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Introduction
Paul Wilmott

I
n September 2002 a small, keen group working for a small (but perfectly formed) website,
serving a very niche financial market, joined forces with a book publisher to create a
new magazine, Wilmott, aimed at mathematicians and scientists working in investment
banks. The cunning plan was to bring together cutting-edge content, incisive articles
and fab design; to combine the logic of the research papers for the left-brainers with an

easy-on-the-eye look for the right-brainers. Can’t be done, you say. Well, it can, and it was.
And it struck a chord with quants everywhere.

The backbone of the magazine is the editor, Dan Tudball. But he does far, far more than
just “edit.” He writes, coordinates, plans, sketches, designs . . . his background as an editor of
FHM – not quite a “top-shelf mag” but certainly beyond the reach of the children – ensures
that the appeal of the magazine is not purely cerebral. The legs and arms of the magazine must
be the regular contributors: Aaron Brown, Alan Lewis, Bill Ziemba, Ed Thorp, Espen Haug,
Gustavo Bamberger, Henriette Prast, Kent Osband, Mike Staunton and Rudi Bogni. They give
the magazine its solid foundation, and when necessary grab the readers by the shoulders and
give them a good shaking. The flattering garb would be down to Liam Larkin, our principal
designer. His eye-catching layouts and covers are one of the reasons why magazines tend to
“disappear” – he has unwittingly highlighted the “quant as jackdaw” effect. Graham Russel of
John Wiley & Sons is the eyes and ears of the magazine, monitoring the final product and
liaising with subscribers. Enough with the analogies and body parts already. I must also thank
all of the technical writers. You submitted excellent research material, and by submitting to a
start-up publication you showed great faith in us. Thank you for that faith. This book contains
a selection of the research papers from the magazine’s first year.

As I said, a chord was struck and we have not looked back. A natural development for
a magazine in this field is to run events. We started small with our “Finance Focus” events
in the Financial World Bookshop, London. These are free, open to members of wilmott.com
and magazine subscribers. They now run every month, attracting a crowd of quants for a good
lecture, a spot of casual networking and free food and drink. The success of the Finance Focus
events gave us the confidence to run our first conference, the Quantitative Finance Review
2003. You can read about this event, and then see the write-up of the lectures themselves inside
this book.

E-mail: paul@wilmott.com
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I would like to thank magazine and event sponsors and advertisers: Algorithmics, BRODA,
Commodity Appointments, d-fine, FinAnalytica, Fleet Search and Selection, GARP, GFI, Harry’s
Bar, Investment Analytics, ITO33, ITWM, London Business School, Millar Associates, Murex,
SciComp, Shepherd Little, Statman Consulting and Wolfram. Special thanks go to Tamara
Jacobs and Owen Walsh of FinancialCAD, who sponsored the Quantitative Finance Review
2003. Owen’s perspective on 2003 and the Review may be read inside.

Finally, I would like to thank our partners in crime, 7city Learning. As well as being Europe’s
most successful financial training company they are also our partners in the Finance Focuses
and the Certificate in Quantitative Finance, and hosted the Quantitative Finance Review 2003.
Thank you, gentlemen, it’s been emotional.

Paul Wilmott
2004



I
Education in
Quantitative Finance
Riaz Ahmad

Quantitative Finance Review 2003

“

Q
uantitative Finance” as a branch of modern banking is one of the fastest growing

areas within the corporate arena. This, together with the sophistication of modern
and complex financial products, has acted as the motivation for new mathematical
models and the subsequent development of mathematical and computational tech-
niques. Investment decisions for predicting risk and return are being increasingly
based on principles taken from the Quantitative Finance arena, providing a chal-

lenge for both academics and practitioners. Consequently, a solid command of the fundamentals
and techniques of mathematical finance is essential for a responsible approach to the trading,
asset management, and risk control of complex financial products.

Although relatively young, financial mathematics has developed rapidly into a substantial
body of knowledge. Seventy-three years before the pioneering days of Fischer Black, Myron
Scholes and Robert Merton, Louis Bachelier had derived the price of an option where the share
price movement was modelled by a Wiener process and derived the price of what is now called
a barrier option.

Quantitative Finance encompasses the complete range of pure and applied mathematical
subjects, which include probability and statistics, partial differential equations, mathematical
physics, numerical analysis and operational research. The result has been an extraordinary
number of quantitative-based scientists from a wide variety of backgrounds moving into this
area of research. In addition, the interdisciplinary nature of this subject matter has meant
successful collaborative work being conducted by economists, finance professionals, theoretical
physicists, mathematicians and computer scientists.

Mathematical finance has the attraction of being one of a few areas of mathematics that
plays a central role in current developments in its domain of application. It has a reciprocal
relationship with the “real world” while it both draws from and has direct implications upon
everyday financial practice in the commercial arena. Its numerous applications have become an
integral and visible part of the daily functioning of global financial institutions.

E-mail: r.ahmad@7city.com
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While there continues to be a great demand for education in quantitative finance, the delivery
of quality-based training in this area remains a premium. An education that is both demanding
in mathematics and related to practice, concurrently, has become a joint concern and a success
factor for both educational bodies and the capital markets. In addressing these concerns, Wilmott
and 7city Learning have created a most successful partnership.

The Certificate in Quantitative Finance (CQF) designed by Dr Paul Wilmott is a six-month
intensive course offering advanced instruction in the mathematical/quantitative methods applied
to investment banking and finance. Delegates (who can also follow the course using the
distance-learning programme) working through weekly problem sheets and monthly exams
further develop these skills. Additional classes in the form of mathematics lectures, tutori-
als and computer workshops are arranged throughout to further support and complement the
core teaching.

A consequence of delegates returning to mathematics-based education was the need to
offer “refresher-type” courses in calculus, differential equations, linear algebra and probabil-
ity – giving rise to the Mathematics Primer. These have been extremely popular for prospec-
tive CQF delegates who have felt “rusty” due to a long period away from the mathemat-
ics learning/application environment. Current plans are to also develop this two/three-day
primer as a separate entity for individuals in industry wishing to take a crash course in basic
mathematics – the type covered in the first term of a university mathematics undergraduate
course.

With increased computing speed and the need for efficient and economical computation in
the financial markets, together with recognizing C++ as the primary mode of technology in
the banking arena, a beginner’s course in C++ was launched. This provides an introduction to
programming concepts with applications to modelling in quantitative finance. Delegates with
no previous background in C++ are taken through the rudiments of this OO-based language
for problem solving in areas such as Monte Carlo and Finite Difference methods and various
other computational techniques of use in derivative pricing.

The year culminated with the Quantitative Finance Review (QFR). This one-day confer-
ence, headlined by Ed Thorp and held at 7city’s facility in London, was a meeting designed
for quantitative analysts, by like-minded professionals, to allow speakers and delegates the
opportunity to meet and discuss current ideas in the field of Quantitative Finance. The QFR
managed to draw together many strands, reminding us where we have come from and the need
to always reach for the next innovation – as epitomized by the work of Ed Thorp. It provided
us with a focus on the quandaries surrounding many tools we take for granted, Peter Jäckel’s
talk on Monte Carlo methods, Aaron Brown’s discussion of the chord of association, Ephraim
Clark’s examination of sovereign issues. And we were also presented with new ways of think-
ing, behavioural finance being given a showcase through Henriette Prast’s presentation. The
QFR truly represented the trends and currents within this community. Much of the material
presented that memorable day can be found in this volume.

The first formal year of Wilmott and 7city as providers of quality-based mathematical finance
education has been a great success, exceeding by far all initial expectations. It is currently a
very exciting period within the quantitative finance field, no more so than in the education
of such a dynamic area of applicable mathematics. We are looking forward to building on
current programmes and initiatives to further develop the range of both education/training
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related products and finance meetings to continue to offer a superior range of products for the
banking and finance community.

If you are interested in obtaining further information, please contact me on r.ahmad@7city.com

Dr Riaz Ahmad
CQF Course Director





II
FinancialCAD

Owen Walsh

Quantitative Finance Review 2003

F
inancialCAD Corporation, a leading provider of derivative risk management software
and services, is a proud sponsor of Wilmott magazine and Wilmott events such as the
Quantitative Finance Review, held November 2003. We believe in our partnership
with Wilmott, not only because it is a high calibre magazine that has quickly captured
significant readership in the past year, but because FinancialCAD shares the vision

of Wilmott – encouraging the exchange of ideas between quantitative finance professionals to
facilitate progress in the field.

For those of you not familiar with FinancialCAD, we have built our success on encouraging
an open dialogue with our clients that is fed directly into our products. But it’s not as easy as it
sounds, as meeting our customer’s needs for new or latest industry-proven ways of modelling
and measuring the risk of derivatives takes a consistent and concerted effort. The result, how-
ever, is that our industry-standard financial analytics and technology have been helping over
25,000 end-users, during a period of 12 years, add value to their businesses.

Like Wilmott, FinancialCAD also sees its role in the industry as bridging the gap between
financial academics and the financial industry to create the best possible ideas and solutions for
the finance practitioner today. The Quantitative Financial Review 2003 was another example of
the kind of strategic discussion and dialogue that can occur from this exchange of academic and
industry ideas. I left the seminar stimulated by the discussion on credit derivatives modelling,
but my thoughts were quickly overtaken by how I might still be able to profit from Ed Thorp’s
gambling models.

With the world of derivatives in 2003 seeing ever-increasing derivatives transactions in the
market-place, while at the same time, ever-increasing regulations to govern these transactions,
the year 2004 should prove to be interesting.

Now I must finish reading the latest issue of Wilmott!
Cheers!
Owen Walsh
Vice President of Analytics, FinancialCAD



Contact address: VP Analytics, FinancialCAD Corp, 7455, 132nd Street, Suite 100, Surrey BC, Canada V3W 1J8
E-mail: walsh@fincad.com Telephone: 604 507 2763 www.financialCAD.com





III
Quantitative Finance
Review 2003
Dan Tudball

Quantitative Finance Review 2003

The first Wilmott Quantitative Finance review gathered together some of the industry’s
leading lights.

