MotiveWave™

Software Development Kit (SDK)
Programming Guide

Version: 1.1

©2012 MotiveWave™ Software

WWW. TRADING-SOFTWARE-COLLECTION.COM
ANDREYBBRV@GMAIL.COM SKYPE: ANDREYBBRY

andrey
tr-soft-collection

MotiveWW ave™ 4 M
SDK Programming Guide -

Preface

This document explains how to use the MotiveWave™ Software Development Kit (SDK) to implement
custom studies and strategies. The primary audience of this material is individual traders, or consultants
(both with a programming background, aka developers) looking to implement (and possibly distribute)
custom studies and/or strategies.

The development kit is based on the Java™ programming language. While advanced knowledge of this
language is not required, it is recommended that the person implementing the study or strategy have a
basic background in the language before reading this document.

Developers are free to use any development environment, including the command line tools in the
Java™ Development Kit. Examples provided will be with the Eclipse IDE (Integrated Development
Environment) available from: http://www.eclipse.org.

This document is intended to be a guide on how to use the SDK and is not a complete programming
reference. API(Application Programming Interface) documentation is available (generated using
Oracle’s Javadoc tool) that explains all of the classes, interfaces and enumerations provided by the SDK.

WWW. TRADING-SOFTWARE-COLLECTION.COM
ANDREYBBRV@GMAIL.COM SKYPE: ANDREYBBRV

Version 1.1 ©2012 MotiveWave™ Software Page 1 of 78

andrey
tr-soft-collection

MotiveWave™ ‘ \
SDK Programming Guide >y

Change History

Several enhancements have been added in version 1.1 of the SDK (these are compatible with version 2.2
and higher of MotiveWave™). These enhancements include the following:

1. Path Color — The color of a path can be changed dynamically (DataSeries::setPathColor(...) see
APl documentation).

2. Multiple Instruments — Studies/Strategies may incorporate data for one or more instruments.

Trades may also be placed on more than one instrument.

Composite Studies — A study may be composed of multiple study plots and overlays.

4. Access Control — Distribution and usage of your studies/strategies can be controlled and
managed using a web interface.

5. Trading Sessions — These may be used to constrain the trading hours for a strategy (intraday data
only).

6. Help Link — This new attribute on the StudyHeader allows you provide a link to a webpage with
more information on the study/strategy.

w

Version 1.1 ©2012 MotiveWave™ Software Page 2 of 78

MotiveWave™
SDK Programming Guide

Table of Contents
1 Introduction
1.1 Whatis a Study?
1.1.1 Overlays
1.1.2 Study Plots
1.2 What is a Strategy?
1.3 Distribution
1.3.1 Access Control
2 Fundamental Classes
2.1 Packages
2.2 Study Class
2.3 StudyHeader
2.4 Describing User Settings
2.4.1 SettingsDescriptor class
2.4.2 SettingTab Class
2.4.3 SettingGroup Class
2.5 Settings class
2.6 Runtime Settings
2.6.1 Composite Studies
2.7 DataContext Interface
2.8 DataSeries Interface
2.9 Multiple Instruments
2.9.1 Design Time
2.9.2 RunTime
2.10 Miscellaneous Classes
3 Overlay Example: ‘My Moving Average’
3.1 StudyHeader Annotation (@StudyHeader)
3.2 initialize method
3.2.1 Design Time Information
3.2.2 RunTime Information
3.3 calculate method
4 Study Plot Example: ‘Simple MACD’
4.1 StudyHeader Annotation (@StudyHeader)
4.2 initialize method
4.3 calculate Method
5 Drawing Figures
5.1 Figure Class
5.2 Marker Class
5.3 LineClass
5.4 Label Class
5.5 ColorRange Class
6 Signals
7 Strategies
7.1 StudyHeader

PR O O OV 000N Ul 1

Version 1.1 ©2012 MotiveWave™ Software

Page 3 of 78

MotiveWave™
SDK Programming Guide

7.2
7.3
7.4
7.5

Study Class
OrderContext Interface
Order Interface
Trading Sessions

7.5.1 Runtime Support

7.6
7.7
7.8

Sample MA Cross Strategy
Strategy States
Manual Strategies

7.8.1 Entry States
8 Logging
9 Internationalization

9.1

Example: MACD

10 Deployment

10.1
10.2

Packaging
Loading Extensions

11 Environment Setup

111
11.2
11.3
114

Where do | get the SDK?
Installing Java

Installing Eclipse
Creating a Project

WWW. TRADING-SOFTWARE-COLLECTION.COM
ANDREYBBRV@GMAIL.COM SKYPE: ANDREYBBRY

50
51
53
55
56
57
59
60
62
63
65
65
68
68
68
70
70
70
70
70

Version 1.1

©2012 MotiveWave™ Software

Page 4 of 78

andrey
tr-soft-collection

MotiveWave™ ,
SDK Programming Guide S

1 Introduction

Welcome to the MotiveWave™ Software Development Kit (SDK)! If you are reading this document then
you are interested in developing a custom study and/or strategy for use within MotiveWave™.

Knowledge of the Java™ programming language is necessary for you to implement your
studies/strategies. If you are unfamiliar with this language, it is recommended that you consult a book
or take a basic course on Java programming.

All of the studies and strategies that are built into MotiveWave™ were programmed using the SDK. The
source code for these are freely available and may be used as examples or starting points.

Before you begin, it is important to understand studies and strategies and the difference between them.

1.1 What is a Study?

A study uses historical price and/or volume data to display new information to the user to assist them in
making buying or selling decisions. There are two types of studies:

1. Overlays
2. Study Plots

It is also possible to create studies that contain multiple plots and overlays. For details see section: XXX.

1.1.1 Overlays

Overlays display information that is drawn on top of an existing plot (most typically the price plot). What
is actually displayed depends on the study itself. Some examples of what a study may display include:

e Paths — A pathis a series of lines that connects data points. Examples of this include a moving
average or price bands.

e Markers — Markers may be used to indicate points of interest (such as buy, sell or stop loss
locations). Markers come in many forms: arrows, circles, triangles, letters, numbers etc

e Shades — Area of a plot may be shaded to indicate zones of interest

e Lines— May include trend lines, support or resistance areas

e Paint Bars — Price or volume bars may be displayed using specific colors

e Text — Descriptive text may be used to explain elements of the study

e Figures — any type of figure or drawing may be drawn on a plot as part of the overlay.

e Indicators — Indicators may be added to the vertical axis to show the current value of a study.

The following screen shot illustrates an example of some of the elements that may be part of an overlay:

Version 1.1 ©2012 MotiveWave™ Software Page 5 of 78

MotiveW ave™ /S MotiveWave
SDK Programming Guide B e

Figure 1 - Overlay Example

EUR/USD - 15 min o db

—— 1A Cross(C,EMA 10,C.EMA 20) ﬂ]
Support/Resistance(C,20) - p]
i) : K1.32172

1.32000

COwverlay
Indicator

A

1.31400

“‘ IR R R Y] {

1.31264

= 22 MotiveWave FwbH1.31200
1 1 1 1 1 1 1 1 1
14:00 16:00 1800 20:00 22:00 Feb-14 200 4:00 5:00 8:00 10:00 11:00

1.1.2 Study Plots

Study plots display information drawn in a plot that is separate from the price plot. The typical reason
why this is displayed in a separate plot is because the values generated are independent (or outside) of
the price range.

Overlays may be added to a study plot to display additional information (such as a moving average).

The following screen shot shows some examples of study plots:

Version 1.1 ©2012 MotiveWave™ Software Page 6 of 78

MotiveWave™ , Motive
SDK Programming Guide N -

Figure 2 - Study Plot Example

ﬂ]$?+i| 120500
lI 45Tlﬁnﬂ*++! foh ! ﬁl 20280
e

h* [|i+.! —1 ALY
= =1 Study Label T - %1.28581

I I
T T=.00 21:00 Oct-09 300 500 7:.00 9:00 Study Plot
L "
MACD(C,EMA, 12,26,9) {H0.000500
H-0.000500]
Guide %-0.001841
RSI(C,14) :

EMA(RSIC,14),20)

—

1.2 What is a Strategy?

A strategy is a special type of study that may be used to automate or partially automate trading. In
addition to displaying the study information, a Control Box is made available that allows the user to
activate/deactivate a strategy and view important runtime information. The following screen shot
shows an example of the Moving Average Cross Strategy:

WWW . TRADING-SOFTWARE-COLLECTION.COM
ANDREYBBRV@EMAIL.COM SKYPE: ANDREYBBRY

Version 1.1 ©2012 MotiveWave™ Software Page 7 of 78

andrey
tr-soft-collection

MotiveWave™
SDK Programming Guide -

Figure 3 Strategy Example

USD/CAD - 15 min b]

Strategy Overlay (MA 0.99800
Cross in this case)

0.98600

l
sy,
) ,!f—ﬁ’“'ﬁ’

4

Ho.99400

T Editsettings | 088516
Button m—

---- Strategy

Contral Box

+|| o.99200

o ! x . g

MA Cross Strategy 0 ' Activate /
Deactivate Button

‘ Position: NIA |]
Entry Price: NIA =0.95000

.) Status Labels 1

#.-' Unrealized PL: MIA 1

| /| Realized PL: MIA]

) Total PIL: NIA]

F;> - @]

1 1 1 1 1 1 1 1 1 1
| 12:00 May-06 20.00 May-07 3.00 5.00 T.00 9:00 12.00 15:00

MotiveWave™ supports two modes for strategies:

1. Automatic — Once the user activates the strategy, it will automatically buy and sell based on the
internal logic.
2. Manual — In this mode, the user tells the strategy when it is OK to enter.

1.3 Distribution

Studies (and strategies) may be distributed to users by packaging them together in Jar (Java™ Archive)
files. If you feel the need to protect the contents of these packages you may use obfuscators (such as
ProGuard) to prevent reverse engineering of the binary code.

1.3.1 Access Control

You can control the access to a set of studies/strategies by using the ‘secured’ attribute in the Study
Header. Setting this attribute to ‘true’ will ensure that only users that you have given access will be
allowed to load and execute studies and strategies in the given namespace.

Access control requires an account to be setup with MotiveWave™. If you would like to utilize this
feature, send an email requesting that an account be created to: support@motivewave.com.

Version 1.1 ©2012 MotiveWave™ Software Page 8 of 78

mailto:support@motivewave.com

MotiveWave™ ,
SDK Programming Guide S

2 Fundamental Classes

This section describes the fundamental classes that you will need to interact with when building your
custom study/strategy. For a complete view of all of the classes/interfaces in the SDK, please consult
the APl documentation.

2.1 Packages
The SDK consists of the following 5 packages:

1. com.motivewave.platform.sdk.common — Contains common classes and interfaces. These
include ‘info’ classes, enumerations, utility functions and ‘context’ classes that expose
functionally and data from MotiveWave™

2. com.motivewave.platform.sdk.common.desc — Contains ‘Descriptor’ classes. These are used to
describe settings and values to the MotiveWave™ runtime environment.

3. com.motivewave.platform.sdk.draw — The classes in this package are used to draw figures on
the price and study plots.

4, com.motivewave.platform.sdk.study — Contains the base classes for creating and interacting
with studies and strategies.

5. com.motivewave.platform.sdk.order_mgmt — Contains classes/interfaces for managing orders.
These are used in conjunction with strategies.

2.2 Study Class

The Study class is the base class for all studies and strategies. When implementing any study/strategy
you will first start by deriving directly or indirectly from this class.

Why is there no Strategy Class?

Strategies are a specialized version of a study, in fact most strategies are based (at least in part) on an
existing study. If there was a separate Strategy class it would be difficult (if not impossible) to implement a
strategy by deriving from an existing study. Itis for this reason that the methods and properties that are
specific to strategies are included in the Study class.

For most studies there are two methods that you will override:

1. initialize — The purpose of this method is to describe the user configurable settings for the study
and describe the runtime behavior.
2. calculate — This method calculates the values for the study at the given historical bar.

The following diagram illustrates the basic elements that you need to be concerned with in the Study
class. For a complete list of methods and properties, see the APl| documentation.

Version 1.1 ©2012 MotiveWave™ Software Page 9 of 78

VotiveWave 4 MotiveWave
SDK Programming Guide v

Analyze. Trade. Evolve

Figure 4 - Basic Study Methods

package com.motivewave.platform.sdk.study;

J*% This is the base class for all studies and strategies. ¥/
public class Study All studies/strategies derive l

i directly or indirectly from this class

f*% This method is called to initialize the design
opu.blic'. void initialize (Defaults defaults) [}

Initialize the settings and
describe the runtime

behaviour of this stud
J#% Override this method to calculate the walues 2 Y

the data =eries. This method is called from calculateValues (cCx)

and onBarUpdate (cCx)

iparam index - index in the data series Calculate the values for
tparam ctx - Data Context */ ~_ the given index in the data

eprotected void calculate(int index, DataContext ctx) {} seres.

f** By default, this method iz called on events where the data series has been affected. */
protected wvoid calculateValues (DataContext ctx)

{
DataSeries series = ctx.getDataSeries(): mehxmhxhhxih OpﬂonﬂW‘youcantwenMe

for{int 1 = 0:; 1 < series.size(}; 1++) { these methods, but for most
if (series.isComplete(i)) continue; studies this is unnecessary.
calculate (i, ctx):

s W o A W "\ “

f*% This method is called when the latest bar in the data series has been updated. */
public wvoid onBarUpdate (DataContext ctx) { calculate (ctx.getDataSeries().size()-1l, ctx); }

W W ‘b“ﬂ“‘rx\5hqnd‘f‘r-ﬂdhb‘rl”.'h‘_‘*H"tW‘L“*‘h“"H‘ﬁw“P“h‘
There are 3 main properties in the Study class that are important for implementing a study:
1. Runtime Descriptor — this describes the runtime behavior of the study

2. Settings Descriptor — This describes the user settings

3. getSettings() — This is typically used in the calculate method to get access to the settings that the
user has chosen.

Figure 5 - Study Properties

public RuntimeDescriptor getBRuntimeDescriptor() {...} Describes
public void setRuntimeDescriptor (RuntimeDescriptor desc) {...} |runtime behavior

poblic SettingsDescriptor getSettingsDescriptor() {...} Describes user
poblic void setSettingsDescriptor (SettingsDescriptor ad) {...} Eettings

Provides access
to the settings

‘pu.blic Settings getSettings() {...F E
puoblic vold setSettings (Settings =settings P
f#% This convenience method gets the StudyHea defined for thi

puoblic StudvyvHeader getHeader() {...}

f#% Gets the display label for this study including setting walues. */)

public String getLabel ()} {...}

e s O vl

Version 1.1 ©2012 MotiveWave™ Software Page 10 of 78

MotiveWave™
SDK Programming Guide

2.3 StudyHeader

The StudyHeader is an annotation that is required on every class derived from the Study class. The
purpose of this annotation is to describe static information about the study/strategy.

, MotiveWave

The StudyHeader is read when the Study class is first loaded and is used to register the study with
MotiveWave™ and make it available in the Study menu and the ‘Add Study’ dialog.

The following screen shot shows some of the important properties of the StudyHeader. For a full
description of all properties see the APl documentation.

Figure 6 - StudyHeader properties

{

package com.motivewave.platform.sdk.study;

@Retention({RetentionPolicy . RUNTIME)
@Target(ElementType. TYPE)
public @interface StudyHeader

The StudyHeader describes static
information about the study.

/** Namespace for this study (Must be unique for your organization) */

String namespace();
/** Unique (within the namespace) ID for this study. */
String id();

Together, these uniguely
identify a study/strategy.

/** @return true if this study should be protected by nan
boolean secured() default false;
/** Resource bundle to pull translatable strings from. *

Use this to control access
to this namespace.

String rb() default "";
/#* HTTP Link to a website that displays documer®et=I0OM on
String helplink() default "";

Displays help button to .
link to a webpage. */

/** Displayed name of this study. */
String name();
/¥* Menu to display this study under (optional). */

Displayed in the menu
and Study Dialog.

S5tring menu() default "";

/** Description displayed in the study dialog. */
String desc();

J¥* Name displayed on plot label (uses name if not specifrewp

String label() default "";

Displayed in the Study
Dialog (html tags allowed]).

/** Indicates if this study is an overlay that may be pld
boolean overlay();
/** Indicates if this study can be overlald on any plot.#

Identifies as either an overlay
{true) or a plot (false).

boolean studyOverlay() default false;

/** Indicates if this study generates signals. */
boolean signals() default false;

true if signals are generated

/** @return true if this study is a strategy. */

boolean strategy() default false;

true if thisis a strategy

Version 1.1 ©2012 MotiveWave™ Software

Page 11 of 78

MotiveWave™ J Motive
SDK Programming Guide -

2.4 Describing User Settings

The MotiveWave™ SDK provides a lot of flexibility when describing user settings for a study. Settings
may be organized into tabs and groups which are displayed in the study dialog. MotiveWave™ also
provides many different setting descriptors to represent different types of settings.

The following screen shot illustrates the study dialog for a CCl study:

) Mame from
Commodity Channel Index (CCI) StudyHeader

CClwas designed to identify cyclical turns in commTog 3 ascames that commaodities move
in cycles, y= : ws coming at periodicintervals. It is recommended fause 1/3 of a
complete | SettingTab fame (ie: for a 60 day cycle use 20 day CCI).

