[i2] /= l;

/* resample and reset weights */
c[0]=0;
for (i2=1; i2<M; i2++)
c[i2] = c[i2-1] + w[i2];
i2=0;
u[0] = 1.0/M * ran2(&idum);

for (i3=0; i3<M; i3++)
{
u[i3] = u[0] + 1.0/M *i3;
while (u[i3] > c[i2])

i2++;
x[i3]= xx[i2];
w[i3]=1.0/M;

}
}

*ll *= -1.0;

for (i2=0;i2<M;i2++)
{
for (i1=0;i1<na;i1++)
{
delete [] Pa[i2][i1];
delete [] proda[i2][i1];

}
}
for (i2=0;i2<M;i2++)
{
delete [] Pa[i2];
delete [] proda[i2];

}
delete [] Pa;
delete [] proda;

}

Test Results The results from an extended particle filter (EPF) are shown
in Figure 2.21. The filter was constructed with the one-dimensional Heston
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FIGURE 2.21 Filtering Errors: Extended Kalman Filter and Extended Particle Filter
Are Applied to the One-Dimensional Heston Model. The PF has better performance.

model and was applied to a simulated time series of 5000 points with

�∗ = (0.40↪ 10.0↪ 0.01↪ −0.50)

As we can see in the figure, no clear superiority of the EPF is detected. The
optimal parameters found via EPF are

�̂EP F = (0.020331↪ 0.499987↪ 0.040000↪ 0.050026)

which could not be considered as an improvement over

�̂EKF = (0.065886↪ 1.711686↪ 0.180884↪ 0.147660)

Again the long-term-variances ω

θ
are close to 0.04 for all cases, which is

consistent with what we had observed.
The next natural step would be to implement and test the unscented

particle filter (UPF), in which everything is done similarly to the EPF except
for the choice of the proposal distribution. The use of the UPF has been
strongly recommended by Wan and Van der Merwe in [231] and [133]. The
authors claim that the filtering error from the UPF is considerably smaller
than that from EKF, UKF, or EPF. As we can see in Figure 2.22, it is true that
the filtering error resulting from UPF is considerably lower than the error
generated from the other filters. However, the optimal parameter set

�̂UP F = (0.020132↪ 0.500031↪ 0.040000↪ 0.050004)
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ton Model. The PF’s have better performance.

obtained via UPF is again very different from the original parameter set �∗
used in the data generation. We shall analyze the reasons behind this poor
inference result more closely in the following sections.

Error Size One possibility is that our time series has too small an error for
the filters to make a significant difference. We thus study another case, where
�t = 1 year. Let us take 200 points generated with the parameter set

�∗ = (0.02↪ 0.5↪ 0.05↪ −0.5)

We obtain

�̂EKF = (0.036↪ 0.093↪ 0.036↪ −1.00)

and

�̂UKF = (0.033↪ 0.086↪ 0.033↪ −0.98)

which shows that UKF results are very close to EKF ones. Using the particle
filters, we get

�̂EP F = (0.019↪ 0.5↪ 0.03↪ −0.58)
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series has a larger time-step �t = 1.0. Naturally, the errors are larger than the case
where �t = 1/252.

which is considerably closer to the original set �∗. Therefore EPF did bring
an improvement over the traditional nonlinear filters and seems to be simpler
and more robust24 than its competitors.

As for the filtering errors, it can be seen in Figure 2.23 that the EPF errors
are smaller than (although comparable to) those produced by EKF and UKF,
which is consistent with the particle filtering theory.

As for UPF, we obtain

�̂UP F = (0.019480↪ 0.489375↪ 0.047030↪ −0.229242)

which is very close to the EPF result. As we can see, the UPF errors are even
smaller than those generated by EPF. In addition to the filters just discussed,
it would be interesting to test a Gauss-Hermite filter (GHF) [151]. We obtain

�̂GHF = (0.020398↪ 0.524215↪ 0.069661↪ −1.000000)

which is closer to the real parameter set �∗ compared with EKF or UKF
results. However, the filtering error is more variable than that of its competi-
tors, as can be seen in Figure 2.24. Note, however, that this would mean that

24This is because for a larger time step the nonlinearity and non-Gaussianity have a
stronger impact.
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we would have access to 200 years of historic data, which is clearly unreal-
istic.25 This issue will be revisited in the following sections. Also, here we
generated the data via a discrete equation with �t = 1. Thus there was no
discretization error from a continuous equation. We cannot apply the same
method to data coming from a continuous process.

As a measure of performance, we can compute the mean price error
(MPE) as well as the root mean square error (RMSE) for each filter. These
correspond respectively to the mean and the standard deviation of the plotted
errors. For the MPEs, we obtain

MPE RMSE

EKF 0.007484269 0.003422215
UKF 0.007660269 0.003733748
GKF 0.009129157 0.005816919
EPF 0.007620208 0.002269224
UPF 0.007076066 0.001359393

25What is more, the Girsanov theorem would not be valid and (ξ↪ ρ) would have no
reason to be the same under the risk-neutral and real measures.
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This shows us again that the particle filters outperform the other ones.
Again, let us remember that given 200 points with �t = 1 and a true param-
eter set

�∗ = (0.02↪ 0.5↪ 0.05↪ −0.5)

we obtained

ω̂ θ̂ ξ̂ ρ̂

EKF 0.036 0.093 0.036 −1.00
UKF 0.033 0.086 0.033 −0.98
GKF 0.020 0.524 0.070 −1.00
EPF 0.019 0.500 0.033 −0.58
UPF 0.019 0.489 0.047 −0.22

The MH Enhancement As mentioned earlier, the resampling algorithm helps
with the issue of degeneracy, which means that it will reduce the variance
of the weights. However, it might introduce a sample impoverishment phe-
nomenon, in which all particles will have a tendency to collapse to one. The
Metropolis-Hastings (MH) algorithm could be a solution to this problem
and is implemented as follows. After resampling, Step 6, we obtain a set ˜̃x(i)

1:k.

6-a. Reapply the Kalman filter (extended or unscented) to this set in order
to obtain

x∗(i)
k = KF

(
˜̃x(i)

k−1

)
6-b. Choose between x∗(i)

k and ˜̃x(i)
k as follows. Define

α = min

(
1↪

p(zk|x∗(i)
k )p(x∗(i)

k |x(i)
k−1)q( ˜̃x(i)

k |x(i)
k−1↪ z1:k)

p(zk| ˜̃x(i)
k )p( ˜̃x(i)

k |x(i)
k−1)q(x∗(i)

k |x(i)
k−1↪ z1:k)

)

then sample v from U[0↪ 1] and choose x∗(i)
k if α > v and choose ˜̃x(i)

k if
α ≤ v.

The result is then x(i)
k , and we go to Step 7 as before.

Note that α could be interpreted as the ratio of the non-normalized
weights for the two particles we are choosing from. Indeed

α = α(i)
k = min

(
1↪

w(x∗(i)
k )

w( ˜̃x(i)
k )

)
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the One-Dimensional Heston Model. The time series has a time step �t = 1.0. The
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Applied to the same time series as in the previous paragraphs, the EPF with
the MH modification will provide

�̂EP F−MH = (0.019↪ 0.499↪ 0.040↪ −0.358)

and
MP EEP F−MH = 0.007753

RMSEEP F−MH = 0.001927

compared with the previous EPF

MP EEP F = 0.00762

RMSEEP F = 0.002269

As we can see from these results and Figure 2.25, there is only a marginal
improvement from the introduction of the MH step in the filtering process.
This is in line with the findings in the literature, such as in [231].

Comparing Heston with other Models

We can now apply our inference tools to real market data in order to see
which model matches the true dynamics of the assets more closely, and there-
fore perform model identification.



The Inference Problem 121

The Models It is easy to generalize the Heston state-space model to other
stochastic volatility approaches. Indeed we could replace the Heston state
equation with

vk = vk−1 + (ω − θvk−1)�t + ξv
p
k−1

√
�tZk−1 (2.26)

where p = 1/2 would naturally correspond to the Heston (square root)
model, p = 1 to the GARCH diffusion-limit model, and p = 3/2 to the 3/2
model. These models have all been described and analyzed in [177]. The new
state transition equation would therefore become

vk = vk−1 +
[
ω − ρξµSv

p− 1
2

k−1 −
(

θ − 1

2
ρξv

p− 1
2

k−1

)
vk−1

]
�t

+ ρξv
p− 1

2
k−1 ln

(
Sk

Sk−1

)
+ ξ
√

1 − ρ2v
p
k−1

√
�tZ̃

k−1

(2.27)

where the same choice of state space xk = vk is made.
For the EKF, we will have

Ak = 1 −
[
ρξµS

(
p − 1

2

)
v

p− 3
2

k−1 + θ − 1

2
ρξ

(
p + 1

2

)
v

p− 1
2

k−1

]
�t

+
(

p − 1

2

)
ρξv

p− 3
2

k−1 ln

(
Sk

Sk−1

)

and
Wk = ξ

√
1 − ρ2v

p
k−1

√
�t

as well as

Hk = −1

2
�t

and
Uk = √

vk

√
�t

The same time update and measurement update equations could be used
with the UKF or Kushner’s NLF.

We could also apply the particle filtering algorithm to our problem. Using
the same notations as before and calling

n(x↪ m↪ s) = 1√
2πs

exp

(
− (x − m)2

2s2

)

the normal density with mean m and standard deviation s, we will have

q(x̃(i)
k |x(i)

k−1↪ z1:k) = n
(

x̃(i)
k ↪ m = x̂(i)

k ↪ s =
√

P (i)
k

)
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as well as

p(zk|x̃(i)
k ) = n

(
zk↪ m = zk−1 +

(
µS − 1

2
x̃(i)

k

)
�t↪ s =

√
x̃(i)

k

√
�t

)

and
p
(
x̃(i)

k |x(i)
k−1

)
= n
(
x̃(i)

k ↪ mx↪ s = ξ
√

1 − ρ2
(
x(i)

k−1

)p √
�t
)

with

mx = x(i)
k−1 +

[
ω − ρξµS

(
x(i)

k−1

)p− 1
2 −
(

θ − 1

2
ρξ
(
x(i)

k−1

)p− 1
2
)

x(i)
k−1

]
�t

+ ρξ
(
x(i)

k−1

)p− 1
2

(zk−1 − zk−2)

and as before we have

w(i)
k = w(i)

k−1

p
(
zk|x̃(i)

k

)
p
(
x̃(i)

k |x(i)
k−1

)
q
(
x̃(i)

k |x(i)
k−1↪ z1:k

)
which provides us with what we need for the filter implementation.

The Results The preceding filters were applied to five years of S&P 500 time
series (1996 to 2001 ), and the filtering errors were considered for the Heston,
the GARCH, and the 3/2 models. Daily index closing prices were used for
this purpose, and the time interval was set to �t = 1/252 (see the following
table; Figures 2.26 through 2.32).

Filter and Model MPE RMSE

EKF-Heston 3.58207e-05 1.83223e-05
EKF-GARCH 2.78438e-05 1.42428e-05

EKF-3/2 2.63227e-05 1.74760e-05

UKF-Heston 3.00000e-05 1.91280e-05
UKF-GARCH 2.99275e-05 2.58131e-05

UKF-3/2 2.82279e-05 1.55777e-05

EPF-Heston 2.70104e-05 1.34534e-05
EPF-GARCH 2.48733e-05 4.99337e-06

EPF-3/2 2.26462e-05 2.58645e-06

UPF-Heston 2.04000e-05 2.74818e-06
UPF-GARCH 2.63036e-05 8.44030e-07

UPF -3/2 1.73857e-05 4.09918e-06
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Models. The latter seems to perform better.
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FIGURE 2.27 Comparison of UKF Filtering Errors for Heston, GARCH, and 3/2
Models. The latter seems to perform better.

Two immediate observations can be made: On one hand, particle filters
have a better performance than do the Gaussian, which reconfirms what one
would anticipate. On the other hand, for most of the filters, the 3/2 model
seems to outperform the Heston model, which is in line with the findings
of Engle & Ishida [95]. Again, this shows that the filtering process could be
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Models. The latter seems to perform better.

used not only for parameter estimation but also for model identification. This
suggests further filtering on other existing models, such as jump diffusion
[190]. Clearly, because of the non-Gaussianity of jump-based models, the
particle filtering technique will need to be applied to them.
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FIGURE 2.31 Comparison of Filtering Errors for the GARCH Model. PFs seem to
perform better.

Parameter Learning Revisited We tried a joint filter (JF) via the Kalman filter
where the parameters were given a prior distribution. We can now apply
the particle filtering techniques to this framework as in [176] and [224]: We
simulate x(i)

k at time step k from the prior p(xk|x(i)
k−1), and we also simulate
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each parameter ψ(i) from its prior q(ψ) = N (mψ↪ sψ) where these mean and
standard deviations are to be determined.
We then update the priors by incorporating the observation zk

p
(
x(i)

k |zk

)
∝ p
(
zk|x(i)

k ↪ ψ(i)
)

p
(
x(i)

k |x(i)
k−1

)
and similarly

p(ψ(i)|zk) ∝ p(zk|x(i)
k ↪ ψ(i))p(ψ(i)|x(i)

k−1)

and we obtain the posterior distributions. Calling

w(i)
k =

p
(
zk|x(i)

k ↪ ψ(i)
)

w(i)
k−1∑Nsims

i=1 p
(
zk|x(i)

k ↪ ψ(i)
)

w(i)
k−1

We now have the posteriors of xk and ψ, and we can simulate them for the
following step via a Metropolis-Hastings (MH) accept/reject technique with
the proposal distribution q(ψ↪ mψ↪ sψ) with

mψ =
Nsims∑
i=1

w(i)
k ψ(i)

and

sψ =
Nsims∑
i=1

w(i)
k

(
ψ(i) − mψ

)2
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TABLE 2.2 The True Parameter Set �∗ Used for Data Simulation

�∗ ω∗ = 0.10 θ∗ = 10.0 ξ∗ = 0.03 ρ∗ = −0.50

TABLE 2.3 The Initial Parameter Set �0 Used for the Optimization Process

�0 ω0 = 0.15 θ0 = 15.0 ξ0 = 0.02 ρ0 = −0.50

The MH step will consist of the following. We accept the simulation point
ψ̃

(i) from q() with a probability α(ψ(i)↪ ψ̃
(i)

), where ∀i between 1 and Nsims

we have

α
(
ψ(i)↪ ψ̃

(i)
)

= min


1.0↪

p
(
ψ̃

(i)|zk

)
/q
(
ψ̃

(i)
)

p
(
ψ(i)|zk

)
/q
(
ψ(i)
)



In practice, we simulate a uniform random variable u and accept the sim-
ulated point ψ̃

(i) if α > u, and reject it (and keep ψ(i)) otherwise. We keep
simulating alternatively the state variable and each parameter by incorpo-
rating the observations at each step and wait for the parameters to converge
to their ideal mean.

It is important to note that this joint filtering differs from the usual
MCMC techniques, such as in [156] and [92], where we update the particles
by incorporating all observations at each simulation step.

The Performance of the Inference Tools

We have applied various Gaussian and particle-based filters to daily historic
data. None of the methodologies performed very well at that frequency.26

We now try to analyze the reasons.
A known weakness of optimization algorithms is the following. The

higher the number of parameters, the worse the performance of the algo-
rithm. This means that a one-parameter optimization should perform best.
To test this, we simulate 5000 points27 via the Heston model with a param-
eter set �∗ as shown in the following (also see Figure 2.33).

26Note that in this section we are not checking the validity of the assumption that
the real stock market follows a Heston (or another) process. We assume we know
the process exactly and try to recover the embedded parameters.
27We made the 5000 daily simulations directly from the discretized SDE with a
�t = 1/252 . We also tried simulating 5↪ 000↪ 000 points with �t = 1/252↪ 000
and sampling 5000 daily points from there. Although the second method is more
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We use a drift of µS = 0.025 and a time step �t = 1/252 as before. In
order to get the best performance, we fix all parameters except one. For
instance, to obtain ω̂ we fix θ = 10.0↪ ξ = 0.03↪ ρ = −0.50↪ µS = 0.025 ; we
choose a reasonable initial point ω0 and then optimize upon ω only. We
choose an initial parameter set �0 as will be shown. The results are displayed
in Table 2.4.

TABLE 2.4 The Optimal Parameter Set ˆ∣∣�. The estimation is performed individually
for each parameter on the artificially generated time series. Particle filters use 1000
simulations.

Filter ω̂ θ̂ ξ̂ ρ̂

EKF 0.098212 10.188843 0.052324 −0.873571
UKF 0.107281 10.089381 0.000001 +0.598434
EPF 0.098287 10.130531 0.044437 −0.827729
UPF 0.100581 10.221816 0.051902 −0.487695

correct, the difference in results was small, which means that the Euler discretization
is sufficiently accurate at the daily level. This is in agreement with results found by
Elerian [92].
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FIGURE 2.34 f (ω) = L(ω↪ θ̂↪ ξ̂↪ ρ̂) Has a Good Slope Around ω̂ = 0.10.

It is interesting to note that the estimation of the volatility-drift parame-
ters (ω↪ θ) could be done fairly well via EKF.28 This makes sense because the
dependence on these parameters is linear.

The estimation of volatility and correlation parameters (ξ↪ ρ) is not as
straightforward. This could be seen by plotting the likelihood L(�) as a
function of ω, θ, ξ, and ρ separately. We fix three parameters to their optimal
values and plot L(�) as a function of the last one. We observe in Figures 2.34
through 2.37 that the likelihood function is fairly easy to optimize for (ω↪ θ).
However, the function is very flat around the optimal ξ and ρ. Therein lies
the difficulty of finding the optimums!

Sample Size It seems therefore that the estimation is inefficient for the
parameter ξ no matter which filter we use. The issue is that of inefficiency
(large error variance) for this given sample size. This is indeed one of the
shortcomings of maximum likelihood estimators (MLE). For a given sample
size, they can very well be inefficient and even have a bias.29 The choice
of the filter will not solve this problem. However, under minimal regularity

28A joint estimation of (ω↪ θ) based on the same data set with known (ξ↪ ρ) provides
(ω̂ = 0.117889↪ θ̂ = 11.996760).
29A known and simple example for the bias of MLEs is that of estimating the
variance of a Gaussian sequence of a finite size (x1↪ ...↪ xN). The ML estimate
for the mean is µ̂N = 1

N

∑N
k=1 xk, and the ML estimate for the variance is
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v̂N = 1
N

∑N
k=1(xk − µ̂N)2. The latter ML estimation is biased, and the correct

estimation would be ˆ̂vN = 1
N−1

∑N
k=1(xk − µ̂N)2. However, it is clear that as

N → +∞ we have v̂N ≈ ˆ̂vN and the bias gradually disappears.
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FIGURE 2.37 f (ρ) = L(ω̂↪ θ̂↪ ξ̂↪ ρ) Is Flat and Irregular Around ρ̂ = −0.50.

conditions, MLEs are consistent and therefore asymptotically converge to
the correct optimum. This means that the sample size is key. To test this, we
can choose larger samples of N = 50↪ 000 , N = 100↪ 000 , and N = 500↪ 000
points and rerun the simplest filter, namely, the EKF. As expected, the opti-
mum of the likelihood function becomes closer and closer to ξ∗. This can be
seen in Figures 2.38 to 2.41 as well as in Table 2.5. The same exact observa-
tions could be made for the correlation parameter ρ, and the results are also
displayed in Table 2.5. The likelihood graphs are omitted in the interest of
brevity.

As for the drift parameters ω and θ, the convergence was good even for
N = 5000 , as previously observed. Unfortunately, in reality we have limited
historic data. Even at a daily frequency, 50↪ 000 points would correspond to
200 years!

One possibility would be to use intra-day data; however, that assumes
that the behavior of the stock price is the same intra-day (which is reasonable
considering we started with a continuous SDE). Moreover, clean intra-day
data is usually not readily available and needs preprocessing. Therefore,
having p parameters in the optimal parameter set �̂N =

(
�̂N[j ]

)
1≤j≤p

for

a sample size N , we have for each parameter �[j ]

lim
N→+∞�̂N[j ] | {�[k] = �∗[k]; 1 ≤ k ≤ p; k �= j

}= �∗[j ] (2.28)

What is more, this is true for any valid initial value �0[j ], which means the
MLE is robust.
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FIGURE 2.38 f (ξ) = L(ω̂↪ θ̂↪ ξ↪ ρ̂) via EKF for N = 5000 Points. The true value is
ξ∗ = 0.03.