O
n 11 November 2003 the first conference designed for quants by quants took
place in London. Rather than taking the approach of a three-ring circus, which
seems to be the norm these days, the QFR 2003 was designed for a relatively small
number of delegates over the course of one day. The structure of the Review, held
at the headquarters of 7city Learning in the city of London, allowed speakers and

delegates the opportunity to meet and discuss ideas without the clamour of hundreds of vendors
trying to grab your attention. With a special focus on credit derivatives, given the phenomenal
development of the market over the past three years, a stellar group of speakers were gathered
together for what proved to be both enlightening and entertaining presentations. In attendance
to chair the proceedings was Owen Walsh of Fincad, the Canadian-based software company
whose technical perspective on the needs of the market had them ideally placed as platinum
sponsors for the event.

Headlining the event was Ed Thorp, a folk hero of the quantitative finance community. It
is rare to have Thorp speak at such events, and Wilmott was particularly honoured to play host
to this most influential of thinkers. Speakers were drawn from various sectors to provide their
perspective on the year’s activities. Aaron Brown and Henriette Prast are both well known
to readers of this magazine, Philipp Schönbucher, author of what will come to be known as
a seminal work on credit derivatives, Ephraim Clark from the University of Middlesex, Elie
Ayache of ITO33, and Hugues Pirotte Spéder from the Solvay Business School, and the Monte
Carlo man himself, Peter Jäckel.

E-mail: dan@wilmott.com
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Ed Thorp
“Worth the price of admission,” one gushing delegate (who will remain nameless) informed
us after Thorp’s review of his career. The conference could not have started on a better
note, as Thorp discussed his famous cracking of blackjack before taking us through a his-
tory of his involvement in the markets, which served to provide those present in the room
with a context which is sometimes overlooked. Thorp’s commitment to scientific advance and
integrity shone through, taking in his work with Sheen Kassouf on warrants in the 1960s,
the setting up of the first market-neutral hedge fund in the early 1970s, his preempting of
the Black–Scholes formula, statistical arbitrage techniques: up–down, industry clusters, factor
models. He wrapped up with some reflections on the current market before being mobbed by
journalists.

Prof Dr Philipp Schönbucher
Currently teaching at ETH in Zurich, Schönbucher has quickly made a name for himself in
the world of credit derivatives theory. His book Credit Derivatives Pricing Models: Models,
Pricing and Implementation has been widely praised as a landmark work in the field. Aside
from a little slapstick work with the LCD projector and some good-natured heckling from Peter
Jäckel, Schönbucher was able to deliver his paper on portfolio credit risk models for CDs in
relative peace. His discussion took in single tranche products and tracers as hedge instruments.
He examined current benchmarks: Gauss copula, Vasicek model, and remarked on some strange
properties of Gaussian and t-copulae.

Ephraim Clark
Director of Countrymetrics, Clark is the authority on sovereign credit risk. His presentation
provided a fascinating look at how sovereign risk could be more analogous to corporate credit
risk than we might first assume. Despite having rushed up from Paris that morning, Clark
was unruffled and quickly had the audience engrossed. Of particular note was his analysis
of sovereign debt and ratings migrations, new modelling techniques and new techniques for
parameter estimation.

Hugues Pirotte Spéder
Responsible for the corporate finance module at the Swiss Accounting Academy, Spéder is also
a co-founder of Finmetrics, which specializes in advisory and programming development of risk
management for banks, pension funds and corporate treasuries. Spéder’s presentation covered
some of the intricacies currently at play in the credit derivatives market. Spéder’s talk covered
the development of technical analysis in credit derivatives from the early days of the first Basel
Accord. Of particular note was his focus on the need for sophistication in this burgeoning area;
stochastic interest rates, firm-exogenous processes, credit risk portfolio creation.
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Aaron Brown
The vice-president of risk architecture at Citigroup was in the unenviable position of bringing
everyone back to earth after lunch. A tough job for even the most accomplished speaker, but
it was difficult not to be engaged by Brown’s fascinating look at ‘association modelling’. In
his usual inimitable style, Brown quickly refuted common misconceptions before turning to
recently available liquid market data in order to discuss how we should account for complex
association in correlation-based trading.

Elie Ayache
Wilmott’s newest columnist is no stranger to the website, where he is numbersix. Ayache’s firm
ITO33 produces cutting-edge convertible bond software. The equity-to-credit problem provided
the focus of Ayache’s talk, which provided a rigorous examination of traditional models, where
equity level determines the intensity of default. Utilizing active spreadsheets and real contracts,
Ayache demonstrated his approach to optimal hedging.

Peter Jäckel
The man from Monte Carlo was on fine form, having provided a number of belly laughs from
the back of the room. When it came time to step up to the pulpit Jäckel was well warmed
up. Jäckel provided an absorbing overview of the past and present approaches in stochastic
volatility modelling before considering future developments in the light of the demands created
by new markets in credit derivatives and increasingly complex instruments.

Henriette Prast
Readers of this magazine are familiar with Dr Prast’s column, “Emotionomics”. Behavioural
finance still produces knee-jerk reactions at the mention of its name; people are either attuned
to it or not. Prast began the final lecture, it seemed, speaking to a room that was roughly
divided on the subject. However, by the end of her exposition of this newest of approaches in
finance, the room seemed converted to her cause, not a hint of cognitive dissonance to be seen.
Covering prospect theory as an alternative to expected utility theory and explaining anomalies
in the financial markets through behavioural perspectives, Prast’s presentation was a fascinating
endnote to the Review.

Papers from the QFR 2003 will be published in 2004.
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Rewind
Dan Tudball

Wilmott magazine, January 2003

Dan Tudball reviews the major events of the year just gone.
Aaron Brown, Vice President of risk architecture at Citigroup, provides perspective.

“

T
hematic resonance”, that’s what the literati call it; the consistent and thereby

satisfying emergence and re-emergence of the same refrain delivering the moral
and political caution of the work. Explicit, implicit – it matters not; their presence
differentiates art from mere reportage. At this end of the scriptorial spectrum, how-
ever, there just isn’t much opportunity to exercise the theme bone on a regular

basis. When it’s actually happening life rarely imitates art; defining moments are by defi-
nition not two-a-penny. But occasionally a poor hack is thrown a bone in the shape of an
annual review. There is nothing like the luxury of hindsight to allow a person to discover
“meaning” amidst the ebb and flow of events. Post-rationalization is a cakewalk; ask any
divorce lawyer. So here we are at a new beginning, 2004 still a babe in arms, and 2003 just
so last year and ready to be consigned to history once we’ve neatly summed it up. But a
little like those poor urchins in A Christmas Carol who were disappointed to find that the
giant bird they had masochistically gathered to view in the poulterer’s window each day was
gone, we find there is no discernible theme to bear witness to in the end-of-year shop display.
And no, Ebenezer is not just around the corner to deliver the sweet in swift succession to the
bitter.

The preceding year, 2002, was a gift to theme-hounds. Credit derivatives provided a neat
form of industry closure following Enron, Worldcom and other major defaults. The CD market
was the success story of the year, the new friendly face of derivatives, and the saviour of
many a bank’s potentially embarrassed balance sheet. 2002 ended with a huge collective sigh
of relief, quickly followed by a gasp of awe at how huge the CD market now was. Nice and
tidy. But what of this year just gone? No such luck, sure we may have over-egged the pudding
a little just now – there are worthwhile stories to tell and reflect upon, but the experience has
been somewhat granular.

E-mail: dan@wilmott.com
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Exchanges: Unfinished business
The business of running exchanges has rarely seemed more interesting than this year. Carla Furse
had come to the London Stock Exchange the previous spring only to see a carefully negotiated
merger with Liffe snatched away from her by Euronext. After much speculation, Clara Furse had
been announced Chief Executive of the LSE in 2002. Her coming was trumpeted far and wide as
the beginning of a new age for the exchange, which under her steerage would awake like a giant
from long slumber and stretch its arms to encircle the financial globe. Acquisitions had been the
order of the day and a natural bedfellow surely would be London’s Liffe exchange, and from
there who knew? Unfortunately, Liffe did not share LSE’s views on whose corner it belonged
to and struck a deal with Euronext, the conglomeration of the Dutch, Belgian and French
exchanges. Following this slap in the face, LSE was left sniffing around for another derivatives
partner and lighted upon OM Gruppen, the operator of Sweden’s main exchange in Stockholm.

In January LSE paid a hefty £18.2 million for 76 per cent of OM London Exchange, the
derivatives branch of OM in Britain. Furse was eager to get a slice of the exchange based
derivatives trading market which had, in the preceding four years, seen over 20 per cent growth
in Europe. Statistics like this loom large against a greater than 15 per cent drop in normal
share trading volumes. If anything, 2003 began in much the way it would continue, with the
major themes being consolidation and control. And a certain amount of dragging, kicking
and screaming.

Good times
According to the Bank of International Settlements (BIS), the organized exchanges posted much
stronger six-month growth to June 2003 than the OTC market, with a 61 per cent increase in
notional amounts outstanding (versus 20 per cent in OTC) in the first half of 2003. “This
contrasts with the second half of 2002, when the stock of OTC contracts had increased by 11
per cent whilst the exchanges stagnated. The stronger increase of activity at exchanges occurred
both in the foreign exchange and interest rate segments with exchange-based contracts showing
increases of 42 per cent and 65 per cent, respectively.” LSE’s bugbears, Euronext.liffe and
Eurex, had already made successful plays into the US markets by the end of 2002. LSE had
meanwhile seen an ill-fated partnership with NASDAQ hit the rocks. Eurex began the year livid
with its erstwhile American partner CBOT, with whom the German-Swiss bourse had begun an
electronic trading venture. The Board of Trade had announced, on 9 January, that they would
not be going any further with Eurex after the expiry of their contract at the end of 2003.