Figure 7 - Study Dialog

& Commodity Channel Index (CCl)

Description from
StudyHeader

J Generaﬂ Advanced I Signals T Cptions]

Inputs

Period (bars): 20 @‘,{Integernexriptnr]
Col ‘[Settinglamup]
e ',_-! PathDescriptor]—

Line: | NN - | | | *) ¢ | M Display

Histogram: | [- | [| Display {Bar[!em:riptar‘l
Top Fill: hd | Displ .
= v = K: Cnlnr[lescrmtnr]

Bottom Fill: - | /] Display
Indicator: | v | | NEEEEE - | (] Line /] Displa '”dicatﬂr[’e“ript“r]
[Help Link [see StudyHeader)]

[Create J [Save Defaults J l\qglp J [Cancel J

The classes for describing user settings can be found in the package:
com.motivewave.platform.sdk.common.desc. The following UML (Universal Markup Language)
diagram illustrates the high level classes involved and how they relate to each other. For a full list of the
available SettingDescriptor classes, see the APl documentation.

WWW . TRADING-SOFTWARE-COLLECTION.COM
ANDREYBBRV@GMAIL.COM SKYPE: ANDREYBBRV

Version 1.1 ©2012 MotiveWave™ Software Page 12 of 78

andrey
tr-soft-collection

MotiveWave™ ‘ \
SDK Programming Guide >y

Figure 8 - Descriptor Classes

SettingsDescriptor
+addTab() - -
+getTabs() SettingTab SettingGroup
+addDependency() @ —|name ‘_-name
+getDependencies() L « [taddGroup() |+ [raddRow(
+getSettings() +getGroups() +getRows()
+getSetting()
+getDefaultValue() 1 ?
Contains all of the - -
setting descriptors. SettingDescriptor
e Base Class for all
) setting descriptors
label 9 P
-showLabel
-defaultValue
-enabled
-supportsDisable
+createlnput()
/\ For a full list, see API
documentation.
|BarDescriptor| |Co|orDescriptor| |InputDescriptor| ||ntegerDescriptor| |PathDescriptor .

2.4.1 SettingsDescriptor class

The SettingsDescriptor class contains all of the user configurable settings. An instance of this class
should be created in the ‘initialize’ method (of the Study class) and assigned to the study using the
‘setSettingsDescriptor’ method.

There are two methods in this class that are important:

1. addTab — Adds a SettingTab object that contains settings on a tab in the Study Dialog
2. addDependency — Used to identify dependencies between settings. For example, an
‘EnabledDependency’ will enable a setting if a BooleanSetting is true or false.

Version 1.1 ©2012 MotiveWave™ Software Page 13 of 78

MotiveWave™ r MotiveWave

SDK Programming Guide e

Figure 9 - SettingsDescriptor

package com.motivewave.platform.sdk.common.desc:

S*% Contains all of the SettingDescriptor instances that describe the user
configurable =settings for the study. These =settings are organized into
tabs to be displayed in the Study Dialog. */

public class SettingsDescriptor

{
S*% Gets a2ll of the SectingDescriptor instances declared for this

study *,
poblic List<SettingDe=scriptor> getSetting=s() {...}
JS#% Gets all of the Settinglescriptor associated with the given name. */
public SettingDescriptor getSetting(String name) {...}

S** Gets the default waluese for the setting associated with the given name.
public Cbhbject getDefaultValue (String name) {...}

S*% Gets the tabs (as displaved in the Study
poblic List<SettingTab>» getTabs () {...}
S#*% bdds a SettingTab. */

‘ poblic wvoid addTab (SettingTab tab) {...}

Adds atab to the to be
displayed in the Study
Dialog. The tab will contains
Setting Descriptors.

JS#% Bdds a dependency between 2 or more SettinoDescripto -
public woid addDependency (InputDependency d) ...} Adds a dependency
S*% Gets the list of setting dependencies. */ between settings.

poblic List<InputDependency> getDependencies() {...}

2.4.2 SettingTab Class

The SettingTab class represents a tab in the study dialog. This simple class consists of a name (to display
in the tab) and a set of SettingGroup instances.

Version 1.1 ©2012 MotiveWave™ Software Page 14 of 78

MotiveWave™

. . ”~ MotlveWave
SDK Programming Guide W

Figure 10 - SettingTab class

package com.motivewave.platform.sdk.common.desc:

f#* Tdentifies a set of groups that may be organized in a tab. */
public class SettingTab
{

f*% Creates a tab with the given name */
.pu.blic'. SettingTab (S5tring name) {...}

f#% fGretnrn the human readable name of this tab. */
public String getHame () {...}

f#% Bhdds a group of settings. */
‘pu.b-lic. void addGroup (SettingGroup grp) ...}

f*% @retorn the list of setting groups in this tab. */f
public List<SettingGroup> getGroups() {...}

apukmu‘.h&‘.‘.N‘h\hu"g“"',u“-gjbwmq_d.uﬁh*"dtﬁ‘ylwnhmq.?",.j"-h

2.4.3 SettingGroup Class

The SettingGroup class organizes related settings into a named group. The group consists of a set of
rows that each contains 1 or more setting descriptors.

Figure 11 - SettingGroup class

package com.motivewave.platform. sdk. common.deso;

f##% Tdentifies a set of inputs that are to be arranged as & group when
displaving the configuration dialog to the end user.
The input group consists of a series of row. By default each
input element is placed on a separate row (in the order in which
they are given). To place more than one element on the sSame row,
pass multiple setting descriptors to the addRow method. #/
public class SettingGroup
{
f**% Creates a SettingGroup with the given name. */
.pu.blic'. SettingGroup (String name) { iName = name; }

J#* Eretorn the name of the group (displayed in the Study Dialog. */
poklic 3tring getNHame () { retorn iName; }

P Y TV VL S e ot

fS#*% hdds a row with 1 or more inputs. */
.pu.blic'. vold addBow(SettingDescriptor... row) { iRows.add(row): }

f#% Gets the rows in thi=s group (each row may contain 1 or more inputs) */
public List<SettingDescriptor|[]> getRows() { retorn iRows; }

Nt P A i T s . g g

-

Version 1.1 ©2012 MotiveWave™ Software Page 15 of 78

MotiveWWave™ 4 \Y
SDK Programming Guide -

2.5 Settings class

The Settings class contains all of the information about the settings configured by the user of the study.
You can access this class by using the getSettings() method in the Study base class.

Many of the setting descriptor classes have corresponding ‘Info’ classes (see
com.motivewave.platform.sdk.common package) that contain the user specific settings. These may be
accessed using a series of ‘get’ methods on the Settings class. The following screen shot illustrates some
of these methods. For a complete description of the Settings class and the Info classes see the API
documentation.

Version 1.1 ©2012 MotiveWave™ Software Page 16 of 78

MotiveW ave™ ~ MotlveWa ve

SDK Programming Guide v "Analyze, Trade. Evolve

Analyze. Trade

Figure 12 - Settings class

package com.motivewave.platform.sdk.common;

f** Encapsulates the configuration information for a study or strategy. *
public clas=s Settings implements Cloneable
{

%

J/**% Gets the SettingsDescriptor object that describes the user settings.
public SettingsDescriptor getDescriptor()

f*% Gets the double value associated to the given name. */
puoblic Double getDouble (String name)

S*% Gets the double wvalue associated to the given name. */
poblic Integer getInteger (String name)

f** Gets the boolean wvalue associated to the given name. */
poblic Boolean getBoolean (String name)

S*% iretnrn the PathInfo associated to the given name. */
poblic PathInfo getPath (String name)

f#% Gretorn a set 1 the registered path names. */
public Set<S5tring> getPat

S#% Eretorn the MarkerInfo associated he given name. */

public MarkerInfo getMarker (String name)

S#* Eretorn a set of all the i ers. =/

puoblic Set«<S5tring> getMarkers()

S*% @Greturn the IndicatorIn ated to the : ari=Ril

poblic IndicatorInfo getIndicator(Strin }
f*% firetorn a set of all the regi
public Set<S5tring> getIndi

Info’ classes. See
common package.

S**% Gretunrn the i I ven name. */ ~

S#* Gretorn a set of all tk * S
poblic Set<String> getB
f** @Eretnrn the 3] i the given name. */

S#*% Eretorn a set of al shade names. */

public Set«<S5tring> g hades ()

S** Eretunrn the ideInfo associated to the given name. */
poblic GuideInfo getGuide (String name)

SE% Gretonrn a set of all the registered guides. */

poblic Set«<String> getGuides= ()

S#% @retorn the input key associated to the given name. */
public Cbhbiject getInput (String name)

J** Ereturn a set of all the registered input names. */
poblic Set«<String> getlInputs()

3% W VL L BV Yo T RN WL R an e PeRERL O

f*% Ereturn the Color asscociated to the given name. */

P e o iganang) NN 0 J#"’“J

‘\

Version 1.1 ©2012 MotiveWave™ Software Page 17 of 78

MotiveWWave™ ; M
SDK Programming Guide »

2.6 Runtime Settings

The RuntimeDescriptor (com.motivewave.platform.sdk.study package) is used to describe runtime
behavior for the study. This includes the following:

1. Label Settings — used to describe how the label is generated
2. Export Values — These are values generated by the study that may be used outside of the study.
3. Declare Elements — These methods associate values generated by the study to visual constructs
on the ‘default’ plot (see Composite Studies below for more information):
a. Paths — A series of values connected by lines
b. Bars—Vertical bars displayed on a plot
c. Signals —Signals generated by the study
d. Indicators — Indicators displayed on the vertical axis
4. Study Plot Settings (default plot)
a. Top/Bottom Insets — Used to add space to the top or bottom of the plot
b. Vertical Range — Range of the vertical axis
¢. MinTick — precision of the vertical axis values
d. Horizontal Lines — Horizontal lines displayed on the study plot

Why do | need to declare elements such as a Path?

You may ask yourself, ‘why doesn’t the PathDescriptor (or other descriptor classes) class include the value
key?’. While this may make sense in most situations, it does not allow you to use the same path
information for multiple paths. Consider for example a case where you have a price bands study and you
want to have the same settings for the top and bottom bands. By declaring the path for the top and
bottom values as the same path info, you are able to re-use this descriptor object.

WWW . TRADING-SOFTWARE-COLLECTION.COM
ANDREYBBRVO@GMAIL.COM SKYPE: ANDREYBBRY

Version 1.1 ©2012 MotiveWave™ Software Page 18 of 78

andrey
tr-soft-collection

Votivevvave ™ MotiveWave
SDK Programming Guide v

Analyze. Trade. Evolve

Figure 13 - RuntimeDescriptor class

package com.motivewave.platform.sdk.study;

f*% This class describes 'runtime' settings for the study. #/
poblic class RuntimeDescriptor
{
S** Uze thiz method to identify which settings should be part of
the graph label (and to identify the study). */
public void setlabelSettings (String... wals)

S*% Use this method to identify the numeric values generated by
thisz =tudy that are to affect the wvertical range of the graph
(when auto scale is turned on). */

poblic volid setRangeFevys (Cbject... keys)

J/#*% Exports a value so that it may be used outside of the context #/
public void exportValue (ValueDescriptor desc)

f*% Declare a path associated with the given value key. Settings for the
path are resolved using the pathSettingsEey. AL runtime a path will
be drawn (if enabled) using the wvalues defined by the valuseEey. */

puoblic volid declarePath (Cbhject valueFey, String pathSettingsKey)

f#*% L==sociates a value key to an indicator. */
public void declareIndicator (Cbhbject wvalueEey, 5tring indicatorEey)

f*% Declare a bar seguence associated with the given values key. Settings

for the bars are resolved using the pathSettingsEey. At runtime a set

of bars will be drawn (if enabled) using the values defined by the valueKey
poblic vold declareBars (Cbhject valueEKey, String settingsEFey)

A PR AN ey A

f#*% Declare a signal with the given key and user readable string. */
public void declareSignal (Cbject key, S5tring label)

f** Bdds a horizontal line to the graph using the information defined in Lineln
puoblic volid addHorizontallLine (LineInfo info)

f*¥% S5ets the top inset (in pixels). */
poblic void setToplInsetPixels (int pixels)
JS#*% Bets the bottom inset (in pixels). */
public void setBottomInsetPixels (int pixels)

S*%* Sets the minimum tick for the vertical axis (if this is not an overlay). }

Set to mull (default) to automatically detect the min value. #
poblic void setMinTick (Double d)

2.6.1 Composite Studies

The majority of studies consist of either a single overlay or a single plot. Version 1.1 of the SDK allows
you to create studies that consist of multiple study plots and (optionally) overlays on the price plot.

Version 1.1 ©2012 MotiveWave™ Software Page 19 of 78

MotiveWave™
SDK Programming Guide

The RuntimeDescriptor class enables you to define additional plots for a study. This class has been
enhanced in version 1.1 to allow the definition of additional plots using the new Plot class (see
com.motivewave.platform.sdk.study package).

The majority of methods on the RuntimeDescriptor class operate on the ‘default’ plot for the study. In
the case of an overlay, the default plot will be the plot where the overlay was added. For example,

when you add a simple moving average (SMA) to the price plot, the default plot for the overlay will be
the price plot.

Additional plots may be defined using the Plot class. Each plot has independent settings for labels, tabs,
range keys etc and elements are declared separately for each plot (ie paths, bars etc). The following

diagram illustrates the relationship between the RuntimeDescriptor and the Plot classes.

Figure 14 Runtime Descriptor and Plot classes

These
delegate
to the
‘default’
plot

2.7 DataContext Interface

RuntimeDescriptor

Plot

+addPlot()
+getPlot()
+getDefaultPlot()
+getPricePlot()
+exportValue()
+declareSignal()
[+declarePath()
+declareBars()
+declareGuide()
+declarelndicator()
+setLabelSettings()
+setRangeKeys()
|+addHorizontalLine()

+..0

-name
-labelPrefix
-labelSettings
-tabName
-showLabel
-rangeKeys
-toplnsetPixels
-bottomInsetPixels
-minTick

-enabled

+declarePath()
+declareBars()
+declareGuide()
+declarelndicator()
+addHorizontalLine()

Two reserved plots are defined:
Plot.PRICE — represents the price plot.
Use this to add overlays on the price plot.
Plot.DEFAULT - represents the primary
study plot.

The DataContext interface provides access to historical data as well as utility methods for interacting
with the study framework.

The following diagram illustrates some of the useful methods:

Version 1.1

©2012 MotiveWave™ Software

Page 20 of 78

VotiveWave 4 MotiveWave
SDK Programming Guide v ~wasuanen-=eetA R

Analyze rads

Figure 15 - Data Context Interface

package com.motivewave.platform.sdk.common;

S*% This context provides an access point to sServices relating to data. */f

poblic interface DataContext

{
f#*% GEets the primary data series. */
DataSerie=s getDataSeries|():;

f*% GEets additional data series objects of a different bar size. */
DataSeries getDataSeries (BarSize barSize);

S*% Gets the instrument associated with this context. #*/
Instrument getInstrument ()

f#% Triggers a signal with the given key, message and value.
Hote: &n actual signal is only triggered if signals have been configured.
iparam index index of the bar that triggered this signal. HNote: =ignals

are only fired for the current bar when it is completed

iparam signalKey event name of the alert (displayed to user)
iparam message describes the signal (dislayed to the user, if an alert)
iparam value value that triggered the alert (displayed to user) #

vold =signal (int index, Object =signalKey, String message, Object wvalue);

/*% @return true if this is regular trading hours (rth). */
boolean isRETH({) ;

JS*% GEets the current time. This is the time synchronized with

the Broker/Data Service (if supported by the underlying service). #/
long getCurrentTime () ;

‘“.ﬂh‘.ﬁﬂ““u“-ﬂ.’-‘..-‘~"hﬁ-'-d"_‘\j'rthhq"hlr-!j4'"““*‘“‘*“‘.!1"A‘p;“"-hn

2.8 DataSeries Interface

WL N N, P R W W

The primary objective of the DataSeries interface is to provide a repository for historical price data and
data generated by the study. Data stored in this interface is accessed by a numerical index which
represents the price bar where the data applies.

The following diagram illustrates the structure of the data in the data series. Essentially the data is an
array of tables where the index ‘0’ is the first (oldest) bar and index ‘size()-1’ is the latest bar.

Version 1.1 ©2012 MotiveWave™ Software Page 21 of 78

MotiveWW ave™

SDK Programming Guide

Figure 16 - Data Structure

[0]

Open
High

Low

Close

Volume
Open
Interest

ATR

True
Range

Values.
RSI
Values.
MACD

[index]

Open

High

Low

Close

Volume

Open
Interest

ATR

True
Range

Values.
RSI

Values.
MACD

[size()-1]

Open
High

Historical Low
s Data

Close

Volume

Open
Interest

ATR

Derived True
Data Range

Values.

Computed RSI
by Study Values.

MACD

The DataSeries interface also contains a number of convenience methods for calculating common values

such as moving averages, swing points and lowest or highest values.

Version 1.1

©2012 MotiveWave™ Software

Page 22 of 78

VotiveWave ’ MotiveWave
SDK Programming Guide v ~esnsanen=oet ~h

A « rade. £

Figure 17 - DataSeries Interface

package com.motivewave.platform.sdk.common;

SR

* Represents a series of price bars that are displayed on a chart.