TABLE 2.5 The Optimal EKF Parameters ξ̂ and ρ̂ Given a Sample Size N . The true
parameters are ξ∗ = 0.03 and ρ∗ = −0.50. The initial values were ξ0 = 0.02 and
ρ0 = −0.40.

N ξ̂ ρ̂

5000 0.052324 −0.873571
50↪ 000 0.036463 −0.608088
100↪ 000 0.033400 −0.556868
500↪ 000 0.031922 −0.532142

Joint Estimation of the Parameters Let us now assume that we do not know
any of the parameters; we choose an initial set �0 and test the consistency
of the MLE. We shall apply the EKF to the data and take the same true
parameter set �∗ as in the previous section. We assume that µS = 0.025 is
known; otherwise, it could be estimated together with the model parameters.

As previously mentioned, the likelihood function becomes flat and there-
fore harder to maximize under a higher number of parameters. The
convergence of the estimator will therefore be slower. Despite this, we can
observe in Table 2.8 the asymptotic convergence of the estimator even under
the joint estimation of all parameters. We have now

lim
N→+∞�̂N = �∗ (2.29)
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TABLE 2.6 The True Parameter Set �∗ Used for Data Generation

�∗ ω∗ = 0.10 θ∗ = 10.0 ξ∗ = 0.03 ρ∗ = -0.50

TABLE 2.7 The Initial Parameter Set �0 Used for the Optimization Process

�0 ω0 = 0.15 θ0 = 15.0 ξ0 = 0.02 ρ0 = -0.40

TABLE 2.8 The Optimal EKF Parameter Set ˆ∣∣� Given a Sample Size N . The four
parameters are estimated jointly.

N ω̂ θ̂ ξ̂ ρ̂

5000 0.150854 15.294576 0.266175 −0.128835
50↪ 000 0.126387 12.748852 0.020521 −1.000000
100↪ 000 0.136023 13.700906 0.044353 −0.439961
500↪ 000 0.100097 10.030336 0.061688 −0.257305

1↪ 000↪ 000 0.105264 10.548642 0.043818 −0.356234
2↪ 000↪ 000 0.103183 10.334876 0.039767 −0.374677
4↪ 000↪ 000 0.105292 10.538019 0.043288 −0.347562
5↪ 000↪ 000 0.101097 10.118951 0.028588 −0.514346

which corresponds to the generalization of (2.28) in the previous section.
We ran other filters (UKF, EPF, UPF) on the same data set and observed

only marginal improvement. The results are omitted in the interest of brevity.
It therefore seems that the fundamental issue is related to the slow conver-
gence of the MLEs regardless of the filtering method.

A related issue previously mentioned is the size of the observation error
Uk ∝ √

�t, which is large compared with the observation function Hk ∝ �t
for daily observations.

Error Size Revisited As previously mentioned, this underlines the more fun-
damental problem for the SV estimation: By definition, volatility represents
the noise of the stock process. Indeed if we had taken the spot price Sk as
the observation and the variance vk as the state, we would have

Sk+1 = Sk + SkµS�t + Sk
√

vk

√
�tBk

we would then have an observation function gradient H = 0 and the system
would be unobservable! It is precisely because we use a Taylor second-order
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expansion

ln(1 + x) ≈ x − 1

2
x2

that we obtain access to vk through the observation function. However, in

ln

(
Sk+1

Sk

)
=
(

µS − 1

2
vk

)
�t + √

vk

√
�tBk

the error remains dominant as the first order of the expansion.30 Harvey,
Ruiz, and Shephard [130] use the approximation �t = o(

√
�t) and take

zk = ln

(
ln2
(

Sk+1

Sk

))
≈ ln(vk) + ln(�t) + ln

(
B2

k

)
Note that under this form EKF would blow up because z−

k = h(vk↪ 0) =
−∞. They therefore use the fact that E[ln(B2

k)] = −1.27 and stdev[ln(B2
k)] =

30Note that this is different from a variance Swap where we work with the expected
values. The approximation is perfectly valid if for the return R = �S/S we write

E[ln(1 + R) − R] ≈ −1

2
v

but again, the approximation breaks if we work for one sample path.
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TABLE 2.9 The Optimal EKF Parameter Set ˆ∣∣� via the HRS Approximation Given
a Sample Size N . The four parameters are estimated jointly.

N ω̂ θ̂ ξ̂ ρ̂

5000 0.722746 71.753861 0.044602 −1.000000
50↪ 000 0.234110 23.575193 0.028056 −1.000000
100↪ 000 0.150512 15.186113 0.017748 −1.000000
500↪ 000 0.109738 11.020391 0.027140 −0.531481

π/
√

2 and consider the Gaussian approximation

ln
(
B2

k

) ∼ −1.27 + π√
2
N (0↪ 1)

which may or may not be valid. We call this approximation Harvey-Ruiz-
Shephard (HRS) and apply it to the same case as in the previous paragraphs.
As can be seen in Table 2.9, the approximation seems to be valid for our
example. Note that UKF would not have this problem because we would
work with the real nonlinear function z = h(x↪ u). However, we would still
deal with logs of very small quantities, which could be numerically unstable.

Another way of tackling the same equation would be via a particle filter,
where

zk = ln

(∣∣∣∣ln
(

Sk+1

Sk

)∣∣∣∣
)

≈ 1

2
ln(vk) + 1

2
ln(�t) + ln(|Bk|)

and as stated in [10] the density of ln(|Bk|) is

f (x) = 2exn(ex)

with n() the normal density.31

Testing the same data set provides Table 2.10, which does not seem to
improve upon the KF.

It is important to note that even if we took the example of the Heston
model, the same issues are true for any stochastic volatility model of type

vk = vk−1 + (ω − θvk−1) �t + ξv
p
k−1

√
�tZk−1

31It is easy to see that if X is a standard normal variable, then the CDF of ln(|X|) is

F (x) = P (ln(|X|) ≤ x) = P
(|X| ≤ ex) = P

(−ex ≤ X ≤ ex)
therefore

F (x) = N
(
ex)− N

(−ex) = 2N(ex) − 1

and the density is determined by taking the derivative with respect to x as usual.



The Inference Problem 137

TABLE 2.10 The Optimal PF Parameter Set ˆ∣∣� Given a Sample Size N . The four
parameters are estimated jointly.

N ω̂ θ̂ ξ̂ ρ̂

5000 0.147212 14.999999 0.070407 -0.555263

including the GARCH diffusion and the 3/2 models. As previously men-
tioned, even if the transition equation is different here, the observation equa-
tion remains the same. Applying the EKF, we have the transition matrix and
noise

Ak = 1 −
[
ρξµS

(
p − 1

2

)
v

p− 3
2

k−1 + θ − 1

2
ρξ

(
p + 1

2

)
v

p− 1
2

k−1

]
�t

+
(

p − 1

2

)
ρξv

p− 3
2

k−1 ln

(
Sk

Sk−1

)

Wk = ξ
√

1 − ρ2v
p
k−1

√
�t

However, we still have the observation matrix and noise

Hk = −1

2
�t

and
Uk = √

vk

√
�t

and the same problem of �t = o
(√

�t
)

still exists at observation level for

any value of p.
Another point that should be mentioned is that even if ξ and ρ are sep-

arately harder to estimate than ω and θ, the product ρξ appears in the equa-
tions at the same level. Indeed, as we just saw, in Ak only the product ρξ is
available. However, at the noise level Wk, we can distinguish the two param-
eters ρ and ξ. For instance, in our previous EKF joint estimation table, we
had for 50↪ 000 points ξ̂ ≈ 0.020521 , ρ̂ ≈ −1.0000 and again, the individual
estimations of ξ and ρ remained far from their true values. However, we
have ξ̂ρ̂ ≈ −0.020521, which is much closer to ξ∗ρ∗ = −0.015. Interestingly,
the product ρξ is what we need to determine the skewness of the distribu-
tion.32 However, we do need to determine ξ alone to obtain the distribution
kurtosis.

It is also worth noting that in a GARCH framework, we do not have
this problem of poor observability for the discrete case. In fact, at each

32This remark will be addressed in the following chapter.
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TABLE 2.11 Real and Optimal Parameter Sets Obtained via NGARCH MLE. The
5000 points were generated via the one-factor NGARCH with daily parameters.

ω α β c

�∗ 0.00000176 0.0626 0.89760 0.00
�̂ 0.00000200 0.0530 0.89437 0.05

point in time, vk is known exactly as a function of previous observations.
Only later, we go to the two-factor diffusion limit, as Nelson [194] does.
However, we have to bear in mind that this GARCH diffusion limit is a
very special case of the stochastic volatility problem, since it misses the sec-
ond source of randomness in the discrete case. As Corradi [61] explains, a
discrete GARCH model may very well converge toward a one-factor dif-
fusion process without stochastic volatility. Interestingly, when discretizing
the one-factor continuous process, we can recover GARCH, whereas when
discretizing the two-factor continuous process we will not obtain GARCH
but the two-factor discrete process we have been working with.

This explains why GARCH MLE (without filtering) can recover param-
eters used in a simulated time series of length 5000 created via a one-factor
GARCH process, whereas it cannot recover the diffusion-limit parameters
from a time series created via a two-factor stochastic volatility process as
accurately.33 One can see this in Tables 2.11 and 2.12.

This also explains why estimating ω and θ alone works so much better
with 5000 points. After all, if we had ξ = 0 and therefore a deterministic

33Needless to say, whether the equations are written via yearly (stochastic volatility
convention) or daily (GARCH convention) parameters will not change the nature of
the problem. It would be tempting to try to get around the �t = o(

√
�t) problem

by rewriting the equations via daily parameters µd
S = µS �t and vd

k = �tvk as well

as ωd = �t2ω, θd = �tθ and ξd = �tξ with ρ remaining unchanged. Dropping the
superscript d for simplifying the notations, we shall have

ln Sk+1 = ln Sk + µS − 1

2
vk + √

vkBk

vk+1 = vk + ω − θvk + ξ
√

vkZk

which seems to have eliminated the difficulty. However, now we have

vk = o(
√

vk)

which was not the case with yearly variances, and the same poor observability
problem arises again! We therefore see that the heart of the difficulty is a low
signal-to-noise ratio (SNR) for the problem at hand.
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TABLE 2.12 Real and Optimal Parameter Sets Obtained via NGARCH MLE as well
as EKF. The 5000 points were generated via the two-factor GARCH diffusion limit
with annual parameters.

ω θ ξρ

�∗ 0.100000 10.00 −0.015
�̂GARCH 0.063504 6.84 −0.019

�̂EKF 0.148000 14.48 −0.023

instantaneous variance, we would have no observability problem to talk
about. Indeed, vt would be exactly known at each time step, as is the case in
a GARCH framework.

Finally, we can now see better why the estimation worked fairly well
even with 200 points if �t = 1 year—simply because we do not have �t =
o(

√
�t) and the observability is much more accurate. Nevertheless, with such

a large �t , other problems, such as strong nonlinearity and the nonapplica-
bility of the Grisanov theorem arise. Not to mention the fact that 200 points
would correspond to 200 years of data!

High-Frequency Data Given that the results seem to converge for a large num-
ber of data points, one idea would be to use a higher sampling frequency.
If instead of using daily data we sample every five seconds, then with a
ten-year range we will have 10 × 252 × 6.5 × 60 × 60 ÷ 5 = 11↪ 793↪ 600 data
points, which is very sufficient for our MLEs. For testing the use of high-
frequency data, we can generate via Monte Carlo 5↪ 000↪ 000 points with a
�t = 1/252↪ 000 , which corresponds to 20 years. We obtain the results in
Table 2.13. Both rows have reasonable results. It is, however, notable that
the EKF/HRS method seems to perform better than the plain EKF.

It may seem a little surprising that for the same time period [0↪ T ] div-
iding �t by 1000 and multiplying N by 1000 helps us. Why don’t the

TABLE 2.13 The Optimal Parameter Set ˆ∣∣� for 5↪ 000↪ 000 Data Points. The sam-
pling is performed 1000 times a day and therefore the data set corresponds to 5000
business days. The four parameters are estimated jointly.

ω̂ θ̂ ξ̂ ρ̂

EKF 0.090280 9.019962 0.042984 −0.283236
EKF/HRS 0.092372 9.224421 0.030951 −0.507763



140 INSIDE VOLATILITY ARBITRAGE

two operations cancel one another? Observing the negative of log-likelihood
function in an EKF framework

φ(ω↪ θ↪ ξ↪ ρ) =
N∑

k=1

[
ln(Fk) + z̃2

k

Fk

]

with
z̃k = zk − h(x̂−

k ↪ 0)

and
Fk = HkP−

k Ht
k + UkUt

k

We can see that considering first-order terms, dividing �t by 1000, or equiva-
lently multiplying it by ε = 1/1000 , will cause the transition matrix Ak to be
unchanged, the transition noise Wk to be multiplied by

√
ε , the observation

matrix Hk to be multiplied by ε, and the observation noise Uk to be multiplied
by

√
ε. Furthermore, Ak being unchanged will cause P−

k and Pk to remain
unchanged as well. Therefore, z̃k will be multiplied by

√
ε, the term Fk will

be multiplied by ε, and the fraction used in the log-likelihood sum will remain
the same. This causes the sum φ(ω↪ θ↪ ξ↪ ρ) to be higher by a factor 1/ε, which
shows that higher frequency does allow us to obtain a higher likelihood
function and therefore better convergence. This is in agreement with what
we observed in the above test.

The Frequency of the Observations Note that the ideal stochastic differential
equations are supposed to be continuous; however, we only have discrete
observations obtained via an Euler scheme. This introduces a discretization
error that may become important as the time interval �t becomes larger.
As mentioned in [92], [164], and [201], the solution would be to fill the
missing data via additional simulations in time: For the observation time
step 1 ≤ k ≤ N , the simulation 1 ≤ i ≤ Nsims , and the additional time step
1 ≤ j ≤ M , we would have the particles

x̃(i)

k+ j
M

= x̃(i)

k+ j−1
M

+
(

ω − θx̃(i)

k+ j−1
M

)
�t

M
+ ξ

√
x̃(i)

k+ j−1
M

√
�t

M
Z(i)

k+ j
M

and the observation

zk+1 = zk +
M∑

j=1

(
µS − 1

2
x̃

k+ j
M

)
�t

M
+
√√√√ M∑

j=1

x̃
k+ j

M

�t

M
Bk

where each Z(i)

k+ j
M

has a correlation ρ with Bk. Naturally, the innovations Zl

are mutually uncorrelated. However, as discussed in [164], the discretization
error is small when �t = 1/252, which is the case we are dealing with.
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TABLE 2.14 Mean and (Standard Deviation) for the Estimation of Each Parameter
via EKF Over P = 500 Paths of Lengths N = 5000 and N = 50↪ 000 . The true values
are (ω∗ = 0.10↪ θ∗ = 10↪ ξ∗ = 0.03↪ ρ∗ = −0.50) .

ω̂ θ̂ ξ̂ ρ̂

N = 5000 0.11933899 11.92271488 0.056092146 −0.34321724
(0.098995729) (9.673829518) (0.049741887) (0.297433861)

N = 50↪ 000 0.102554592 10.26233092 0.04383931 −0.351998284
(0.027020734) (2.706564396) (0.013004526) (0.074998408)

Sampling Distribution Even if in practice we deal with one historic path, we
should determine the distribution of the optimal parameter set as follows.
We simulate P = 500 paths of length N = 5000 and estimate for each path
j the optimal set �̂(j). We then can estimate

¯̂
� = 1

P

P−1∑
j=0

�̂(j)

as well as the variance

V (�̂) = 1

P

P−1∑
j=0

(�̂(j) − ¯̂
�)2

In this way we will know how the estimator performs on average and
how far we could be from this average. The distribution of the parameter set
around its mean is referred to as the sampling distribution [168]. As we can
see in Table 2.14, the average-estimated parameter set is closer to the true set
than the one-path-estimated set we were considering in the previous section.
However, the corresponding standard deviation is quite high and we could
very well get poor results as previously seen.

From Figures 2.42 to 2.45, we can see that for this data length N and
this sample size P the parameters ω and θ are determined via EKF in a
fairly unbiased way. However, the estimator is not efficient and has a large
standard deviation. As for ξ and ρ, we have both bias and inefficiency. This is
not surprising given the results of the previous paragraphs. We obtained good
results for (ω↪ θ) when estimated alone, and not so good results for (ξ↪ ρ). As
mentioned, classical filtering theory works well when the parameters affect
the drift of the observation and not the noise. This causes a slow convergence
problem for all our parameters. But this is doubly true for (ξ↪ ρ) since they
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FIGURE 2.42 Density for ω̂ Estimated from 500 Paths of Length 5000 via EKF. The
true value is ω∗ = 0.10. The sampling distribution is fairly unbiased, but is inefficient.
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FIGURE 2.43 Density for θ̂ Estimated from 500 Paths of Length 5000 via EKF. The
true value is θ∗ = 10 . The sampling distribution is fairly unbiased, but is inefficient.



The Inference Problem 143

0

10

20

30

40

50

60

70

80

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Xi

Density
Histogram

FIGURE 2.44 Density for ξ̂ Estimated from 500 Paths of Length 5000 via EKF. The
true value is ξ∗ = 0.03 . The sampling distribution is inefficient and even has a bias.
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FIGURE 2.45 Density for ρ̂ Estimated from 500 Paths of Length 5000 via EKF. The
true value is ρ∗ = −0.50 . The sampling distribution is inefficient and even has a bias.
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affect the “noise of the noise.” As previously observed, the bias and ineffi-
ciency will disappear as N → +∞, as is the case for any MLE estimator.
The biases and the standard deviations are smaller for N = 50↪ 000 than for
N = 5000 as we can see in Table 2.14.

The Bayesian Approach

Even if our method of choice is the classical one, it is worth going over the
Bayesian philosophy and methodologies, which have some similarities but
also some fundamental differences compared with our point of view. The
MLE methodology is a classical (frequentist) approach, in which we assume
that there is a set of unknown but fixed parameters. Alternatively, in the
Bayesian approach the parameters are considered as random variables with
a given prior distribution. We then use the observations (the likelihood) to
update these distributions and obtain the posterior distributions.

It would seem that in order to be as objective as possible and to use the
observations as much as possible, one should use priors that are noninfor-
mative. However, this sometimes creates degeneracy issues and one should
choose a different prior for this reason.

Markov Chain Monte Carlos (MCMC) include the Gibbs sampler as
well as the Metropolis-Hastings (MH) algorithm. The theoretical justifica-
tion is provided by the Hammersley-Clifford theorem and the ergodic aver-
aging theorem. Details can for instance, be found in [34] or [163].

Briefly, the Hammersley-Clifford theorem states that having a param-
eter set �, a state x, and an observation z, we can obtain the joint distri-
bution p(�↪ x|z) from p(�|x↪ z) and p(x|�↪ z), under some mild regularity
conditions. Therefore by applying the theorem iteratively, we can break a
complicated multidimensional estimation problem into many simple one-
dimensional problems. Creating a Markov Chain �(i) via a Monte Carlo
process, the ergodic averaging theorem states that the time average of a par-
ameter will converge toward its posterior mean.

The Gibbs Sampler The Gibbs sampler consists of iterative simulations from
the posterior distributions. Having a parameter set

� = (�j )1≤j≤J

a hidden state
x = (xk)1≤k≤N

and an observation set
z = (zk)1≤k≤N
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We proceed as follows: Initialize the state vector and the parameter set
to x(0) and �(0), and choose the prior distribution p(ψ). For each simulation
index i between 1 and Nsims, do:
1. Simulate x(i) as

x(i) ∼ p(x|z↪ �(i−1))

2. Simulate each parameter from its posterior conditional on partially
updated parameters: For each j between 1 and J

�(i)
j ∼ p(ψ|z↪ x↪ �(i)

0 ↪ ...↪ �(i)
j−1 ↪ �(i−1)

j+1 ↪ ...↪ �(i−1)
J )

with
p(ψ|z↪ x↪ ...) ∝ p(z|x↪ ψ↪ ...)p(x|ψ)p(ψ)

3. Go back to Step 1 and stop after i reaches Nsims.
4. Calculate the posterior mean for each parameter after allowing a “burn-
in" period

�̂j = 1

Nsims − i0

Nsims∑
i=i0+1

�(i)
j

with, for instance, i0 = Nsims/10.
It is important to note that in some cases, the prior and the posterior

distributions are the same and only differ in parameters. In this case the
priors are referred to as conjugate priors.