Eurex swiftly responded on the same day with the announcement that upon expiry of
that contract it would launch its own American exchange. CBOT had opted to switch to
Euronext.liffe, who promised to match Eurex technology, but on a flat fee basis instead of the
potentially lucrative revenue-sharing arrangement, which Eurex had insisted on. The two Euro-
pean exchanges have shaken things up to some extent in the States. Fully electronic exchanges
expose the inefficiencies and unfairness of open-outcry, making the system look anachronistic.
Dealing spreads tend to be wider in open-outcry, which is great for the exchange who will
be able to profit from larger commissions – and looking at Chicago in particular, where the
three major exchanges are mutually owned by the traders on the floor, it’s no surprise that
open-outcry has lasted so long. They have all had to become hybridized exchanges, providing
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both physical and electronic trading – the sheer volumes of heavily traded contracts, such as
government bond futures, demand the speed and fairness that electronic trading can provide.

In credit?
By the end of 2002 credit derivatives were inescapable. Everyone who wasn’t already in was
talking about getting in. If you were talking this way this time last year you were already too
late. After the tech bubble and the muted performance of equities since 2000, credit derivatives
provided an exciting and potentially massive new market. In January 2003 the number on every-
one’s lips was $2 trillion, this being the estimated size of the global credit derivatives market
at that point; the forecast was for a doubling of this figure by the beginning of 2004. There was
a lot of mutual backslapping going on within investment banking, too. Credit derivatives were,
ahem, credited with being the instruments that allowed the banking system to ride out Enron,
Worldcom and other major corporate defaults; it looked like £44,000 dinners for six wouldn’t
be too far off. It’s no secret that banks have become increasingly disenchanted with their role
of lender, and over the past half-decade have made moves to reduce the amount of default risk
they are exposed to. The credit derivatives market has continued to grow apace through 2003,
the American market is nearing the $1 trillion mark, whilst London still represents over 50 per
cent of the global market. But the environment is changing.

Ratings agencies, initially fundamental to the credibility of the new market, have throughout
the year been sounding a cautionary (albeit far from consistent) note. Collateralized Debt
Obligations, particularly, enjoyed huge growth in the years preceding 2003, with a profusion
of AAA ratings and barely any CDOs rated below investment grade. For example, the $3.5
billion-worth of CDOs issued by Barclays between 1999 and 2001 included near $3 billion
rated AAA by Fitch, the rating agency. Less than $130 million now retain that rating, whilst
the original $196 million basket of bonds which fell below investment grade now has grown
to cover over $1 billion worth of bonds. CDOs have benefited the investment banking industry
through the fees it generates, whilst credit default swaps have, it is argued, helped reduce the
concentration of default risk and so diffused the shock of major credit events. All very well, but
like water in a length of leaky pipe, bad debt has to go somewhere and, although the banking
industry has managed to pop a metaphorical finger on the fracture while it reaches for a more
permanent fix, elsewhere the pipe’s integrity has to be questioned. The worry is that it is highly
likely that the credit markets harbour many disasters just waiting to happen.

The credit markets have risen in tandem with the increasing pace of the consultation toward
the new Basel Accord, which potentially makes certain classes of lending unprofitable – say that
to medium-sized enterprises – due to the capital margins required. Banks have been offloading
large amounts of lending over the last three years, some nearly halving the amount of lending
they have on their books. Even without the new capital margin requirements looming in the
not too distant future, retail and corporate lending just will not yield the kind of return that
shareholders and banks now require. Securitization, syndication and reinsuring seem the ideal
way to shift the debts or the risks onto those whose appetites are better suited due to different
regulatory limitations and capital costs.

Of course, the poor performance of the equity markets provides the other motivator in the
growth of the credit market. Institutions that had depended upon more traditional approaches to
investment growth have seen their margins whittled away over the last decade. The insurance
industry in particular has bought into the credit markets and has suffered, often embarrassingly
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so. Insurance companies are the biggest net sellers of protection in the credit derivatives market;
they also constitute the largest single group of buyers of CDOs. Insurance regulations now
require that firms disclose their mark to market positions on loans that they have guaranteed – all
part of the new commitment to transparency that has been wielded like a blunt instrument since
the demise of Enron and its sharp bean counters. The picture has not been a pretty one; firms
specializing in credit insurance, like Financial Security Assurance, have seen considerable losses
on securitized credits (in FSA’s case, around 14 per cent on a $75 billion book). Reinsurers
have backed out of the market (as in the case of Swiss Re and Chubb). The worry about the
shifting of credit risk out into new hands is a reasonable one, although one can’t help but
comment on the irony that the insurance industry, whose very life depends upon the calculation
and aggregation of risk, should feel so sorely done by this marketplace. There is speculation,
for example, that much of the over $30 billion losses on loans to Enron and Worldcom (which
have barely made a dent on the loan originator’s books) have been buried deep amongst the
overall (and non-itemized) losses of insurance companies.

The Basel effect
The realities of Basel II certainly became more tangible in 2003. The consultation process had
already provided some strategic impetus to the growth of the credit markets, but the Basel com-
mittee has been masterfully neutral on developments in that sector. Perhaps a case of out-of-sight
out-of-mind; after all, from a certain point of view it wasn’t under their own carpet that the banks
had been sweeping their dust. Joking aside, in its June annual review, the Bank of International
Settlements highlighted the growth of the market, indicating concern over the reconcentration
of risk beyond the view of the authorities. What provided for interesting viewing was the inter-
esting development by which the uber-nanny of monetary policy Alan Greenspan, took to the
defence of the oft-maligned instruments in the annual, “Derivatives: work of the devil?” debate.

To digress momentarily from the ongoing saga in the sleepy Swiss burg, in March the Sage
of Omaha pronounced derivatives “financial weapons of mass destruction” and warned all off
of their use. Berkshire Hathaway is no stranger to the occasional hedge, and most laughed the
declaration off as the rantings of a man who had found himself lumbered with a new purchase
whose positions were somewhat compromised. Most notable, and what will eventually bring us
back to the land of the silver bears, is the fact that Mr Greenspan responded fairly swiftly (for
the titans tussle in dramatic slow motion) in May at the 2003 Conference on Bank Structure
and Competition, Chicago, Illinois, with the declaration that derivatives were indeed a healthy
means of controlling risk.

I do not say that the success of the OTC derivatives market in creating greater financial
flexibility is due solely to the prevalence of private reputation rather than public reg-
ulation. Still, the success to date clearly could not have been achieved were it not for
counterparties’ substantial freedom from regulatory constraints on the terms of OTC con-
tracts. This freedom allows derivatives counterparties to craft contracts that transfer risks
in the most effective way to those most willing and financially capable of absorbing them.

The Basel Committee on Banking Supervision proposed adjustments to the contemplated
new Capital Accord in response to industry comment. Basel II historically has contemplated
requiring banking institutions to incorporate both expected and unexpected loss components
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into the Internal Ratings-based (IRB) capital requirement. The Committee now intends the IRB
measurement of risk-weighted assets to be based solely on the unexpected loss portion of the
IRB calculations. As to expected losses, banks now would compare the IRB measurement of
expected losses with the total amount of provisions (both specific and general) that they have
made for such losses. If the comparison indicates a shortfall, the shortfall amount would be
deducted equally from Tier 1 and Tier 2 capital. Any excess resulting from the comparison
would be eligible as an element of Tier 2 capital (up to 20 per cent of the total Tier 2 capital).
Comments on this proposed change were due to the Committee by 31 December 2003. The
Committee also said generally that it is contemplating simplifying the treatment of asset securi-
tizations, and revisiting the treatment of credit card commitments and of certain risk mitigation
techniques. The Committee hopes to have all outstanding issues resolved by mid-2004.

Currency conundrums
Although not in the doldrums as such, and still representing by far the largest asset class traded
in OTC markets, foreign exchange had, relative to the ascendant star of credit derivatives,
been subdued. The year just past saw a resurgence of trading, however, driven entirely by
the reflationary policies of the US administration and a controversial commitment to a weak
dollar. Interest rate cuts have been par for the course for the longest time, first in an attempt
to kick-start the markets, then in order to get consumers out buying American. Now the US is
at loggerheads with China and other developing world economies in their calls for currencies
to be taken off the dollar peg and allow the buck to drop. Worries abounded that knock-on to
export competitiveness in Europe and Japan would send shockwaves through the markets. The
bond markets shuddered at the thought of Asian central banks withdrawing from the Treasuries
markets – ill-afforded after the mauling of the summer, and with 36 per cent of treasuries held
by overseas investors not to be discounted.

But foreign exchange traders, denied any heavy leverage since the European currencies
folded into one, have seen a rebirth. BIS remarked that:

This is an area which had not seen double-digit growth since the BIS began collecting
these statistics. However, in the first half of 2003, outstanding contracts rose by 20 per
cent for this risk category. Currency options provided the prime source of momentum,
with a surge of 42 per cent. This was particularly marked in non-financial counterparties,
where the use of currency options grew by 91 per cent period-on-period.

Brownian motion
Aaron Brown on credit derivatives
“I’m a big fan of credit derivatives. I think credit risk was in the nineteenth century a few years
ago and credit derivatives basically took all the stuff that worked for market risk and now credit
risk; everyone used to say credit risk is so much harder to deal with, it’s so much lumpier,
so much more unpredictable, and it just wasn’t true – we just didn’t have the instruments to
handle it. Now we do and we’re finding that it’s no worse than any other market risk.”