* Values of the price bars are accessed by specifying the index when retrieving a value
Study wvalues are stored in this structure as they are computed by a study.

This interface also provides many convenience method for calculating moving averages,
* swing points, highest high, etc.

:étJrl'

public interface DataSeries

1

*

*

S** Gets the number of elements in this data series.
@return the number of elements in this data series. */
int size();
/** Gets the size of the bars in this data series. @return the bar size of this data
BarSize getBarSize();
/** Gets the type of data available in this data series. @return the type of bar data
Enums.BarData getBarData();
J** Gets the instrument for the data in this data series. @return the instrument for t
Instrument getInstrument();
/** @return the high value of the price bar at the given index. */
float getHigh(int index);
/** @return the low value of the price bar at the given index. */
float getlow(int index);
/** @return the open value of the price bar at the given index. */
float getOpen(int index);
/** @return the close value of the price bar at the given index. */
float getClose(int index);
/** @return the volume of the price bar at the given index. */
long getVolume(int index);
/** @return the start time (in millis) of the bar at the given index. */
long getStartTime(int index);
J** (Calculates a Moving Average. Null values and values of Double.Nal are ignored in
Double ma(Enums.MAMethod method, int index, int period, Object key);
/** Calculates the average true range based on the most recent complete bars. */
Double atr(int period);
/** Returns the highest wvalue over the given sequence of values. Null values and wvalue
Double highest(int index, int period, Object key);
/** Returns the lowest wvalue over the given sequence of values. MNull values and values
Double lowest(int index, int period, Object key);
/** Calculates and returns a list of swing points of a given strength or greater. */
List<SwingPoint> calcSwingPoints(boolean top, int strength);

2.9 Multiple Instruments

Version 1.1 of the SDK offers support for multiple instruments. This allows you to retrieve real time and
historical data for one or more instruments (beyond the primary instrument) for studies and strategies.
For strategies you may also place orders for multiple instruments (see section on strategies).

Version 1.1 ©2012 MotiveWave™ Software Page 23 of 78

MotiveWave™ Y

’

SDK Programming Guide -

Please Note: Not all editions of MotiveWave™ include support for multiple instruments. In these cases,
studies requiring multiple instruments will not be accessible to the end user.

2.9.1 Design Time

Usage of multiple instruments requires the declaration of this feature in the StudyHeader and usage of
the InstrumentDescriptor to declare the instruments that will be used at run time.

There are essentially two items that are necessary to enable multiple instruments as part of the design
time:

1. Declare support for multiple instruments — In the StudyHeader set the attribute
multiplelnstrument=true

2. Declare one or more instruments in the initialize() method — Use the InstrumentDescriptor to
declare one or more instruments. For details on how to use this class, see the API
documentation.

The following code snippet illustrates the usage of the ‘multipleinstrument’ attribute in the built-in
Spread study:

Figure 18 Multiple Instrument StudyHeader

J** Instrument Spread */

@StudyHeader(
namespace="com.motivewave",
id="SPREAD",

rb="com.motivewave.platform.study.nls.strings",
name="TITLE_SPREAD",
desc="DESC_SPREAD",

menu="MENU_TINSTRUMENT",
overlay=false, This attribute must }

multipleInstrument=true, be set to true
requiresBarUpdates=true)
public class 5pread extends com.motivewave.platform.sdk.study.Study

{

Version 1.1 ©2012 MotiveWave™ Software Page 24 of 78

MotiveWave™

SDK Programming Guide

Figure 19 InstrumentDescriptor

{

@iverride

1

SettingTab tab =
sd.addTab(tab);

inputs.addRow{new
inputs. addRow{new
inputs.addRow(new
inputs.addRow{new
inputs.addRow(new

public class Spread extends com.motivewave.platform.sdk.study.Study
enum Values { SPREAD };

final static String MULTIPLIERI
final static String MULTIPLIERZ2

public void initialize(Defaults defaults)
SettingsDescriptor sd = new SettingsDescriptor();

setSettlngsDescrlptuP{Sd},
new Sg

SettingGroup inputs =

"multiplierl”;
"multiplier2";

Use the InstrumentDescrptor
to declare and allow users to
choose instruments.

In5trumentDescrlthP{Inputs IHSTRUMEHTI get("LBL_ INSTRUMENTl“}}),
DoubleDescriptor(MULTIPLIER, get("LBL MULTIPLIER"), 1.0, 0.01, 108
InstrumentDescriptor(Inputs. INSTRUMENT2, get("LBL_INSTRUMENT2"}));
DoubleDescriptor(MULTIPLIERZ, get("LBL_MULTIPLIER"), 1.8, ©.81, 160

tab.addGroup(inputs);

The following screen shot demonstrates how the InstrumentDescriptor enables the user to choose the
instrument when they create the study

Figure 20 Instrument Input

& Spread X

Spread

Computes and displays the difference between two instruments and displays it as a graph. Use
the multipliers to adjust the generated values.

J General T Options]

Inputs

Input: | Close ‘l’]

Instrument 1: USOIL M U{Instrument Input]

Multiplier: 15

Instrument 2: UKOIL b (=)

Multiplier: 1 s

Version 1.1 ©2012 MotiveWave™ Software

Page 25 of 78

MotiveWave™ Y
SDK Programming Guide -

2.9.2 Run Time

Several enhancements have been added to the SDK to enable access settings and historical/real time
information in the run time portion of the study:

1. Settings —a new method getinstrument(key) on the Settings class allows you to retrieve the
instrument that the user chose when they created (or modified) the study.

2. DataSeries — several new methods have been added to the DataSeries interface for retrieving
information. Essentially, these are overloaded methods of getDouble(...), getHigh(...), getLow(...)
getClose(...) etc.

The following code snippet from the Spread study shows how to retrieve chosen instruments and
historical data from the DataSeries interface:

Figure 21 Spread calculate method

public class Spread extends com.motivewave.platform.sdk.study.Study

d

@hverride

protected void calculate(int index, DataContext ctx)

{
Enums.BarInput input = (Enums.BarInput)getSettings().getInput{Input
Instrument instrl = getSettings().getInstrument(Inputs.INSTRUMENT,
Instrument instr2 = getSettings().getInstrument(Inputs.INSTRUMENTZ2
double multl = getSettings().getDouble(MULTIPLIERI, 1.8);
double mult2 = getSettings().getDouble(MULTIPLIERZ, 1.8);
DataSeries series = ctx.getDataSeries();

Get the instruments
chosen by the user

Get the double value

Double valuel = series.getDouble(index, input, instrl); defined by ‘input’ (ie *

if (valuel == null) { high. low etc) for the
. given instrument
return,;

}

Double value2 = series.getDouble(index, input, instr2);
if (value2 == null) {
return,;

¥

double spread = valuel®*multl - wvalue2®*multl;
series.setDouble(index, Values.SPREAD, spread);

if (index < 1) return;
Doubl = i

2.10Miscellaneous Classes

The following diagram illustrates some additional classes that may be of interest. These classes are
available in the common package (com.motivewave.platform.sdk.common). For full details on these
and other classes, please consult the APl documentation.

Version 1.1 ©2012 MotiveWave™ Software Page 26 of 78

MotiveWW ave™

SDK Programming Guide

Figure 22 - Miscellaneous Classes

Represents an
Enums Instrument instrument. Contains
BarData Encapsulr;\tes +getS_ymb_oI() methods for getting
-Barinput _enumer_atlon_classes +getT|qkS|;e() latest data,
-MAMethod into a single interface +getPointSize() calculating PnL,
-MarkerType (for convenience). +calcPnL() formatting etc.
-ShadeType +getLastPrice()
-Size +getBidPrice() X11Colors
-Position +getAskPrice() INDIAN RED
-Priority +round() CORAL_
-ValueType +format() -GOLD
-TextAlign +..0 KHAKI
:TextOutIme Bar size. Includes -LIME
BarSize linear data (minutes) -
+getMinutes() and non-linear such
- +getinterval() as Range, Renko, ‘ X
Util h Constant Volume, X171’ colors. Useful
i il Hisintraday() Tick for setting default
+calcLatestMA() Contains utility +isRange() ick etc ;

. colors on lines,
+compare() methods for use +isRenko() hades et
+toDouble() when developing +isVolume() shades etc.
+tolnt() studies. (consult API +isTick()
+in() documentation)
+max() System Defaults.
+min() Defaults Modstly Icontams fonts
+clipLine and colors as
+disptance(2) +getFont() configured by the
+intersection() +getTextColor() user. Most of these
+midpoint() +getBackgroundColor() come from the
+rotate() +getLineColor() current chart theme.
+slope() +getBarC<_JIor()
+..0) +getTopFillColor()

+getBottomFillColor()
+...(0)
Version 1.1 ©2012 MotiveWave™ Software Page 27 of 78

MotiveW ave™ /S MotiveWave
SDK Programming Guide Y e

3 Overlay Example: ‘My Moving Average’

In this section we will create a very simple example called ‘My Moving Average’ that displays an
exponential moving average as a path on a plot.

Let’s start by looking at the code for this example:
package study examples;

import com.motivewave.platform.sdk.common.*;
import com.motivewave.platform.sdk.common.desc.*;
import com.motivewave.platform.sdk.study.*;

/** This simple example displays an exponential moving average. */
@StudyHeader (

namespace="com.mycompany",

id="MY MA",

name="My Moving Average",

label="My MA",

desc="This simple example displays an exponential moving average",
menu="My Studies",

overlay=true,

studyOverlay=true)
public class MyMovingAverage extends Study
{

enum Values { MA };

/** This method initializes the study by doing the following:
1. Define Settings (Design Time Information)
2. Define Runtime Information (Label, Path and Exported Value) */
@Override
public void initialize(Defaults defaults)
{
// Describe the settings that may be configured by the user.
// Settings may be organized using a combination of tabs and groups.
SettingsDescriptor sd = new SettingsDescriptor();
setSettingsDescriptor (sd);

SettingTab tab = new SettingTab ("General");
sd.addTab (tab) ;

SettingGroup inputs = new SettingGroup ("Inputs");

// Declare the inputs that are used to calculate the moving average.

// Note: the 'Inputs' class defines several common input keys.

// You can use any alpha-numeric string that you like.

inputs.addRow (new InputDescriptor (Inputs.INPUT, "Input", Enums.BarInput.CLOSE)) ;
inputs.addRow (new IntegerDescriptor (Inputs.PERIOD, "Period", 20, 1, 9999, 1));
tab.addGroup (inputs) ;

SettingGroup colors = new SettingGroup("Display");

// BAllow the user to change the settings for the path that will

// draw the moving average on the plot. In this case, we are going

// to use the input key Inputs.PATH

colors.addRow (new PathDescriptor (Inputs.PATH, "Path", null, 1.0f, null, true, true, false));
tab.addGroup (colors) ;

// Describe the runtime settings using a 'StudyDescriptor'
RuntimeDescriptor desc = new RuntimeDescriptor();
setRuntimeDescriptor (desc) ;

// Describe how to create the label. The label uses the

// 'label' attribute in the StudyHeader (see above) and adds the input values

// defined below to generate a label.

desc.setLabelSettings (Inputs.INPUT, Inputs.PERIOD);

// Exported values can be used to display cursor data

// as well as provide input parameters for other studies,

// generate alerts or scan for study patterns (see study scanner).

desc.exportValue (new ValueDescriptor (Values.MA, "My MA", new String[] {Inputs.INPUT, Inputs.PERIOD}));
// MotiveWave will automatically draw a path using the path settings

// (described above with the key 'Inputs.LINE') 1In this case

Version 1.1 ©2012 MotiveWave™ Software Page 28 of 78

MotiveWave™ /
SDK Programming Guide &

// it will use the values generated in the 'calculate' method
// and stored in the data series using the key 'Values.MA'
desc.declarePath (Values.MA, Inputs.PATH);

}

/** This method calculates the moving average for the given index in the data series. */
@verride
protected void calculate(int index, DataContext ctx)
{
// Get the settings as defined by the user in the study dialog
// getSettings () returns a Settings object that contains all
// of the settings that were configured by the user.
Object input = getSettings().getInput (Inputs. INPUT) ;
int period = getSettings().getInteger (Inputs.PERIOD) ;

// In order to calculate the exponential moving average
// we need at least 'period' points of data
if (index < period) return;

// Get access to the data series.

// This interface provides access to the historical data as well
// as utility methods to make this calculation easier.
DataSeries series = ctx.getDataSeries();

// This utility method allows us to calculate the Exponential

// Moving Average instead of doing this ourselves.

// The DataSeries interface contains several of these types of methods.
Double average = series.ema (index, period, input);

// Calculated values are stored in the data series using

// a key (Values.MA). The key can be any unique value, but

// we recommend using an enumeration to organize these within

// your class. Notice that in the initialize method we declared
// a path using this key.

series.setbDouble (index, Values.MA, average);

}
}

All studies must derive from the base class ‘Study’ (com.motivewave.platform.sdk.study.Study). This
class contains a number of methods that we can override (we will look at these in detail later). For the
purposes of this example, we will explore the following:

e StudyHeader
e nitialize method
e calculate method

3.1 StudyHeader Annotation (@StudyHeader)

All studies must define a study header. This is an annotation that is placed before declaring the class:

WWW. TRADING-SOFTWARE-COLLECTION.COM
ANDREYBBRV@EMAIL.COM SKYPE: ANDREYBBRY

Version 1.1 ©2012 MotiveWave™ Software Page 29 of 78

andrey
tr-soft-collection

MotiveWave™ Moti
SDK Programming Guide

C

Figure 23 - My MA Study Header

package study exanples;
import com.motivewave.platform.=sdk.common. *;
import com.motivewave.platform.sdk. common.desc.®;

import com.motivewave.platform.sdk.study.*;

J#% This simple example displays a exponential moving average. ¥,

@StudyHeader | Unigue namespace. We
namespace="com.nycomgany"” . recommend using com.<org names

id="MY MA",

name="My Moving Average", ;‘:I'_JEI BE unique in]
iz namespace

label="My MA", P

degsc="This =simple example displavs an exponential moving average™,
menu="My Studie=s",
overlav=truoe,

Owverlay study
(price graph)

studyCverlay=true)
poblic class MyMovingaSs

Fezgge extends Study ,
{ Can be overlaid on
a =tudy graph ’/

"~.\?"*ﬁ--il"““"‘*—‘-__r-“"**‘“ s,

enum Values { Ma };

S WS

There are a number of important items in this header:

e namespace — this is used to qualify related studies and avoid naming conflicts with studies
developed by third parties. Itis recommended that you use a form similar to ‘com.<name of
your organization>’ Together with the id tag, these form a globally unique identifier for your
study

e id —this identifies your study and must be unique within your namespace

e name — This is the name of your study and is displayed in the study dialog as well as the study
menu

e label —This is used as part of the study legend (displayed in the top left corner of the plot
underneath the plot title). If not specified, the name attribute will be used.

e desc—This is the description of your study and is displayed in the study dialog

e menu - |dentifies the menu (underneath the Study menu) where this study can be found

e overlay — If true indicates that this study will be an overlay displayed on another plot

e studyOverlay — Indicates that this study can be used as an overlay on a study plot.

3.2 initialize method

The ‘initialize’ method is used to perform any necessary initialization work when the study is created.
This method is given access to system defaults (such as colors or fonts) available through the ‘Defaults’
class (see APl documentation for specific details). The most common usage of this method is to do the
following:

1. Describe Design Information (ie: inputs) — The SettingsDescriptor describes settings for the study
and how to display this to the user (in the Study Dialog).

Version 1.1 ©2012 MotiveWave™ Software Page 30 of 78

MotiveWave™ / MotiveW
SDK Programming Guide w

2. Describe Runtime Information — The StudyDescriptor describes information to MotiveWave™ so
it knows how to handle this study at runtime (ie label settings, paths, exported values etc).

Version 1.1 ©2012 MotiveWave™ Software Page 31 of 78

MotiveW ave™ /£ MotiveWave

SDK Programming Guide Y e Sk

Analyze. Trade

Figure 24 - My MA initialize method
pubklic class MyMovinglvwerage extends Study

{

This enumeration

enum Values { MA }; defines the values

@Cverride generated by this study.
public wolid initialize(Delfau
{

ff Describe the settings that may be configured by the user. —
Sf Settings may be organized using a2 combination of tabs and groups.
SettingsDescriptor 3d = new SettingzDescriptor():

setSettingsDescriptor(=d) ; User

SettingTab tab = new SettingTab ("General™) ; ‘General’ tab Configurable
‘Settings’

sd.addTab (tab) ;

SettingGroup inputs = new SettingGroup ("Inputs"):;

S Declare the inputs that are used to calculate the moving average.

S Hote: the "Inputs' class defines several common input keys.