The justification is available for instance in [55] and can be summed up
as follows: Having two random variables (X↪ Y ), we can write

E[X] =
∫

xp(x)dx

but

p(x) =
∫

p(x|y)p(y)dy =
∫

p(x|y)

∫
p(y|ξ)p(ξ)dξdy

therefore, we have

p(x) =
∫

p(ξ)h(x↪ ξ)dξ

with

h(x↪ ξ) =
∫

p(x|y)p(y|ξ)dy

which shows that p(x) is a stationary solution for the foregoing integral
equation, and h(x↪ ξ) corresponds to the limit transition density.
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Similarly, it is possible to show that for a sequence (xk) generated from
a Gibbs Sampler, we have

P (xk|x0) =
∫

P (xk−1|x0)P (xk↪ xk−1)dxk−1

It is therefore possible to see that as k → +∞ we have

P (xk|x0) → p(xk)

and
P (xk|xk−1) → h(xk↪ xk−1)

which are the stationary marginal and transition densities.

A Simple Illustration For a simple illustration, consider a sequence of normally
distributed data points z with an unknown mean µ and an unknown variance
1/λ. The parameter λ is often referred to as the precision of the distribution.
One possible way to proceed is to choose uniform (noninformative) priors
p(µ) and p(λ) ∝ 1/λ and use the known results [34]

p(µ|z↪ σ) = N(Z̄↪ σ)

with N(m↪ s) the normal distribution with mean m and standard deviation s
and

Z̄ = 1

N

N∑
k=1

zk

as well as

p(λ|z↪ µ) = G

(
N

2
↪

S

2

)

with G(a↪ A) the previously described gamma distribution34 and

S =
N∑

k=1

(zk − µ)2

and again
σ = 1/

√
λ

We therefore know both posterior distributions and can simulate from them
iteratively and perform Gibbs sampling as described above.

34Note that G(a↪ A) = P(a↪ Ax) to use our previous notations.
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FIGURE 2.46 Gibbs Sampler for µ in N(µ↪ σ). The true value is µ∗ = 10.0.

For testing this, we generated a time series of 1000 Gaussian points with
a mean of µ∗ = 10 and a standard deviation of σ∗ = 5. We applied the Gibbs
sampler via Nsims = 10↪ 000 simulations and considered the average between
the 1000th and 10↪ 000th simulations. We chose initial values µ0 = 7.0 and
σ0 = 3.0 and obtained

µ̂ = 9.943416

σ̂ = 4.816300

We ploted the simulations from the posteriors in Figures 2.46 and 2.47.

The Metropolis-Hastings Algorithm The Gibbs sampler is fast and simple when
the posterior distributions are known and easy to sample from. However, in
practice, and in particular for our stochastic volatility problem, this often is
not the case. We assume for simplicity that we do know the posteriors for
the parameters and therefore can use the Gibbs sampler for them; however,
we cannot do the same for the latent state.

In this case, the Metropolis-Hastings (MH) algorithm approach can be
used for x as follows: Initialize the state vector and the parameter set to
x(0) and �(0) and choose the prior distribution p(ψ). Also choose a proposal
distribution q(x|z↪ �) for the state. For each simulation index between 1 and
Nsims do:

1-a. Simulate from the proposal distribution

x(i) ∼ q(x|z↪ �)
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FIGURE 2.47 Gibbs Sampler for σ in N(µ↪ σ). The true value is σ∗ = 5.0.

1-b. Compare with a randomly generated uniform random variable u the
ratio

α = min

(
1↪

p(x(i)|z↪ �)/q(x(i)|z↪ �)

p(x(i−1)|z↪ �)/q(x(i−1)|z↪ �)

)

and accept x(i) if α > u; otherwise, reject it and set x(i) = x(i−1).
2. Simulate �(i) via a Gibbs sampler.
3. Go back to Step 1-a and continue until i reaches Nsims.
4. Calculate the posterior mean for each parameter after allowing a

“burn-in” period

�̂j = 1

Nsims − i0

Nsims∑
i=i0+1

�(i)
j

with, for instance, i0 = Nsims/10.

Two special cases are worth being mentioned.

■ First, if we simulate from the posterior, the MH ratio becomes 1.0 and
every simulation will be accepted. This is therefore a Gibbs sampler.

■ Second, if we simulate from the prior, the MH ratio becomes the like-
lihood ratio, which makes the computation simpler. We shall use this
second case extensively in our stochastic volatility inferences.
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The justification for the MH algorithm is available, for instance, in [58]
or [120]. The idea is to find the transition probability from x to y P (x↪ y) such
that for a given target density π we would have the invariant distribution
property

π(dy) =
∫

P (x↪ dy)π(x)dx

It is possible to express the transition probability P (x↪ dy) as

P (x↪ dy) = p(x↪ y)dy +
(

1 −
∫

p(x↪ z)dz

)
δx(dy)

with δx() the Dirac function. The first term corresponds to the passage prob-
ability from x to a point in dy and the second term to the probability of
staying at x.

Now, if the function p(x↪ y) satisfies the reversibility condition

π(x)p(x↪ y) = π(y)p(y↪ x)

then we can see that π() is the invariant distribution as described previously.
Indeed then calling the rejection probability

r(x) = 1 −
∫

p(x↪ z)dz

we have∫
P (x↪ A)π(x)dx =

∫ [∫
A

p(x↪ y)dy + r(x)δx(A)

]
π(x)dx

=
∫

A

[∫
p(x↪ y)π(x)dx

]
dy +

∫
A

r(x)π(x)dx

=
∫

A

[∫
p(y↪ x)π(y)dx

]
dy +

∫
A

r(x)π(x)dx

=
∫

A

(1 − r(y))π(y)dy +
∫

A

r(x)π(x)dx

=
∫

A

π(y)dy

which proves that π(x) is the invariant distribution for the transition prob-
ability P(x↪ y).

However, in practice, the reversibility condition is hardly ever satisfied,
and therefore we need to construct an MH density that would indeed be
reversible. Taking any proposal density q(x↪ y), we would simply write

pMH(x↪ y) = q(x↪ y)min

(
1↪

π(y)/q(x↪ y)

π(x)/q(y↪ x)

)
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Then pMH(x↪ y) would be reversible and hence admit π(x) as its invariant
distribution.
Proof: To see why, let us consider the case where π(y)/q(x↪y)

π(x)/q(y↪x)
> 1, which

means its inverse is smaller than 1. We would then have

pMH(x↪ y)π(x) = q(x↪ y)π(x) = q(y↪ x)
π(x)/q(y↪ x)

π(y)/q(x↪ y)
π(y) = pMH(y↪ x)π(y)

(QED)
One more point we need to explain is the “blocking” technique. Hav-

ing two random variables X1, X2, the product of the conditional transition
densities, admits the joint distribution π(X1↪ X2) for invariant distribution.
This is why we can alternate between parameters and hidden states.

Thus∫ ∫
P1(x1↪ dy1|x2)P2(x2↪ dy2|y1)π(x1↪ x2)dx1dx2

=
∫

P2(x2↪ dy2|y1)

[∫
P1(x1↪ dy1|x2)π1|2(x1|x2)dx1

]
π2(x2)dx2

=
∫

P2(x2↪ dy2|y1)π1|2(dy1|x2)π2(x2)dx2

=
∫

P2(x2↪ dy2|y1)π2|1(x2|y1)π1(dy1)dx2

= π1(dy1)

∫
P2(x2↪ dy2|y1)π2|1(x2|y1)dx2

= π1(dy1)π2|1(dy2|y1) = π(dy1↪ dy2)

which proves that π(x1↪ x2) is the invariant distribution for this product tran-
sition probability.

Illustration We use the same example as for the Gibbs sampler, only this time
we simulate from the priors and use the likelihood ratio to accept or reject
the simulations. We choose the priors

µ ∼ N(7.0↪ 3.0)

and

σ ∼ 1√
G(1/9.0↪ 1.0)

We obtain after M = 10↪ 000 simulations

µ̂ = 9.989504
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FIGURE 2.48 Metropolis-Hastings Algorithm for µ in N(µ↪ σ). The true value is
µ∗ = 10.0.

and
σ̂ = 4.797105

Naturally, the evaluation of the Markov Chain is different from that of the
Gibbs sampler. This can be seen in Figures 2.48 and 2.49.

A Few Distributions Here are a few distributions commonly used in MCMC
algorithms.

The student cumulative distribution function

F (x↪ ν) = 1 − I

(
ν

ν + x2
↪
ν

2
↪

1

2

)

with I (x↪ a↪ b) the incomplete beta function (IBF)

I (x↪ a↪ b) = B(x↪ a↪ b)

B(1↪ a↪ b)

where

B(x↪ a↪ b) =
∫ x

0
ta−1(1 − t)b−1dt

with a↪ b two strictly positive parameters. A few plots of the IBF are provided
in Figure 2.50.
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FIGURE 2.49 Metropolis-Hastings Algorithm for σ in N(µ↪ σ). The true value is
σ∗ = 5.0.
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FIGURE 2.50 Plots of the Incomplete Beta Function. Implementation is based on
code from Numerical Recipes in C.

The inverse-gamma (IG) cumulative distribution function IG(a↪ x) could
be defined from that of the previously defined gamma distribution P (a↪ x)

P (a↪ x) = 1

�(a)

∫ x

0
e−tta−1dt
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By definition, if the random variable X is gamma-distributed, Y = 1/X
will be IG-distributed and therefore

IG(a↪ x) = P (Y ≤ x) = P

(
X ≥ 1

x

)
= 1 − P

(
a↪

1

x

)

As for the densities, they are related by

fIG(a↪ x) = 1

x2
fG

(
a↪

1

x

)

Regression Analysis We have the following useful results as described in [34]
and [163] using some of the previous distributions. Considering a univariate
regression

Y = βX + ε

where
ε ∼ N (0↪ σ2

)
We suppose we know the priors

p(β) = N(a↪ A)

where a corresponds to the mean and A to the variance.

p
(
σ2
) = IG(b↪ B)

with the density

fIG(x↪ b↪ B) = Bbe− B
x

�(b)xb+1

Then we have for the β posterior:

p
(
β|Y ↪ X↪ σ2

) ∝ p
(
Y |X↪ β↪ σ2

)
p(β) ∝ N(a∗↪ A∗)

with

a∗ =
(

1

A
+ 1

2
XtX

)−1 ( a

A
+ XtY

σ2

)

A∗ =
(

1

A
+ XtX

σ2

)−1

As for the σ2 posterior we have

p(σ2|Y↪ X↪ β) ∝ p(Y |X↪ β↪ σ2)p(σ2) ∝ IG(b∗↪ B∗)

with
b∗ = T + b

and
B∗ = (Y − βX)t(Y − βX) + B
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Application to Gaussian SV Models (Heston) Various MCMC approaches have
been suggested for the SV problem. Jacquier, Polson, and Rossi [156] were
first to a apply a hybrid of the Gibbs sampler and the MH algorithm to a log-
SV model. Kim, Shephard, and Chib [169] used a slightly different approach
for the same model.

Here, we describe the method employed by Forbes, Martin, and Wright
(FMW) [103]. Using their notations

dvt = κ(θ − vt)dt + σv
√

vtdZt

Obviously our (ω↪ θ↪ ξ↪ ρ) could easily be obtained as (κθ↪ κ↪ σv↪ ρ) . The
algorithm becomes as follows.

Initialize v(0) = (v(0)
k )1≤k≤N and choose constant and therefore non

informative priors for the parameter set35

� = (κ↪ θ↪ σv↪ ρ)

1. We simulate the state vt from the Heston prior; we have for any time
step k between 1 and N and simulation i

v(i)
k = v(i)

k−1 + κ(θ − v(i)
k−1)�t + σv

√
v(i)

k−1�tZk−1

As previously mentioned, the MH ratio is therefore the likelihood ratio:

α = min

(
1.0↪

p(ln S|v(i)↪ �)

p(ln S|v(i−1)↪ �)

)

where

p(ln S|v↪ �) ∝
N∏

k=1

1√
(1 − ρ2)�tvk−1

exp

{
− 1

2(1 − ρ2)vk−1�t
(ln Sk − µk)2

}

with

µk = ln Sk−1 +
(

µS − 1

2
vk−1

)
�t + ρ

σv
(vk − [θκ�t + (1 − κ�t)vk−1])

Any negative variance would be rejected in the MH step.
2. The Heston equation

vk = vk−1 + κ(θ − vk−1)�t + σv

√
vk−1�tZk−1

35As before, we assume for simplicity that µS is known. Adding it to the parameter
set would be easy.
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could be rewritten

vk − (1 − κ�t)vt−1√
vt−1�t

= θ
κ�t√
vt−1�t

+ σvZk−1

which is a linear regression

yk = θxk + ek

with

yk = vk − (1 − κ�t)vt−1√
vt−1�t

xk = κ�t√
vt−1�t

and
ek ∼ N(0↪ σv)

Hence, taking constant priors, we have

θ|κ↪ σv↪ v ∼ N(θ̄↪ σθ)

with

θ̄ =
∑N

k=1 xkyk∑N
k=1 x2

k

and

σθ = σv/

√√√√ N∑
k=1

x2
k

What is more
σ2

v|κ↪ v ∼ IG(N − 1↪ s2
v )

with

s2
v =

N∑
k=1

(yk − θ̄xk)2

It is also possible to show that

p(κ|v) ∝ St(κ̄↪ σκ)

(
N∑

k=1

x2
k

)− 1
2

where St(m↪ s) corresponds to Student’s law of mean m and standard
deviation s. The expressions for these mean and standard deviations
could be found in [103].
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We can therefore simulate from the priors, except we have an adjustment

factor
(∑N

k=1 x2
k

)− 1
2

to multiply the prior by. The MH ratio will therefore

be

α = min


1.0↪

p(ln S|v↪ κ(i)↪ θ(i)↪ σ(i)
v ↪ ρ)

(∑N
k=1

(
x(i)

k

)2)− 1
2

p(ln S|v↪ κ(i−1)↪ θ(i−1)↪ σ(i−1)
v ↪ ρ)

(∑N
k=1

(
x(i−1)

k

)2)− 1
2




3. As for the correlation paramater ρ, we choose a normal proposal distri-
bution and use a constant prior again. Therefore

α = min

(
1.0↪

p
(
ln S|v↪ κ↪ θ↪ σv↪ ρ(i)

)
/q
(
ρ(i)|v↪ κ↪ θ↪ σv↪ S

)
p
(
ln S|v↪ κ↪ θ↪ σv↪ ρ(i−1)

)
/q
(
ρ(i)|v↪ κ↪ θ↪ σv↪ S

)
)

with q() the normal distribution with mean

∑N
k=1 xkyk∑N

k=1 x2
k

and variance
�t∑N
k=1 x2

k

with

xk = vk − κθ�t − (1 − κ�t)vk−1

σv
√

vk−1

yk = ln Sk − ln Sk−1 − (µS − 1
2 vk−1

)
�t

vk−1

Note that for any of the foregoing parameters if we simulate one that
does not satisfy the usual constraints θ ≥ 0, κ ≥ 0, σv ≥ 0, σv ≤ 2κθ, and
−1 ≤ ρ ≤ 1, then we simply do not accept them during the MH accept/reject
step. Also note that we update (κ↪ θ↪ σv) in a “block” instead of updating
them one by one. This technique is used by many since it makes the algorithm
faster.

For the actual results, the reader could refer to Forbes et al. [103]. The
authors test their Bayesian estimator against simulated data, and observe
inefficiency. This is in agreement with our observations when applying MLE
techniques to simulated data.
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Using the Characteristic Function

In a recent article [31], the use of the characteristic function has been sug-
gested for the purpose of filtering. In this approach, however, we have to limit
ourselves to the case where F (U↪ V ↪ xt) = E[exp(Uzt+1 + V xt+1)|xt] has a
known form. One natural form would be the affine process, where

F (U↪ V ↪ xt) = E[exp(Uzt+1 + V xt+1)|xt] = exp{C(U↪ V ) + D(U↪ V )xt}
After choosing the initial conditions, the time update equation

p(zt+1↪ xt+1|t) =
∫

p(zt+1↪ xt+1|xt)p(xt|t)dxt

becomes in terms of the characteristic function

Fzx|t(U↪ V ) = Et[E (exp(Uzt+1 + V xt+1)|xt)]

= E[exp{C(U↪ V ) + D(U↪ V )xt}|z1:t]

= exp[C(U↪ V )]Gt |t[D(U↪ V )]

where Gt |s(U) = E[exp(Uxt)|z1:s] is the moment-generating function of xt

conditional on the observations up to time s.
The Measurement Update equation

p(xt+1|t + 1) = p(zt+1↪ xt+1|t)

p(zt+1|t)

becomes in terms of the characteristic function

Gt+1|t+1(V ) =
∫ +∞
−∞ Fzx|t(iU↪ V ) exp (−iUzt+1)dU∫ +∞
−∞ Fzx|t(iU↪ 0) exp (−iUzt+1)dU

This remarkably gives us a one-step induction expression

Gt+1|t+1(V ) =
∫ +∞
−∞ exp[C(iU↪ V ) − iUzt+1]Gt |t[D(iU↪ V )]dU∫ +∞
−∞ exp[C(iU↪ 0) − iUzt+1]Gt |t[D(iU↪ 0)]dU

which allows us to determine the a posteriori estimate and errors

x̂t = G
′
t |t(0)

and

Pt = V art(xt) = G
′′
t |t(0) −

(
G

′
t |t(0)
)2

at each iteration.
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In this framework, the likelihood function could be written as

L1:T =
T −1∏
t=0

lt

with

lt = 1

2π

∫ +∞

−∞
exp[C(iU↪ 0) − iUzt+1]Gt |t[D(iU↪ 0)]dU

which is equivalent to

lt = 1

π

∫ +∞

0
R {exp[C(iU↪ 0) − iUzt+1]Gt |t[D(iU↪ 0)]

}
dU (2.30)

where R{} corresponds to the real part of a complex number. In order to be
able to calculate the integral, we need to know the value of Gt |t(x) at each
point. For this, Bates [31] suggests making an assumption on the distribution
of the hidden state. For a gamma distribution, we have a moment-generating
function of the form

Gt |t(x) = (1 − κx)−vt

The integral (2.30) can be evaluated numerically; however, when dealing with
“outliers” the density of the observation takes near-zero values, which makes
the integration difficult. Bates suggests scaling transformations equivalent to
the importance sampling technique used in particle filtering.

Independently from this, Dragulescu and Yakovenko, [81] and [219],
derived a semianalytic expression for the likelihood under the Heston model,
by using Fourier inversion. Note that a particle filter calculates this very
integral via Monte Carlo simulations.

It is worth noting that the main advantage of our particle filtering
approach is its complete generality. Indeed the Bates method would work
only for model classes that have an exponentially affine Fourier transform.
It is true that the Heston model falls in this category; however, a VGG (vari-
ance gamma with gamma-distributed arrival rate) process would not, and
therefore could only be analyzed through a simulation-based methodology.

Introducing Jumps

The Model As in Bates [28], let us introduce a jump process (independent
from Brownian motion) with a given intensity λ and a fixed36 fractional jump

36We could make j a Gaussian random variable without changing the methodology.
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size 0 ≤ j < 1 . The number of jumps between t and t + dt will therefore be
dNt . Needless to say, if either the intensity λ = 0 or the jump size j = 0,
then we are back to the pure diffusion case.