“Credit derivatives will continue to grow. Early in the year, JP Morgan settled with Travelers
Insurance and 12 other companies with their Enron performance bonds and Morgan took a $1.3
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billion charge because of that settlement, which told people that insurance companies are not
the place to go to get rid of this credit risk. The ratings agencies basically did not do a very
good job predicting any of this stuff; one thing that worked was the credit derivatives, and they
worked without a squawk. In all of the credit losses of 2002, we didn’t hear one complaint that
people had overbought credit derivatives, or that somebody had some they didn’t understand,
or that an investor was misled about them. The market worked seamlessly and perfectly, and
then we had an unexpected credit crunch and it was the most painless one in history. I don’t
see how it could have worked any better; there are huge pools of capital there that use this
stuff and the credit derivatives find the right place. I think a lot of it was insurance companies,
and insurance companies are built, with experience of long-term life insurance and pension
contracts, to take that kind of credit risk. It hits you really hard, say every five or six years,
and you take a big charge, but in the long run it’s a very profitable business. If you’ve got the
long-term capital so that you can afford that, it’s a much better way for insurance companies
and pension funds to be investing than say equities. You know they need that credit risk because
they need that return. So I think the system works very well and it’s working better as people
evolve better products.”

“Ratings agencies really failed in the last round of credit problems, they didn’t spot any
of the telecommunications, they didn’t tell anyone about ratings cliffs until after we found
out about it the hard way and they were slow to downgrade. I think they did pull themselves
together and have reacted well. What we’re seeing, for example at Fitch, is that there still is
a role for ratings, and ratings will be conservative and slow, and that’s good for the market,
because ratings are the only time when an analyst will look at the individual company and
produce a public report. And people should look at the credit derivative spreads to see the
ticking up and ticking down of the probability of default and expected recovery and so on, so
I believe there’s a natural synergy between the two. They’re feeling that now. Another thing
I’ve noticed is that they’ve started looking very hard at credit derivatives because they realize
that’s a very important part of credit. Are you hedging? Whose risk are you exposed to? The
ratings agencies have gotten a lot more sophisticated about that now.”

“Insurance companies are exactly the people to be doing this because it is so sporadic; I do
agree you could see a potential for abuse where a hedge fund could be making steady profits
for five years then going bust because it bet everything on there being no credit defaults, but
again, hedge funds are supposed to be sophisticated and I don’t see these things being marketed
to retail investors. I suppose if anyone ever starts a credit derivative mutual fund, well to me
that’s the SEC’s problem, a consumer protection issue and not a market issue.”

Basel II: an impetus for credit derivatives market growth?
“A year ago a lot of people in a lot of organizations were running around trying to comply with
Basel; no one’s thinking that way now. They’re thinking, we’re making ourselves better and
we’re tightening up a lot of stuff we should have done a long time ago, putting more money
into risk management and monitoring; credit derivatives are one aspect of that. We used to see a
lot of credit risk build-up that was not very well managed, not closely monitored, not carefully
costed out. Once you actually do that then you think you’d better trade this stuff, you have
too much exposure to this stuff that wasn’t aggregated in one place or monitor on a market
basis before. Start charging trading desks with the counterparty risk and they start saying, ‘Gee,
those BBB counterparties generate big fees, are trading all the time and generating business
but they’re hitting me with a big capital charge.’ When we didn’t charge trading desks with
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that, then of course all the trading entities were BBB, now of course all the trading desks are
concerned about the credit rating of their counterparties. In insurance it used to be that you
used to buy a pool, then syndicate it, and every insurance company would get the same fraction
of premium whether they were AAA or A. Suddenly people are running around saying that
doesn’t make a lot of economic sense, we should pay more for AAA than A.”

“These are the kinds of things that, through Basel, are rippling through the entire economy.
When banks have to do it then they force people in business to think that way and pretty soon
everyone thinks that way. I do think there is a general move toward rationality and Basel II is a
big part of that, and credit derivatives are one of the major effects. It’s misleading to say Basel
II will only apply to 12 major US banks; it will essentially apply to every financial services
company, large or small, in the world, these things trickle down, filter out, and if your bank is
assessing you as a counterparty risk, suddenly you have to think about the way counterparty
risk is thought of in Basel. It really does affect everybody; either your banker is going to come
up to you and say, ‘This is what you have to do,’ or you read the documents yourself and start
doing it. If you want a good credit rating, if you want to borrow money, if you want to trade
with anybody, you must think like a Basel person.”

FX markets: new lease of life and the weak dollar policy?
“Without the strengthening of the Euro we wouldn’t have seen that. I’ve been wrong on this for
several years but I’ve been predicting the gradual demise of foreign exchange trading, simply
because the economies are closer linked. We’re in a world where there are only three main
currencies, not sure if the yen is going to be one of those for much longer, the euro and the
dollar seem pretty stable, so now we see this huge move on dollar/euro and dollar/yen as well;
a new lease of life, but I think that is just temporary. I think we’re moving towards a world
with one currency in all but name, so I don’t think of foreign exchange trading as a long-term
proposition.

“FX always does well when there are big moves that no one expects, but I don’t know how
many more of those we’ll have. When we were moving towards the euro there was a lot of
interest, but once you had the euro a lot of the inter-Europe FX trading went away, and now
that it’s stable and strong you can do business these days without worrying about currencies as
much as you used to. There are plenty of currencies with wild currencies, but there was never
a huge volume of business in there anyway. The volume was all in dollar/mark dollar/yen and
so on. In a rational global world there’s no need for currency fluctuation, but like I say, I’ve
been saying that for a while and I’ve been wrong!”

“I would prefer to see a balanced budget, strong dollar and higher interest rates. But given the
spending that they’ve been doing, I think a weak dollar and low interest rates are a reasonable
response to that. Macroeconomics is being pushed at the service of politics. I would not want
a strong dollar and higher interest rates with the kind of borrowing they’ve taken on. It doesn’t
matter so much in the long run. It’s not the bread and butter issue it was 20 years ago, I don’t
think people are suffering, no one’s going without their vacations in Europe – it’s not an issue.”
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In for the Count
Dan Tudball

Wilmott magazine, September 2002

Ed Thorp cracked blackjack, used the first wearable computer to beat roulette, started the
world’s first quantitative hedge fund, anticipated the Black–Scholes formulae 5 years in
advance, and has maintained consistently excellent returns through nearly 40 years in
futures. Dan Tudball reviews the life of one of quantitative finance’s great heroes, and
speaks to the man himself.

T
he year is 1938. The place, about 45 miles out of Chicago. On the steps of a market,
a boy of not quite six faces off against a perplexed looking local man who holds
a heavy tome belonging to the kid, and studies it with some scepticism. “Egbert
802 to 839,” the boy begins, quietly, and in a considered tone somewhat beyond
his years he continues:

“Ethelwulf 839 to 857, Ethelbald 857 to 860, Ethelbert 860 to 866, Ethelred I 866 to
871, Alfred the Great 871 to 901, Edward I 901 to 924, Ethelstan 924 to 940, Edmund
I 940 to 946, Edred 946 to 955, Edwig 955 to 959, Edgar I 959 to 972, Edward II 975
to 978, Ethelred II 978 to 1016, Sven 1013 to 1014, Canute the Great 1016 to 1035,
Harold 1036 to 1039, Harthacnute 1039 to 1042, Edward III 1042 to 1066, Harold . . .”

The man’s face sets in disbelief as the boy continues his litany; the book he refers to is A
Child’s History of England by Charles Dickens – every entry in the chronology of monarchs
recited from this boy’s memory to perfection. The boy’s father is equally taken aback. Thorp
senior had long known his son was a prodigy, but this display is shocking. Only moments
before the man had questioned how such a young child could read such a weighty volume.
He’d followed that with a challenge to name all the kings and queens of England in order
and with the dates of their reigns. And here was the child, nearing the end of his recitation,
suddenly looking puzzled himself; “Queen Victoria, I know when her reign began, but I don’t
know when it ended.” But then again, neither did Dickens.

Edward Oakley Thorp was born on 14 August 1932 in Chicago, Illinois. His parents had
met in Manila, when Thorp senior was stationed with the Philippine constabulary. That the
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child Thorp was different was already evident to his parents when, even at the age of two and
a half, he had not yet uttered a single word. This difference was soon recognized as prodigy
when the mute child, by then nearly three, was taken on a shopping trip to Montgomery Ward,
a department store in Chicago. During a break from the shopping expedition, the young Thorp’s
parents and friends were sat down trying to induce the child to speak – still a popular pastime
in the Thorp household. Some people stepped out of the elevator and someone asked, “Where’s
the man gone?”. Thorp recounts the moment down the line from Newport Beach; “ ‘Oh, he’s
gone to buy a shirt,’ so everybody’s eyes popped out and the next question was, ‘Where has
the woman gone?’ and I answered ‘Oh, She’s gone to the bathroom to do pee-pee’ and their
faces turned reddish and they started to ply me with questions.”

This revelation motivated Thorp’s father to see how much he could teach his young son.
Reading primers led swiftly to more complex books and Ed was reading confidently by the
age of three and a half; successively more complex books led to the showdown at the market.
Between the ages of five and ten, Ed devoured every scrap of reading material he could get
his hands on. Concerned that he was becoming too cerebral at the expense of other activities,
Ed’s parents were concerned he wasn’t getting out enough – they started him on building model
airplanes, and then bought him a mineral set when he was ten. This was followed by a chemistry
set, which really set Ed off. He cordoned off a section of the garage for his “experiments”, which
allowed an outlet for his fascination with controlled explosions. These explosions led to an
explosion of another kind; from chemistry to physics, electronics, astronomy and mathematics.
Being most interested in chemistry, he sat for the All-Southern-California high school chemistry
test, despite being a few years younger than other students sitting for the exam. He came fourth
in that part of the state, and was very proud of that result, but he recalls that the reason why he
had only achieved that position rather than coming first was down to a new section requiring
slide rules. Ed only had a 10 cent slide rule, which was “a piece of junk” in his hands. He decided
to avenge himself the following year by taking the analogous physics test and came out first,
by a very large margin. It was this result that got him a scholarship to UC Berkeley – without
it, Thorp may not have been able to advance further in education, money was so tight.

Austerity and reason
Ed had grown up in the Depression era, and that defining time had affected him just as deeply
as his contemporaries. Even at six years old, Ed had begun formulating ways to assist with the
household income.