S ¥You can use any alpha-numeric string that yvou like.

inputs.addBow (new InputDescriptor(Inputs.INFUT, "Input", Enums.BarInput.lLOSE)) !
inputs.addBow (new IntegerDescriptor(Inputs.PFERICD, "Period"™, 20, 1, 93953, 1));
tab.addGroup (inputs) ;

SettingGroup colors = new SettingGroup ("Display"™): =::'DEPHYQWUP l

S Bllow the user to change the settings for the path that will

S/ draw the moving average on the graph. In thisz case, we are goling

Sf to use the input key Inputs.PLATH

colors.addBow (new PathDescriptor (Inputs.PATH, "Fath", nmll, 1.0f,
null, troe, troe, false)):;

tab.addGroup (colors) ; ‘Path’ settings .

S/ Deszcribe the runtime settings using a 'StudyDescriptor’
EuntimeDescriptor desc = new RuntimeDescriptor():
zetRuntimeDescriptor (desc) ;

Runtime

‘Settings’

/¥ Describe how to create the label. The label uses the
S "lakel' attribute in the StudyHeader (see above) a
S/ defined below to generate a label.
desc.getlabelSettings (Inputs. INPFUT, Inputs.FPFERICD);
S/ Exported values can be used to display cursor dat
S a= well a= provide input parameters for other stud
Sf generate alerts or =can for study patterns (see study
desc.exportValue (new ValueDescriptor (Values.Ma, "My MAWY,

new String[[] {Inputs.INPUT, Inputs.PFERIODY)):
S MotiveWave will automatically draw 2 path using the path settings
S |described above with the key "Inputs.LINE
SPoit will use_tne.values gen?rated_ln t;e ' draw a path using
S/ and stored in the data seriez using the k the stored value WA
desc.declarePath (Value=s.Ma, Inputs.PATH) ; and the settings in

R S sl e \ Inputs PATH Y il

ut wvalues

Expors the value
‘MA s0it can be
used outside this
study

Tells MotivelWave to

3.2.1 Design Time Information

Version 1.1 ©2012 MotiveWave™ Software Page 32 of 78

MotiveWave™ / Y
SDK Programming Guide -

In our case, we need two types of inputs in order to calculate our exponential moving average:

1. Input — By default we will use the closing price for the bar (Enums.Barlnput.CLOSE), but we will
allow the user to choose something different (if they desire).

2. Period — This is the number of bars to look back when computing the average

For convenience, we will also allow the user to modify properties of the ‘Path’ such as the line color,
style and weight.

The following diagram illustrates the Study Dialog that is presented to the user when they create or
modify our study. Notice how the information described in the StudyHeader and the SettingsDescriptor
are used to generate this dialog.

Figure 25 - Study Dialog

& My Moving Average m X
My Moving Average
This simple example displays an exponential moving average
General 'SettmgT.ab
General :
From the InputDescriptor
_Inputs ‘Input’ (notice the default —
: e value is "Close’)
Input: | Close J /
Period: 20 E IntegerDescriptor
- - for "Period’
- ettingGroup
D'splay.{Dlsplay]
Line: | I - | & & PathDescriptor
for "Line’
| Create | | SaveDefaults | | Cancel J

The classes used in this section are available from the package
‘com.motivewave.platform.sdk.common.desc’. There are a number of classes in this package (see API
documentation for full details). In this example we are concerned with the following:

e SettingsDescriptor — This class encapsulates all of the settings

e SettingTab — Used to organize settings into ‘Tabs’ that are displayed in the Study Dialog

e SettingGroup — Organizes settings within a tab into logical groups

e Setting Descriptors — MotiveWave™ has many setting descriptors (base class SettingDescriptor).
The ones used in this example are:

o InputDescriptor — Inputs used to calculate values. Typically these are historical data
inputs such as open, high, low or close values, but may also include derived values (such
as weighted price) or values generated by other studies.

o IntegerDescriptor — Describes an integer input value. This can be constrained to a
specified range (1 — 9999 in this case)

Version 1.1 ©2012 MotiveWave™ Software Page 33 of 78

MotiveWW ave™ 4 M
SDK Programming Guide -

o PathDescriptor — Describes how to render the path. In this case the user can choose the
line width, style and color

3.2.2 Run Time Information

Run time information is specified using the StudyDescriptor. For the purposes of our example, this will
include the following:

e Label Settings — Describes how to create and display the label (study legend) for this study. In
our case we want the label to include the Input and Period. For example, with an input of CLOSE
and a period of 20, the label will look like: ‘My MA(C,20)’

e Declare Path — Tell MotiveWave™ to create and draw a path using the information created by
the PathDescriptor and the values generated by the study

e Export Value — Exported values may be used for a number of purposes, most notably:

o Cursor Data — Displaying information in the Cursor Data Window

o Input for Other Studies — Exported values can be used as input to other studies

o Input for Alerts — Alerts can be created to be triggered off of study values

o Study Scan — When creating a study scanner, these exported values can be used to find
specific conditions.

The following screenshot displays what our study looks like at Runtime:

Figure 26 - My Moving Average

ESHZ - 15 min o db]
— AT, 20) Label Settings $]
hU " 135000
i _1348}5
_1348.00

[—
I

\ —1346.00

H1344.00
Chart ESHZ(15 min} - Primary &n...]
Time Feb-13 15:30:00 1

High 1349.75 1
x 71342.25

Mame |Value |

Law 1348.00
Open 1349.25
Close 134875

Wolume 342K Exported Value
My MA(C, 20) 1345.41

<5 oxz MotiveWave
1 1 1 1 1 1 1 1 1 1 1
9:00 12:00 15:00 18:00 21:00 Feh-14 3:.00 5:00 7:00 9:00 12:00 15:00 18:00 21:00

QU_

Version 1.1 ©2012 MotiveWave™ Software Page 34 of 78

MotiveWave™
SDK Programming Guide

y

3.3 calculate method

This method is used to calculate the value(s) for a particular bar in the data series (identified by the
index parameter). This method is called by the ‘calculateValues’ method for every bar in the data series.
Alternatively, you could override the ‘calculateValues” method if you want to handle the creation of all

values for the data series.
In this case we are going to do the following:

1. Retrieve the User Settings — ‘getSettings()’ returns a reference to the Settings object.

2. Get the DataSeries — This is the interface to the historical data and a repository for any values
computed by the study. This also contains several utility methods for computing values such as

moving averages.

3. Compute the EMA —this is done by calling the utility method ‘ema’ with the input specified by

the user.

4, Store the EMA in the data series — This value is stored at the given index using the key:

Values.MA

Figure 27 - My Moving Average calculate method

/*% Thiz method calculates the moving average for the given index in the data series. */
@Cverride
protected wvold calculate(int index, DataContext ctx)
{
f Get the settings as defined by the user in the study dialog
/ getSettings() returns a Settings object that contains all

ff of the zettings that were configured by the user.
o Cbject input = getSettings () .getInput (Inputs.INPUT) :
int period = getSettings|().getInteger (Inputs.PERIOD) ;!

Inputs specified
by the user in the
Study Dialog

In order to calculate the exponential moving average
Iz periocod' points of data
if (index « period) retuorn:

'/ we need at least

f Get access to the data series.
/{ This interface provides access to the hist

A/ as utility methods to make this calcula
enataSeries zeries = ctx.getDataSeries():

DataSeries interface
provides access to
the historical data
among other things

f This utility method allows us to calculate the Exponential
/{ Moving Average instead of doing this ourselwves.

Ltility method
calculates the
EMA, for us.

{ Calculated walues are stored in the data series using

The DataSeries interface contains several of these
el}nuble average = series.ema(index, period, input):

[/ a key (Values.MRn). The key can be any unigue walue, but
'/ we recommend using an enumeration to organize these within
'/ wour class. HNotice that in the initialize method we declared
Save the calculated
value, using the key
Values . MA

a path using this key.
Qseries.setnnubletindex, Values. M4, average);

!‘Aww-uuir“‘;_J"’.h‘bH s, .rﬂuﬂ-nuudi"ﬁﬁ\4!w\ e K““r‘mﬁtr‘ruiﬁﬁﬁq“d‘r‘-‘H“P-FH‘l1

Version 1.1 ©2012 MotiveWave™ Software Page 35 of 78

MotiveWave™ , Motive
SDK Programming Guide w

4 Study Plot Example: ‘Simple MACD’

In this example we are going to create a Study Plot based on a simple MACD. Note: if you would like a
more comprehensive MACD example, you can look at the source code for the MACD indicator that exists
within MotiveWave™.

MACD stands for ‘Moving Average Convergence/Divergence’ and was written by Gerald Appel in the
1970s. If you would like more information on this study go to: http://en.wikipedia.org/wiki/MACD.

Here is a screen shot of what this study looks like:
Figure 28 - Simple MACD

'¢+ ;a] TrﬁI []' S db @-
0 b,
U mJ"Tm[J* x * *T.

30.60

a
[]|+[jl“|]+mﬂ+

i =
wﬂ“ﬂ -

) MACD]
P Motn.feWalve | | | | T Indicator |]
Feb-10 12:00 Feh-13 12:.00 FEb 15 1200 1500 H

-0.150

Here is a screen shot of the Study Dialog that the user will use to configure the Simple MACD:

Version 1.1 ©2012 MotiveWave™ Software Page 36 of 78

http://en.wikipedia.org/wiki/MACD

MotiveWave™
SDK Programming Guide

& Simple MACD X

Simple MACD

This is a simple version of the MACD for example purposes.

| General | Display g‘:etting Tab 'Display‘j
Paths : ' B
,_____<C8ettmg Group ‘Paths’ |

y

—
MACD Path: | I - | |) | *| | ¢ | & Display
Signal Path: | NN - | | | v (,—i (/] Display

Bar Color: | I - | (V] Display
Indicators <(Setting Group ‘Indicators’ l

N— — N

MACD Ind: | v | | I - | (] Line (V] Display
Signal Ind: N - | ~ Line (] Display

Histind: NN - I - Line] Display

[Create J [Save Defaults J [Cancel J

Let us start by looking at the source code for this study:

package study examples;

import com.

import com

motivewave.platform.

.motivewave.platform.
import com.

motivewave.platform.

sdk.common. *;
sdk.common.desc.*;
sdk.study.*;

/** Simple MACD example. This example shows how to create a Study Plot
that is based on the MACD study. For simplicity code from the
MotiveWave MACD study has been removed or altered. */
@StudyHeader (
namespace="com.mycompany",
id="SimpleMACD",
name="Simple MACD",
desc="This is a simple version of the MACD for example purposes.",
menu="My Studies",
overlay=false)
public class SimpleMACD extends Study
{
// This enumeration defines the variables that we are going to store in the
// Data Series
enum Values { MACD, SIGNAL, HIST };
final static String HIST IND "histInd";

// Histogram Parameter
/** This method initializes the settings and defines the runtime settings. */
@verride
public void initialize (Defaults defaults)
{
// Define the settings for this study
// We are creating 2 tabs: 'General' and 'Display’
SettingsDescriptor settings new SettingsDescriptor();
setSettingsDescriptor (settings);
SettingTab tab new SettingTab ("General");
settings.addTab (tab) ;

Version 1.1 ©2012 MotiveWave™ Software Page 37 of 78

Votivewave ™ ’ MotiveWave
SDK Programming Guide V .

// Define the 'Inputs'

SettingGroup inputs = new SettingGroup ("Inputs");

inputs.addRow (new InputDescriptor (Inputs.INPUT, "Input", Enums.BarInput.CLOSE)
inputs.addRow (new IntegerDescriptor (Inputs.PERIOD, "Period 1", 12, 1, 9999, 1)
inputs.addRow (new IntegerDescriptor (Inputs.PERIODZ2, "Period 2", 26, 1, 9999, 1
inputs.addRow (new IntegerDescriptor (Inputs.SIGNAL PERIOD, "Signal Period", 9,
tab.addGroup (inputs) ;

) ;
) ;

)) i

1, 9999, 1));

tab = new SettingTab("Display");
settings.addTab (tab) ;
// Allow the user to configure the settings for the paths and the histogram
SettingGroup paths = new SettingGroup ("Paths");
tab.addGroup (paths) ;
paths.addRow (new PathDescriptor (Inputs.PATH, "MACD Path",
defaults.getLineColor (), 1.5f, null, true, false, true));
paths.addRow (new PathDescriptor (Inputs.SIGNAL PATH, "Signal Path",
defaults.getRed(), 1.0f, null, true, false, true));
paths.addRow (new BarDescriptor (Inputs.BAR, "Bar Color", defaults.getBarColor (), true, true));
// Allow the user to display and configure indicators on the vertical axis
SettingGroup indicators = new SettingGroup ("Indicators");
tab.addGroup (indicators) ;
indicators.addRow (new IndicatorDescriptor (Inputs.IND, "MACD Ind",
null, null, false, true, true));
indicators.addRow (new IndicatorDescriptor (Inputs.SIGNAL IND, "Signal Ind",
defaults.getRed (), null, false, false, true));
indicators.addRow (new IndicatorDescriptor (HIST IND, "Hist Ind",
defaults.getBarColor (), null, false, false, true));

RuntimeDescriptor desc = new RuntimeDescriptor();

setRuntimeDescriptor (desc) ;

desc.setLabelSettings (Inputs.INPUT, Inputs.PERIOD, Inputs.PERIODZ2, Inputs.SIGNAL PERIOD) ;

// We are exporting 3 values: MACD, SIGNAL and HIST (histogram)

desc.exportValue (new ValueDescriptor (Values.MACD, "MACD", new String[]
{Inputs.INPUT, Inputs.PERIOD, Inputs.PERIODZ2}));

desc.exportValue (new ValueDescriptor (Values.SIGNAL, "MACD Signal",
new String[] {Inputs.SIGNAL PERIOD})) ;

desc.exportValue (new ValueDescriptor (Values.HIST, "MACD Histogram", new Stringl]
{Inputs.PERIOD, Inputs.PERIOD2, Inputs.SIGNAL PERIOD})) ;

// There are two paths, the MACD path and the Signal path

desc.declarePath (Values.MACD, Inputs.PATH);

desc.declarePath (Values. SIGNAL, Inputs.SIGNAL PATH) ;

// Bars displayed as the histogram

desc.declareBars (Values.HIST, Inputs.BAR);

// These are the indicators that are displayed in the vertical axis

desc.declareIndicator (Values.MACD, Inputs.IND);

desc.declarelIndicator (Values.SIGNAL, Inputs.SIGNAL IND);

desc.declarelIndicator (Values.HIST, HIST IND);

// These variables are used to define the range of the vertical axis
desc.setRangeKeys (Values.MACD, Values.SIGNAL, Values.HIST);

// Display a 'Zero' line that is dashed.

desc.addHorizontallLine (new LineInfo (0, null, 1.0f, new float[] {3,3}));

}

/** This method calculates the MACD values for the data at the given index. */
@Override
protected void calculate (int index, DataContext ctx)
{
int periodl = getSettings() .getlInteger (Inputs.PERIOD);
int period2 = getSettings () .getlInteger (Inputs.PERIOD2) ;
int period = Util.max(periodl, period2);
if (index < period) return; // not enough data to compute the MAs

// MACD is the difference between two moving averages.

// In our case we are going to use an exponential moving average (EMA)
Object input = getSettings().getInput (Inputs. INPUT) ;

DataSeries series = ctx.getDataSeries();

Double MAl = null, MA2 = null;

MAl = series.ema(index, periodl, input);
MA2 = series.ema(index, period2, input);
if (MAl1 == null || MA2 == null) return;

Version 1.1 ©2012 MotiveWave™ Software Page 38 of 78

MotiveWave™ Motive
SDK Programming Guide w

// Define the MACD value for this index
double MACD = MAl - MA2;
series.setDouble (index, Values.MACD, MACD) ;

int signalPeriod = getSettings().getInteger (Inputs.SIGNAL PERIOD);
if (index < period + signalPeriod) return; // Not enough data yet

// Calculate moving average of MACD (signal path)

Double signal = series.sma(index, signalPeriod, Values.MACD);
series.setDouble (index, Values.SIGNAL, signal);

if (signal == null) return;

// Histogram is the difference between the MACD and the signal path
series.setbDouble (index, Values.HIST, MACD - signal);
series.setComplete (index) ;

4.1 StudyHeader Annotation (@StudyHeader)

The main difference in the study header from the previous example is the ‘overlay’ tag is set to false.
This indicates to MotiveWave™ that this study should be displayed in a separate study plot. You will
notice here as well that we have included some HTML markup in the ‘desc’ tag. The description
displayed in the Study Dialog supports HTML so you can put any valid HTML tags here (do not include
JavaScript, this is not supported).

Figure 29 - Simple MACD Study Header
package study examples;

import com.motivewave.platform.sdk.common.*;
import com.motivewave.platform.sdk.common.desc, ®;
import com.motivewave.platform.asdk.study.*;

S *% Simple MACD example. This example shows how to create a Study Graph (
that is based on the MACD study. For simplicity code from the L
MotiveWave MACD study has been removed or altered. */f ‘

i5tudyHeader |

Mote: HTML tags

namespace="com.nycomnpany”, e
are permissible here

id="SimpleMACD"™,

name="5imple MALCD",
desc="This is a simple version of the MACD for example purposes.”,
menu="HMy Studies",

—fl_ndicates that this

overlay=false) — _
poblic class S5impleMACD extends Study IS aStUdy Graph
-
Conninammmeds o et . NPV s

4.2 initialize method

We have defined a bit more in the initialize section from the previous example. To illustrate the usage
of tabs, we have created 2 tabs: ‘General’ and ‘Display’. We have also defined the bars for the
histogram (see BarDescriptor).