The new stochastic differential equation for the stock price in the risk-
neutral framework will be

dSt = (µS + λj )Stdt + √
vtStdBt − StjdNt

and applying Ito’s lemma for semi-Martingales

d ln St =
(

µS − 1

2
vt + λj

)
dt + √

vtdBt + ln(1 − j )dNt

which we can rewrite in the discrete version as

ln Sk+1 = ln Sk +
(

µS − 1

2
vk + λj

)
�t + √

vt

√
�tBk + µk

with µ0 = 0 and

µk = δ0(0)e−λ�t + δ0 (ln(1 − j )) (1 − e−λ�t)

where δ0() corresponds to the Dirac delta function.37

Also

vk = vk−1 + (ω − θvk−1)�t + ξ
√

vk−1

√
�tZk−1

− ρξ

[
ln Sk−1 +

(
µS + λj − 1

2
vk−1

)
�t + √

vk−1

√
�tBk−1 + µk−1 − ln Sk

]

which completes our set of equations.
It is important to note that the new parameter set is

� = (ω↪ θ↪ ξ↪ ρ↪ λ↪ j )

which effectively gives us two additional degrees of freedom.38

37This means that −∞ < µk ≤ 0 for every k. Note that we are assuming that we
can have at most one jump within [t↪ t + �t], which means that �t is small enough.
This is completely different from pure-jump models, such as variance gamma.
38A related idea was developed by Hamilton [126] as well as Chourdakis [59]
and Deng [72]. Chourdakis uses the characteristic function for the jump-diffusion
process. Doucet [80] suggests the use of particle filtering for the jump process.
Maheu and McCurdy [184] use a fully integrated GARCH likelihood with Poisson
jumps. Aït-Sahalia [3] uses moments to separate the diffusion parameters from the
jumps. Johannes, Polson, and Stroud [164] use the particle filtering technique as
well, however, in a Bayesian MCMC framework. Finally, Honoré [142] shows that
an MLE approach always works for a constant jump size.
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The Generic Particle Filter Since µk is following a Poisson process, we have to
use a non-Gaussian filter. The use of a generic particle filter (GPF) is therefore
natural. In a generic particle filter, the proposal distribution q(xk) is simply
set equal to p(xk|xk−1). The state xk could be chosen as

xk =
(

µk

vk

)

and the transition equation becomes

xk =

 δ0(0)e−λ�t + δ0 (ln(1 − j )) (1 − e−λ�t)

vk−1 + [(ω − ρξ(µS + λj ) − (θ − 1
2 ρξ)vk−1]�t + ρξ[ln( Sk

Sk−1
) − µk−1] + ξ

√
1 − ρ2√vk−1

√
�tZ̃

k−1




It becomes therefore possible to implement a particle filter as follows.

1. Choose v0 and P0 > 0 and set µ0 = 0, so for i in 1↪ ...↪ Nsims

x(i)
0 =

(
0

v0 + √
P0Z(i)

)

Then for each k with 1 ≤ k ≤ N do
2. Write the new x̃(i)

k = (µ̃(i)
k ↪ ṽ(i)

k )t as the result of simulations

ṽ(i)
k ∼ N

(
m = v(i)

k−1 +
[
ω − ρξ(µS + λj ) −

(
θ − 1

2
ρξ

)
v(i)

k−1

]

×�t + ρξ

[
ln

(
Sk

Sk−1

)
− µ(i)

k−1

]
↪ s
)

with s = ξ
√

1 − ρ2
√

v(i)
k−1

√
�t and

µ̃(i)
k = 0

if U[0↪ 1] ≤ e−λ�t and
µ̃(i)

k = ln(1 − j )

otherwise.
3. Define the weights

w(i)
k = w(i)

k−1p(zk|x̃(i)
k )

with

p(zk|x̃(i)
k ) = n

(
zk↪ zk−1 +

(
µS + λj − 1

2
ṽ(i)

k

)
�t + µ̃(i)

k ↪

√
ṽ(i)

k �t

)
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4. Normalize the weights

w̃(i)
k = w(i)

k∑Nsims
i=1 w(i)

k

5. Resample the points x̃(i)
k and get x(i)

k and reset w(i)
k = w̃(i)

k = 1/Nsims .
This completes the generic particle filtering algorithm.
Note that there is no Kalman filtering here and therefore

ẑ−
k = 1

Nsims

Nsims∑
i=1

ẑ(i)
k

with ẑ(i)
k the estimation of zk from x(i)

k−1

ẑ(i)
k = zk−1 +

(
µS + λj − 1

2
v(i)

k−1

)
�t + µ(i)

k−1

and the estimation error is zk − ẑ−
k as before.

The likelihood maximization is not different from the EPF or UPF. We
need to maximize

N∑
k=1

ln

(
Nsims∑
i=1

w(i)
k

)

where w(i)
k ’s are defined at Step 3.

Extended/Unscented Particle Filters Using the same model, we can take advan-
tage of the independence of vk and µk and apply the (nonlinear) Gaussian
Kalman filter to the former. In this case, the Steps 2 and 3 should be replaced
with:

2-a. Write x̂(i)
k =

(
µ̂(i)

k ↪ v̂(i)
k

)t

with

v̂(i)
k = KF(v(i)

k−1)

with P (i)
k the associated a posteriori error covariance matrix, KF the

extended or unscented Kalman filter, and

µ̂(i)
k = µ(i)

k−1

2-b. Now take the simulations

ṽ(i)
k ∼ N

(
v̂(i)

k ↪ P (i)
k

)
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and
µ̃(i)

k = 0

if U[0↪ 1] ≤ e−λ�t and
µ̃(i)

k = ln(1 − j )

otherwise.
3. Define the weights

w(i)
k = w(i)

k−1

p
(
zk|x̃(i)

k

)
p
(
x̃(i)

k |x(i)
k−1

)
q
(
x̃(i)

k |x(i)
k−1↪ z1:k

)
with

p
(
zk|x̃(i)

k

)
= n

(
zk↪ zk−1 +

(
µS + λj − 1

2
ṽ(i)

k

)
�t + µ̃(i)

k ↪

√
ṽ(i)

k �t

)

p
(
x̃(i)

k |x(i)
k−1

)
= n

(
ṽ(i)

k ↪ m↪ s = ξ
√

1 − ρ2

√
v(i)

k−1

√
�t

)
p
(
µ̃(i)

k |µ(i)
k−1

)

with

m = v(i)
k−1+
[
ω − ρξ(µS + λj ) −

(
θ − 1

2
ρξ

)
v(i)

k−1

]
�t+ρξ ln

(
Sk

Sk−1

)
−ρξµ(i)

k−1

and
q
(
x̃(i)

k |x(i)
k−1↪ z1:k

)
= n
(
ṽ(i)

k ↪ v̂(i)
k ↪ P (i)

k

)
p
(
µ̃(i)

k |µ(i)
k−1

)

Note that as for the GPF, the terms p
(
µ̃(i)

k |µ(i)
k−1

)
cancel out and need not be

evaluated.
The rest of the algorithm remains the same. This way we will not lose

the information contained in the Kalman gain for the Gaussian dimension.
The following is the C++ code for the application of EPF to the Bates

model.

// log_stock_prices are the log of stock prices
// muS is the real-world stock drift
// n_stock_prices is the number of the above stock prices
// (omega, theta, xi, rho, lambda, j) are the Bates
parameters
// ll is the value of (negative log) Likelihood function
// estimates[] are the estimated observations from the
filter
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// The function ran2() is from Numerical Recipes in C
// and generates uniform random variables
// The function Normal_inverse() can be found from
many sources
// and is the inverse of the Normal CDF
// Normal_inverse(ran2(.)) generates a set of Normal
random variables

void estimate_particle_jump_diffusion_parameters_1_dim(
double *log_stock_prices,
double muS, int n_stock_prices,
double omega,
double theta,
double xi,
double rho,
double lambda,
double j,
double *ll,
double *estimates)
{
int i1, i2, i3;
double H, A, x0, P0, z;
int M=1000;
double x[1000], xx[1000], x1[1000], x2[1000];
double mu[1000], mm[1000], m1[1000], m2[1000];
double P[1000], P1[1000], U[1000], K[1000], W[1000];
double w[1000], u[1000], c[1000];
double q, pz, px, s, m, l;
double delt=1.0/252.0, x1_sum, m1_sum;
long idum=-1;
int i1_prev=0;
double u_t=0.0;
int *jump;

jump= new int [n_stock_prices];
for (i1=0; i1<n_stock_prices; i1++)
jump[i1]=0;

A = 1.0-(theta-0.5*rho*xi)*delt;
H = -0.5*delt;

x0 = 0.04;
P0 = 0.000001;
for (i2=0; i2<M; i2++)
{
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x[i2] = x0 + sqrt(P0)* Normal_inverse(ran2(&idum));
mu[i2]=0;
P[i2] = P0;

}

*ll=0.0;
for (i1=1;i1<n_stock_prices-1;i1++)
{
l = 0.0;
x1_sum=0.0;
m1_sum=0.0;
for (i2=0; i2<M; i2++)
{
/* EKF for the proposal distribution */
if (x[i2]<0) x[i2]=0.00001;
x1[i2] = x[i2] + ( omega-rho*xi*(muS+lambda*j) -

(theta-0.5*rho*xi) * x[i2]) * delt +
rho*xi* (log_stock_prices[i1]-
log_stock_prices[i1-1]) - rho*xi*mu[i2];
m1[i2]=mu[i2];
W[i2] = xi*sqrt((1-rho*rho) * x[i2] * delt);
P1[i2] = W[i2]*W[i2] + A*P[i2]*A;
if (x1[i2]<0) x1[i2]=0.00001;
U[i2] = sqrt(x1[i2]*delt);
K[i2] = P1[i2]*H/( H*P1[i2]*H + U[i2]*U[i2]);
z = log_stock_prices[i1+1];
x2[i2] = x1[i2] + K[i2] *

(z - (log_stock_prices[i1] +
(muS+lambda*j-0.5*x1[i2])*delt + m1[i2]));
m2[i2]= m1[i2];
x1_sum+= x1[i2];
m1_sum+= m1[i2];
P[i2]=(1.0-K[i2]*H)*P1[i2];
/* sample */
xx[i2] = x2[i2] + sqrt(P[i2])*
Normal_inverse(ran2(&idum));
if (xx[i2]<0) xx[i2]=0.00001;

if (ran2(&idum) < exp(-lambda*delt))
mm[i2]=0.0;
else

mm[i2]=log(1.0-j);

/* calculate weights */
m = x2[i2];
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s = sqrt(P[i2]);
q = 0.39894228/s * exp( - 0.5* (xx[i2] - m)*
(xx[i2] - m)/(s*s) );
m= log_stock_prices[i1] +
(muS+lambda*j-0.5*xx[i2])*delt + mm[i2];
s= sqrt(xx[i2]*delt);
pz= 0.39894228/s *
exp( - 0.5* (z - m)*(z - m)/(s*s) );
m= x[i2] + ( omega-rho*xi*(muS+lambda*j) -
(theta-0.5*rho*xi) * x[i2]) * delt +

rho*xi* (log_stock_prices[i1]-
log_stock_prices[i1-1]) -rho*xi*mu[i2];
s= xi*sqrt((1-rho*rho) * x[i2] * delt);
px= 0.39894228/s *
exp( - 0.5* (xx[i2] - m)*(xx[i2] - m)/(s*s) );

w[i2]= pz * px / MAX(q, 1.0e-10);
l += w[i2];

}
*ll += log(l);
estimates[i1+1]= log_stock_prices[i1] +
(muS+lambda*j-0.5*x1_sum/M)*delt+m1_sum/M;
/* normalize weights */
for (i2=0; i2<M; i2++)
w[i2] /= l;

/* resample and reset weights */
c[0]=0;
for (i2=1; i2<M; i2++)
c[i2] = c[i2-1] + w[i2];

i2=0;
u[0] = 1.0/M * ran2(&idum);
for (i3=0; i3<M; i3++)
{
u[i3] = u[0] + 1.0/M *i3;
while (u[i3] > c[i2])

i2++;
x[i3]= xx[i2];
mu[i3]=mm[i2];
w[i3]=1.0/M;

}
}

*ll *= -1.0;

delete [] jump;
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}

// *ll corresponds to the (negative log) Likelihood
// which we will need to minimize to obtain optimal
parameters

The Srivastava Approach Srivastava [222] suggests the following approach for
simulating the jump component. Instead of allowing a jump at each time
interval [tk↪ tk + �t] with a probability 1 − e−λ�t as we do now, we can flag
the time steps such that

tk−1 <
1

λ
ln

(
1

U[0↪ 1]

)
≤ tk

where U[0↪ 1] is a uniform random variable between zero and one, and then
perform a jump of size | ln(1 − j )| on these steps for all paths. We therefore
would first initialize tp = 0 and loop through k’s between 1 and N , and if

e−λ(tk−tp ) ≤ U[0↪ 1] < e−λ(tk−1−tp )

we flag this k and set tp = tk and resimulate U[0↪ 1] . In the particle filter, we
would set for all indices i’s

µ̃(i)
k = ln(1 − j )

for the flagged k’s, and we would set µ̃(i)
k = 0 for other indices.

It is important to note that in this approach the simulation for the jump
component is completely “orthogonal” to the diffusion SIS part. Indeed the
index i in the foregoing is irrelevant for the entity µ̃(i)

k . This means that in
the KF step, the weight calculation and the resampling are independent of
the Jump component altogether.

Numeric results As a check, we simulate a time series with the parameter set

�∗ = (ω∗ = 0↪ θ∗ = 0↪ ξ∗ = 0↪ ρ∗ = 0↪ λ∗ = 2.52↪ j ∗ = 0.20)

which corresponds to a jump frequency of λ�t = 0.01 and a jump size of
20 percent. We generated N = 245 points and used M = 1000 particles.

The estimated set via the above EPF is

�̂ = (ω̂ = 0.23↪ θ̂ = 1.5↪ ξ̂ = 0.34↪ ρ̂ = 0.21↪ λ̂ = 2.65↪ ĵ = 0.20)

As we see, the diffusion parameters are not close to the original ones, but this
is probably due to the small �t , as previously discussed. The jump parameters
are close to the original ones, which means that the filter is valid for the jump
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component. Note that despite the difference in the diffusion parameters, the
estimated and original time series are rather close for a new simulation, as
can be seen in Figures 2.51 and 2.52. This reconfirms our previous remark:
When the parameters affect the drift of the observation (as opposed to its
noise), their estimation is far more accurate and requires fewer data points.
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The Optimization Algorithm It is important to realize that the likelihood function
here (owing to the jumps) is not differentiable everywhere, and, therefore,
gradient-based maximization methods could not be applied. The optimiza-
tion could, however, still be carried out via the direction set algorithm as
previously described. Note that as mentioned in [164] so far there has been
no formal proof on the convergence of the discretized jump diffusion equa-
tions toward the continuous ones; however, empirical evidence makes the
convergence assumption plausible.

Pure Jump Models

The variance gamma with stochastic arrival (VGSA) and the variance gamma
with gamma arrival (VGG) models were defined in Chapter 1. These models
are non-Gaussian, and we could apply the particle filtering technique to
them. We are not dealing with diffusion models, and therefore we do not
have the Girsanov theorem. We are estimating the parameter set

� = (µS ↪ θ↪ σ↪ ν↪ ...)

In order to make the back-testing simpler, we suppose that we know the
stock drift and try to estimate the other parameters. However, as mentioned
earlier, for a high-frequency data set we have

�t = o
(√

�t
)

and the drift term has a negligible impact.

VG The variance gamma model has the advantage of offering an integrated
density, which allows us to calculate the exact likelihood. Calling z =
ln(Sk/Sk−1) and h = tk − tk−1 and posing xh = z−µSh− h

ν
ln(1− θν−σ2ν/2),

we have

p(z|h) = 2 exp
(
θxh/σ2

)
ν

h
ν
√

2πσ�
(

h
ν

)
(

x2
h

2σ2/ν + θ2

) h
2ν − 1

4

K h
ν − 1

2

(
1

σ2

√
x2

h

(
2σ2/ν + θ2))

and the likelihood is

L1:N =
N∏

k=1

p(zk|zk−1↪ h)

The implementation of this estimation procedure is straightforward and has
already been done in [182].
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One could also back-test the estimation procedure in the following way:
First choose a parameter set (θ↪ σ↪ ν) as well as a drift µS and a time-step
�t . Then simulate via Monte Carlo a gamma-distributed random variable
as well as a Gaussian one. Deduce an artificial stock-price time series, apply
the MLE procedure to it, and try to recover the original parameter set.

Using �t = 1/252, µ∗
S = 0.05, and

θ∗ = 0.02

σ∗ = 0.2

ν∗ = 0.005

We simulated 500 data points, applied the MLE, and found an optimal par-
ameter set �̂ = (0.018↪ 0.22↪ 0.006), which is close to the original set.

VGSA Using the same notations as in the previous chapter, the Euler dis-
cretized VGSA process could be written via the auxiliary variable

yk = yk−1 + κ(η − yk−1)�t + λ
√

yk−1

√
�tWk−1

and the state
xk = F −1

ν (yk�t↪ U[0↪ 1])

as well as the observation zk = ln Sk+1

zk = zk−1 + (µS + ω)�t + θxk + σ
√

xkBk

with ω = 1
ν ln(1 − θν − σ2ν/2).

The Filtering Algorithm The PF algorithm could therefore be written as follows.

1. Initialize the arrival-rate y
(j)
0 , the state x(i)

0 , and the weight w(i)
0 for j

between 1 and Msims, and i between 1 and Nsims

While 1 ≤ k ≤ N

2. Simulate the arrival-rate yk for j between 1 and Msims

y
(j)
k = y

(j)
k−1 + κ

(
η − y

(j)
k−1

)
�t + λ

√
y

(j)
k−1

√
�tN −1

(U (j ) [0↪ 1]
)

3-a. Simulate the state xk for each y
(j)
k and for i between 1 and Nsims

x̃
(i|j )
k = F −1

ν

(
y

(j)
k �t↪ U (i)[0↪ 1]

)
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3-b. Compute the unconditional state

x̃(i)
k =

∫
x̃(i)

k (yk)p(yk|yk−1)dyk ≈ 1

Msims

Msims∑
j=1

x̃
(i|j )
k

4. Calculate the associated weights for each i

w(i)
k = w(i)

k−1p
(
zk|x̃(i)

k

)
with

p
(
zk|x̃(i)

k

)
= n(zk↪ m↪ s)

the normal density with mean m = zk−1+(µS +ω)�t+θx̃(i)
k and standard

deviation s = σ
√

x̃(i)
k

5. Normalize the weights

w̃(i)
k = w(i)

k∑Nsims
i=1 w(i)

k

6. Resample the points x̃(i)
k and get x(i)

k and reset w(i)
k = w̃(i)

k = 1/Nsims.
7. Increment k, go back to Step 2, and Stop at the end of the While loop.

Parameter Estimation As usual, the log likelihood to be maximized is

ln(L1:N) =
N∑

k=1

ln

(
Nsims∑
i=1

w(i)
k

)

The maximization takes place over the parameter set � = (κ↪ η↪ λ↪ ν↪ θ↪ σ).
Again, in reality the stock drift µS should be estimated together with the
other parameters; however, with a view to simplifying, we suppose we know
µS in our back-testing procedures.

A More Efficient Algorithm We could take advantage of the fact that VG pro-
vides an integrated density of stock return. Calling z = ln(Sk/Sk−1) and
h = tk − tk−1, and posing xh = z − µSh − h

ν ln(1 − θν − σ2ν/2), we have

p(z|h) = 2 exp
(
θxh/σ2

)
ν

h
ν
√

2πσ�( h
ν
)

(
x2

h

2σ2/ν + θ2

) h
2ν − 1

4

K h
ν − 1

2

(
1

σ2

√
x2

h

(
2σ2/ν + θ2))

As we can see, the dependence on the gamma distribution is “integrated out”
in the above.
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For VGSA, for a given arrival rate dt∗ = ytdt , we have a VG distribution
and

d ln St = (µS + ω)dt + B(γ(dt∗↪ 1↪ ν); θ↪ σ)

and the corresponding integrated density becomes

p(z|h↪ h∗) = 2 exp
(
θxh/σ2

)
ν

h∗
ν

√
2πσ�

(
h∗
ν

)
(

x2
h

2σ2/ν + θ2

) h∗
2ν − 1

4

K h∗
ν − 1

2

(
1

σ2

√
x2

h

(
2σ2/ν + θ2))

(2.31)

Indeed, as described in [182] for VG, we have

p(z|h) =
∫ +∞

0
p(z|g↪ h)p(g|h)dg

with p(z|g↪ h) a normal density and p(g|h) a gamma density. More accurately

p(z|g↪ h) = 1

σ
√

2πg
exp

(
− 1

2σ2g

(
z − µSh − h

ν
ln
(
1 − θν − σ2ν/2

)− θg

)2
)

and

p(g|h) = g
h
ν −1 exp(− g

ν
)

ν
h
ν �( h

ν
)

Now, for VGSA we simply have a different arrival rate h∗ for the gamma
process and therefore

p(z|h↪ h∗) =
∫ +∞

0
p(z|g↪ h)p(g|h∗)dg

which demonstrates the point. This gives us the idea of using the arrival rate
as the state, and we use the following algorithm.