“It was a time when everybody was very poor, and I remember getting five cent packs of
Kool Aid, making six glasses out of each pack and selling them at a penny a glass to WPA
workers out on the streets who got hot and sweaty in the summer. I remember I saved
every cent. Fortunately my father was in a moderately secure job and we always had
food on the table, but I remember seeing pictures of homeless people in the newspapers,
tattered clothes and that sort of thing. It’s something that people of that era remember
very vividly. Saving everything. And that had an impact on me, I was very frugal for
the first twenty-five years of my life and this allowed me to make it through university
on very limited means.”

With money in short supply, and with a burgeoning interest in expensive experimentation, Ed
would deliver newspapers at two to three in the morning in order to fund his science.
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When speaking to Thorp about these formative years, a vivid picture is painted of a child
whose critical and analytical faculties were highly developed; a child with a preternatural gift
for reflection, and independence of thought – only prepared to commit to something, whether
an idea or a course of action, after the very deepest consideration. Ed was fascinated with
Morse code, and was a radio ham – this in itself deriving from a passion for structure and
organization. Certain gifts, like a near-photographic memory, died away as life required the
skill less, but even to this day Ed has a facility for two- and three-dimensional geometry, which
allows him to mentally map any journey he makes and very quickly draw an accurate map from
memory. Other lessons learnt in childhood still resonate with Ed today, such as his commitment
to Reason and its values.

“I think as far as the way I approach things, professionally and otherwise, I’m unusually
rational as people go and I don’t feel like I have any of the usual areas of irrationality
that people have. I don’t want to offend but I’ll mention things like astrology and tales
from olden times about things that allegedly happened. The place I may go wrong from
time to time is that I may not have enough experience of some aspects of the world, for
instance as I grew up I was very naı̈ve about people. Until I was nine I believed that
everything I saw in print was true – I found it impossible to believe otherwise. Until,
that is, I saw two newspapers with conflicting information and that particular naı̈vety
disappeared rather rapidly after that.”

The deck re-stacked
Back in 1914 Ambrose Bierce wrote, “The gambling known as business looks with austere
disfavor upon the business known as gambling.” However, during Ed’s formative years through
to the late 1960s, the notion that the world of finance could derive valuable lessons from the
world of casinos had not become the cliché that it is today. As far as gambling was concerned,
Thorp’s first brush with that world was under the tutelage of an older cousin, who would take
his young relative to gas stations that housed illegal slot machines in their washrooms. There,
Ed was shown how to jiggle the handles on the machines to pay off when they shouldn’t.
Naturally, money being scarce at the time, this was a delight – however, it was not until he
was at university that Thorp got to seriously thinking about gambling in relation to his innate
talents of mathematics and physics. And the challenge that interested him then was less getting
the payoff when there shouldn’t be one, but rather when there should.

Between 1955 and 1964 Ed was to work on two things that were to have a profound effect,
not only on people in Nevada and Atlantic City who sported names such as “The Fish” or “Ax
Handle” between their fore- and surnames, but also on every person with the slightest interest
in reducing risk. The first was the development of the wearable computer for predicting the
outcome on a roulette table. Success there primed him for his approach to blackjack.

By 1958, when Ed first started thinking about blackjack, he had married Vivian and had
achieved his PhD at UCLA. Work on roulette had resulted from some idle banter with friends on
how to make easy money, back in 1955. This time round it was a trip to Las Vegas for a cheap,
non-gambling, vacation that got Ed thinking. At the time the prevailing assumption was that
none of the major gambling games allowed for systems. The accepted thought was that because
most games depended upon independent trials processes, i.e every spin or dice roll was unaf-
fected by those that preceded it, then there was no way a mathematical system would allow you



22 THE BEST OF WILMOTT

to numerically track outcomes and reasonably predict future outcomes. Unless you used rigged
dice or had some information on the croupier, you might as well bring along a rabbit’s foot as
a calculator. Ed had previously concluded (in 1955) that roulette was an exception to this rule,
because he wasn’t using a numerical system and instead relied on the physical properties of the
mechanism. Prior to his trip to Vegas, Thorp had been given a paper, published in the Journal of
the American Statistical Association, written by US Army mathematicians (Roger R. Baldwin,
Wilbur E. Cantey, Herbert Maisel and James P. McDermott) on basic strategy in the game of
blackjack. The contention of the paper was that the house edge on blackjack could fall as low
as 0.0062 (somewhat later corrected by them to 0.0032). Ed made himself a little reference card
to take to the table, purchased ten bucks worth of chips and prepared to test the methodology.
Once at the table, he played the game for about 20 minutes – never having played it before,
and this being the first time he’d set foot in a Casino – eventually losing the ten dollars, but
the important observation he took with him was that he had been losing at a far slower rate
than others on the table, and the realization that he could modify the methodology.

Like roulette, blackjack was in fact also an exception to the rule that gambling games
couldn’t be beaten by fair means. At that time, when a card was dealt it was put aside, thus
shifting the composition of the now depleted deck in a set manner, a manner that would favour
either the player or the casino. Independent trials processes were not a factor in this game
and thus, Ed reasoned, all you needed was a decent frequency of favourable situations and
adjustments in the betting spread in order to get the edge. Ed, whether he realized it or not,
was on the edge of something himself.

In the fall of 1961 Ed was CLE Moore instructor at MIT and went to Washington to present
a paper entitled ‘Fortune’s Formula’ at the American Mathematical Association. After the trip to
Nevada, Ed had tested some of his own theories on MIT’s own IBM 704 mainframe computer
(a far cry from 10 cent slide rules!) and duplicated in a few hours what would have taken over
10,000 man-years of labour on a hand-held calculator. It was these findings that he presented
in Washington. At the end of the presentation, all of Ed’s mimeographed copies of his report
were snapped up as the 300 or more mathematicians in the room rushed the podium. When
Thorp had arrived in Washington, he was already aware that the media had whipped up a small
storm in advance. An AP reporter had been leafing through the Association’s abstracts prior to
the meeting and called Ed; this resulted in a story in the Boston Globe the next day. Ed recalls
that the phone was ringing off the hook for the next four days, his wife Vivian filled an entire
legal pad with messages before finally refusing to pick up the phone, and their daughter – for
weeks after – would cry at the sound of a phone ringing. The following weeks at MIT, all six
faculty secretaries were snowed under by tens of thousands of letters – until the university had
to tell Ed to deal with the correspondence himself because the secretaries weren’t able to deal
with other faculty business.

Lady Luck RIP
Of course, it wasn’t just letters. Offers to bankroll Thorp came apace, but Ed didn’t take the
bait. However, this situation was to change in early 1961. One of the people who had read
about Ed’s presentation was Emmanuel ‘Manny’ Kimmel, a professional (and very successful)
gambler, whose own background could not be further from that of Thorp’s. The story goes
that Kimmel was kidnapped as a child and put to sea – he managed to jump ship somewhere
in the Far East where he found work on a cattle boat; the work involved a shovel – and from
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then on he raised himself. He was a well-known face in the demi-monde and one of the best
proposition men in the USA. He had a good, uneducated, intuitive understanding of odds and
“proposition bets”. Not being a man of letters, Kimmel had Thorp checked out, phoned him,
and made his way to Thorp’s apartment outside Boston. Kimmel’s proposal coincided with
Ed’s decision to try out his theories in practice, to show sceptics that his theory really worked
and in preparation for a book he planned.

“A lot of people said it was pie in the sky, a half-baked theory, and a few challenged me
to actually do it. So, having a childhood experience of actually doing things in science
as well as thinking about theories, I knew I had to do it.”

Ed goes on to describe the day he met Kimmel:

“One wintry afternoon in February 1961 we looked out our window and saw a midnight
blue Cadillac pull up, but I didn’t see the man I’d spoken to on the phone – I saw two
young blondes in mink coats and they got out – and tucked as snug as could be between
them in a long cashmere coat was Kimmel. He introduced the two blondes as his nieces;
I took it on face value but my wife disagreed! She was much more aware of the ways
of the world than I was, she was a literature major and very widely read. She’s very
perceptive about people, what makes them tick and what their hidden agendas are.”

Whatever Kimmel’s background was, Ed was blissfully unaware of it at the time. Kimmel
was later to be immortalized as “Mr X” in Beat the Dealer, wherein Thorp goes into some detail
about the trip to Reno that Kimmel and another flush gambler, Eddie Hand (“Mr Y”), bankrolled
in 1961. It wasn’t until the early 1990s that Ed learned about Kimmel’s credentials, during a
conversation with the author Connie Brook who was working on Master of the Game, a book
about the creation of Time-Warner. Mr X was closely associated to Longie Zwillman – a.k.a.
Mobster Number Two – and had made his money bootlegging and running numbers in the
1930s. Ed recalled that on their first meeting, on a bitter winter’s day, Kimmel had told him
that he owned 64 parking lots in New York, and due to the weather snowing them out for two
days he had lost $1.5 million. Bruck explained to Ed that Kimmel had a controlling stake in
Kinney National Services, whose 1960s SEC filings revealed that amongst their assets were
indeed 64 parking lots in New York!

Hand and Kimmel had one very simple goal; they wanted to bankrupt Nevada. They were
sure that with the help of their secret weapon, “The Professor”, and a bankroll of $100,000
this would be a feat both achievable and worth savouring. However, ever the empiricist, Thorp
declined the colossal stake and opted instead for the less imposing (but still sizeable) float
of $10,000. Four nights into the experiment, Thorp’s system was proving unstoppable. The
Wagon Wheel in Lake Tahoe saw Thorp play against six dealers in a row, without a break
and without losing a cent. Kimmel was also playing at the same table, and Thorp was so into
the system that he was able to direct his backer as well as play his own hands. By the time
Thorp decided to bring the slaughter to an end and retire to his room, he was $17,000 ahead.
But superstition and luck are constant companions to the dyed-in-the-wool gambler; Kimmel
could not equate the “streak” with anything but the “fact” that the cards were “hot”. The
system, The Professor, and good management were but a distant concept to him now. Thorp
left, exasperated after trying to convince Kimmel to cash in his chips and return another day.
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In less than an hour Kimmel squandered $11,000. After five days the group decided to call it
quits. They discovered that, despite Kimmell’s voodoo possession, they had still managed to
return $21,000 on a capital outlay of $10,000. Thorp returned to Boston financially secure for
the first time in his life.