Indicators are displayed on the vertical axis (right side of the screen). By default, we are only going to
show the first indicator (MACD), but we will allow the user to show indicators for the current signal

Version 1.1 ©2012 MotiveWave™ Software Page 39 of 78

MotiveWave™ . / MotiveWave
SDK Programming Guide

value as well as the histogram. For this we will use the IndicatorDescriptor and set the values

accordingly. We have organized these into a Setting Group called ‘Indicators’

The following screen shot (with markup) shows the part of the initialize method where we are describing
the settings for the study:

Figure 30 - Simple MACD initialize settings

{

JS*% This method initializes the settings and d
@0verride
public volid initialize (Defaults defaults)

Defaults class provides access to !
default colors, fonts etc. These

values can change depending on

user settings (ie Theme, or other

 Define the settings for this study . .
settings in Preferences)

/ We are creating 2 tabs: 'General' and 'Di
SettingsDescriptor settings = new SettingsDescriptor ()

setSettingsDescriptor (settings) ;
SettingTab tab = new SettingTab("General™): ‘General tab

settings.addTab (tab) ;

f Define the 'Inputs'
SettingGroup inputs = new SettingGroup ("Inputs™):
inputs.addRow (new InputDescriptor(Inputs.INFUT, "Input”™, Enums.BarInput.CLOSE)}) !
inputs.addRow (new IntegerDescriptor (Inputs.PERICD, "Period 1", 12, 1, 89985, 1}):

inputs.addRow (new IntegerDescriptor (Inputs.PFERIODZ, "Period 2", 26, 1, 9855, 1)):

inputs.addRow (new IntegerDescriptor (Inputs.SIGNAL PERIOD, "Signal Pericd"”,
9, 1, 99939, 1)):
tab.addGroup (inputs) ;

tab = new SettingTab("Display"): ‘Display” tab

settings.addTab (tab) ;

/4 Allow the user to configure the setting=s for the paths and the histogram

SettingGroup paths = new SettingGroup ("Patha"):

tab.addGroup (paths) ;

paths.addRow (new PathDescriptor(Inputs.PATH, "MACD Path"™,
defaults.getlLineColor(), 1.5f, nunll, trme, false, “troe)):;

paths.addRow (new PathDescriptor (Inputs.SIGNAL PATH, "S5ignal Path",
defaults.getBed(), 1.0f, nmll, true, false, t 11z

paths.addRow (new BarDescriptor (Inputs.EBAR, "Bar Color™, This describes the
defanlts.getBarColor (), troe, trmoe)): histargram bars

/ Bllow the user to display and configure indicators on thPTerTICET ZXI=
SettingGroup indicators = new SettingGroup ("Indicators"):;
tab.addGroup (indicators) ;

MACD and
Signal Paths

indicators.addRow (new IndicatorDescriptor (Inputs.IND, "MACD Ind", This section
nnll, nmll, false, trme, troe)): describes the

indicators.addRow (new IndicatorDescriptor (Inputs.SIGNAL IND, "Signal In|indicators that are
defaults.getRed(), nmll, false, fal=se, true)): displayed on the

indicators.addRow (new IndicatorDescriptor (HIST IND, "Hist Ind", vertical axis.

defaults.getBarColor (), nuoll, false, false, trume)):;

Next, we need to describe the runtime parameters using the RuntimeDescriptor. For the label, we want
to append the input, period, period2 and the signal period.

In this case, we are going to export 3 values: MACD, SIGNAL and HIST.

Version 1.1 ©2012 MotiveWave™ Software Page 40 of 78

MotiveWave™ / l\/]o]vu.z Jave
SDK Programming Guide QY e e

In order to display the histogram as bars, we use the ‘declareBars’ method on the study descriptor. This
will tell MotiveWave™ to show vertical bars using the BarDescriptor identified by Inputs.BAR.

Figure 31 - Simple MACD initialize runtime

S#% Thiz method initiazlizes the settings and defines the runtime settings. */
@E0verride
puklic wvold initialize (Defaults defaults)
{

Define the zettings for this study

We are creating 2 tabs: 'General'
SettingsDescriptor settings = new SettingsDescriptor():
setSettingsDescriptor (settings) ;

s
- J
{

EuntimeDescriptor desc = new RuntimeDescriptor():

Export Values.
These can be
displayed in the
Cursor Data

setBuntimeDescriptor (desc) ;
desc.setlLabelSettings (Inputs. INFUT, Inputs.PERICD,
Inputs. FERICDZ, Inputs.SIGNAL PERICD) ;
We are exporting 3 values: MACD, SIGHAL and HISF(hi=stggfam) Window or used as
deasc.exportValue (new ValueDescriptor (Values.MACD, "HMACEY, new Stinmﬂatuumer
{Inputs.INFUT, Inputs.FPFERICOD, Inputs.FERICDE})) studies.
desc.exportValue (new ValueDescriptor (Values.SIGNAL, "MACDY Signa
new String[] {Inputs.SIGNAL PERTOD})):
desc.exportValue (new ValueDescriptor(Values.HIST, "HACD Histogram", new Strlng(
{Inputs.FPERICD, Inputs.PERICDZ, Inputs.SIGNAL PERICDG)):
There are two paths, the MACD path and the Signal path

desc declarePath (Values.MACD, Inputs.PATH): Decl Path

desc.declarePath (Values.S5IGNAL, Inputs.SIGNAL PATH) ; eclare Paths /
y Bars displayed as the histogram

deac.declareBars (Values.HIST, Inputs.BAR) ! }
'/ These are the indicators that are displayed in the wvertical axis

desc.declarelIndicator (Values.MACD, Inputs.IND) !
desc.declarelndicator (Values.5IGNAL, Inputs.SIGNAL IND):
desc.declareIndicator (Values.HIST, HIST TND);

Declare the
Indicators

This values
determine the range
ofthe vertical axis

y The=e wvariables are used to define the range of the wvertic

deac.setRangeFeys (Values . MACD, Values.SIGNAL, Values.HIST):
Display a '"Zero' line that is dashed.

desc.addHorizontalline (new LineInfo (0, nnll, 1.0f, new float[] {3,3})):

WP PRSP e

4.3 calculate Method

The calculate method is used to compute the values for each historical bar in the data series. In our
case, we are going to do the following:

1. Retrieve User Settings — these are accessed from the getSettings() method.

Version 1.1 ©2012 MotiveWave™ Software Page 41 of 78

MotiveWave™ Y

’

SDK Programming Guide -

2. Compute and Store the MACD — The DataSeries object contains the historical data as well as the
utility methods for computing moving averages. The MACD value is stored in the data series at
the given index using the key Values. MACD.

3. Compute and Store the signal — The signal is a moving average of the MACD. Use the data series
to compute the moving average with Values.MACD as the key. The signal value is stored in the
data series at the given index using the key: Values.SIGNAL.

4. Compute and store the histogram — The histogram is simply the difference between the MACD
and the signal. This is stored in the data series at the given index using the key: Values.HIST.

5. Mark the index as ‘Complete’ - Finally, indicate that this index is ‘complete’. This allows
MotiveWave™ to cache these values (to improve performance).

WWW. TRADING-SOFTWARE-COLLECTION.COM
ANDREYBBRV@GMAIL.COM SKYPE: ANDREYBBRY

Version 1.1 ©2012 MotiveWave™ Software Page 42 of 78

andrey
tr-soft-collection

VotiveWave / MotiveWave
SDK Programming Guide v

Analyze. Trade. Evolve

Figure 32 - Simple MACD calculate method

JS#% This method calculates the MACD wvalues for the data at the given i‘
BECwverride

protected vold calculate(int index, DataContext ctx))
{
int periodl = getSettings () .getlnteger (Inputs. PERICD) ; F
oint period? = getSettings().getinteger (Inputs. FERICDZE) ; '

int period = Util.max(periodl, period?):; Make sure we have
if (index < period) retnrn:; // not enough da enough data to
compute the MACD

-
Ny

S MACD is the difference between two moving
S/ In our case we are going to use an exponential moving average (E
Chiject input = getSettings() .getlnput (Inputs. INEUT) ;

DataSeries series = ctx'gEtDataseries‘}i“:::;f}heDamSEHEEpmwdes
Double MR1 = nmnll, MAZ = nmll; access to historical data

utility methods and is a
QHAI = geries.ema(index, periodl, input): container for values
ML2? = series.ema(index, period2?, input): \CUmpUtEd by the study
if (MA1l == nuoll || MA2 == nmll)} retorn;
S/ Define the MACD walue for this index MACD is the difference
double MACD = MAl - MAZ; between the two
series.setDouble (index, Values.MACD, MACD) ; moving averages

Qint signalPeriod = getSettings () .geclnteger (Inputs.STGNAL FERTOD) ;
if (index < period 4+ signalPeriod) retorn; // Hot enough data vet

Jf Calculate moving average of MACD (=ignal path)
Double =signal = series.sma(index, signalPeriod, Values.MACD) ;
zeries.setlouble (index, Values.SIGNAL, =signal);

. . The signal is the moving
if (=signal = nunll) retorn; average of the MACD

S/ Histogram is the difference between the MACD and the signal path
Qseries.setﬂnuble:index, Value=s.HIST, MACD - =ignal):;

95“135 -setComplete (index) ; Tell MotiveWave that it is

ok to cache these values
H for this index

\
) VL N

Version 1.1 ©2012 MotiveWave™ Software Page 43 of 78

MotiveWave™ ,
SDK Programming Guide S

5 Drawing Figures

The draw package (com.motivewave.platform.sdk.draw) contains classes for drawing figures (markers,
lines etc) as part of the study. Additional classes will likely be added to this package as the SDK evolves.

All figures have one or more Coordinate values (see common package) that are used to specify the
location of the figure. These coordinates are composed of a ‘real’ time and value that are translated to
plot (x,y) points before they are drawn.

Figure 33 - draw classes

You can create your own figures
by deriving from this class.

-~
Text Coordinate
Fi -
_rlgure -text -time
+isVisible() -font -value
+contains() -textColor
+layout() +draw() common
+draw() +layout() DrawContext package
+contains() +translate()
+getBarWidth()
+getSettings()
+getDefaults()
| Label | | Line | | Marker | |Co|orRange| +getBounds()
_J

The following methods are available on the Study class for working with figures:

e clearFigures() —clears all figures from the study

e addFigure(Figure f) - adds a figure to the study

e removeFigure(Figure f) —removes an existing figure

e getFigures() — gets all of the figures added to the study

5.1 Figure Class

The Figure class is the base class for all figures that may be drawn as part of the study. You may derive
from the class to create a custom figure to display as part of the study. This class consists of the
following methods:

1. isVisible(DrawContext ctx) —returns true if this figure is currently visible in the given draw
context. This is used by the study framework to improve performance by only working with
figures that are currently visible.

2. contains(double x, double y, DrawContext) — returns true if the figure contains the given (x,y)
coordinates. This is used by the study framework to determine if the mouse pointer is currently
above the study (and is selectable).

3. layout(DrawContext ctx) — This method is used to prepare the figure to be drawn. Typically
coordinates are translated to plot values (x,y pixel locations) and any intermediate draw figures
are created.

4. draw(Graphics2D gc, DrawContext ctx) — This method draws the figure on the plot.

Version 1.1 ©2012 MotiveWave™ Software Page 44 of 78

MotiveWave™ / MotiveW
SDK Programming Guide N e

5.2 Marker Class

The Marker class makes it convenient to highlight points of interest on the plot. Often this class is used
in conjunction with signals. There are several different types of markers (triangle, arrow, circle etc).
These types are defined in the enumeration MarkerType (found in the Enums interface).

5.3 Line Class

The Line class is useful for drawing trend lines or vertical/horizontal lines. There are several convenience
options in this class for extending the line, setting the color and line style. You can even have the line
draw a different color above and below a given value.

5.4 Label Class

This class makes it easy to draw text labels at specific points on the study.

5.5 ColorRange Class

This class is convenient for creating ‘Heat Map’ studies. A good example of this is the Swami Stochastics
study. Each ColorRange object is essentially a bar that has a series of colors regions defined for a range
of values. The following screen shot illustrates what this looks like:

Figure 34 - Color Range Example

YA A L W A
|¢] I

use of a ColorRange Figure
to create a 'Heat Map’

<i:>:><: MotlveWa\.r
1 I 1 I

14.00 15.00 18.00 20:00 22:00 May-10 200 4:00 6:00 8:00 10:00

Swami Stochastics(12,4

D L R e T T T N

Version 1.1 ©2012 MotiveWave™ Software Page 45 of 78

MotiveWave™
SDK Programming Guide -

6 Signals

All studies and strategies may generate signals. Signals are events that occur at points of interestin a
study. Often signals are used as indicators of buy or sell points.

The end user may configure the study to create alerts from the signals generated by the study. To
provide a high level of flexibility, the user may choose which signals they want alerts for and how the
alerts behave.

The Sample Moving Average Cross (see sample project) is one example of a study that generates signals.
This study generates two signals:

1. Fast MA Crossed Above — This occurs when the Fast MA (shorter period) crosses above the Slow
MA
2. Fast MA Crossed Below — This occurs when the Fast MA crosses below the Slow MA

By default, these signals do not do anything other than show an up or down marker where the crosses
occur on the plot. The user can configure alerts for these signals from the ‘Signals’ tab of the Study
Dialog.

Figure 35 - Signals Tab

& Sample Moving Average Cross X

Sample Moving Average Cro))) _
Signals Tab. This tab is shown if

Displays a signal arrow when two maovi the study generates signals
(signals=true in the Study Header)

[General T Display I Signals pti

1

L AE Available Signals]

Fa

Signal: | Fast MA Cross Above
SE i FastMACross Above

Fast MA Cross Below

All Bar Sizes:

= =

Show Alert: |£*45hnws the alert history window I

Play Sound: |Yes ¥| [V] Use PresetSound Preset or custom

sounds can be played
Sound File: hwse

send Email: [No | ¥

Email Address:

[Create J [Save Defaults J l Cancel J

The following steps are required to generate signals for a study:

1. signal tag — set the ‘signal’ property in the StudyHeader to true
2. declare signals — There are two signals, cross above and cross below.

Version 1.1 ©2012 MotiveWave™ Software Page 46 of 78

MotiveW ave™ I 4 MotiveWave

SDK Programming Guide Y e

3. call ‘signal’ method —this generates the signals.

Figure 36 - signal tag (StudyHeader)

package study examples;

/** Moving Average Cross. This study consists of two moving averages:
Fast MA (shorter period), Slow MA. Signals are generated when the
Fast MA moves above or below the Slow MA. Markers are also displayed
where these crosses occur. */
@StudyHeader(
namespace="com.mycompany" ,
id="MACROS5",
name="%ample Moving Average Cross"”,
label="MA Cross",
desc="Displays a signal arrow when two moving averages (fast and slow) cros
menu="Examples", .
overlay=true, ‘4 signals property
o . _ must be set to true
signals=true)
public class SampleMACross extends Study
{
enum Values { FAST_MA, SLOW MA };
enum Signals { CROSS_ABOVE, CROSS_BELOW };

@verride
public woid initialize(Defaults defaults)
{
/f User Settings
SettingsDescriptor sd=new SettingsDescriptor();
setSettingsDescriptor(sd);
// Buntime Settings
RuntimeDescriptor desc=new RuntimeDescriptor();

setRuntimeDescriptor(desc); Decl h
! eclare eac

[/ Signals type of signal.

desc.declareSignal(Signals.CROSS ABOVE, "Fast MA Cross Above™);
desc.declareSignal(Signals.CR0OSS BELOW, "Fast MA Cross Below");

desc.setRangeKeys(Values. FAST_MA, Values.SLOW MA);

Version 1.1 ©2012 MotiveWave™ Software Page 47 of 78

MotiveWave™ 4 MotiveWave
SDK Programming Guide

Figure 37 - Generating Signals

@override
protected void calculate(int index, DataContext ctx)
{
int fastPeriod=getSettings().getInteger(Inputs.PERIOD);
int slowPeriod=getSettings().getInteger(Inputs.PERIOD2);
if (index < Math.max{fastPeriod, slowPeriod)) return; // not enough data

DataSeries series=ctx.getDataSeries();

J// Calculate and store the fast and slow MAs
Double fastMA=series.ma(getSettings().getMAMethod(Inputs.METHOD), index, fastPeriod, getSett
Double slowMA=series.ma{getSettings().getMAMethod(Inputs.METHOD2), index, slowPeriod, getSet
if (fastMA == null || slowMA == null) return;

series.setDouble(index, Values.FAST M4, fastMA);
series.setDouble(index, Values.S5L0W MA, slowMA);

if (!series.isBarComplete(ind crossedAbove(...) and crossedBelow(...)
are convenience methods for determining

if two paths have crossed

// Check to see if a cross oc
Coordinate c=new Coordi .getStartTime(index), slowMA);
if (crossedAbovetSeries, index, Values.FAST MA, Values.SLOW M4)) {
MarkerInfo marker=getSettings().getMarker{Inputs.UP MARKER);
if (marker.isEnabled()) addFigure(new Marker{c, Enums.Position.BOTTOM, marker));
Q ctx.signal(index, Signals.CROS5 ABOVE, "Fast MA Crossed Above!"”, series.get(Close(index));

h Generate signals. Mote: these [

else if (crossedBeldy g, only triggered when the FAST M4, Values.SLOW MA)) {
MarkerInfo mar =g |ast bar is completed [nputs.DOWN MARKER);
if (marker.#SEnablewyyy ot r{c, Enums.Position.TOP, marker));

q ctx.signal(index, Signals.CROSS BELOW, "Fast MA Crossed Below!", series.get(Close(index));

series.setComplete(index);

b

Version 1.1 ©2012 MotiveWave™ Software Page 48 of 78

MotiveW ave ™ [MotiveWave

SDK Programming Guide) e

7 Strategies

Strategies allow you to automate (or partially automate) the buying and selling of instruments. The
strategy APIs build upon the study classes and interfaces described in the preceding sections.