1. Initialize the state x(i)
0 and the weight w(i)

0 for i between 1 and Nsims

While 1 ≤ k ≤ N

2. Simulate the state xk for i between 1 and Nsims

x̃(i)
k = x(i)

k−1 + κ
(
η − x(i)

k−1

)
�t + λ

√
x(i)

k−1

√
�tN −1

(U (i)[0↪ 1]
)

3. Calculate the associated weights for each i

w(i)
k = w(i)

k−1p
(
zk|x̃(i)

k

)
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with p(zk|x̃(i)
k ) as defined in (2.31), where h will be set to �t and h∗ to

the simulated state x̃(i)
k times �t

4. Normalize the weights

w̃(i)
k = w(i)

k∑Nsims
i=1 w(i)

k

5. Resample the points x̃(i)
k and get x(i)

k and reset w(i)
k = w̃(i)

k = 1/Nsims.
6. Increment k, go back to Step 2 and Stop at the end of the While loop.

The advantage of this method is that there is one simulation process
instead of two, and we “skip” the gamma distribution altogether. However,
the dependence of the observation zk on xk is highly nonlinear, which makes
the convergence more difficult.

An Extended/Unscented Particle Filter Finally, a natural idea would be to use a
proposal distribution q(x) for the state, taking into account the observation
information. In order to be able to use a Kalman-based proposal distribution
(EPF or UPF), we need a Gaussian approximation. Note that given the strong
non-Gaussianity of the equations, we absolutely need the particle filtering
aspect. The Gaussian approximation for the observation equation would
be39

zk = zk−1 + (µS + ω + θxk

)
�t +

√
θ2ν + σ2

√
xk�tBk

which is of the form zk = h(xk↪ Bk) and allows us to use the Kalman filtering
algorithm. We therefore replace Steps 2 and 3 of the previous algorithm with
the following.

2-a. Apply an extended/unscented Kalman filter for i between 1 and Nsims

to the state x(i)
k−1 and obtain

x̂(i)
k = KF

(
x(i)

k−1

)
as well as the associated covariance P (i)

k .
2-b. Simulate the state for i between 1 and Nsims

x̃(i)
k = x̂(i)

k +
√

P (i)
k N −1

(U (i)[0↪ 1]
)

3. Calculate the associated weights for each i

w(i)
k = w(i)

k−1

p
(
zk|x̃(i)

k

)
p
(
x̃(i)

k |x(i)
k−1

)
q
(
x̃(i)

k |x(i)
k−1↪ z1:k

)
39We are using the fact that for X(t) = B

(
γ(t↪ 1↪ ν); θ↪ σ

)
we have a mean θt and a

variance (θ2ν + σ2)t as stated in [182].
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with p
(
zk|x̃(i)

k

)
as defined in (2.31), where h will be set to �t and h∗ to

the simulated state x̃(i)
k times �t , where p

(
x̃(i)

k |x(i)
k−1

)
is the normal density

with mean x(i)
k−1 + κ

(
η − x(i)

k−1

)
�t and standard deviation λ

√
x(i)

k−1

√
�t,

and where q
(
x̃(i)

k |x(i)
k−1↪ z1:k

)
is the normal density with mean x̂(i)

k and

standard deviation
√

P (i)
k .

The rest of the algorithm is exactly the same as the previous one.
What follows is a C++ routine for the EPF applied to VGSA.

// log_stock_prices are the log of stock prices
// muS is the real-world stock drift
// n_stock_prices is the number of the above stock prices
// (kappa,eta,lambda,sigma,theta,nu) are the VGSA parameters
// ll is the value of (negative log) Likelihood function
// estimates[] are the estimated observations from the filter
// errors are the observation errors

// The function ran2() is from Numerical Recipes in C
// and generates uniform random variables
// The function Normal_inverse() can be found from
many sources
// and is the inverse of the Normal CDF
// Normal_inverse(ran2(.)) generates a set of Normal
random variables

// The Bessel and Gamma functions bessik() and gammln()
// are also available in Numerical Recipes in C

void estimate_particle_extended_VGSA_parameters_bessel(
double *log_stock_prices,
double mu,
int n_stock_prices,
double kappa,
double eta,
double lambda,
double sigma,
double theta,
double nu,
double *ll,
double *estimates,
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double *errors)
{
int i1, i2, i3;
double y0, z, omega;
int M=1000;
double x[1000], xx[1000], X;
double w[1000], u[1000], c[1000];
double pz, px, q, s, m, l, x1_sum;
long idum=-1;
double delt=1.0/252.0;
double eps=1.0e-30;
double Ka,Ia,Kp,Ip, Kx,Knu;

double H, A, x0, P0;
double P[1000], P1[1000], U[1000], K[1000], W[1000];
double x1[1000], x2[1000];

/* initialize */
omega=log(1.0-theta*nu- sigma*sigma*nu/2.0)/nu;
x0 = 1.0;
P0 = 0.000001;
for (i2=0; i2<M; i2++)
{
x[i2] = x0 + sqrt(P0)* Normal_Inverse(ran2(&idum));
P[i2] = P0;

}
A = 1.0-kappa*delt;
H = theta*delt;
/* time loop */
*ll=0.0;
for (i1=1;i1<n_stock_prices-1;i1++)
{
z = log_stock_prices[i1+1]-log_stock_prices[i1];
X= z - mu*delt - delt/nu*log(1.0-theta*nu-

sigma*sigma*nu/2.0);
l = 0.0;
x1_sum=0.0;
for (i2=0; i2<M; i2++)
{
/* EKF for the proposal distribution */
x1[i2] = x[i2] + kappa*(eta - x[i2])*delt;
W[i2] = lambda*sqrt(x[i2] * delt);
P1[i2] = W[i2]*W[i2] + A*P[i2]*A;
x1[i2]=MAX(x1[i2],eps);
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U[i2] = sqrt(theta*theta*nu+sigma*sigma)*
sqrt(x1[i2]*delt);

K[i2] = P1[i2]*H/( H*P1[i2]*H + U[i2]*U[i2]);
x2[i2] = x1[i2] + K[i2] *
(z - (mu+omega+theta*x1[i2])*delt);
x1_sum+= x1[i2];
P[i2]=(1.0-K[i2]*H)*P1[i2];
/* sample */
xx[i2] = x2[i2] + sqrt(P[i2])*
Normal_Inverse(ran2(&idum));
xx[i2]=MAX(xx[i2],eps);
/* calculate weights */
m = x2[i2];
s = sqrt(P[i2]);
q = 0.39894228/s * exp( - 0.5* (xx[i2] - m)*
(xx[i2] - m)/(s*s) );
m = x[i2] + kappa*(eta - x[i2])*delt;
s = lambda*sqrt(x[i2] * delt);
px = 0.39894228/s * exp( - 0.5* (xx[i2] - m)*
(xx[i2] - m)/(s*s) );
Kx = MAX(eps, 1.0/(sigma*sigma)*
sqrt(X*X*(2*sigma*sigma/nu+theta*theta)));
Knu = MAX(eps, (xx[i2]*delt/nu-0.5));
bessik(Kx , Knu , &Ia, &Ka, &Kp, &Ip);
pz=2.0*exp(theta*X/(sigma*sigma)) /

(pow(nu,xx[i2]*delt/nu)*sigma*
exp(gammln(xx[i2]*delt/nu))) *0.39894228*
pow(X*X/(2*sigma*sigma/nu+theta*theta),
0.5*xx[i2]*delt/nu-0.25) * Ka;

w[i2]= pz * px / MAX(q, eps);
l += w[i2];

}
*ll += log(l);
/* estimates[i1+1] for z[i1] => error term */
estimates[i1+1]= log_stock_prices[i1+1]-

(log_stock_prices[i1] + (mu+omega+theta*x1_sum/M)*
delt);

errors[i1] = (theta*theta*nu + sigma*sigma)*
x1_sum/M*delt;
/* normalize weights */
for (i2=0; i2<M; i2++)
w[i2] /= l;

/* resample and reset weights */
c[0]=0;
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for (i2=1; i2<M; i2++)
c[i2] = c[i2-1] + w[i2];

i2=0;
u[0] = 1.0/M * ran2(&idum);
for (i3=0; i3<M; i3++)
{
u[i3] = u[0] + 1.0/M *i3;
while (u[i3] > c[i2])

i2++;
x[i3]= xx[i2];
w[i3]=1.0/M;

}
}

*ll *= -1.0;

}

// *ll represents the (negative log) Likelihood

Numeric Results We performed the same kind of back-testing procedure as
for the VG model, using either of the foregoing particle filters applied to an
artificially generated stock-price time series. We chose �t = 1/252 , µ∗

S = 0,
y0 = 1 and

�∗ = (κ∗ = 0↪ η∗ = 0↪ λ∗ = 0↪ ν∗ = 0.005↪ θ∗ = 0.02↪ σ∗ = 0.2)

after applying the importance sampling/resampling PF via the modified Bessel
function, we found

�̂ = (0.13↪ 0.001↪ 0.37↪ 0.0048↪ 0.018↪ 0.21)

which seems to indicate that the estimation process for (ν↪ θ↪ σ) works well,
whereas the one for (κ↪ η↪ λ) does not. However, if we simulate two sets
of spot-price times series with these different parameter sets, we will see
that the generated paths are very similar. See Figures 2.53 and 2.54. This
also confirms our previous remarks about the estimation of the parameters
affecting the noise.

We performed a second test with a more realistic choice of parameters,
with once again �t = 1/252 , Nsims = 100 , and 500 data points correspond-
ing to two years. The real values were

�∗ = (κ∗ = 2.10↪ η∗ = 5.70↪ λ∗ = 2.00↪ ν∗ = 0.05↪ θ∗ = −0.40↪ σ∗ = 0.20)
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FIGURE 2.53 The Simulated Arrival Rates via � = (κ = 0↪ η = 0↪ λ = 0↪
σ = 0.2↪ θ = 0.02↪ ν = 0.005) and � = (κ = 0.13↪ η = 0↪ λ = 0.40↪ σ = 0.2,
θ = 0.02↪ ν = 0.005) Are Quite Different; compare with Figure 2.54.
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FIGURE 2.54 However, the Simulated Log Stock Prices are Close. (Compare with
Figure 2.53.)
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Note that θ has a negative value that corresponds to the negative skewness
of the distribution. We choose a fairly reasonable initial set

�0 = (κ0 = 2.00↪ η0 = 6.00↪ λ0 = 1.50↪ ν0 = 0.03↪ θ0 = −0.30↪ σ0 = 0.30)

and
µ0 = µ∗ = 0.05

We find the optimal parameter set

�̂ = (κ̂ = 4.25↪ η̂ = 7.89↪ λ̂ = 3.25↪ ν̂ = 0.047↪ θ̂ = −0.40↪ σ̂ = 0.19)

and
µ̂ = µ∗ = 0.05

Again we see that the estimations for the three VG parameters (ν↪ θ↪ σ)
are much more accurate than those corresponding to the arrival process
(κ↪ η↪ λ)—and this despite our choosing the initial arrival parameters close
to the real ones. As previously stated, the time series of spot prices has little
sensitivity to the arrival-rate parameters and a higher degree of sensitivity to
the gamma process parameters. Again, this shows that estimation method-
ologies such as MLE work much better when applied to parameters that
affect the drift of an observation, and not its noise.

Diagnostics As for diagnostics, we need to estimate the observation error
associated with the algorithm. We define once again

ẑ(i)
k = zk−1 + (µS + ω + θx̃(i)

k

)
�t

ẑ−
k = 1

Nsims

Nsims∑
i=1

ẑ(i)
k

or

ẑ−
k = zk−1 + (µS + ω)�t + θ�t

1

Nsims

Nsims∑
i=1

x̃(i)
k

and the error term
ek = zk − ẑ−

k

The variance associated with this error is

sk = (θ2ν + σ2
) 1

Nsims

Nsims∑
i=1

x̃(i)
k �t

and
ẽk = ek/sk

would represent the normalized error.
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FIGURE 2.55 The Observation Errors for the VGSA Model with a Generic Particle
Filter.

TABLE 2.15 MPE and RMSE for the VGSA Model Under a Generic PF as well as
the EPF.

MPE RMSE

PF -0.000350241 0.005867065
EPF -4.74747e-07 0.005869782

MPE/RMSE In order to measure the performance, once again we use the mean
price error (MPE) and the root mean-squared error (RMSE). As an example,
we use the S&P 500 data between 1992 and 1994 (as used in [182]). For the
generic particle filter (GPF) and the extended particle filter (EPF), we find
the results in Table 2.15.

As we can see, the use of the extended Kalman filter as the proposal
distribution brings some improvement. Also see Figures 2.55 and 2.56.

Chi-Square Test The residuals are normal; a χ2
20 test provides us with a value

of 10.397699, which is below the threshold value of 31.5 for a confidence
of 0.95. This means that the non-Gaussianity was “filtered out” of the time
series successfully. This could also be observed in the corresponding his-
togram in Figure 2.57.
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Auto-Correlation Having p = 7 parameters and taking K = 27, we shall have
K − p = 20 , so we will compare the output of the Box-Ljung test to the χ2

20
threshold, which, as previously mentioned, for a confidence of 0.95 is around
31.5. We find a value of 0.001138, which definitely passes the test. This shows
that the residuals are indeed uncorrelated.

Variogram The variogram still indicates that we have independent and iden-
tically distributed random variables. Calling

γh = 1

2
E
[
(ẽk+h − ẽk)2

] = 1

2
E
[
ẽ2

k+h

]+ 1

2
E
[
ẽ2

k

]− E[ẽk+hẽk]

we should obtain 1
2 + 1

2 −0 = 1, which is indeed the case as seen in Figure 2.58.

VGG The observation is zk = ln Sk+1

zk = zk−1 + (µS + ω)�t + θxk + σ
√

xkBk

with ω = 1
ν ln(1 − θν − σ2ν/2), and the hidden state is

xk = Yk(�t)
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We could take advantage of the fact that VG provides an integrated density
of stock return [182]. Calling z = ln(Sk/Sk−1) and h = tk − tk−1 and posing

ξh = z − µSh − h

ν
ln(1 − θν − σ2ν/2)

we have

p(z|h) = 2 exp
(
θξh/σ2

)
ν

h
ν
√

2πσ�
(

h
ν

)
(

ξ2
h

2σ2/ν + θ2

) h
2ν − 1

4

K h
ν − 1

2

(
1

σ2

√
ξ2

h

(
2σ2/ν + θ2))

where Kα(x) corresponds to the modified Bessel function of second kind. As
we can see, the dependence on the gamma distribution is “integrated out.”
For the VGG for a given arrival rate dt∗ = dYt we have a VG distribution
and

d ln St = (µ + ω)dt + B(γ(dt∗↪ 1↪ ν); θ↪ σ)

and the corresponding integrated density becomes

p(z|h↪ h∗) = 2 exp(θξh/σ2)

ν
h∗
ν

√
2πσ�( h∗

ν )

(
ξ2

h

2σ2/ν + θ2

) h∗
2ν − 1

4

K h∗
ν − 1

2

(
1

σ2

√
ξ2

h

(
2σ2/ν + θ2))

(2.32)
hence the idea of using the arrival rate as the state and using the following
algorithm.

1. Initialize the state x(i)
0 and the weight w(i)

0 for i between 1 and Nsims

While 1 ≤ k ≤ N

2. Simulate the state xk for i between 1 and Nsims

x̃(i)
k = F −1

(
µa↪ νa; �t↪ U (i)[0↪ 1]

)
where as before F represents the gamma CDF.

3. Calculate the associated weights for each i

w(i)
k = w(i)

k−1p(zk|x̃(i)
k )

with p(zk|x̃(i)
k ) as defined in (2.32) where h will be set to �t and h∗ to

x̃(i)
k

4. Normalize the weights

w̃(i)
k = w(i)

k∑Nsims
i=1 w(i)

k
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5. Resample the points x̃(i)
k and get x(i)

k and reset w(i)
k = w̃(i)

k = 1/Nsims.
6. Increment k, go back to Step 2 and Stop at the end of the While loop.

As for VGSA, numeric tests were carried out in the following way. After
choosing a time step �t = 1/252, µS = 0 and a parameter set

� = (µa = 10.0↪ νa = 0.01↪ ν = 0.05↪ σ = 0.2↪ θ = 0.002)

an artificial time series of N = 500 spot prices was generated. The preceding
filtering algorithm was then applied to this time series and the resulting
likelihood was maximized. The optimal parameter set was

�̂ = (9.17↪ 0.19↪ 0.012↪ 0.21↪ 0.0019)

It therefore seems that the parameters ν and νa are not recovered prop-
erly. Hence we ask, how sensitive are the observable spot prices to these
variables? Simulating two time series with the two different parameter sets,
we can see in Figure 2.59 that the results could be very close. This once again
brings up the issue of inference reliability. Not having enough data points,
we can get parameter sets that are quite different from the real ones and that
could generate similar time series. This is consistent with what we have seen
for diffusion-based processes.
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FIGURE 2.59 Simulation of VGG-based Log Stock Prices with Two Different
Parameter Sets � = (µa = 10.0↪ νa = 0.01↪ ν = 0.05↪ σ = 0.2↪ θ = 0.002) and � =
(9.17↪ 0.19↪ 0.012↪ 0.21↪ 0.0019). The observed time series remain close.
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A Bayesian Approach for VGSA An approach similar to the one in the paragraph
on the Bayesian approach for Heston could be used here, because the latent
state follows the same square-root SDE. The only thing that changes is the
likelihood function. Instead of having a conditionally log normal observa-
tion, we have a conditionally VG observation. Furthermore, we do know the
density of the VG distribution under a closed form as previously mentioned.

Indeed as previously mentioned, we have the state (the arrival rate)

dyt = κ(θ − yt)dt + σy
√

ytdWt

and the observation

d ln St = (µS + ω)dt + B(γ(dt∗↪ 1↪ ν); θ↪ σ)

and the corresponding conditional likelihood becomes

p(ln Sk|yk↪ �) = 2 exp
(
θxh/σ2

)
ν

h∗
ν

√
2πσ�( h∗

ν
)

(
x2

h

2σ2/ν + θ2

) h∗
2ν − 1

4

× K h∗
ν − 1

2

(
1

σ2

√
x2

h(2σ2/ν + θ2)

)

with Kα(x) the modified Bessel function and

xh = ln(Sk/Sk−1) − µSh − h

ν
ln
(
1 − θν − σ2ν/2

)
h = �t

and
h∗ = yk�t

Finally, integrating over time, we have

p(ln S|y↪ �) =
N∏

k=1

p(ln Sk|yk↪ �)

Note that in the classical VGSA model there is no correlation between the sys-
tem noise and the observation noise. This means that the likelihood function
will not depend on the parameters κ, θ, σy , and therefore the MH update step
becomes almost a Gibbs sampler (except for the adjustment factor

∑N
k=1 x2

k).

RECAPITULATION

We tested three categories of models: the Heston/GARCH category where
a pure diffusion assumption was used, the Bates category where Poisson
jumps were added to the stock SDE, and the VG category where a gamma
distribution was applied to the time dimension.
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Model Identification

We saw from the table in Section 2.3.10 that in the pure diffusion category,
a power of 3/2 outperformed the Heston model (power of 1/2). As stated,
this is in line with the findings of Engle & Ishida [95].

Needless to say, adding Poisson jumps (Bates model) will reduce the
MPE/RMSE of the filters; however, it will also cause the number of param-
eters to increase. A simple comparison between the residual errors is there-
fore not fair. In other words, given the fundamental differences between the
categories, we need to judge their appropriateness not by comparing the
residuals, but by using financial arguments such as, should the stock process
contain jumps or not? Once a category is chosen, then we can compare the
performance of models belonging to a given category.

Note that a number of likelihood-based tools exist, such as the Akaike
information criterion [100], which will take into the account the number of
parameters when assessing the goodness of fit for a model. These tools would
therefore allow us to compare models belonging to different categories (e.g,
Heston vs. VGSA). However, these criteria remain valid only asymptotically.
As we saw, this often requires a large number of data points, which may or
may not be readily available.

Convergence Issues and Solutions

No matter which category we choose, it seems that the same convergence
issues exist. For all the foregoing models, we can see that a parameter affect-
ing the drift of the observation is much easier to estimate than one affecting
the noise of the observation. For the pure diffusion category, we saw that
all four parameters ω, θ, ξ, and ρ were difficult to estimate (in some cases)
and that the two latter parameters, which affect the noise of the noise, were
even harder to estimate properly. For the Bates model, we saw that the jump
parameters λ, j were much more straightforward to estimate than the afore-
mentioned four diffusion parameters. For the VGSA models, we saw that the
VG parameters θ, ν, and σ (which once again, affect the observation drift)
are much easier to infer than the arrival-rate parameters κ, η, and λ.