A Question of finance
During the summer of 1964, Ed was at liberty to conduct whatever kind of research he wanted.
He decided to spend it educating himself about the stockmarket and see if he could discover
a system for giving himself an edge in the stockmarket over the kind of performance people
attained by chance. He observed that on average everyone did well in the long run, barring short-
term unpleasantries. The summer ended and it was back to work at the university, but his interest
picked up again in the summer of 1965, which the Thorps spent in Los Angeles. Ed had sent
away to the periodical Barons for some information on warrants and, on receiving the material,
he noted that they could be mathematically analysed because they were so much simpler than
stocks. He saw that most of the variables were captured by the stock, and most of the differential
behaviour was between the stock and the warrant, thus he could eliminate most of the variables.

When Ed joined the new University of California campus which opened in Irvine that fall,
he ran into Sheen Kassouff, who was also joining the new faculty as an economist. Kassouff
had been working on the same idea, but far in advance of Ed, and had actually started trading
on it. The two decided to collaborate and the result was the book Beat the Market. Kassouff
recalled that time “100 years ago”

“I think at the very first meeting when we went to talk about it, we met in this conference
room in the Dean of Social Science’s office. One of the people there, the Associate Dean,
Julian Feldman, later told me that it was a battle for the chalk between Ed and I . . .

rat-a-tatting there on the blackboard over pricing and relationships and so on. I think
he was very interested in finding some mathematical application to finance. Being a
mathematician and being able to apply it to finance and make money from it, was a very
interesting endeavor. He convinced me that was true.”

Kassouff was impressed with Thorp’s sophisticated approach to life.

“I was a naı̈ve, but not young, academic. That was my very first entry into the world of
academics and the life of the mind and I hadn’t thought of it in a commercial way, I
was more interested in the theoretical underpinnings and of course I was practicing this
for a number of years on my own accounts and friends and family, but I never thought
of expanding it to a book until I met and talked with Ed. We got a $50,000 advance,
which to me was staggering; my annual salary at the time was something like $10,000!
I was an assistant professor. So it was going to be a sequel to Beat the Dealer. He also
wanted to develop some expertise, he liked the impersonality of the financial markets
rather than the one-on-one of Las Vegas – where you’re actually dealing with the person
whose money you’re winning, leading sometimes to unhappy kinds of results, whereas
in financial markets you don’t really know who’s on the other side, and that appealed to
him a good deal I think.”

In late 1967 or early 1968, Ed started trading OTC options. Prior to this he had sat down to
figure out what they were actually worth, using integration. He saw there were a few unknown
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parameters, so with very little to go on he applied Occam’s razor, went for the simplest possible
choice, and had a few other reasons for making the choice – actually what Ed had worked out
was what would ultimately come to be known as the Black–Scholes formula. Modest to a fault,
however, Ed had this to say about it:

“I just happened to guess the right formula and put it to use some years before it was
published. I was convinced it was right because all the tests that I applied to it worked.
It did all the right things; it gave all the right values, and had all the right properties.
The way you prove it is by using the arbitrage argument. Much later, in 1973, Black
sent me a preprint of his paper and wrote that he admired my work, and said that his
methods differ from mine in that they go one step further than simply hedging – they
make an assumption that if you have a perfect hedge that you should get the same result
as if you’d bought a riskless security – that was the key observation. I actually had a
note I had made in 1970 saying I ought to pursue that line, but I was so busy trading
securities and using the formula that I never took the opportunity. Black and Scholes
found the formula in 1969; I was already trading using the formula in 1967/68, trading
on OTC Options at the time.”

As the 1960s came to a close, word of Ed’s investment methods had spread around UCI. By
November of 1969 he had a dozen or so individual accounts, which had anywhere between $25
and $100,000 in them. These were put into warrant hedges whilst Ed traded in options on his
own account, using his own anticipation of Black–Scholes – Ed didn’t apply this to the other
accounts because although he had, as he puts it, “guessed” the method, he didn’t have what he
felt was definite proof. However, he was using that methodology amongst others to evaluate
warrant hedges. It was at this time that he ran into the legendary Warren Buffett. The meeting
occurred through the auspices of Ralph Gerrard, Dean of the graduate division at the Univer-
sity of California, and one of Buffett’s original investors. Gerrard was a relative of Benjamin
Graham, the man who single-handedly created modern security analysis and set the highest
standards from the 1920s until his retirement in 1955; Graham in turn was Buffett’s mentor.

Buffett had decided that stocks were overpriced in 1968 and decided to shut down his
partnership, and return the money to all his very happy investors. Gerrard was looking for
someone to invest with and had just read Beat the Market. Buffett had averaged 24% for the
last twelve years, and Gerrard wanted him to take a look at Ed as a candidate for investment.
The first meeting was at Gerrard’s, where they played bridge and discussed finance; the second
was dinner with their wives. After that, Thorp and Buffett never met again, but Gerrard invested.
In a recent interview by journalist Ken Kurson, Buffett fondly remembered his meeting with
Ed. 1969 saw Convertible Hedge Associates launched. It was the first market-neutral hedge
fund utilizing OTC options, convertible bonds, warrants and preferreds. All the hedges were
approximately delta-neutral, and all of these four years before either options were listed or the
Black–Scholes formula was published.

Consistency to calamity
Between November 1969 and its dramatic demise in 1988 at the hands of Rudi Giulliani,
Princeton Newport Partners (formerly Convertible Hedge Associates) demonstrated astound-
ing consistency and growth. Over the 19 years in operation, the total percentage increase was
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1382%, an annual compound rate of return of 15.1%. Compare this to the same period in the
S&P 500, which saw an increase of 545% and an annualized rate of return of 10.2% or 3 month
US Treasury Bills, 345% total increase, 8.1% annualized. Thorp worked on the theory from the
West coast, while his associate Jay Regan did the selling and made the transactions in the East.

The days of the raider loomed large in the 1980s, and the poster boy of the period was
Michael Milken of Drexel Burnham. His use of bonds to finance second-tier firms, and also the
raiders who were proving the bane of the ‘light shoe’ directors of major companies, made him
an obvious target for reprisals. Unfortunately, Milken was also committing a number of excesses
and violations of securities laws, trading fast and loose. A close confederate of his was Thorp’s
partner, Jay Regan. Through Regan, Thorp had met the likes of Milken, who had always acted
cordially to the professor. There was nothing to suggest any illegal activity whatsoever.

Rudi Giulliani was then US Attorney for the Southern District of New York I. He saw an
opportunity to emulate Tom Dewey, who busted the bootleggers in the 1930s. Milken proved
too difficult to get a grip on. The second in line was Robert Freeman at Goldman Sachs, who had
been James Regan’s roommate at college. Goldman was prime broker for PNP. Giulliani decided
that if he applied pressure to Regan, he’d get Freeman and Milken. PNP became the number
one target. In December 1987, the ATF, FBI and Treasury came pouring out the elevators at the
Princeton offices of the partnership, and they seized hundreds of cartons of records. To Thorp
it was all nonsense, but it turned out there were three tapes that would prove to be destructive.

“They found some incriminating stuff,” Thorp recalls.

“Someone at PNP and someone at Drexel were manipulating a new security that Drexel
was issuing. They wanted to control the price at issue date, so there was an agreement
about what we would buy, and how much and so on. Then there was a stock-parking
issue. Someone at Drexel had used up his $25 million capital limit and wanted to put on
more positions. Of course, Drexel had a capital limit and didn’t want any more positions.
What he did was sell part of his positions to Princeton-Newport and agree to buy them
back at 20 per cent annualized profit. So this is parking – illegal because it conceals the
true ownership of securities.”

Giulliani invoked RICO, the first time it was used against a Securities Firm. Two incidents
were needed over 10 years to prove a pattern:

“They tried tax fraud, wire fraud, and mail fraud and so on to try to get us. Tax was a
joke, because it turned out we paid taxes on $4 million twice – we made an accounting
mistake, so we were owed money. It took ten years for us to get back some of the money,
every individual partner had to file separately. I got my money back – but it cost a lot
in legal and accounting fees.”

The case was brought to trial. Thorp offered to take over the running of the partnership if
Regan would step down until proven innocent. Everyone could return and reclaim their share
once the trial was over. Regan declined. Thorp didn’t want to continue in an atmosphere of
suspicion, and the partnership was dissolved.

“Five people, including Jay Regan, were convicted from the Princeton office, given fines
and jail terms. One Drexel trader was given fines and jail terms. They appealed, and it



IN FOR THE COUNT 27

was found that the judge had given improper instruction to the jury, so it was brought to
retrial. Giulliani had gone on to greater things and he couldn’t care less. US Attorneys
had lost interest because by then they’d gotten Milken, Freeman and so on, so didn’t
contest. The conclusion was that the defendants were ‘Not found guilty’ as opposed to
‘Found not guilty’. So it’s still open. The jail time was light, only three to six months.
It was basically a vendetta.”

The acrimony, the legal complications, the lack of direct communication decided Thorp to
quit the business for a time. He decided that he wanted a smaller shop, a simpler life. In the
early 1990s he had done some Japanese warrant trading and Nikkei put options. He shrunk the
operation from 40 to 20, then he proceeded to leave warrants, and the staff shrunk to six. In
1991 Thorp was informed by one of his larger investors that one of his products, Statistical
Arbitrage, was doing very well. Since 1992 Thorp has been running his Stat Arb operation, and
a parallel hedge fund since 1994. When LTCM happened, Statistical Arbitrage positions were
one of the few good positions left. Thorp profited as Hedge Funds suffered a run on the bank,
liquidating good positions in order to hold on to the bad. Diligence and a supreme commitment
to logic and empirical evidence once again proved Thorp right. The irony is that he had been
offered a place at LTCM – he had turned it down flat.