7.1 StudyHeader

Let’s start buy looking at what is needed in the StudyHeader to declare a strategy:

Figure 38 - Study Header - Strategy Options

J** @return true if this study is a stratecu 2l -
boolean strategy() default false; Must be set to true’ in order
tegy tag must be t

/** @return true if this strategy suppo for it to be a strategy
boolean autoEntry() default true;
/** @return true if this strategy sup Automatic vs Manual fegy tag must be true
boolean manualEntry() default false; Strategies

/** @return true if this strategy supports The display of the entry price (strateg
boolean supportsEntryPrice() default true; -L

J/** @return true if this strategy supports the display of the
boolean supportsPosition() default true;
J** @return true if this strategy supports the display of the current profit/loss
boolean supportsCurrentPL() default false;
/** @return true if this strategy supports the disp
boolean supportsTotalPL() default false;
/** @return true if this strategy supports th[dis

position price (stra

rofit/loss (s

Information displayed
in control box

tio (strategy

boolean supportsRiskRatio() default false;
JS** @return true if this strategy supports th
boolean supportsStopPL() default false;

J*¥* @return true if this strategy supports tTE display of the target profit/loss |
boolean supportsTargetPL{) default false;
/** @return true if this strategy supports the display of the realized profit/loss
boolean supportsRealizedPL() default false;
/** @return true if this strategy supports the display of the unrealized profit/lo
boolean supportsUnrealizedPL() default false;
J** Indicates if the Trade Options panel shDuld be shown.[]
boolean showTradeOptions() default true;
J*¥* Indicates if the strategy supports the "tradq lots® feature. []
boolean supportsTradelots() default true;

/** Indicates if the strategy supports the 'pnsit%igzﬁ Supported Trading
on

display of the stop profit/loss (st

boolean supportsPositionType() default false; Options
/** Indicates if the strategy supports the 'enten E
boolean supportsEnterOnlActivate() default true;

J*¥* Indicates if the strategy supports the "closdq on deactivate® feature. []
default true;

The most important property to have set is “strategy=true”. The “autoEntry” and “manualEntry”
properties may be used to indicate that the strategy is automatic or manual (Note: Trade Manager is an
example of a manual entry strategy).

Version 1.1 ©2012 MotiveWave™ Software Page 49 of 78

MotiveWave™ Motive
SDK Programming Guide -

7.2 Study Class

There are a number of other methods available on the Study class that may be used for strategies.
following excerpt from the Study class illustrates the strategy event methods:

Figure 39 - Strategy Events

/i Strategy Methods

J¥* This method is called when the strategy is activated. */

public void onActivate(OrderContext ctx) [J

/** This method is called when the current bar is first opened.[]
public void onBarOpen{OrderContext ctx) []

J** This method is called when the current bar has been updated. */
public void onBarUpdate(OrderContext ctx) [

/** This method is called when the current bar has been closed.[]
public void onBar(Close(OrderContext ctx) []

/** This method is called when a signal is generated by the study.
public wvoid onSignal(OrderContext ctx, Object signalKey)[]

J** This method is called when the strategy is deactivated. */
public veoid onDeactivate(OrderContext ctx) []

/** This method is called when the strategy is reset. */

public void onReset(OrderContext ctx) []

J** This method is called when the current open position is closed.
public veid onPositionClosed(OrderContext ctx) {1

J** This method is called on response to the ' ManuaIEnHy-}tcﬂ on

public void onEnterNow(OrderContext ctx) {} Method Only

P e ey, e e s,

e onActivate(OrderContext ctx) — This method is called when the user presses the ‘Activate’

button in the Control Box. If the user has chosen the ‘Enter on Activate’ option this method

should create an entry order for the appropriate direction.

The

e onBarOpen(OrderContext ctx) — This method is called when the price bar is first opened. Note:

live bar updates must be enabled for this method to be called.

e onBarUpdate(OrderContext ctx) — This method is called when the current price bar is updated.

Note: live bar updates must be enabled for this method to be called.

e onBarClose(OrderContext ctx) — This method is called when the current price bar is closed (just

before the next price bar is opened).

e onSignal(OrderContext ctx, Object signal) — This method is called when a signal is raised by a

study. This is a convenient method to override if your strategy is based on signals from an
existing study (see Sample MA Cross Strategy).

e onDeactivate(OrderContext ctx) — Called when the user presses the ‘Deactivate’ button. By

default this method will close the open position (if enabled by the user).

e onReset(OrderContext ctx) — This is called when the user presses the ‘reset’ button on the
control box.

e onPositionClosed(OrderContext ctx) — Called when an open position is closed.

Version 1.1 ©2012 MotiveWave™ Software Page 50 of 78

MotiveWave™ I MotiveWave
SDK Programming Guide =wamgnuwe--=ttatARa.

e onEnterNow(OrderContext ctx) — Called when the user presses the ‘Enter Now’ button on the
Control Box. Note: this is only applicable for manual strategies.

In addition to the events described above, there are also a set of methods for handling orders and a set
of properties available to strategies. For a full list of available methods, please consult the API
documentation.

Figure 40 - Order Events and Properties

LF

// Order EBEvents
1/

J** This method is called when an order is filled. */
public void onOrderFilled(OrderContext ctx, Order order) {}
J** This method is called when an order is cancelled. */
public wvoid onOrderCancelled(OrderContext ctx, Order order
/** This method is called when an order is rejected. */
public void onOrderRejected(OrderContext ctx, Order order)
J** This method is called when an order is cancelled. */
public void onOrderModified(OrderContext ctx, Order order) {}

//

// Strategy Properties

I

/** Gets the current state of this strategy. */

public final Enums.StrategyState getState() {...}

/** Sets the current state of this strategy. */

public final void setState(Enums.StrategyState state) []

J** Gets the current entry state of this strategy. */

public final Enums.EntryState getEntryState() {...7} T
/** Sets the current state of this strategy. */ i Properties
public final void setEntryState(Enums.EntryState state) []
/** Gets the current stop price for an active strategy.
This may be used to calculate the stop profit/loss (null if there is no s
public final Float getStopPrice() {...}

J¥* S5ets the stop price for the active strategy. Use null to indicate t
public final void setStopPrice(Float price) []

/** Gets the current target price (exit price) for an active strategy.
This may be used to calculate the target profit/loss (null if there is n
public final Float getTargetPrice() { ...}

J¥* Sets the target price for the active strategy. Use null to indicate
public final void setTargetPrice(Float price) []

-

"

Order handling
events

7.3 OrderContext Interface

The OrderContext interface is passed to most of the strategy events and provides functionality for
managing orders and positions. This interface also manages the current position state for the strategy
and provides methods for getting the unrealized profit/loss, average entry price etc. A number of
convenience methods also exist such as:

Version 1.1 ©2012 MotiveWave™ Software Page 51 of 78

MotiveW ave™ I 4 MotiveWave

SDK Programming Guide Y e

e buy(int qty) — places a market order to buy the given quantity and waits for the order to be filled.
e sell(int qty) — places a market order to sell the given quantity and waits for the order to be filled.
e closeAtMarket() —closes the current position at market price.

Figure 41 - OrderContext Interface

package com.motivewave.platform.sdk.order _mgmt;
/** This interface provides the capability to create and manage orders. *

public interface OrderContext

1

/** Gets the data context associated with this strategy. This provides
DataContext getDataContext();

/** Gets the instrument associated with the data provided in this conte
Instrument getInstrument();

J** Convenience Method: Places a BUY order for the current instrument at
void buy(int qty);

J** Convenlence Method: Places a SELL order for the current instrument
void sell(int qty);

J/*¥* Closes the position held by this strategy. This method will wait un
void closelAtMarket();

/** Gets all of the active orders that are associated with this strateg
List<Order:> getActiveOrders();

J*¥* Gets the current open position. A negative number is returned if th
int getPosition();

/** Gets the average entry price for the current position. */

float getAvgEntryPrice();

/** Gets the total realized pnl since this strategy was opened (or last
double getTotalRealizedPnlL();

/** Gets the realized PnlL for the current 'leg’ of the strategy. */
double getRealizedPnl();

J/*¥* Gets the PnlL for the open position. This value will change with ev
double getUnrealizedPnl();

/** Convenience Method. Calculates the current profit/loss from the giv
double calcPnl(fleat entryPrice, int qty);

/** Convenience Method. C(Calculates the profit/loss from the given entr
double calcPnl(fleat entryPrice, fleat exitPrice, int gty);

S*¥* Converts the given amount to the amount in the base currency using
double convertToBaseCurrency(double pnl);

The following methods may be used to manually create and manage stop, limit and market orders:

Version 1.1 ©2012 MotiveWave™ Software Page 52 of 78

MotiveWWave™ / MotiveWavi
SDK Programming Guide N e

Figure 42 - OrderContext Order Mgmt Methods

J** Creates a new "Market' order. */

Order createMarketOrder(Enums.Orderdction action, int gty); 1
J** Creates a new "Market' order. */

Order createMarketOrder(Instrument instr, Enums.OrderAction action, int gty);

J** Creates a new "Limit' order. */ p

Order createlimitOrder({Enums.0Orderdction action, Enums.TIF tif, int gty, fleat limitPrice); f{
J** Creates a new "Limit' order. */
Order createlimitOrder{Instrument instr, Enums.OrderAction action, Enums.TIF tif, int gty, f
/** Creates a new 'Stop’ order. */
Order createStopOrder(Enums.0OrderdAction action, Enums.TIF tif, int gqty, fleoat stopPrice);
/** Creates a new 'Stop’ order. */
Order createStopOrder(Instrument instr, Enums.OrderAction action, Enums.TIF tif, int gty, fl
J** Use this method to submit one or more orders to the broker.
If one or more of the orders are new, the orders will be created otherwise the
existing order will be modified. Please note: this is a synchronous call and
may take a significant amount of time to return.*/
void submitOrders(Order... orders);
J** Use this method to submit one or more orders to the broker.
If one or more of the orders are new, the orders will be created otherwise the
existing order will be modified. Please note: this is a synchronous call and
may take a significant amount of time to return.*/
void submitOrders{List<Order> orders);
/** Use this method to cancel one or more existing orders. Please note: this is a synchronou
may take a significant amount of time to return. */
veid cancelOrders(Order... orders);
/** Use this method to cancel one or more existing orders. Please note: this is a synchronou
may take a significant amount of time to return. */
void cancelOrders({List<Order> orders);
/** Cancels all of the open orders for this strategy. */
void cancelOrders();

Hﬂ*‘“-" ¥ -, e
il PrrA— —— . Y —— -~

7.4 Order Interface

Strategies that simply buy and sell positions using the buy/sell methods will not have to deal with orders
directly.

Market Orders vs Stop/Limit Orders

It can be very tempting to use stop and/or limit orders in place of market orders when
implementing a strategy since these types of orders are already placed at the exchange and they
can help guarantee execution at a particular price.

There are however several behaviors to be aware of when using these types of orders especially
with fully automated strategies:

e Limit Orders are not guaranteed to be executed. Even if the price action has traded
through your limit price, it may not have been executed in a live environment if there was
not enough demand to fill your order at the specified price.

e Stop Orders are often triggered on Bid/Ask. It's a common misconception that stop
orders are triggered by last price. Most (if not all) brokers trigger stop orders using the
bid or ask price (depending on whether it’s a buy or sell). This can cause your stop order

Version 1.1 ©2012 MotiveWave™ Software Page 53 of 78

MotiveWave™ 4 MotiveWave
SDK Programming Guide

to be executed unexpectedly early especially if there is a significant spread in the bid/ask
prices.

e Stop Orders are filled at market. Once a stop order is triggered, it is filled at market price.
Stop Limit orders do exist, but are not currently supported by this API. Also note that not
all brokers support Stop Limit orders.

If you choose to implement a fully automated strategy using non-market orders, you will need to
consider these behaviors and add the appropriate code to handle cases where your orders do not
get filled, or do not get filled at your expected price.

Ultimately, the choice you make will be a trade-off between order executions vs. fill price.

The following diagram illustrates some of the methods available in the Order interface. For a full list of
methods, consult the APlI documentation.

Figure 43 - Order Interface

package com.motivewave.platform.sdk.order mgmt;
/** Represents an order to buy or sell an instrument. */
public interface Order
{
/** Gets the account ID for this order. @return account ID for this
String getAccountId();

J*¥* @return the unique identifier for this order. Note: on some brok
String getOrderId();

/** @return the instrument of this order. */

Instrument getInstrument();

J** @return the type of this order (Stop, Limit etc) */
Enums .OrderType getType();

/** Gets the action of this order (Buy or Sell) */
Enums.OrderAction getAction();

/** Gets the limit price for the order (null if not a limit order). °
Float getlimitPrice();

/** Gets the stop price for the order (null if not a stop order). */
Float getStopPrice();

J** Gets the Time In Force for this order. */

Enums . TIF getTIF();

/** @return the size of this order (ie number of shares, contracts e
int getQuantity();

J** Gets the average fill price for this order.

* @return the average fill price for this order. */
float getAvgFillPrice();
/** @return the last price that this order was filled at. */
float getlastFillPrice();
J*¥* @return the number of shares/contracts etc that have been filled
int getFilled();
/** Gets the time (in millis) of the last fill on this order. */
long getlastFillTime();

Version 1.1 ©2012 MotiveWave™ Software Page 54 of 78

MotiveWave™ M MotiveWave
SDK Programming Guide) e

7.5 Trading Sessions
Version 1.1 of the SDK introduces the ability for the user to define trading sessions for a strategy.

A ‘trading session’ is simply a valid time period during the day in which trading is allowed for the
strategy. By default, all strategies support up to 2 trading sessions. This behavior can be modified in the
StudyHeader:

Figure 44 StudyHeader trading session options

package com.motivewave.platform.sdk.study;

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType. TYPE)
public @interface StudyHeader
{
/** Namespace for this study (Must be unique for your organization) */
String namespace();
/** @return true if this study should be protected by namespace. */
boolean secured() default false;
/** Unique (within the namespace) ID for this study. */
String id();
/** Resource bundle to pull translatable strings from. */
String rb() default "";

/** @return true if this study is a strategy. */
boolean strategy() default false;

/** Indicates if the strategy supports sessions.
* @return true if this strategy supports
boolean supportsSessions() default true;
J** Indicates if the number of sessions su
* @return number of supported sessions. */

int sessions() default 2;

/*% Indicates if the strategy supports the ‘enter on 9 gows the user to choose ef
* @return true if this strategy supports the ‘enter ¢ to automatically enter when
boolean supportsEnterOnSessionStart() default false;£y a session stars

J¥* Indicates if the strategy supports the 'exit on seS5I0M ClO=E TedLOre.
* @return true if this strategy supports the 'exit
boolean supportsCloseOnSessionEnd() default true;

set to false to disable
trading sessions

ategy (default 2).

allows the user to choose to
automatically close an open
position when a session ends

The following screen shot illustrates an example of the MA Cross Strategy with the default settings for
Trading Sessions.

Version 1.1 ©2012 MotiveWave™ Software Page 55 of 78

MotiveWave™

SDK Programming Guide &

Figure 45 Trading Session example: MA Cross Strategy

& MA Cross Strategy X

MA Cross Strategy
The strategy is based off th{ accessible from the dy. Trades occur when the fast moving
average crosses the slow | Trading Options panel
\ /
[General T Display T Trading Kpﬁons T Panel T Signals]
Trading Options
Trade Lots: 1 5
Position Type: | Both Tl
(] Enter On Activate [¥/] Close On Deactivate User may choose to
enable one or more
Trading Sessions trading sesions
: \/ —
Session 1: Start: | 10 |¥||00 |v| End:[12 »|(00 ¥ | »” | (Y] Enabled
Session 2: Start 14 00 End: 16 00 & |_] Enabled
Time Zone: [Local Time Zone :VJ
(] close On Session End Close any open
position when a
session ends
[Create J [Save Defaults J [Cancel J I}

N

7.5.1 Runtime Support

The following additional methods have been added to the Settings class to access information chosen by

the user at runtime within the strategy:

Version 1.1 ©2012 MotiveWave™ Software

Page 56 of 78

MotiveWave™ MotiveVl
SDK Programming Guide N -

package com.motivewave.platform.sdk.common;

public class Settings implements Cloneable

{

L
/** Gets the trading sessions (strategies only). */
public List<TimeFrame» getSessions()

J** @return true if this strategy should enter automatically when a trading
public boolean isEnterOnSessionStart()

S** @return true if this strategy should exit an open position automatically
public boolean isCloseOnSessionEnd()

/*%* Gets the timezone for sessions (null for local time zone). */
public TimeZone getTimeZone()

The following methods are also available on the Study class that may be optionally overridden. Note: if
‘enter on session start’ is enabled the strategy must override and implement the onSessionStart(...)
method to implement the entry logic.

package com.motivewave.platform.sdk.study;

public class Study implements Cloneable

1

/** This method is called when a trading session is started. */
public wvoid onSessionStarted(OrderContext ctx, TimeFrame session)

/** This method is called when a trading session is ended. */

I

public wvoid onSessionEnded(OrderContext ctx, TimeFrame session)

7.6 Sample MA Cross Strategy

The following example illustrates a simple strategy based on the SampleMACross study (see sample
project and signals in Section 6). This strategy will buy when the fast moving average crosses above the
slow moving average and sell when it crosses below.