All this was explained via the poor observability at a daily frequency level
owing to the fact that �t = o

(√
�t
)
. We tested the validity of this statement

by artificially reducing the observation noise and saw the convergence rate
increase dramatically.

As stated, a possible solution would be to employ more observation
points via the use of high-frequency data. We saw that the increase in the
number of observations and the decrease in �t (after a certain level) do not
cancel, and a higher frequency would indeed cause the likelihood function
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to have a higher value and provide a better estimation of the parameters. In
any case, because we do not know in advance how good the inference results
will be and whether we are in the asymptotic area or not, it is always a good
idea to perform a simulation test and determine the sampling distribution of
each parameter.

In the next chapter, we shall apply these inference tools to a specific
question: are the implied distributions from the stock and options markets
consistent?



CHAPTER 3
The Consistency Problem

Whether cross-sectional option prices are consistent with the
time-series properties of the underlying asset returns is probably
the most fundamental of tests.

— David S. Bates

INTRODUCTION

In the previous chapter, we discussed two approaches for stochastic volatility
parameter estimation: the cross-sectional one, in which we use a number
of options prices for given strike prices (and possibly maturities), and the
time-series approach, in which we use the stock prices over a certain period
of time. One natural question1 would therefore be the following: Will the
theoretically invariant portion of the parameter sets obtained by the two
methods be the same?

More accurately, supposing we are at time t = 0 and we use J options
with strikes K1↪ ...↪ KJ and with maturity T , we have

�̂options = argmin




J∑
j=1

[
Cmodel(t = 0↪ S0↪ Kj↪ T ↪ �)

− Cmkt(t = 0↪ S0↪ Kj↪ T )
]2


 (3.1)

These options could include calls or puts. Alternatively, during the period
[0↪ T ] we can observe (Sk)0≤k≤N corresponding to the time points t0↪ ...↪ tN

1Aït-Sahalia [6], Bakshi et al. [20], and Dumas et al. [88] have already asked a
similar question; however, they use a different approach for the time-series treatment.
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with t0 = 0 and tN = T, and then apply one of the previously discussed filters
and estimate the parameter set via the maximum likelihood method.

�̂stocks = argmax{L(S0↪ ...↪ SN↪ �)} (3.2)

Now the question is how different these estimations for (ξ↪ ρ) are and why.
As we saw in the previous chapter, the size of the time interval �t and the

time-series length are to be questioned: Indeed �t has to be small enough for
us to be able to apply the Girsanov theorem. However, we saw that for a very
small �t, the filtering errors are so little that the MLE will not necessarily
converge to the right parameter set. On the other hand, we would need
the time series to be as long as possible, which requires a high observation
frequency.

This brings up a more fundamental question. The current financial eco-
nometrics literature seems to make inference-based conclusions using a lim-
ited amount of daily data. As we saw in Chapter 2, the time-series infer-
ence results are not necessarily reliable unless the number of observations
is sufficiently large. This is the central question of this chapter: Are the im-
plied parameters from the options markets and the assets time series indeed
inconsistent?

Many practical issues need to be questioned: How many strikes should
we be using in the cross-sectional analysis and which ones? Should we use
only OTM puts and calls for liquidity reasons? Many use a penalty function
p() in the cross-sectional optimization in order to get reasonable results. Do
we need such a function here? In the cross-sectional method, what value for
v0 are we using? Should we estimate this value together with the other four
parameters? If so, should this estimated v̂0 be used in the time series?

If the results are substantially different for the parameters ξ and ρ (as-
suming the validity of the Girsanov theorem), can this test be used as an
argument against the validity of the Heston stochastic volatility model? Or
would it mean that the options markets do not predict the stock movements
as they should? And if so, does this mean that there is a profitable trading
strategy to take? That is, are options systematically mispriced?

If the Heston model is judged to be incorrect, what is the correct
model—GARCH or 3/2? Is the diffusion assumption itself to be questioned?
Do we need to introduce jumps?2

2Note that an alternative method not involving any optimization would be a method
of matching of moments. Indeed the Heston parameters ω↪ θ↪ ξ↪ ρ are analytically
related to the first four moments of the time series (mean, variance, skew, kurtosis).
The calculation of the moments from the time series is fairly easy. The calcula-
tion of the moments from the options would require the use of the Carr-Madan
[50] replication strategy using all available strike prices. However, because the
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Another way to approach the question is to reason in the following man-
ner. If the information contained in the options markets is indeed
inconsistent with the one embedded in the assets time series, there should be
a regularly and conclusively profitable trade strategy. For instance, a higher
volatility-of-volatility and more negative correlation in the options market
should indicate the possibility of a profitable skewness trade (to be explained
later) in absence of crashes. We could therefore use the profit/loss of this trade
as an empirical measure of the inconsistency of the information.

If (and only if!) there exists a regular and definite profit generated from
this strategy, we can conclude that there is inconsistency. It is important to
note that this empirical measure is model free.

In our empirical analysis, unless stated otherwise, we shall use S&P 500
calls and puts. There are two main reasons for this. First, these are the most
liquid european options available on the CBOE. They expire on the third
Friday of each contract month at the open. Second, abundant research has
already been carried out on these options. Aït-Sahalia [6]; Bakshi, Cao, and
Chen [20]; Bates [30]; Dumas, Fleming, and Whaley [88] and many others
have all carried out their empirical analysis on S&P 500 options.

The data quality is obviously dependent on the degree of liquidity.
Another issue we need to take into account is that of synchronization
between the spot close price and the option close price. Even if the tim-
ing of these two closings is off by a few minutes, the accuracy of the implied
volatility can be affected. Bates [32] specifically mentions this issue.

Let us be clear on the fact that this chapter does not constitute a thorough
empirical study of the stock versus the options markets. It rather presents
a set of examples of application of our inference tools constructed in the
previous chapter. There clearly could be many other applications for these
tools. As discussed in Chapter 2, model identification is another instance.

THE CONSISTENCY TEST

In this section we shall compare the values of (ξ↪ ρ) in the results �̂options

to �̂stocks obtained via MLE. The time period [0↪ T ] is fixed, and the time
interval �t for the stock is daily, as in Chapter 2.

information contained in the first four moments is less complete than the informa-
tion contained in the density, the optimization method is more accurate. It might
seem that by avoiding the numeric optimization involved in our method we would
gain precision; however, given that the equations linking the first four moments and
the four parameters are nonlinear, we would need to solve them numerically, which
would be similar to an optimization.
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The Setting

The test is based on SPX options as of 01/02/2002 expiring in approximately
1 year from the calibration date. The daily time series is taken during a period
of 12 years corresponding to approximately 3000 points. The start of the
period is 10 years before the calibration date and the end of the period is
1 year after the expiration of the options. Ideally we should only use the
asset prices between the calibration date and the expiration to see whether
the options predict the asset movements consistently. However, this would
provide us with too few observation points.

In what follows we will be considering one example of comparison
between cross-sectional and time-series implied parameters. Many other sim-
ilar examples were examined. They are not reported here because they do
not change the conclusions. The original contribution of our approach is
presenting a systematic way to evaluate time-series embedded parameters.
We shall do this via the methodologies detailed in Chapter 2.

The Cross-Sectional Results

We consider one-year options as of January 2, 2002, for close-to-the-money
options. The calibration is done via LSE Monte Carlo mixing as well as
the Fourier inversion applied to the Heston model. We fix the instanta-
neous variance v0 at 0.04, and we take the index level at S0 = $1154.67. As
usual we take the appropriate interest-rate rT and dividend-yield3 qT, where
T represents the options’ maturity. The dividend yield could, for instance,
be the one implied from the forward contracts FT calculated as

qT = rT − 1/T ln(FT/S0)

We use various strike-price sets (Kj ) and determine the average optimal
one-year parameters. Needless to say, the results are obtained under the
risk-neutral measure. We obtain the risk-neutral implied parameter set in
Table 3.1. which represents a rather high negative skewness and a high
kurtosis.4 The long-term volatility is

√
ω/θ ≈ 0.17. Needless to say, these

parameter values vary everyday, but usually remain in the same range.

Robustness Issues for the Cross-Sectional Method

1. For the cross-sectional analysis, we have used a mixing Monte Carlo
method. The Monte Carlo time steps of this method were spaced weekly.

3No discrete dividends were considered.
4We drop the “hat” notations for optimal parameters in this chapter for simplifiction.
For example, instead of ω̂ we simply write ω.
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TABLE 3.1 Average Optimal Heston Parameter Set (Under the Risk-Neutral Dis-
tribution) Obtained via LSE Applied to One-Year SPX Options in January 2002.
Various strike-price sets were used.

ω θ ξ ρ

0.03620 1.1612 0.4202 −0.6735

Therefore, one natural question is how sensitive to this choice the results
are. In order to verify this, we reran the simulations with daily Monte
Carlo time steps and obtained

�̂options−daily = (ω = 0.036846↪ θ = 1.169709↪

ξ = 0.42112↪ ρ = −0.67458)

which is close to the original set. We also checked the results with the
volatility-of-volatility series method, as well as the Fourier inversion
method, and obtained comparable parameters.

2. For our cross-sectional calibration, we used call bid prices. It is well
known that calls and put prices are not always consistent. Indeed, as
can be seen in Figure 3.1 the Put and Call implied-volatilities are slightly
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FIGURE 3.1 Implied Volatilities of Close to ATM Puts and Calls as of 01/02/2002.
Maturity is 2002/12/21 and index at 1154.67 USD’s. The bid–ask spread can clearly
be observed.
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different, which seems to be a violation of put-call parity.5 However, this
difference is not large enough (the put and call bid–ask spreads actually
overlap), and a profitable arbitrage cannot take place simply based upon
this difference. This is why we consider the midpoint between puts and
calls to be bids and asks.
Our implied volatility is therefore

σimp = 1

4

[
σimp(CallBid) + σimp(CallAsk) + σimp(P utBid)

+σimp(P utAsk)
]

Using these “mid” implied volatilities as opposed to the original call bids
we obtain a parameter set

�̂options−mid−call−put = (ω = 0.043184↪

θ = 1.173119↪ ξ = 0.40258↪ ρ = −0.64593)

3. If we do include v0 in the set of parameters � = (ω↪ θ↪ ξ↪ ρ↪ v0) , then we
obtain

�̂options−mid−call−put = (ω = 0.043224↪ θ = 1.144957↪ ξ = 0.482009↪

ρ = −0.661427↪
√

v0 = 0.224659)

It is possible to see that the optimal
√

v̂0 is around 0.20, which corres-
ponds to our initial choice.

4. As already mentioned, further-from-the-money options are less reliable
in terms of pricing and liquidity. However, disregarding them decreases
the cross-sectional sensitivity to the volatility-of-volatility parameter.

Adding to the previous close-to-the-money strikes, additional further-
from-the-money ones, we find

�̂options = (ω = 0.035896↪ θ = 1.149324↪ ξ = 0.386453↪

ρ = −0.659319↪
√

v0 = 0.221988)

Again, the drift parameters are stable, and so is v0. The question is, how
are the volatility parameters affected? Interestingly, we do not observe a
great difference from what we had with the previous sets. We therefore
have a good degree of robustness. In any case, we use various sets of
strike prices and take an average over the optimal parameter sets.

5. One issue to consider in the cross-sectional method is how the risk-
neutral implied distribution or, in our case the parameter set � evolves
over time. Needless to say, if the model was perfectly correct these par-
ameters would never change; however, as we know, this is never the case.

5This is most probably due to the illiquidity of ITM options, as explained in [192].
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The question therefore becomes, how time-homogeneous are these par-
ameters? Considering the same maturity 12/21/2002 but at a date closer
to this maturity, we use close-to-the-money strikes. More accurately, we
stand at 09/03/2002, take the spot at $878.02, and use the yield curve as
of 09/03/2002.

The strikes are

Kset = {775.00↪ 800.00↪ 825.00↪ 850.00↪ 875.00↪

900.00↪ 925.00↪ 950.00↪ 975.00}
The optimization via Monte Carlo mixing provides

�̂options = (ω = 0.0501244↪ θ = 1.189817↪ ξ = 0.547149↪

ρ = −0.661552↪
√

v0 = 0.265441)

which is not too far from the other parameter sets.

Time-Series Results

As mentioned, the first idea is to choose a period corresponding to the life of
the options considered in the previous section. In fact, we would like to see
whether the options are predicting the underlying asset dynamics correctly
during their life. However, this provides us with one year of daily data, or
252 points, which as we know from the previous chapter is highly insufficient
for time-series estimators. In order to obtain more reliable results, we use
various filters (EKF, EPF, etc.) and take the average optimal parameter set. For
a period of 12 years ending on January 2004 (which includes the options’
life) and applying the filters studied in Chapter 2, we obtain the average
results given in Table 3.2.

The results in Table 3.2 show a lower (ξ↪ ρ) and therefore a lower
implied skewness and kurtosis—lower than the ones obtained from the
options markets.

Robustness Issues for the Time-Series Method Given the above results, it would
be instructive to test the sensitivity of the observations to the drift param-
eters (ω↪ θ) on the one hand, and to the volatility parameters (ξ↪ ρ) on the

TABLE 3.2 Average Optimal Heston Parameter Set (Under the Statistical Distribu-
tion) Obtained via Filtered MLE Applied to SPX between January 1992 and January
2004. Various filters were used in the MLE.

ω θ ξ ρ

0.018620 0.523947 0.096389 −0.132527
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FIGURE 3.2 The Observations Have Little Sensitivity to the Volatility Param-
eters. One-year simulation with

√
v0 = 0.20, ω = 0.04, θ = 0.5. Cross-sectional uses

ξ = 0.036 and ρ = 0.50, whereas time series uses ξ = 0.09 and ρ = −0.80. This is
consistent with what we had seen previously.

other.6 The point is that even if the state vk itself is greatly affected by these
volatility parameters, the impact of these parameters on the observations is
small. However, the impact of the drift parameters is quite large. This could
explain why the cross-sectional and time-series volatility-of-volatility param-
eters are not close. This point can be observed in the simulations represented
in Figures 3.2 through 3.5. Note that this issue is related to the discussion in
Chapter 2 on the sampling distribution. As previously stated, ξ and ρ have a
lesser effect on the observations because they affect the “noise of the noise.”

Financial Interpretation

The current financial econometrics consensus is the following: No matter
which case we consider, the cross-sectional parameters ξ and ρ are always
greater (in absolute value) than the time-series ones. This means that the
skewness and the kurtosis implied from options are stronger than those
implied from the time series. As we will see in the following paragraphs, this
could suggest a trade to take advantage of this inconsistency, supposing that

6Note that we could not have done this separation in a nonparametric model, such
as in [6].
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year simulation with
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the options are misjudging the spot movements. We can observe the above
statement graphically by plotting the SPX volatility smile from the options
market prices on the one hand, and from the time-series implied parameters
on the other. Note that we need no calibration for the options because we
are using the usual Black-Scholes implied volatility. Figure 3.6 shows the
difference between the two slopes. Again, the options curve has a stronger
(negative) slope, which is consistent with a stronger negative product ξρ.

As explained in [69], the higher moments of the stock-price return can
be calculated from the stochastic-volatility model parameters. Indeed, for a
given parameter set � = (ω↪ θ↪ ξ↪ ρ) , we have

skewness =
(

3ξρe
1
2θT

√
θ

) 


ω

θ

(
2 − 2eθT + θT + θT eθT

)− v0
(
1 + θT − eθT

)
(

ω

θ
[(1 − θT + θT eθT) + v0(eθT − 1)]

)3
2




and

kurtosis = 3

[
1 + ξ2

(
ω

θ
A1 − v0A2

B

)]
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FIGURE 3.6 Comparing SPX Cross-Sectional and Time-Series Volatility Smiles (with
Historic ξ and ρ) as of January 2, 2002. The spot is at $1154.67.

with y = θT and

A1 = [
1 + 4ey − 5e2y + 4yey + 2ye2y

] + 4ρ2[
6ey − 6e2y + 4yey + 2ye2y + y2ey

]
A2 = 2

[
1 − e2y + 2yey

] + 8ρ2
[
2ey − 2e2y + 2yey + y2ey

]
B = 2θ

[ω

θ

(
1 − ey + yey

) + v0(ey − 1)
]2

Without entering into the details of the calculations, we can see that for given
ω and θ, higher (ξ↪ |ρ|) correspond to higher skewness and kurtosis. As we
said in the previous chapter, the skewness depends on ω, θ and the product
ξρ, which has a more reliable estimation than the separate values of ξ and ρ.
This makes the estimation of the skewness more trustworthy.

THE PESO THEORY

Background

As [6] mentions, one possibility regarding the cross-sectional versus time-
series observed differences is the following. As we know, the time series
corresponds to one realization of the stock-return stochastic process. Now
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supposing that the true stock stochastic differential equation (SDE) contains
jumps, there is a possibility that the historic path we are observing does
not contain any of these jumps.7 This is referred to as the peso theory. As
mentioned in [12], this term goes back to Milton Friedman in his analysis of
Mexican peso during the early 1970s. The Mexican interest rates remained
significantly above the U.S. interest rates, although the peso was pegged at
0.08 dollar per peso. Friedman argued that the interest rates reflected an
expectation about a future devaluation of the peso. In August 1976, the
peso was devaluated by 37.5% to a new rate of 0.05 dollar per peso, thus
validating the previous interest rate differential.

This assumption seems reasonable because, as we saw in the previous
tests, the cross-sectional method usually provides higher volatility param-
eters (ξ↪ ρ) and therefore higher skewness (in absolute value) and kurtosis.
Introducing a jump component in the options pricing model should lower
these optimal parameters.

Note that in [3], Aït-Sahalia tries to find out whether the discrete obser-
vations of S&P 500 come from a diffusion, or from a distribution containing
jumps. He derives a criterion for continuity of the paths

∂2

∂x∂y
ln (p(�t↪ y = Xt+�t|x = Xt)) > 0

for every �t > 0 and given (x↪ y). Based on the implied cross-sectional dis-
tribution, he finds that S&P 500 options do consider jumps in the paths.

Using the jump diffusion model, as we did in Chapter 2

d ln St =
(

µS − 1

2
vt + λj

)
dt + √

vtdBt + ln(1 − j )dNt

dvt = (ω − θvt)dt + ξ
√

vtdZt

we may very well see no difference introduced from the parameters (λ↪ j ) for
the time series and we can even disregard them. However, this does not mean
that the stock process does not contain jumps but rather that this specific
path happens to contain none.

The options, by contrast, always include the possibility of jumps in their
pricing. Adding (λ↪ j ) will affect the resulting (ξ↪ ρ) from the cross-sectional
method.

7Jackwerth and Rubinstein [155] refer to this phenomena as crash-o-phobia.
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Numeric Results

We use the same options and time series as in the previous section. As shown
in Merton’s paper [190], we have for a given volatility path σ = √

v

Call =
+∞∑
n=0

e−λ(1−j )T (λ(1 − j )T )n

n!
CBS (S↪ K↪ T ↪ σ↪ rn)

with
rn = r + λj + n

T
ln(1 − j )

We then take the expectation upon the volatility stochastic process as we
usually do in a mixing algorithm.8

We find for the parameter set �̂ = (ω↪ θ↪ ξ↪ ρ↪ λ↪ j ) the values

�̂options = (ω↪ θ↪ ξ↪ ρ↪
√

v0↪ λ↪ j ) = (0.032648↪ 1.165598↪ 0.360646↪

−0.585302↪ 0.218333↪ 0.008982↪ 0.913772)

instead of the previous pure-diffusion parameter set

�̂options−mid−call−put = (ω = 0.043224↪ θ = 1.144957↪ ξ = 0.482009↪

ρ = −0.661427↪
√

v0 = 0.224659)

As we see even with the addition of jump parameters (λ↪ j ), the cross-sectional
volatility parameters (ξ↪ ρ) remain significantly above the time-series param-
eters. This is in agreement with the findings of Bakshi, Cao, and Chen [20].
We have a small λ and a j close to one. This means that options are expecting
a large but infrequent jump; that is, they are factoring in the possibility of a
crash.

TRADING STRATEGIES

Supposing that the model we are dealing with is correct, and if the options
are mistaken in evaluating the stock distribution during their lifetime, there
should be an arbitrage opportunity to take advantage of. The ninth chapter
of the Härdle et al. book [128] has a description of these strategies. Note that
both these strategies are European and cannot be changed9 until maturity.