“Because I knew two things. I knew Meriwether from Salamon, he was a big roller of
the dice, and I believed Scholes didn’t understand the risk. I’d had some interchange
with Samuel . . . and Merton over logarithmic utility; it’s a particular prescription for
approaching certain risk problems. They made some points that are true – that it’s not
all things to all people, but that’s not an assertion I would ever make. But some of their
arguments are wrong. And I could see that they didn’t understand how it controlled the
danger of extreme risk and the danger of fat tail distributions. So that was a theoretical
place that we fundamentally disagreed. It came back to haunt them in a grand way.”

The last year has been an interesting one as Thorp watches the flight from equities with
great interest. His mind now turns to the future:

“People who run things like Statistical Arbitrage operations have gotten a lot of new
money, and many of them have imprudently expanded, their returns have gone negative
as a result. People have also found it easy to start up funds of that type, due to the
demand – and those people may not be particularly qualified. More money is chasing
the same opportunities, thus driving the value of the opportunity down. Our policy has
been to stay moderate in size and allow size to fluctuate according to what we see as
our near term performance in the market. We shrank to a third then expanded to a half
of our peak size. That’s where we sit now.

The outlook for equities is not quite as good as it has been over the last century. There
are a number of excesses that need yet to be corrected, we seem to be reading daily,
week after week, in the press about this. People are used to a high rate of return, now
they’ve seen two–three down years in a row. They tend to overcorrect. They’ll flee to
other areas, market neutral hedge funds, property–where I live the rise in property prices
has been near 20%, in California there’s only a two month inventory left of properties
at market. Seven months used to be the typical supply. Real estate will run its course,
and a thundering herd of investors will run to the next asset class.”
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A fitting enough image to leave on. Ed Thorp has defined not just what it means to take a
quantitative approach to finance over the past half century. His values remind us that it is the
evidence of your own eyes, and the power of the intellect, which guard against the temptation
to jump on the latest bandwagon until it rolls over a cliff.

The rules of blackjack or 21
The aim of the game for the player is to hold a card count greater than that of the dealer without
exceeding 21 (going “bust”).

Before any cards are dealt, the player must place his bet in front of his table position. The
dealer deals two cards to each of the players, and two to himself (one of the dealer’s cards is
dealt face up and the other face down). Court cards (kings, queens and jacks) count as 10, the
ace counts as either 1 or 11, and all other cards are counted at their face value. The value of
the ace is chosen by the player.

If the player’s first two cards are an ace and a 10-count card, he has what is known as
“Blackjack”. If he gets blackjack with his first two cards, the player wins unless the dealer also
has a blackjack, in which case it is a standoff or tie (a “push”) and no money changes hands.
A winning blackjack pays the player 3 to 2.

“Hit” means to draw another card. “Stand” means no more cards are taken. If the player
hits and busts, his wager is lost.

The player is also allowed to double the bet on his first two cards and draw one additional
card only. This is called “doubling down”.

If the first two cards a player is dealt are a pair, he may split them into two separate hands,
bet the same amount on each and then play them as two distinct hands. This is called “splitting
pairs”. Aces can receive only one additional card. After splitting, ace + 10 counts as 21 and
not as blackjack.

If the dealer’s up card is an ace, the player may take insurance, a bet not exceeding one-half
of his original bet. If the dealer’s down card is a 10-count card, the player wins 2 to 1. Any
other card means a win for the dealer.

It is sometimes permitted to “surrender” your bet. When permitted, a player may give up
his first two cards and lose only one half of his original bet.

The dealer must draw on 16 and stand on 17. In some casinos, the dealer is required to
draw on soft 17 (a hand in which an ace counts as 11, not one). Regardless of the total the
player has, the dealer must play this way.

In a tie no money is won or lost.
Rules differ subtly from casino to casino, as do the number of decks used. The advantage

to the dealer is that the player can go bust, losing his bet immediately, yet the dealer may later
bust. This asymmetry is the key to the House’s edge. The key to the player’s edge is that he
can vary both his bets and his strategy.

The world’s first wearable computer
In spring 1955, Ed Thorp was in his second year of graduate physics at UCLA. At tea time one
Sunday he got to chatting with colleagues about how to make “easy money”. The conversation
turned to gambling, and roulette in particular. Was it possible to predict, at least with some
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exploitable degree of accuracy, the outcome of a spin of the wheel? Some of his colleagues,
the ones in the know, were certain that the roulette wheels were manufactured so precisely that
there were no imperfections that could be discerned, never mind exploited. But Ed’s counter
to that was simple. If the wheels are so perfect, you should be able to predict, using simple
Newtonian principles, the path of the ball and its final resting place.

Ed got to work in the late 1950s, playing around with a cheap miniature roulette wheel,
filming and timing the revolutions. He met up with Claude Shannon, the father of Information
Theory in 1959, originally to discuss his blackjack results, but the conversation soon turned
to other games and roulette in particular. Shannon was fascinated. Shortly afterwards they met
up at Shannon’s house, the basement of which was packed with mechanical and engineering
gadgets, the perfect playground for further roulette experiments.

Ed and Shannon together took the roulette analysis to greater heights, investing $1500 in a
full-sized professional wheel. They calibrated a simple mathematical model to the experiments,
to try to predict the moment when the spinning ball would fall into the waiting pockets. From
their model they were able to predict any single number with a standard deviation of 10 pockets.
This converts to a 44 per cent edge on a bet on a single number. Betting on a specific octant
gave them a 43 per cent advantage. It is one thing to win on paper, or in the comfort of a
basement. It is quite another to win inside a noisy casino.

From November 1960 until June 1961, Ed and Shannon designed and built the world’s
first wearable computer. The twelve-transistor, cigarette pack-sized computer was fed data by
switches operated by their big toes. One switch initialized the computer and the other was for
timing the rotation of the ball and rotor. The computer predictions were heard by the computer
wearer as one of eight tones via an earpiece. (Ed and Shannon decided that the best bet was
on octants rather than single numbers, since the father of Information Theory knew that, faced
with n options, individuals take a time a + b ln(n) to make a decision.)

This computer was tested out in Las Vegas in the summer of 1961. But for problems with
broken wires and earpieces falling out, the trip was a success. Similar systems were later built
for the Wheel of Fortune which had an even greater edge, an outstanding 200 per cent.

On 30 May 1985, Nevada outlawed the use of any device for predicting outcomes or
analysing probabilities or strategies.

Beating the dealer
The first key is in having the optimal strategy. That means knowing whether to hit or stand.
You’re dealt an eight and a four and the dealer’s showing a six, what do you do? The optimal
strategy involves knowing when to split pairs, double down (double your bet in return for only
taking one extra card), or draw a new card. Thorp used the computer to calculate the best
strategies by simulating thousands of blackjack hands. In his best-selling book Beat the Dealer
(Random House, 1962, revised 1966), Thorp presented tables showing the best strategies.

But the optimal strategy is still not enough without the second key. You’ve probably heard
of the phrase “card counter” and conjured up images of Doc Holliday in a ten-gallon hat. The
truth is more mundane. Card counting is not about memorizing entire decks of cards, but about
keeping track of the type and percentage of cards remaining in the deck during your time at
the blackjack table. Unlike roulette, blackjack has “memory”. What happens during one hand
depends on the previous hands and the cards that have already been dealt out.
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A deck that is rich in low cards, twos to sixes, is good for the House. Recall that the dealer
must take a card when he holds sixteen or less; the high frequency of low-count cards increases
his chance of getting close to 21 without busting. For example, take out all the fives from a
single deck and the player has an advantage of 3.3 per cent! On the other hand, a deck rich in
ten-count cards (tens and court cards) and aces is good for the player, increasing the chances
of either the dealer busting or the player getting a blackjack (21 with two cards), for which he
gets paid at odds of 3 to 2.

In the simplest case, card counting means keeping a rough mental count of the percentage
of aces and tens, although more complex systems are possible for the really committed. When
the deck favours the player, he should increase his bet; when the deck is against him, he should
lower his bet (and this bet variation must be done sufficiently subtly so as not to alert the
dealers or pit bosses).

In Beat the Dealer, Ed Thorp published his ideas and the results of his “experiments”. He
combined the card counting idea, money management techniques (such as the Kelly criterion)
and the optimal play strategy to devise a system that can be used by anyone to win at this
casino game. “The book that made Las Vegas change the rules”, as it says on the cover, and
probably the most important gambling book ever, was deservedly in the New York Times and
Time bestseller lists, selling more than 700,000 copies.

Passionate about probability and gambling, playing blackjack to relax; however, even Ed
himself could not face the requirements of being a professional gambler. “The activities weren’t
intellectually challenging along that life path. I elected not to do that.”

Once, on a film set, Paul Newman asked him how much he could make at blackjack. Ed told
him $300,000 a year. “Why aren’t you out there doing it?” Ed’s response was that he could
make a lot more doing something else, with the same effort, and with much nicer working
conditions and a much higher class of people. Truer words were never spoken. Ed Thorp took
his knowledge of probability, his scientific rigour and his money management skills to the
biggest casino of them all, the stock market.

On Thorp
“Over the years, through Princeton Newport and through his recent ventures, Ed has
shown that anomalies can be exploited and successfully traded. In my lectures I use the
1968–1988 Princeton Newport results: 15.9% mean (net) with 4% standard deviation as
the standard for superior hedge fund management. Others such as Soros have had higher
means but the smoothness of Ed’s record rates it right at the top and a challenge for
others to duplicate. We all have a lot to learn from Ed and a few of us have had the
pleasure to work with him and learn from the master.”

Bill Ziemba

“One time Ed and I attended a fairly large investment conference at La Quinta in the
desert near Palm Springs. As an entertainment activity, the conference people were
running a ‘racetrack’ in which they ran films of races and had betting with play money
they provided. When it started, Ed looked at the process and said something like, ‘I can
figure this out’. He stood and thought about it for less than two minutes and then said,
‘I’ve got it’. So we all pooled our money and he placed some bets. An hour or so later
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we had cleaned up. As I recall we ended with more ‘money’ than everyone else put
together.”