For convenience, this strategy will subclass the SampleMACross study and rely on the signals generated
for ‘Fast MA Crossed Above’ (Signals.CROSS_ABOVE) and ‘Fast MA Crossed Below’
(Signals.CROSS_BELOW).

Let’s take a look at the StudyHeader. The key properties to note here are: strategy=true and
autoEntry=true (1 below).

Version 1.1 ©2012 MotiveWave™ Software Page 57 of 78

MotiveWave™ MotiveVl
SDK Programming Guide N -

Figure 46 - Sample MA Cross Strategy Header

package study examples;

[/** Moving Average Cross Strategy. This 1s based of the SampleMACross study
@StudyHeader(
namespace="com.mycompany" ,
id="MACROS5_STRATEGY",
name="5%ample MA Cross Strategy”,
desc="Buys when the fast MA crosses above the slow MA and sells when it cr
menu="Examples",

overlay = true, strategy property ‘J

signals = true, must be set to true
051:r1a1:egyr = true, —

autoEntry = true,—%jth's is an automated strategyj

manualEntry = false,

supportsUnrealizedPlL = true,=— ggfegriqﬁ:gﬁzr?ﬁglabels are
true, = _

supportsRealizedPL = visible in the Control Box .

supportsTotalPL = true) Extending
public class SampleMACrossStrategy extends SampleMACross Sagphhhﬁﬂrnss
{ study

@verride

W e

For this strategy, we are going to override two methods:

e onActivate(OrderContext ctx) — If the user chooses to open a position on activate (see Trading
Options panel), we will open a long or short position depending on whether the fast MA is above
or below the slow MA (see 2 below)

e onSignal(OrderContext ctx, Object signal) — In this method, we will use the signals generated in
the SampleMACross class under the keys: Signals.CROSS_ABOVE and Signals.CROSS_BELOW (see
calculate method). Note: we are reversing a position if it is open. IE: a long position becomes a
short position and vice versa. (3 & 4 below)

Version 1.1 ©2012 MotiveWave™ Software Page 58 of 78

MotiveWave™
SDK Programming Guide &’

@iverride
public void onActivate(OrderContext ctx)
{
if (getSettings().isEnterOnlActivate()) {
DataSeries series = ctx.getDataContext().getDataSeries();
int ind = series.islastBarComplete() ? series.size()-1 : series.size()-2;
Double fastMA = series.getDouble(ind, Values.FAST MA);
Double slowMA = series.getDouble(ind, Values.SLOW MA);
if (fastMA == null || slowMA == null) return;
int tradelots = getSettings().getTradelots();
int gty = tradelots *= ctx.getInstrument().getDefaultQuantity();
// Create a long or short position if we are above or below the signal line
e if (fastMA > slowMA) ctx.buy(qty); Open the initial position
else ctx.sell(qgty); (if the user chose Enter
I On Activate’)

¥

@lverride
public void onSignal(0OrderContext ctx, Object signal)
1
Instrument instr = ctx.getInstrument();
int position = ctx.getPosition();
int gty = (getSettings().getTradelots() * instr.getDefaultQuantity());

gty += Math.abs(position); // Stop and Reverse if there is an open position
if (position <= @ &8 signal == Signals.CRO55 ABOVE) {
ctx.buy(gty); // Open Long Position

if (position »= @ &% signal == Signals.CROSS BELOW) {
e ctx.sell(qty); // Open Short Position
¥

¥
W T

7.7 Strategy States
A strategy can be in one of three different states (defined in Enums.StrategyState):

1. Inactive — No trades are active and the strategy will not place any trades.
2. Active — The strategy may place trades to open or close positions
3. Dormant — In this state, the strategy is still active but does not place any new trades

The current state of the strategy can be queried/set from the following methods (on the Study Class):

1. getState() — returns the current state of the strategy
2. setState(Enums.StrategyState state) — Sets the new state for the strategy.

In most cases, the strategy state is initiated by the user by pressing the ‘Activate’ or ‘Deactivate’ button
from the Strategy Control Box. However, you can set the state from your strategy. This is most common
when switching the strategy to the ‘Dormant’ state. You may want to use this state to indicate that the

Version 1.1 ©2012 MotiveWave™ Software Page 59 of 78

MotiveWWave™ Mot

4

SDK Programming Guide &’

strategy is waiting for a specify condition to happen before placing trades again. This is often used when
you just want the strategy to be active during specific hours of the day.

The following diagram illustrates these states and the transitions between them:

Figure 47 - Strategy States

User Presses Initiated by
‘Activate’ Button Strategy
Inactive Active Dormant
User Presses Initiated by
‘Deactivate’ Button Strategy
or Initiated by
Strategy

7.8 Manual Strategies

MotiveWave™ allows you to create strategies that respond to user input to enter or exit a position. This
can be very useful as a way to help direct and manage exit points for user initiated trades. For an
example of how this works, see the Trade Manager strategy.

The following screen shots illustrate the Trade Manager strategy in action:

ermﬂmer e
?

Figure 48 - Trade Manager

User chooses
Long’ or "Short’

Traide Mang jer

Activates the
Position: strategy
Entry Price:
Unrealized PL: .

Target PIL: TT This is an example of a
NA | stetegy Conl 8o |
Eizlz;r:f:_k ::: initiates the entry process
Total PiL: MIA

MWNWM*WH%MNH—

CHZ MothveWawve
I

Version 1.1 ©2012 MotiveWave™ Software Page 60 of 78

MotiveWave™ ; Motive
SDK Programming Guide w

Figure 49 - Trade Manager - Entering a Position
(—\“Mﬂwmmmmﬁ J,

Title Bar flashes to
indicate that the
strategy is "Active’

I ?’

Trade Manager WPER [JI]‘I' ‘ T

_Long g | ”nﬂ].r++$?l[]-u ‘ l '
m Calls 'IcunEnteanw[...}'

o |
| I ﬁ”

4] Cancels all orders
and deactivates

the strategy

Stoprmr 4
RewardiRisk: MIA
Realized PL. R
& Total PIL: R

§
|
|
|
|

:<‘:> T Molvewave

'

LMT 1@1362.50 ZEEEE

LMT 1@1360.00 .
Entry Order]

Executed

S5TP 3@1355.00 SRS

/ =

all open orders and
deactivates strategy.

Target PiL:
Stop PIL:
Ij Reward/Risk
||;| Realized PL:

i@ =] Tofal PiL:
20:00

Pasition:
Entry Price:
Unrealized PL:

Version 1.1 ©2012 MotiveWave™ Software Page 61 of 78

MotiveWW ave™ ;
SDK Programming Guide >

7.8.1 Entry States

In order to manage the orders for manual strategies, entry states have been defined to indicate the
current stage the strategy is in. These states are defined in the Enums.EntryState enumeration.

1. None — No entry state, waiting for the user to initiate the entry process
2. Pre-Entry — The user has initiated the entry process and the strategy is preparing to create the

entry order(s).
3. Waiting Entry — Waiting for entry orders to be filled (this state can be skipped if using market

orders).
4. Open —Position is open, waiting for the position to be closed.

These states can be queried/set from the following methods in the Study Class:

1. getEntryState() — returns the current entry state for the strategy.
2. setEntryState(Enums.EntryState state) —sets the entry state for the strategy.

The following diagram illustrates these states and their transitions:

Figure 51 - Entry States

y v |
[Pre-Entry] [Waiting Entry]

Version 1.1 ©2012 MotiveWave™ Software Page 62 of 78

MotiveWave™ Motive
SDK Programming Guide -

8 Logging

Often as part of debugging, you will want to write information to a log. MotiveWave™ includes a study
log utility. This can be accessed from the Console menu bar: View -> Study Log.

The following diagram illustrates what the Study Log looks like:

Study Log

The following table contains log entries created by active studies. Use the options below to filter the results.

——— \ clears the log.
Filter Log Type: | Al ¥| Study |Al v G —Jg

Time aType | Study |Message |

14:52:13 Debug My MA(C.20) Setting MA value for index: 401 average: 31.68318445020017 [&
14:52:13 Debug My MA(C.20) Setting MA value for index: 402 average: 31.6771668835144 38
14:52:13 Debug My MA(C.20) Setting MA value for index: 403 average: 31.67648432317973

14:52:13 Debug My MA(C 20) Setting MA value for index: 404 average: 31.6749143876388
)
)
)
)

14:52:13 Debug My MA(C, 20 Setting MA value for index: 405 average: 31.672541588816056
14:52:13 Debug My MA(C, 20 Setting MA value for index: 406 average: 31.662775723214526
14:52:13 Debug My MA(C,20 Setting MA value for index: 407 average: 31.653939940051238
14:52:13 Debug My MA(C,20 Setting MA value for index: 408 average: 31.649755183855588
14:52:13 Debug Simple MAC... Setting MACD value for index: 26 MACD: 0.02025574928021001
14:52:13 Debug Simple MAC... Setting MACD value for index: 27 MACD: 0.03604955394204623
14:52:13 Debug Simple MAC... Setting MACD value for index: 26 MACD: 0.048810517093716754
14:52:13 Debug Simple MAC... Setting MACD value for index: 29 MACD: 0.0502749695106246
14:52:13 Debug Simple MAC... Setting MACD value for index: 30 MACD: 0.05164711918756737
14:52:13 Debug Simple MAC... Setting MACD value for index: 31 MACD: 0.05372903566736653
14:52:13 Debug Simple MAC... Setting MACD value for index: 32 MACD: 0.06112963649151126

14:52:13 Debug Simple MAC... Setting MACD value for index: 33 MACD: 0.061444869199984 71

14:52:13 Debug Simple MAC... Setting MACD value for index: 34 MACD: 0.057800736772719574 _)

14:52:13 Debug Simple MAC... Setting MACD value for index: 408 MACD: -0.05069192841493475 |
Close

There are 4 methods available (from the base class Study) for creating log entries:

Version 1.1 ©2012 MotiveWave™ Software Page 63 of 78

VotiveWave 4 MotiveWave
SDK Programming Guide e o Sanan-

Analyze wde. £

Figure 52 - Study logging methods

package com.motivewave.platform.sdk.study;

[** This is the base class for all studies and strategies. */
public class Study

{
Iy
// Log methods
I

/** Logs a debug message to the study log. */
public void debug(String msg)[]

/** Llogs an info message to the study log. */
public weoid info(5tring msg)[]

/** Logs a warning message to the study log. */
public void warning(5tring msg)[]

/** Logs an error message to the study log. */
public void error(String msg)[]

Version 1.1 ©2012 MotiveWave™ Software Page 64 of 78

MotiveWave™ M
SDK Programming Guide -

9 Internationalization

For simplicity, the examples provided so far in this guide have translatable text embedded in the code
directly. Although MotiveWave™ does not currently support multiple languages (at least as of writing
this guide), it is inevitable that this will happen at some point in the near future.

All of the studies available in MotiveWave™ have the translatable text separated into a Resource Bundle.
Resource Bundles are a standard mechanism built into Java for internationalization. If you are
unfamiliar with this construct, there are many tutorials available on the internet. Here is a general
tutorial available on the Oracle™ website:
http://docs.oracle.com/javase/tutorial/i18n/resbundle/concept.html

Separating text in a study is very simple and only requires you to do the following:

1. Declare the Resource Bundle — In the Study Header, specify the package and name of the
resource bundle using the rb property

2. Use the get(“LABEL_ID”, ...) to retrieve text. This method available from the Study class pulls
text from the resource bundle associated with the given ID. Values in the text can be replaced by
specifying these values after the label ID (named %1, %2, %3...)

9.1 Example: MACD

The following example shows the Study Header for the MACD study. In this case the rb property is
pointing to the resource bundle: com.motivewave.platform.study.nls.strings. This will resolve to the
strings.properties file (for English translation) in the com/motivewave/platform/study/nls directory.

Once the rb property is defined in the Study Header, MotiveWave™ will assume that the other

properties (that expect displayable text) are actually IDs that need to be resolved from the resource
bundle.

Figure 53 - Internationalization Study Header

package com.motivewave.platform.study.general;

import com.motivewave.platform. sdk. common. *;
import com.motivewave.platform.sdk.common.desc.™;
import com.motivewave.platform.sdk.draw.*;

import com.motivewave.platform.sdk.study.*;

f*% Moving Lverage Convergence/Divergence (MACD) */

@StudyHeader (
namespace="com.motivewave"”, strings.properties file in the package:
id="MRCDT, com.motivewave.platform._study.nls

rb="com.motivewave.platform.study.nls.strings",
name="TITLE MACD",

A AN N

label="LEL MACD", This values are pulled from
desc="DESC_MACD", the resource bundle:
menu="MENU GENERAL", strings.properties
menu2="MENU SIGNALS",

overlay=false,

support=s5ignals=troe)
poblic class MACD extends com.motivewave.platform.sdk.study.Study

£u—auﬂ*“‘”"ﬂhm*“““‘“"“*“‘%ﬁi'r-ﬂkmﬂglr.h\ﬂﬂ‘r““qhdﬁnﬂgﬂ‘rx‘x‘ qﬂhqﬂ'ﬁ

Version 1.1 ©2012 MotiveWave™ Software Page 65 of 78

http://docs.oracle.com/javase/tutorial/i18n/resbundle/concept.html

MotiveWave™ I MotiveWave

SDK Programming Guide QY e

A « ide. Ev

Figure 54 - Resolving text using the 'get' method

@COverride
public void initialize (Defaults defaults)
{
SettingsDescriptor sd = new SettingsDescriptor():

setSettingsDescriptor (=d); USEf the ‘get’ method to
SettingTab tab = new SettingTab (get ("TAS GENERAL")); ffﬂfle‘\fe text ffOrrj
=d.addTak (takb) ; strings.properties

SettingGroup inputs = new SettingGroup (get ("LEL_INPUTS")):

inputs.addBow (new InputDescriptor (Inputs.INFUT, get ("LEL INPUT"), Enums.BarInput.CLOSE)):

inputs.addRow (new MAMethodDescriptor (Inputs.METHOD, get ("LBEL_METHOD"), Enums.MRMethod.EMA)):

inputs.addRow (new MAMethodDescriptor (Inputs.SIGNAL METHOD, get ("LBL SIGMNAL METHOD"), Enums.MAMethod.SMA)):
inputs.addRow (new IntegerDescriptor(Inputs.PERICOD, get ("LEL PERIOD1I™), 12, 1, 9393, 1));

inputs.addRow (new IntegerDescriptor(Inputs.PERICDZ, get ("LBL_PERIODZ"), 26, 1, 9933, 1)):

inputs.addRow (new IntegerDescriptor(Inputs.SIGNAL PERIOD, get ("LBEL SIGMRL PERICD"), 9, 1, 92933, 1})):
tab.addGroup (inputs) ;

tab = new SettingTab (get ("TAB DISPLRY")):

: I

YW, WP S N

Figure 55 - Resolving text using the get method with parameters

if (pMACD <= pSignal && MACD > =signal) {
MarkerInfo marker = getSettings().getMarker (Inputs.UF MARKER) ;
if (marker.isEnabled(} && 'latest) {
addFigure (new Marker (c, Enums.Position.BOTTOM, marker)):
}
e ctx.signal (index, Signal=s.CROSS ABOVE, get ("SIGHAL MACD CROS5 REBOVE", MACD, signal), =signal):
¥
else if (pMACD »= pSignal && MACD < =signal) {
MarkerInfo marker = getSettings().getMarker (Inputs.DOFN MARKER) ;
if (marker.isEnabled(} && 'latest) {
addFigure (new Marker (c, Enums.Position.TOP, marker)):

get method using parameter

replacements (%1, %2 in
strings.properties)

}
ctx.signal (index, Signal=s.lROSS5 BELOW, get ("SIGHAL MACD CROSS BELOW", MACD, =signal), =signal):

e A, w,‘._" “""“"-'-lh'it"'- 'M#MW_ thﬂ el .