8Note that an alternative method would be to use a Fourier inversion of the known
characteristic function, as Lewis does in [178] or [180].
9As we will see further, we could unwind the deal prior to expiration. However, we
would then be subject to the movements of options prices.
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At this point we should reiterate that the profit and loss of this trade
could be used as an empirical and model-free measure of how consistent or
inconsistent the information embedded in the options is with the one in the
underlying stocks.

Skewness Trades

To capture an undervalued third moment, we can buy OTM calls and sell
OTM puts. Note that Aït-Sahalia [6] says that the options are overly skewed,
which means that the options skew is larger in absolute value. However, given
the negative sign of the skew, the cross-sectional skew is actually lower than
the one implied by the time series, hence the described strategy.

Note that in order to be immune to parallel shifts of the volatility curve,
we should make the trade as vega-neutral as possible. The correspondence
between the call and the put is usually not one-to-one. Therefore, calling V
the vega, �’s the hedge ratios for C the call and P the put option, then the
hedged portfolio � will be

� = C(St↪ KC) − VC

VP
P (St↪ KP ) −

(
�C − VC

VP
�P

)
St

and the positions in the options should be dynamically adjusted in theory.
However, that would cause too much transaction cost and exposure to the
bid-ask spread.

As we shall see in the paragraph on “exact replication,” more-elaborate
strategies are available to better exploit the third-moment differences.

Kurtosis Trades

To capture an overvalued fourth moment, we need to use the “fat tails”
of the distribution. For this we can, for instance, sell ATM and far OTM
options, and buy close OTM options.

Directional Risks

Despite the delta-hedging, the skewness trade applied to an undervalued
third moment has an exposure to the direction of the markets. A bullish
market is favorable to it, and a bearish one unfavorable. The kurtosis trade
applied to an overvalued fourth moment generates a profit if the market
stays at one point and moves sideways but loses money if there are large
movements.
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FIGURE 3.7 A Generic Example of a Skewness Strategy to Take Advantage of the
Undervaluation of the Skew by Options. This strategy could be improved upon by
trading additional OTM puts and calls.

This exposure to market conditions is consistent with the peso theory.
The skewness and kurtosis trading strategies above are profitable given the
options’ implied moments, unless the options were actually right in factor-
ing in a large and sudden downward movement. This also makes sense be-
cause the way the options were priced changed only after the crash of 1987.
Prior to that, the volatility negative skew was practically absent altogether.
Figures 3.7 and 3.8 show generic examples of the strategies described above.

Note that as the skew formula in [69] shows, the volatility-of-volatility
ξ affects the skew as much as the correlation ρ does. This explains why
sudden upward movements can hurt us as well. If the overall correlation
is negative but there are large movements in both directions, we will have
large third (in absolute value) and fourth moments, which would make the
options expectations correct. In fact, as we will see in the following example,
a large upward movement can make us lose on our hedge account.

As many, such as [32] and [128], have mentioned, it is possible to
interpret this trade as an insurance selling strategy. The trade will gener-
ate moderate and consistent profits if no crash happens. But if the crash does
happen we could suffer a large loss.

Skewness vs. Kurtosis The skewness trade seems to be a simpler one and has
a better chance to be realized. Indeed, in order to have a large negative skew,
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FIGURE 3.8 A Generic Example of a Kurtosis Strategy to Take Advantage of the
Overvaluation of the Kurtosis by Options. This strategy could be improved upon by
trading additional puts and calls.

we need a large volatility-of-volatility ξ (as we do for the kurtosis trade)
and a large negative correlation ρ. In other words, if for a given stock time
series we have a large volatility-of-volatility but a weak correlation, we will
not have a kurtosis trade opportunity but we will have a skewness trade
opportunity. The historic skew will be small and the historic kurtosis high.
Graphically, we could have the following interpretation. For these assets, the
historic distribution does have fat tails, but remains symmetric, whereas the
implied distribution has a fatter left tail. This is why we have a skewness trade
opportunity, even if we do not have a kurtosis trade opportunity. Finally, as
we previously mentioned, the estimation of the skewness from a time series
is more reliable because it depends only on the product of the volatility-
of-volatility and the correlation.

An Exact Replication

These trading strategies can be refined using a Carr-Madan replication. As
explained in [50], we have for any payoff function f () the following identity

E[f (ST)] = f (F ) + erT

∫ F

0
f

′′
(K)P (S0↪ K↪ t = 0↪ T )dK

+ erT

∫ +∞

F

f
′′
(K)C(S0↪ K↪ t = 0↪ T )dK

with F = S0erT the forward price.
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In order to get the Das [69] skew and kurtosis calculations, we need to
take for the nth moment

f (ST) = (ZT − E(ZT))n

with

ZT = ln(ST/S0)

However, this trade will clearly have a much higher transaction cost than
the one described in the previous paragraph.

The Mirror Trades

Should we see the opposite conditions in the market, that is, having the skew
(in absolute value) or kurtosis undervalued by the options given a historic
path, we could obviously put on the mirror trades. The inverse of the peso
theory would be as follows. The stock in question has already had a crash and
the options are supposing there probably will not be another one in the near
future. Setting up the overvalued kurtosis trade in the previous paragraph,
we picked up a premium and made an immediate profit and hoped that there
would not be a sudden movement. Here we start by losing money and hope
a crash will happen within the life of the option so that we can generate
a profit. Because jumps and crashes are rare by nature, this trade does not
seem very attractive. Moreover, if there was a recent crash, the possibility of
another one is indeed reduced and we should believe the options prediction.
However, these mirror trades could be considered as buying insurance and
therefore as a protection against a possible crash.

An Example of the Skewness Trade

The algorithm is as follows. For a given date t0 we have S0 and choose the
closest maturity to T = t0 + 0.25 in order to have a three-month trade, we
then take the call and put strikes KC and KP as the closest ones to 1.10S0

and 0.90S0, respectively.
The original cost is therefore

options(0) = CallAsk(S0↪ KC↪ t0↪ T ) − P utBid(S0↪ KP ↪ t0↪ T )

Note that we buy a call at the offer price and sell the put at the market bid
price. At maturity, the position is worth

options(T ) = MAX(0↪ ST − KC) − MAX(0↪ KP − ST)
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During the trade, we have a delta-hedging cash flow of

hedge = −
T −1∑
t=0

�(St↪ t↪ T )(St+1 − St)

with

�(St↪ t↪ T )=�Call(St↪ KC↪ t↪ T ↪ σimp(t0↪ KC))−�P ut(St↪ KP↪ t↪ T ↪ σimp(t0↪ KP ))

where the implied volatilities used in the hedge ratios are using the mid prices
(between bid and ask prices). The interest-rate cash flow is

interest =
T −1∑
t=0

�(St↪ t↪ T )(ert�t − 1)St

Our final profit or loss (PnL) is therefore

P nL = options(T ) − options(0) + hedge + interest

If the options’ implied skew is indeed higher than justified by the stock move-
ments, then this trade should be profitable. However, in case of a sudden large
movement, this will not be true anymore.

We consider the case of the S&P 500 between 04/04/2002 and
06/22/2002. At that point in time, S0 = $1126.34, which means we can take
KC = $1250 and KP = $1050. We also have CallAsk(t0↪ K = 1250) = $3.20
and P utBid(t0↪ K = 1050) = $14.20, as well as the mid implied volatilities
of σimp(KC) = 0.154 and σimp(KP ) = 0.214.

As can be seen in Figures 3.9 and 3.10, the sudden spot movements
generate most of the loss (for instance, around day 50). We have at the end
of the trade

ST = $989.14

hedge = $50.39

interest = $1.32

Therefore, the final PnL (in dollars) is

P nL = [0 − (1050 − 989.14)] + (14.20 − 3.20) + 50.39 + 1.32 = 1.85

As we can see, we hardly generated a profit, given the “jumps” occurring in
the middle of the trade.

Note that we generated a profit in the beginning by selling an OTM
put that was more expensive than the OTM call we bought. We lost a large
amount because the spot ended below the put strike. However, we compen-
sated that via the hedge.
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FIGURE 3.10 Hedging PnL Generated During the Trade Period. As we can see, losses
occur upon jumps.

The Options Bid–Ask Spread It is important to know where we are buying the
call and selling the put on the start date. Are we buying the call at the offer
price and selling the put at the bid price? If so, we can lose the bid–ask spread,
as compared to the case in which we would buy and sell both options at the
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FIGURE 3.11 Cumulative Hedging PnL Generated During the Trade Period. This
positive PnL will be offset by the option premiums and payoffs.

mid market. This spread averages approximately $1 for 10% OTM SPX
options.

Early Termination We also should consider an early unwinding of the trade.
Indeed as we get closer to maturity, our hedge-ratio might be close to one,
which will make our hedge account extremely sensitive to adverse stock
movements. In order to have a smoother PnL, we can buy back the put and
sell the call at a date (e.g. one month) prior to maturity. Again, it is important
to know whether we are unwinding the trade by selling the call at the bid
and buying back the put at the offer. If so, we will have suffered from the
bid–ask spread twice: once on the start date and once on the unwinding
(termination) date.

This is not just a small detail, indeed having the right execution (at mid-
market) can change the average sign of the PnL altogether. Furthermore,
regardless of the bid–ask spread, we are subject to the movements of the
options prices. By contrast, if we hold the positions until expiration, we will
have a pure strategy between the original options prices and the spot price
movements.

Implied Volatility Term Structure Yet another issue to take into account is that,
in our back-testing, we used fixed implied volatilities in order to calcu-
late the hedge ratios during the life of the trade. In reality, the implied
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volatilities change every day even if we assume a sticky strike regime, in
which the stock price will not affect the implied volatility level. Even if our
strikes are fixed, the time-to-maturities of the options decreases, and this
will make the implied volatilities vary. For S&P 500 the term structure of
implied volatility is upward-sloping, which means that theoretically all
implied volatilities should come down from their original levels at the
unwinding date.

Which Hedge Ratio should we use? In the hedging of our skew portfolio, which
� should we apply? In other words, we ask which implied volatility should
we use in the usual

e−q(T −t)N(d1(St↪ K↪ t↪ T ↪ σimp))

If we believe that the volatility predicted by the options is wrong and the
historic levels are correct, we should then use

σ
imp
stocks(K↪ T ) = C−1

BS

(
Cmodel(S0↪ t0↪ K↪ T ↪ �̂stocks)

)
where

�̂stocks = (ω̂opts↪ θ̂opts↪ ξ̂stocks↪ ρ̂stocks)

Note that this might give us a mismatch in terms of mark-to-market with the
existing option levels in the market. However, if the time series is actually
correct, the skew should eventually collapse before the options mature.10

We should note, however, that using the options’ implied volatilities makes
better practical sense because those are the ones at which the options are
actually traded.

Multiple Trades

The next natural step would be to repeat the previous trade in order to see
whether the trade would be statistically profitable. We use SPX puts and calls
between 01/02/2002 and 02/01/2003 on the expiration month such that the

10Bates [29] suggests the use of an adjusted delta as

� ≈ �BS − K

S
V ∂σ

∂K

where V represents the option vega. However, as he points out, this is the hedge ratio
as perceived by the options market and this perception could very well be wrong.
After all, this is what we are trying to take advantage of: the mispricing of the skew
by the options, supposing that the historic time series has the same dynamics as the
future spot movements.
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original life of the trade is around three months. We systematically unwind
the trades around 20 business days to expiration. Once again, we buy 10%
OTM calls and we sell 10% OTM puts.

We cover in this manner forty different cases. We calculate the PnL’s as
previously described and take their average.

The results are mixed: If we put the trade on and unwind at the bid and
ask levels, we will actually suffer a loss. However, if we can execute at
the mid, then we will generate a profit.

This shows a lack of decisive proof on an inconsistency between the
options and stock markets.11 Indeed we have used the PnL of this trade as a
measure of discrepancy.12

High Volatility-of-Volatility and High Correlation

As previously discussed, many stocks do have a high historic volatility-of-
volatility ξ; however, given a weak (or even positive) spot-volatility correl-
ation ρ, the historic skew is still very low. This is especially true of “penny”
stocks. Indeed, when these stocks increase in price, in some sense they “come
back to life” and therefore become more volatile. This means that the his-
toric skew is actually positive, which seems to indicate an even stronger
case for a skewness trade. However, given that we are dealing with penny
stocks, the possibility of a crash for these stocks is high, and that is precisely
what causes the negative option–implied skew! The stock GW (Grey Wolf
Inc.) in Figure 3.14 is a good example for this case. This presents a trading
opportunity as shown in Figure 3.15. By contrast, there are cases, such as
MSFT (Microsoft), where we do have a strong historic negative correlation as
well as a high volatility-of-volatility. As the stock price goes down, the asset
becomes riskier and therefore more volatile. We can see this in Figure 3.16.
This justifies the option-implied skew observable in Figure 3.17 and means
that there is no trade opportunity. The safest trade therefore seems to be an

11Note that this trade generates a regular and stable profit and sudden large losses.
This is in agreement with the interpretation of selling insurance and collecting the
premiums. It is very profitable until there is a “disaster.”
12There is a case where a skew trade should be considered. Even if we have an
inefficient estimate of ξ and ρ, we do have their sampling distributions, as seen in
Chapter 2. If, for instance, the average estimate of ξ is 0.03, supposing the lowest
and highest estimates are respectively −0.20 and 0.20, and if ξopt = 0.40, then there
is an inconsistency in a conclusive manner. We would then have our cross-sectional
volatility-of-volatility far superior to its highest possible time-series estimate.



210 INSIDE VOLATILITY ARBITRAGE

2.5

3

3.5

4

4.5

5

5.5

0 50 100 150 200 250

S
po

t P
ric

e

Days

Historic Spot Prices for GW

Spot

FIGURE 3.14 GW (Grey Wolf Inc.) Historic Prices (03/31/2002–03/31/2003) Show
a High Volatility-of-Volatility But a Weak Stock-Volatility Correlation. The resulting
negative skew is low.

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

2.5 3 3.5 4 4.5 5

Im
pl

ie
d 

V
ol

Strike (USD)

Options Implied versus Historic Volatility Smile for GW as of 03/31/2003

Options
Historic

FIGURE 3.15 The Historic GW (Grey Wolf Inc.) Skew Is Low and Not in Agreement
with the Options Prices. There is a skew trading opportunity here.



The Consistency Problem 211

21

22

23

24

25

26

27

28

29

30

31

0 50 100 150 200 250

S
po

t P
ric

e

Days

Historic Spot Prices for MSFT

Spot

FIGURE 3.16 MSFT (Microsoft) Historic Prices (03/31/2002–03/31/2003) Show a
High Volatility-of-Volatility and a Strong Negative Stock-Volatility Correlation. The
resulting negative skew is high.

0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

20 22 24 26 28 30

Im
pl

ie
d 

V
ol

Strike (USD)

Options Implied versus Historic Volatility Smile for MSFT as of 03/31/2003

Options
Historic

FIGURE 3.17 The Historic MSFT (Microsoft) Skew Is High and in Agreement with
the Options Prices. There is no skew trading opportunity here.



212 INSIDE VOLATILITY ARBITRAGE

800

900

1000

1100

1200

1300

1400

1500

0 50 100 150 200 250

S
po

t P
ric

e

Days

Historic Spot Prices for NDX

Spot

FIGURE 3.18 NDX (Nasdaq) Historic Prices (03/31/2002–03/31/2003) Show a High
Volatility-of-Volatility and a Strong Negative Stock-Volatility Correlation. The result-
ing negative skew is high.

index skewness trade, given that the likelihood of a crash is lower thanks to
the diversification effect.

Note that the strong negative historic skew is not limited to individual
stocks. Taking the case of the NDX index in Figures 3.18 and 3.19, we can
see that there is no trading opportunity available and the historic skewness
is in line with the one implied by the options prices.

Therefore we have two possible reasons13 why a skewness trade oppor-
tunity may exist.

1. Weak historic volatility-of-volatility (e.g., SPX [S&P 500])
2. Weak Historic Correlation (e.g., GW [Grey Wolf Inc.])

If neither of the above is verified (e.g., NDX [Nasdaq] or MSFT [Microsoft]),
there is no skew trading opportunity.

The graphical interpretation seen in Figures 3.12 through 3.19 is based
on the comparison of the observable options-implied skew

σ
imp
options(K↪ T ) = C−1

BS (Cmkt(S0↪ t0↪ K↪ T ))

and the skew implied from historic stock-price movements

σ
imp
stocks(K↪ T ) = C−1

BS

(
Cmodel(S0↪ t0↪ K↪ T ↪ �̂stocks)

)
13These tests were performed around the end of March 2003.
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FIGURE 3.19 The Historic NDX (Nasdaq) Skew is High and in Agreement with the
Options Prices. There is no skew trading opportunity here.

where CBS corresponds the usual Black-Scholes pricing function.
Again we use the option-implied volatility-drift parameters ω̂options,

θ̂options in �̂stocks. The only assumption here would be that of diffusion
in the processes. Then, according to the Girsanov theorem, the volatility-
of-volatility and the correlation should be the same for the continuous stat-
istical and risk-neutral processes.

NON-GAUSSIAN CASE

As previously discussed, once we start dealing with some of the pure-jump
models, such as VGG, we will no longer have the Girsanov theorem and
cannot compare the parameters directly. However, no matter what the arrival
process is, we still have the VG parameters (σ↪ ν↪ θ) as in

d ln St = (µS + ω)dt + X(dt; σ↪ ν↪ θ)

where, as before, µS is the real-world statistical drift of the stock log-return
and ω = 1

ν ln(1 − θν − σ2ν/2). As for X(dt; σ↪ ν↪ θ), it has the following
meaning

X(dt; σ↪ ν↪ θ) = B(γ(dt↪ 1↪ ν); θ↪ σ)
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where B(dt; θ↪ σ) would be a Brownian motion with drift θ and volatility σ.
In other words

B(dt; θ↪ σ) = θdt + σ
√

dtN(0↪ 1)

where N(0↪ 1) is a standard Gaussian realization.
Further, we know what the centralized third and fourth moments (skew-

ness and kurtosis) are

skewness = (
2θ3ν2 + 3σ2θν

)
t

kurtosis = (
3σ4ν + 12σ2θ2ν2 + 6θ4ν3

)
t + (

3σ4 + 6σ2θ2ν + 3θ4ν2
)

t2

We therefore can always compare the skewness and kurtosis implied from
time series with those implied from options. However, a mismatch between
the two does not indicate an arbitrage opportunity because once again we
are comparing them under two different measures. Having said this, the
determination of the statistical density p() and the risk-neutral density q()
is still useful in the sense that it could allow us to determine the optimal
position we would take in the derivatives market given a utility function, as
described in [52] and [53].

Indeed, having an increasing concave utility function U(), the idea is
to find the optimal payoff φ(S), maximizing the expected utility at a given
horizon T , and among all possible payoffs f (S)

φ = argmax

∫ +∞

0
U [f (ST)]p(ST)dST

In addition to this, we have the initial budget W0, which imposes a constraint:
The discounted risk-neutral expected value of the payoff cannot be greater
than this initial budget.

exp(−rT )

∫ +∞

0
f (ST)q(ST)dST ≤ W0

This can be seen by using a “self-financing” portfolio argument, as was done
by Black and Scholes. Using the two foregoing equations, we can write the
Lagrangian

L(f ) =
∫ +∞

0
U

[
f (ST)

]
p(ST)dST − λ exp(−rT )

∫ +∞

0
f (ST)q(ST)dST

where λ is the Lagrange multiplier. We then can differentiate with respect to
the payoff f () and obtain the optimal payoff satisfying

exp(rT )
p(S)

q(S)
U ′[φ(S)] = λ
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or equivalently

φ(S) = (U ′)−1

(
λ exp(−rT )

q(S)

p(S)

)

and the constant λ could be determined by a normalization, such as

exp(−rT )

∫ +∞

0
(U ′)−1

(
λ exp(−rT )

q(S)

p(S)

)
q(ST)dST = W0

This would provide us with the optimal payoff function that we would need
to choose in the derivatives market, and therefore motivates the estimation
of the statistical and risk-neutral densities p and q even for the non-Gaussian
case.

VGSA

Unlike VGG and many other pure-jump models, VGSA has a condition-
ally Gaussian arrival rate. This means that the volatility of the arrival-rate
λ should remain the same under the statistical and risk-neutral measures.
We therefore do have an approach that is analogous to the diffusion-based
models for VGSA.