\

Version 1.1 ©2012 MotiveWave™ Software Page 66 of 78

MotiveW ave™ ' 4 MotiveWave

SDK Programming Guide QY

Figure 56 - strings.properties file

HMENT OVERLAY=Overlays

MENU BAR PATTERNS=Ear Patterns
MENT GENERAL=General

MENU VOLUME=Volume Based ltems declared in the resource
MENU WELLES WILDER=Welles Wilder bundle are in the form:

MENU BILL WILLIAMS=Bill Williams
MENU TUSCHARD CHANDE=Tushar Chande ID=translatable text
MENU MARC CHAIKIN=Marc Chaikin
MENU SIGNALS=S5ignals

MENU CUSTOM=Custom

HMENU MOVING AVERAGE=Moving Average

TAS GENERAL=General
TABE ADVANCED=Advanced
TAE INPUTS=Inputs
TABE COLORS=Colors
TRE D =D

TITLE MACD=Moving Average Mﬁm (MACD)

[LEL MACD=MACD

DESC MACD=5hows the difference between a fast and slow moving average of prices. A

ACD iz often used to indicate changes in market trends. Created by Gerald Appel in the 13&0s.
a href="http://en.wikipedia.org/wiki/MACD">Click here for more information.</axr

3L SIGNAL PERICD=5ignal Feriod

BL SIGNAL METHOD=5ignal Method Maote: HTML is permitted
5L_MACD LINE=MACD Line in the description (only).
5L SIGNAL LINE=5ignal Line
2L BAR COLOR=Bar Color

5L MACD IND=MACD Indicator
BL. SIGHNAL IND=5ignal Indicator %1, %2 etc will be
8L MACD HIST IND=Histogram Indicator replaced at runtime
L_MRCD_SIGNAIFMRCD Signal with actual values
BL_MACD HIST=MACD Hist

FIGNAT. MACD CROS5 ABOVE=MACD: %1 crossed above signal line:

EIGHNAL MACD CRO EELOW=MACD: 31 croszsed below =signal line:

Version 1.1 ©2012 MotiveWave™ Software Page 67 of 78

MotiveWave™ ,
SDK Programming Guide S

10 Deployment

The process of installing your extensions in MotiveWave™ is referred to as ‘Deployment’. There are
essentially two use cases for deploying extensions:

1. Development — As you are coding your extension, you will want to deploy your changes to
MotiveWave™ so you can test your changes.

2. Distribution — When you have completed development you will want to package your extensions
and make them available to other users.

10.1Packaging

You may distribute your extensions by providing the .class (and .properties) files directly to your
customers but you may find this awkward if you have more than one.

The preferred way to distribute these files is to package them together in a Jar (Java ARchive) file. This is
a standard Java mechanism for distributing Java libraries or applications. If you would like to know more
about this format you can visit this website address:
http://java.sun.com/developer/Books/javaprogramming/JAR/

The sample Eclipse project includes the ability to create a Jar file for distribution in the ANT build script.
You may also use the deployment features of Eclipse to create your Jar file.

10.2Loading Extensions

MotiveWave™ will dynamically load extensions from the directory ‘MotiveWave Extensions’. This
directory is created by MotiveWave™ when it first starts. Depending on the environment you have, it
will be found:

1. Windows — C:\Documents and Settings\<username>\MotiveWave Extensions
2. Mac OSX - /Users/<username>/MotiveWave Extensions

This directory is searched (recursively) for the following types of files:

1. JARFiles (.jar) — These are essentially ‘zip files’ that contain .class and .properties files

2. Class Files (.class) — These files are generated by the javac compiler. Note: you must preserve
the directory structure when copying these files into the ‘MotiveWave Extensions’ directory. For
example classes in the ‘study_examples’ package must be put in the ‘MotiveWave
Extensions\study examples’ directory.

3. Properties Files (.properties) — These files contain the translatable text that has been separated
from the code (see section on Internationalization). Similar to the class files, you must preserve
the directory structure when copying these files into ‘MotiveWave Extensions’ directory.

‘.last_updated’ File

If you look in the ‘MotiveWave Extensions’ directory (Note: this is a hidden file on Mac OSX) you will see a
file called ‘.last_updated’. MotiveWave™ uses this file to determine is any of the files in this directory have
been changed since its last scan. If you want to test your changes without restarting MotiveWave™, you
will need to copy your changed files to ‘MotiveWave Extensions’ and then modify the timestamp on this file
(for example using the Unix ‘touch’ command).

The sample build.xml file (Apache ANT script) shows an example of how to modify this file to get

Version 1.1 ©2012 MotiveWave™ Software Page 68 of 78

http://java.sun.com/developer/Books/javaprogramming/JAR/

Motiveyvave ™ M MotiveWave
SDK Programming Guide v

Analyze. Trade. Evolve

\ MotiveWave™ to reload extensions. |

Version 1.1 ©2012 MotiveWave™ Software Page 69 of 78

MotiveWW ave™ ;
SDK Programming Guide >

11 Environment Setup

You may use any Java™ development environment you wish to develop extensions for MotiveWave™.
This section will explain how to get up and running with the Eclipse Integrated Development
Environment (IDE). We have also included a sample Eclipse Project that you may use as a starting point
for your own development. This sample project contains a build script (Apache ANT based) that makes it
easy to deploy your changes to MotiveWave™ and package your extensions for distribution.

Eclipse (www.eclipse.org) is the most popular tool for Java development and best of all its free! There
are many different environments for Java development, some of the more notable tools include:

1. NetBeans — This Open Source development environment is free as well and is developed by Sun
(now Oracle)

2. Intelli) — http://www.jetbrains.com/idea

3. JCreator — http://www.jcreator.com

11.1Where do | get the SDK?

The SDK (Software Development Kit) is built directly into MotiveWave™, but if you want to download
the mwave_sdk.jar, java doc and sample project you can get it from here:
http://support.motivewave.com/sdk/

11.2Installing Java

If you have not done so already, you will need to download and install the Java Development Kit (JDK).
Please note: this is different than the Java Runtime Environment (JRE) as it contains development tools
such as the Java compiler (javac).

Since MotiveWave™ supports Java 1.6.0_20 and higher, you should download Java 6 to ensure that your
studies will work on all versions of MotiveWave™.

The Java Development Kit can be downloaded here:
http://www.oracle.com/technetwork/java/javase/downloads/index.html

11.3Installing Eclipse

Eclipse comes in many different versions (and flavors). For our purposes we just need basic Java
functionality so we will download ‘Eclipse IDE of Java Developers’. This can be found at the following
website: http://www.eclipse.org/downloads/

There are many different tutorials and books available to help you get started with Eclipse. If you don’t
want to search the internet, you can start here: http://www.eclipse.org/resources/?category=Tutorial

Here is a link to an introduction of the Java IDE: http://www.eclipse.org/resources/resource.php?id=505

11.4Creating a Project

The first step to creating your own extensions is to create a project in Eclipse. From the top menu bar of
Eclipse choose: File -> New -> Java Project

Version 1.1 ©2012 MotiveWave™ Software Page 70 of 78

http://www.eclipse.org/
http://www.jcreator.com/
http://support.motivewave.com/sdk/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/
http://www.eclipse.org/resources/?category=Tutorial
http://www.eclipse.org/resources/resource.php?id=505

MotiveW ave™ ~
SDK Programming Guide W

Edit Source Refactor Mavigate Search Project Rum Window Help

Alt+Shift+ MT
{'} h
[Project... Click here to create a

k

Open File. ..
Close Cirl+w ﬁ' Package new Project for your e
A | 1S hifE extensions.
Close all Ctrl +5hift-+u @ Class Y.
[] save Cirl+5 €4 Interface
(5] save As... G Enum
i) save Al Cirl4shift+s | @ Annotation
Revert % Source Folder
Moo J|=_-,J’5} Java Working Set

MotiveWave-

. LT LT TP
Analyze. Trade. Evolve

This will launch the New Project Dialog (see below). Enter a name for the project and click the ‘Finish’
button. In the next step we will be importing the sample project so there is no need to configure

anything specific for this project.

Version 1.1 ©2012 MotiveWave™ Software

Page 71 of 78

MotiveW ave ™ ~ l\/IotlveWave
SDK Programming Guide v

Analyze. Trade. Evol

Sl Ja e Profees o|(=][E3

Create a Java Project

Create a Java project in the workspace or in an external location.

Project name: | MotiveWave Studies

[#] Use default location \'Enter a name for
the project.
Browse...

Location: |u_ ‘sampleMotively ave Studiss

JRE
Use an execution environment JRE: JavaSE-1.6
IUse a project spedfic JRE: jdk1.6.0_31
IIse default IRE (currently jdk1.6.0_31) Configure JRFs...

Project layout

IUse project folder as root for sources and dass files

Create separate folders for sources and dass files Configure default. . .

Working sets
[| add project to working sets

Wiarking sets: Select...
{D The wizard will automatically configure the 1 et . . on the
existing source, Click 'Finish® (Dont

choose Mext as we
will be importing the
sample project)

\/
y

@ <gack | Next> || Fnish || cancel |

Now that you have created an initial project you can import the sample project files from the zip file
‘MotiveWave Studies.zip’. Right click on the ‘MotiveWave Studies’ project that you just created and
choose ‘Import..." from the menu.

Version 1.1 ©2012 MotiveWave™ Software Page 72 of 78

MotiveWave™
SDK Programming Guide

—ava - Eolipse

iC-E-EE S

File Edit Source Refactor Mavigate Search Project Run Window

-0 QW@

~of

Wl=ua Chidian

ER Y Mo tive

Right Click here]

Mew
o Into

Open in New Window

Import... k
7 Export...

Open Type Hierarchy F4
Show In Alt-+shift-+w L4

Copy Ctrl+C

% Copy Qualified Name

Paste Ctrl+v

¥ Delete Delete

% Remove from Context Ctrl+Alt+5hift+HDown
Build Path k
Source Lohift +5 3
Refactor

Choose Impaort
A

BRI

From the Import Dialog, open the ‘General’ folder and choose ‘Archive File’

-

(v

MotiveWave*

~ousaganee-—"" DT T TN
Analyze. Trade. Evolve

Version 1.1

©2012 MotiveWave™ Software

Page 73 of 78

MotiveWave™

SDK Programming Guide

T Tl

= [B]X]

Select

Impaort resources from an archive file into an existing project.

=l

Select an import source:

EIIEr General

- VS
- Git

&= Instal
#-[= Maven
#-(>= Run/Debug
(= Tasks
IE:- Team
= XML

@} Archive File

Choose
i ‘Archive File’
@ Existing Proje

{:L File System
=L preferences

®@

;1;’|won

veWave

Analyze. Trade

The next step is to specify the archive (.zip) file. In this case it will be ‘MotiveWave Studies.zip’. If you
have not done so already, download this sample project from the MotiveWave™ website (TODO: specify

location here.)

You may be asked to confirm the overwriting of some files like “.classpath’. If this happens, press OK to

accept the changes.

Version 1.1

©2012 MotiveWave™ Software

Page 74 of 78

MotiveWave™ f
f

SDK Programming Guide

T Tl

Archive file
Impaort the contents of an archive file in zip or tar format from the local file system.

From archive file: | C:\Documents and SettingsiTony My DocumentsSharedMotive [Browse. ..]

® P&l

.DS_Store
] .project

[¥] .dasspath N

Click an the ‘Browse”
button and find the
‘MotiveWave
Studies zip' file that
you downloaded as
part of the SDK

|Filter Types... | | selectAl || Deselectal |

Into folder: | MotiveWave Studies

| [Browse...]

\.

that you just created

[] overwrite exist
i Make sure this is the project

)

Click Finish to
complete the impaort.
Cwverwrite any files if

prompted.
AV
v
@ < Back wext= | Fnish || Cancel |

MotiveWave-

et | LT
Analyze. Trade. Evolve

Once the import is complete, the structure of you project should look like the screenshot below.

Version 1.1

©2012 MotiveWave™ Software

Page 75 of 78

MotiveW ave™ ' MotiveWave

S LT T
bt L L L L L

SDK Programming Guide Analyze. Trad

Evolve

?5 Java - Eclipse;
File Edit Source Refactor Mavigate Search Project Run Window Help

G- E- B E -0 Q- HE- E
s
All source files should N\
be placed under this
directory. You can create
. your own packages and
EI[E src studies/strategies here.
EIEE study_examples —
i m MyMovingAverage.jav .
; &3] SimpleMACD. java Sample studies.
=-H study_examples.nls -

e strings.properties Contains translatable
-2 JRE System Library [Javase-1.60 [extfromihe studies

!5'.!. Referenced Libraries
=G build
B build, il

------ Manifest. MF
1|

== lib
- kal] mwave_sdk.jar Contains MotivelWave
SDK classes

ftg Package Explorer &7

se this file to deploy
changes and/or build
the jar file.

Now that you have the project created, you can deploy this to MotiveWave™. The ‘build.xml’ file (under
the ‘build’ folder can be used to compile your code and copy the files to the ‘MotiveWave Extensions’
directory. Right click on this file and choose ‘Run As -> Ant Build’

Version 1.1 ©2012 MotiveWave™ Software Page 76 of 78

MotiveWave™

SDK Programming Guide

[% Package Explorer 7

BS

EI[E e

nkd build. xm -

= IEJ- MotiveWave Studies

=3 study_examples
; m MyMovingAverage,java
- - [J] SimpleMACD java
=-H study_examples.nls
- strings. properties
F#-m JRE System Library [Javase-1.6]

Analyze. Trade. Evolve

M MotiveWave
e g

£ build,xml 53

<?xml version="1.0" encoding="UIF-8"72>

Sl
Thiz iz a sample build/deployvment script.
By default, this script =simply deplovs the clas
the 'MotiveWave Extensions' directory (under us

Thi=s script also has the ability to create a ja
in this project. The jar file makes it easier

-
Right click here) Z<project defaunlt="deploy">
I <l—— user.home iz C:“Documents and Settings’<
Mew 3 ="target.dir" value="%£{uszer.home}
="zro.dir" wvalue="../src/"/>
Cpen F3 ="hin.dir" walue="../bin/"/>
Open With ¥ me="lib.dir" value="../lib/"/>
Show In Alt-+Shift-+HW * | the jar file |created in the 'jar'
Cupy Cil4C me="jar.name" wvalue="examples"/>
2 Copy Qualified Name rernative deployment task, copies a
[Paste Cirl+v =xtensions directory (instead of er
H Delete Delete ="deploy" depends="compile">
8l]l .cla=ss and .properties files.
2 Remove fro Ctri+Alt+Shift+Down these have to go directly in the e
gﬂ'-e kasL Ctrl+alt+shift-+HUp i rename or remove any classes, you
Build Path P E="%{target.dir}" overwrite="true">
Refactor Alt+5hift+T » E
pug Import... ldoc}@[}edaraﬁorq
7y Export...
Resource Path
«# Refresh F5
Assign Working Sets. ..

Validate

Debug As
Team

Run as “Ant Build®]
Open Javadoc Wizard...

1 Ant Build #t+5hiFt+)€; Q

*| £ 2 AntBuild...
3

By default this will run the ‘deploy’ target. This task will compile all of the source code under the ‘src’
folder and then copy it to the MotiveWave Extensions directory. Finally, it will modify the
‘.last_updated’ file to signal MotiveWave™ that it should scan for changes and load them.

The ‘Console’ tab will show the output from this action. It should look similar to the following screen

shot:

Version 1.1

©2012 MotiveWave™ Software Page 77 of 78

MotiveWWave ™ / MotiveWave
SDK Programming Guide S—————

<] m] 5] .ty
(2 Problems | @ Javadoc | [, Dedaration | &l Console 3 X % G BB |r£
<terminated > MotiveWave Studies build.xml [Ant Build] C:\Program FilesJavaljdk1.6.0_31\bin'javaw.exe (2012-02-27 6:04:50 PM)
Euildfile: C:hzampleiMotiveWave Studies‘\build\build.=ml
clean:

[deletce] Deleting directory Crisample‘MotiveWave Studies‘\buildiclas=es
compile:

[mkdir] Creatced dir: C:\sample‘\MotiveWave Studies‘\build\classes

[jJavac] Cr:hzample‘\MotiveWawve Studies‘\buildibuild.xml:43: warning: '"includeantruntime' was

[jJavac] Compiling 2 source files to Cr:i\sample'MotiveWawve Studies‘\buildiclasses

deploy:

[copy] Copyving 5 files to C:“\Documents and Settings‘\Tony\MotiveWave Extensions

EUILD SUCCESSFUL
Total time: 1 second

gl i 1|

Finally, if you have MotiveWave™ running, you should see an extra menu ‘Examples’ under the ‘Study’

menu that contains the two sample studies (see below)

>

Format Window Hel

File Edit View | Study Strategy Configure

MSFT |'| [| Instrument ﬁ{ o) e @ g - -
r 52 F - Add Study Cirl+T
Fecent >
Symbol 4|Excha T e » E |Change |% Chan
UsDAUD CURH ' F:53:00 0.0000
USDCAD CURH Overlars > 75700 0.0000
USDCHF CURR #strological » 759:00 0.0000
USDDKK CURH BarPatterns » 7-59:00 0.0000
USDEUR CURH General B [7:53:00 0.0000
r||qr1r:|:u:u CLIPH yalume Based p [-53-00 0 nann
POk SS [UMBFT B Welles Wilder b D3]k 3K
MSFT -5 min Bill Williams > These are the two
m— DERALC 20 Tushar Chande > studies that you
Motice that there Marc Chaikin [dEplU}'Edfrqm the
is a new menu Signals > sample project.
itern here > | -
L 11y Moving &verage

Simple MACD

Version 1.1

©2012 MotiveWave™ Software

Page 78 of 78