VGSA vs. VG In their original paper [182], Carr, Madan, and Chang found
comparable results for the VG model applied to the S&P 500 for the period
1992–1994. As previously discussed, the VG model has an integrated dens-
ity, and therefore the MLE could be performed without any filtering. The
statistical (historical) parameters are

(σ = 0.117200↪ θ = 0.0056↪ ν = 0.002)

And their risk-neutral parameters are

(σ = 0.1213↪ θ = −0.1436↪ ν = 0.1686)

Again we can see that the historical estimate for θ is close to zero, whereas
the risk-neutral one is significantly negative. This negative θ is what creates
the negative skewness observed in cross-sectional estimations.

We can try to reproduce the foregoing parameters with the VGSA model.
The resulting time-series parameter set is

(κ = 79.499687↪ η = 3.557702↪ λ = 0.000000)

(σ = 0.049656↪ θ = 0.006801↪ ν = 0.008660↪ µ = 0.030699)
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FIGURE 3.20 Arrival Rates for Simulated SPX Prices Using � = (κ = 0.0000↪
η = 0.0000↪ λ = 0.000000↪ σ = 0.117200↪ θ = 0.0056↪ ν = 0.002) and � = (κ =
79.499687, η = 3.557702↪ λ = 0.000000↪ σ = 0.049656↪ θ = 0.006801, ν =
0.008660, µ = 0.030699). We can see that they are quite different.

Although the results seem to be very different, upon simulation we can see
that even if the resulting arrival rates and gamma variables are different, the
log stock prices are close. This can be seen in Figures 3.20, 3.21, and 3.22.

An alternative would be to use the EPF algorithm with the VGSA model
over the same period, in which case we would obtain

(κ = 190.409721↪ η = 3.459288↪ λ = 5.430759)

(σ = 0.050243↪ θ = 0.002366↪ ν = 0.007945↪ µ = 0.032576)

Once again the most unstable parameters are (κ↪ η↪ λ), or the ones corre-
sponding to the arrival rate. We have seen this many times; the estimation
of the parameters affecting the noise is less reliable. This is in agreement
with what we had observed in Chapter 2 and shows the limitations of these
inference tools.

Cross-Sectional vs. Time-Series VGSA Applying the particle filtering algorithm
described in Chapter 2 to S&P 500, we find for 2001–2003 period the stati-
stical parameter set

(κ = 55.01778↪ η = 3.721583↪ λ = 8.666717↪

σ = 0.118637↪ θ = 0.060053↪ ν = 0.00103)
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FIGURE 3.21 Gamma Times for Simulated SPX Prices Using � = (κ = 0.0000 ,
η = 0.0000↪ λ = 0.000000↪ σ = 0.117200↪ θ = 0.0056↪ ν = 0.002) and � = (κ =
79.499687↪ η = 3.557702↪ λ = 0.000000↪ σ = 0.049656↪ θ = 0.006801↪ ν =
0.008660, µ = 0.030699).

µS = −0.2910

and for the 1995–1999 period

(κ = 1.151952↪ η = 5.418226↪ λ = 2.840461↪ σ = 0.055811↪

θ = 0.008626↪ ν = 0.006021)

µS = 0.249051

A typical cross-sectional risk-neutral parameter set

(κ = 2.72↪ η = 2.18↪ λ = 5.68↪ σ = 0.21↪ θ = −0.41↪ ν = 0.06)

As we can see, the implied skew and kurtosis are stronger for the cross-
sectional method compared with the statistical one. This is consistent with
results observed with other diffusion-based models.

We perform more recent parameter estimations corresponding to
06/10/1999–06/10/2003 and 09/10/1999–09/10/2003 (via PF based on 1000
particles) for S&P 500. The results are reported in Table 3.3. As we can see,
the algorithm for the estimation of the statistical parameters seems fairly
stable provided that the initial parameters are chosen sufficiently close to the
optimal ones.
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FIGURE 3.22 Log Stock Prices for Simulated SPX Prices Using � = (κ = 0.0000 ,
η = 0.0000↪ λ = 0.000000↪ σ = 0.117200↪ θ = 0.0056↪ ν = 0.002) and � = (κ =
79.499687↪ η = 3.557702↪ λ = 0.000000↪ σ = 0.049656↪ θ = 0.006801↪ ν = 0.008660,
µ = 0.030699). Unlike arrival rates, the spot prices are hard to distinguish. This is
consistent with our previous observations.

TABLE 3.3 VGSA Statistical Parameters Estimated via PF. The stock drifts µS are
−0.009999 and −0.010000 respectively.

period κ η λ σ θ ν

990910-030910 5.131967 6.499669 4.360002 0.087000 −0.024862 0.002000
990610-030610 6.514068 6.500001 4.360000 0.085000 −0.025000 0.001800

The cross-sectional results could be computed in the same way as for
diffusion-based models. Quoting the results of Carr et al. [48], we have
Table 3.4. As shown, for some periods the risk-neutral implied λ is much
larger than the statistical one. This implies the possibility of a skewness trade,
as previously discussed.

It therefore seems that, depending on the period, the statistical and risk-
neutral parameters λ may or may not be consistent.

A WORD OF CAUTION

Accuracy issues of the inference tools aside, there are practical considerations
we need to bear in mind. We are applying basic models, such as Heston or
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TABLE 3.4 VGSA Risk-Neutral Arrival-Rate Parameters Estimated from
Carr et al. [48]

period κ η λ

Mar 2000 4.08 15.99 16.52
Jun 2000 7.24 32.15 24.81
Sep 2000 0.25 0.00 3.76
Dec 2000 2.18 5.71 5.67

VGSA, to a complex and constantly changing market. The true dynamics of
the stock and option markets are unknown, and, even if the above models
approximate them fairly well, there is no guarantee that there will not be a
mutation in future dynamics. The best we can do is to use the information
hitherto available and hope that the future behavior of the assets is not too
different from the past.

Needless to say, as time passes by and new information becomes avail-
able, we need to update our models and parameter values. This could be
done within either a Bayesian or classical framework. Therefore, detecting
an inconsistency between the stock and option markets does not allow us
to make a riskless profit, because we simply do not know what the future
is reserving for us. Once again, the skewness transaction described in this
chapter is more similar to selling insurance than to an arbitrage.

FOREIGN EXCHANGE, FIXED INCOME, AND OTHER MARKETS

Foreign Exchange

It is important to note that everything discussed in this book can be applied
to time series from other asset classes. A popular asset class to which the
Heston and Bates models are often applied is the foreign exchange (FX).
Bates [27] applies his jump diffusion model to the USD/deutsche Mark (now
euro) exchange rate.

Calling Xt the FX rate process, for a Heston model, we would have
under the real-world measure P

d ln Xt =
(

µX − 1

2
vt

)
dt + √

vtdBt

dvt = (ω − θvt)dt + ξ
√

vt

(
ρdBt +

√
1 − ρ2dZt

)
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TABLE 3.5 The Volatility and Correlation Parameters for the Cross-Sectional and
Time-Series Approaches.

Method ξ ρ

Cross-Sectional 0.45 −0.05
Time-Series 0.11 −0.09

with < dBt↪ dZt >= 0. We could therefore apply any of the previously used
filters to the discretization of the above SDE and obtain the optimal param-
eters via MLE.

Under the risk-neutral measure Q, the FX drift is the difference between
the domestic and the foreign interest rates rD and rF . Therefore, we would
have

d ln Xt =
[
rD(t) − rF (t) − 1

2
vt

]
dt + √

vtdB(r)
t

dvt = (ω(r) − θ(r)vt)dt + ξ
√

vt

(
ρdB(r)

t +
√

1 − ρ2dZ(r)
t

)

with < dB(r)
t ↪ dZ(r)

t >= 0. Note that the usual Heston closed-form option-
pricing expression is valid for the FX process.

As previously discussed, according to the Girsanov theorem, (ξ↪ ρ) should
be the same under the two measures. It is well known that compared with
equities, FX options markets have a much lower correlation ρ and have a
more symmetric smile. A skewness trade would therefore be more difficult
to carry out in this market, but a kurtosis trade taking advantage of the high
volatility-of-volatility ξ embedded in the options markets could be appropri-
ate (Table 3.5).

Similarly to what we did for the equities, we estimate the model par-
ameters from the three-month EUR/USD options cross-sectionally via a least-
squares method on January 2004. And we estimate the time-series par-
ameters (January 2000 to January 2005) via our second chapter filters. As
before, adding jumps to the Heston model will help lower the cross-sectional
volatility-of-volatility, but it remains insufficient to reconcile them.

Fixed Income

The Time Series The same principles could be applied to the interest-rate
models with stochastic volatility. Using, for instance, a generalization of the
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extended-Vasicek [146] short-rate model14, we would have under P

drt = a[µ(t) − rt]dt + √
vtdBt

dvt = (ω − θvt)dt + ξ
√

vt

(
ρdBt +

√
1 − ρ2dZt

)
with < dBt↪ dZt >= 0. The difference between this first SDE and the corres-
ponding ones in FX or equities is that the short-rate process is not directly
observable. What is observable is the bond yield, which has a closed-form
expression as a function of rt. In an extended Vasicek model, for a given path
of vt the price of a forward starting zero-coupon bond is

P (t↪ T ) = A(t↪ T )e−B(t↪T )r(t)

with

B(t↪ T ) = 1 − e−a(T −t)

a

ln A(t↪ T ) = ln
P (0↪ T )

P (0↪ t)
− B(t↪ T )

∂ ln P (0↪ t)

∂t

−1

2

(
B(t↪ T )

∂B(0↪ t)

∂t

)2 ∫ t

0

(
1/

∂B(0↪ u)

∂u

)2

vudu

and the bond yield is

R(t↪ T ) = − ln P (t↪ T )

T − t

From the foregoing expressions we can fairly easily deduce that at a given
time t , the short rate simply becomes

r(t) = R(t↪ t) = −∂ ln P

∂t
(t↪ t)

Therefore, we can observe the current short rate as the (negative) initial slope
of the yield curve, and we are back to the same framework as for equities
and FX processes.

The Cross Section For the option pricing under Q we would have

drt = a(r)
[
µ(r)(t) − rt

]
dt + √

vtdB(r)
t

dvt = (ω(r) − θ(r)vt)dt + ξ
√

vt

(
ρdB(r)

t +
√

1 − ρ2dZ(r)
t

)

14In what follows we consider the speed of mean reversion a fixed. One could
estimate it via a global calibration, for instance.



222 INSIDE VOLATILITY ARBITRAGE

80

90

100

110

120

130

140

0 200 400 600 800 1000 1200 1400
Days

Euro Index Time-Series 2000–2005

Euro Index

FIGURE 3.23 A Time Series of the Euro Index from January 2000 to January 2005.

with < dB(r)
t ↪ dZ(r)

t >= 0. Naturally because of the randomness of the volatil-
ity, we would lose the closed-form expressions for the options on bonds (or
caps or swaptions). However, we can still value them via a two-factor Monte
Carlo algorithm. Indeed, we have for an option with maturity U on a zero-
coupon bond with maturity T > U

c = E0

[(
exp(−

∫ T

U

rtdt) − 1

)+]

=
∫ +∞

0

∫ +∞

0

(
exp(−

∫ T

U

rtdt) − 1

)+
q(rU↪ vU)drUdvU

where q(r↪ v) represents the joint density of the short rate and its volatility.
Once again, the Girsanov theorem would require the same (ξ↪ ρ) par-

ameters under the real-world and risk-neutral measures. A more negative
correlation in the cross-sectional options market would therefore favor a
skewness trade, and a higher volatility-of-volatility, a kurtosis trade.

One noticeable point is that, for a given level of option maturity U ,
we can have many bond maturities. It is known that a swaption can be
modeled and priced as an option on a coupon bond.15 However, there may
be many swap tenors for the same option expiration, which introduces an

15See [146] for instance.
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extra dimension. But nothing stops us from using many tenors and option
maturities at once for a cross-sectional calibration.

The choice of the time-series period is still to be questioned. Do we
consider the period beginning at our cross-sectional date, or do we consider
a start date before this date? The latter would provide us with more data
points; however, these points would be historic. As we saw, we probably
would need the longer time series in order to have more reliable estimations.
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one-dimensional source, 73
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Non-Gaussian filters, 160
Non-Gaussian pure jump

model, 47
Non-Gaussianity, 179
Nonlinear asymmetric GARCH

(NGARCH), 22
Nonlinear filter (NLF), 65,

103, 121
Nonlinear Gaussian KF, 161
Nonlinear PDE, 13
Nonlinear transition equation, 60
Numeric tests, 50, 183

Observation
error, 178–179
matrix, 83–84, 87
noise, 75

Oksendal, B., 2, 233
One-dimensional EKF/UKF, 96
One-dimensional Heston model,

114–115

One-dimensional state, 87–94
joint filter, inclusion, 76–78

One-factor diffusion process, 138
One-factor Monte Carlo

technique, 32–33
Optimization algorithm, 168

weakness, 127–128
Option prices, usage, 49–54
Option pricing, cross section,

221–223
Options

bid-ask spread, 205–206
maturity, 6
time-to-maturities,

decrease, 208
Ornstein-Uhlenbeck (OU)

process, 20
Osher, S., 232
Out-of-the-money (OTM)

options, 200
puts/calls, usage, 188, 209
region, Black-Scholes value, 38

Pan, G., 233
Pan, J., 233
Papanicolaou, G., 229
Parameter estimation, 217. See

also Pure jump models
MLE usage, 81–94

example, 82–83
implementation, alternate,
86–87

Parameter learning, 67–81,
125–127

example, 68–69
Parametric SV, 20
Paras, A., 225
Parkinson, M., 3, 233
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Partial differential equation
(PDE). See
Black-Scholes PDE;
Nonlinear
PDE; Two-factor PDE

pricing, stochastic volatility
(impact), 24–27

risk-neutral version, 2
Particle filter (PF)

algorithm, writing, 169–170
implementation, 160

Particle filtering, 98–120
algorithm, application,

121–122
application. See Heston

space-state model
error size, 116–119
example, 104–105
implementation, 103–104
resampling, 101–103
test results, 114–116
theory, 99–101, 117

Pearson kurtosis, 22
Pedersen, A.R., 233
Penny stocks, skew, 209
Perelló, J., 226
Peso theory, 197–199

background, 197–198
numeric results, 199

Pham, H., 233
Phantom profits, creation, 19
Pitt, M.K., 233
Poisson jumps, 159
Poisson process, 8–9
Poisson random variable, 9
Polson, N.G., 159, 228, 231
Powell algorithm, application, 50
Press, W.H., 31, 50, 233
Prucyk, B., 234
Pure diffusion, 7–9

parameter, 199

Pure jump models, 40–45,
168–184, 215

algorithms, usage, 170–172
diagnostics, 178–179
filtering algorithm, usage,

169–170
numeric results, 176–178
parameter estimation, 170

Quenez, M.C., 27, 228

Rafailidis, A., 230, 231
Randall, C., 234
Rasmussen, H.O., 230
Regression analysis, 153
Reif, K., 233
Rejection probability, 149
Renault, E., 229, 233
Resampling algorithm, 101
Residuals, 62
Reverse Black-Scholes equation,

solving, 7
Reversibility condition, 149–150
Ribiero, C., 233
Richardson, S., 229
Ridge property, 36
Risk, market price, 25
Riskless arbitrage, 6
Risk-neutral GARCH system, 26
Risk-neutral implied

parameter, 190
Risk-neutral parameters, 215
Risk-neutral pricing formula. See

Black-Scholes risk-neutral
pricing formula

Ritchken, P., 234
Robustness, issues. See

Consistency test; Time-series
method

Rochet, J.C., 229
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Rogers, L.C.G., 230
Romano, M., 32, 234
Romano-Touzi approach, 30–32
Root mean square error (RMSE),

62, 118
reduction, 185
usage, 179

Ross, S., 227
Rossi, P.E., 231
Rubinstein, M., 198, 227,

231, 234
Rudd, A., 231
Ruiz, E., 135, 230

Salmond, D.J., 229
Samperi, D., 224
Sample impoverishment, 119
Samuelson, P. A., 2, 234
Sandmann, G., 234
Santa-Clara, P., 226
Scholes, M., 225
Schonbucher, P.J., 234
Scott, L.O., 234
Self-financing portfolio

argument, usage, 214–215
Sequential importance

sampling, 100
Shephard, N., 135, 225, 226,

228, 232, 233
Shimko, D., 234
Shreve, S., 6, 21, 231, 234
Signal-to-noise ratio (SNR), 138
Silva, A.C., 234
Simple Kalman filter, 59–62
Sin, C.A., 234
Single calibration (SC)

methodology
assumption, 19

Sircar, K., 229
Skewness

kurtosis, contrast, 201–202

trades, 189, 200
example, 203–208

Smith, A.F.M., 225, 229, 234
Sondermann, D., 228
Spiegelhalter, D.J., 229
Spot prices, observation, 183
Spread. See Options bid-ask

spread
Square root model, optimization

constraints, 85–86
Square root SDE, 184
Square root SV model, 37, 69–70
Srivastava, A., 166, 234
Srivastava approach. See Jumps
Stability issues. See Local

volatility
Stahl, G., 230
Standard & Poor’s (S&P), 208

options, 189, 198
S&P 500, 204, 216–218
Stock Index, 4

Stein, E.M., 234
Stein, J., 234
Stochastic differential equation

(SDE), 197–198, 221
Stochastic volatility (SV), 20–24

behavior, 24
example, 35–37, 83–85
formulation, 76
impact. See Partial differential

equation
problem, 78–79
processes, 20–21
time-changed processes,

contrast, 42–43
Stochastic volatility (SV) models,

94, 136
embedded parameters,

inference (problem), 48
Heston state-space model,

comparison, 121–122
parameters, 196
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Stock forward price, 17
Stock log return density, 40
Stock market, 2–4
Stock prices

movement, log-normal
model, 5

process, 2–3
stochastic differential

equation, 159
time series, 176
usage, 54

Stock process, noise
(representation), 133–135

Storvik, G., 234
Strike prices, 6, 187
Stroud, J., 159, 231
Student’s law of mean, 155
Su, T., 227
Suli, E., 231
Sundaram, R.K., 227
Suo, W., 231
Super-replication, 27
SV. See Stochastic volatility

Taksar, M., 230
Taleb, N., 234
Tauchen, G., 229
Tavella, D., 234
Taylor approximation, usage,

35–36
Taylor expansion, usage, 36
Teukolsky, S.A., 233
Time series, 116, 220–221

usage, 48
Time update equations, 61–65
Time-independent parameters, 33
Time-series implied

parameters, 190
Time-series method, robustness

issues, 193–194
Time-series results, 193–194

Toft, K.B., 234
Torricelli, C., 233
Touzi, N., 32, 233, 234
Trading strategies, 199–213

replication, 202–203
Transform. See Generalized

Fourier transform
special cases, 28–30
technique, 27–28

Transition noise, 140
Trevor, R., 234
Trinomial tree, usage, 17
Tullie, T.A., 229
Two-factor Monte Carlo

simulation,
application, 26

Two-factor PDE, 26–27

Uhlmann, J.K., 231
Uncertain volatility, concept, 20
Univariate regression, 153
Unscented Kalman filter (UKF),

62–65, 88, 161–162
algorithm, 66
application, 172–173
implementation, 77

Unscented particle filter (UPF),
102, 161–166

Van der Merwe, R., 115, 235
Van der Sluis, P.J., 231
Varadhan, S.R.S., 235
Variance equation, writing, 7
Variance gamma (VG), 40–43

characteristic function, 44–45
model, 168–169
parameters, 178
usage, 182



Index 247

Variance gamma with gamma
arrival rate (VGG), 45,
158, 166

usage, 181–183
Variance gamma with stochastic

arrival (VGSA), 43–45,
169, 215

Bayesian approach, 184
EPF application, 173–176
model, 168
option pricing, 44
VG, contrast, 215–216

Variograms, 96–98
usage, 181

Vetterling, W.T., 233
Volatility. See Historic volatility;

Level-dependent volatility;
Local volatility;
Stochastic volatility

clustering effect, 43
curve, 200
dependence, discovery, 11
drift, 25

parameters, 213
perception, 7
problem, 1
risk, market price, 25–26, 47
term structure. See Implied

volatility term structure
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value, 3

Volatility-of-volatility, 202.
See also High
volatility-of-volatility

parameter, 192, 194
series expansion, 37–40
series method, 191

Vorst, T., 229
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