Jerome Baesel, Managing Director, Morgan Stanley Alternative Investment Partners and lead
Portfolio Manager on Morgan Stanley’s fund of hedge funds. Jerome and Ed worked together

at Princeton–Newport Partners for 10 years.

“Despite all his amazing and internationally recognized professional accomplishments,
Ed is quite modest and upon a casual meeting with him, a person would not be aware
of all his fame. His ethical and moral standards are of the highest quality. He is a
very real role model, rare in this day and age. Ed has a great sense of humor and
is a wonderful storyteller in person, as you might imagine from his Beat the Dealer
book. Ed has a large number of personal interests and for each one devours the sub-
ject and devises his own quantitative approach. For example, some 20 years ago, Ed
and I trained together for some marathons (including Boston and New York). Ed had
determined mile markers for a number of routes near his home. I recall Ed then on a
training run, looking at his watch and saying that we were running (for example) at a 7
minute 10 second/mile pace. During his competitive running years, Ed kept large quan-
tities of training data, including physiological (pulse rates, etc.) quantities to help him
monitor his progress. I’m sure his plots and analyses would be of interest to coaches.”

Gordon Shaw, Professor Emeritus of Physics at the University of California, Irvine, and
discoverer of the “Mozart Effect”.
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T
his is a perspective on quantitative finance from my point of view, a 45-year effort
to build mathematical models for “beating markets”, by which I mean achieving
risk-adjusted excess returns.
I’d like to illustrate with models I’ve developed, starting with a relatively simple
example, the widely played casino game of blackjack or twenty-one. What does

blackjack have to do with finance? A lot more than I first thought, as we’ll see.

Blackjack
When I first learned of the game in 1958, I was a new PhD in a part of mathematics known
as functional analysis. I had never gambled in a casino. I avoided negative expectation games.
I knew of the various proofs that it was not possible to gain an edge in virtually all the
standard casino gambling games. But an article by four young mathematicians presented a
“basic” strategy for blackjack that allegedly cut the House edge to a mere 0.6%. The authors
had developed their strategy for a complete randomly shuffled deck.

But in the game as played, successive rounds are dealt from a more and more depleted pack
of cards. To me, this “sampling without replacement”, or “dependence of trials”, meant that
the usual proofs that you couldn’t beat the game did not apply. The game might be beatable. I

Contact address: Edward O. Thorp & Associates, 610 Newport Center Drive, Suite 1240, Newport Beach, CA 92660,
USA.
E-mail: EOThorp@ix.netcom.com
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realized that the player’s expectations would fluctuate, under best strategy, depending on which
depleted pack was being used. Would the fluctuations be enough to give favorable betting
opportunities? The domain of the expectation function for one deck had more than 33 million
points in a space with 10 independent variables, corresponding to the 10 different card values
in blackjack (for eight decks it goes up to 6 × 1015).

Voila! There “must be” whole continents of positive expectation. Now to find them. The
paper I read had found the strategy and expectation for only one of these 33 million points.
That was only an approximation with a smallish but poorly known error term, and it took 12
years on desk calculators. And each such strategy had to address several mathematically distinct
decisions at the table, starting with 550 different combinations of the dealer’s up card and the
player’s initial two cards. Nonetheless, I had taken the first step towards building a model: the
key idea or “inspiration” – the domain of the visionaries.

The next step is to develop and refine the idea via quantitative and technical work so
that it can be used in the real world. The brute force method would be to compute the basic
strategy and expectation for each of the 33 million mathematically distinct subsets of cards
and assemble a 33 million-page “book”. Fortunately, using linear methods well known to me
from functional analysis, I was able to build a simplified approximate model for much of the
10-dimensional expectation surface. My methods reduced the problem from 400 million years
on a desk calculator to a few hundred years – still too long. However, I was fortunate to have
moved to MIT at the beginning of the computer revolution, where as a faculty member I had
access to one of the early high-speed mainframe computers, the IBM 704.

In short sessions over several months the computer generated the results I needed in about
2 hours of actual computer time. I was then able to condense all the information into a simpli-
fied card counting scheme and corresponding strategy tables that were only moderately more
complex than the original “no memory” basic strategy for a complete deck. You can see them
in my book Beat the Dealer. This work was the second step, the development of the idea into
a model that can be tested in the real world – the domain of the quants.

When I announced my results to the mathematical community, they were surprised to see,
for the first time, contrary to long-held beliefs, a winning mathematical system for a major
casino gambling game. They generally understood and approved. Not so, universally, however.
Several casinos said they loved system players and would send a cab to the airport for me. The
Washington Post greeted me with an editorial in January, 1961, saying:

“We hear there’s a mathematician coming to town who claims he can beat blackjack. It
reminds us of an ad we saw: ‘Sure fire weed killer – send in $1’. Back came a postcard
saying, ‘Grab by the roots and pull like hell’.”

So I took the third and last step in building a successful model, real world verification – the
domain of the entrepreneurs. In 20 hours of full-scale betting on a first casino trip in 1961 I
won $11,000, using a $10,000 bankroll. The midpoint of my forecast was a win of $10,000.
To convert to today’s dollars, multiply by about seven.

To recap, the three steps for a successful market-beating model are (1) idea, (2) development,
and (3) successful real world implementation. The relevant skills are (1) visionary, (2) quantita-
tive, and (3) entrepreneurial.

Early on, I assessed the blackjack idea as worth a million dollars to me, meaning that if I
chose to focus my time and energy on exploiting it I could personally extract a million after
tax dollars, net of costs, within a few years.
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The relevance to finance proved to be considerable. First, it showed that the “gambling
market” was, in finance theory language, inefficient (i.e. beatable); if that was so, why not the
more complex financial markets? Second, it had a significant worldwide impact on the financial
results of casinos. Although it did create a plague of hundreds and eventually thousands of new
experts who extracted hundreds of millions from the casinos over the years, it also created a
windfall of hundreds of thousands of hopefuls who, although improved, still didn’t play well
enough to have an edge. Blackjack and the revenues from it surged. Third, it popularized a
method that could be used to manage risk more generally in the investment world, namely the
Kelly criterion, a.k.a. the capital growth criterion, a.k.a. fixed fraction betting, a.k.a. maximizing
expected logarithmic utility.

Now a word on what I learned from this about risk control. The field trip to Nevada was
bankrolled by two wealthy businessmen/gamblers, whom I chose from the many who sought
me out.

(a) They proposed a $100K bankroll.
(b) I reduced it to $10K as a personal safety measure.
(c) I began play by limiting my betting to $1–10 for the first 8 hours – to verify all was

as expected (possible cheating?) and that I got used to handling that amount of money.
(d) Once I was used to that, I went to $2–20 for 2 hours.
(e) Next was $5–50 for 2 hours.
(f) This was followed by $25–200 for 3 hours.
(g) Finally I went to $50–500 (full scale) for 20 hours.

The idea, which has been valuable ever after, was to limit my bet size to a level at which I
was comfortable and at which I could tolerate a really bad outcome.

Within each range, I used a fractional Kelly system, betting a percentage of my bankroll
proportional to my expectation in favorable situations, up to the top of my current betting
range, and the minimum of my current range otherwise. At $50–500 (full scale) I bet full
Kelly, which generally turned out to be a percentage of my bankroll a little less than the
percentage expectation in favorable situations.

Convertible bonds
My next illustration is the evolution over more than two decades of a model for convertible
bonds. Simplistically, a convertible bond pays a coupon like a regular bond but also may be
exchanged at the option of the holder for a specified number of shares of the “underlying”
common stock. It began with joint work during 1965 and 1966 with economist Sheen Kassouf
on developing models for common stock purchase warrants. Using these models, we then treated
convertible bonds as having two parts, the first being an ordinary bond with all terms identical
except for the conversion privilege. We called the implied market value of this ordinary bond
the “investment value of the convertible”. Then the value of the conversion privilege was
represented by the theoretical value of the attached “latent” warrants, whose exercise price was
the expected investment value of the bond at the (future) time of conversion.

Just as with warrants, we standardized the convertible bond diagrams so that the prices of
different bonds versus their stock could be compared cross-sectionally on a single diagram.
This was a crude first pass at finding underpriced issues. We also plotted the price history of
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individual bonds versus their stock on the standardized diagrams. This was a crude first pass
at finding an issue that was cheap relative to its history. You can see diagrams like these in
Beat the Market. The scatter diagrams for individual convertibles were also useful in choosing
delta-neutral hedge ratios of a stock versus its convertible bond.

I’d guessed the Black–Scholes formula in late 1967 and used it to trade warrants from
late 1967 on. My progress in valuing convertibles quickened after I began to value the latent
warrants using the model. Volatility, stock price and the appropriate riskless rate of return were
now incorporated. But there remained the problem of estimating the future volatility for warrants
(or options). There also was the problem of determining investment value. The future expected
investment value of the convertible could only be estimated. Worse, it was not constant but
also depended on the stock price. As the stock price fell, the credit rating of the bond tended to
fall, reducing the bond’s investment value, and this fact needed to be incorporated. We started
with ad hoc corrections and then developed a more complete analytic model. By the time we
completed this analytic work in the early 1980s, we had real-time price feeds to our traders’
screens, along with real-time updated plots, calculations of alpha, hedging ratios, error bounds,
and so forth. When our traders got an offer they could in most cases respond at once, giving
us an edge in being shown merchandise.

To exploit these ideas and others, Jay Regan and I started the first market-neutral derivatives
hedge fund, Princeton Newport Partners, in 1969. Convertible hedging was a core profit center
for us. I had estimated early on that convertible hedging was a $100 million idea for us. In the
event, Princeton Newport Partners made some $250 million for its partners, with half or more
of this from convertibles. Convertible hedgers collectively have made tens of billions of dollars
over the last three and a half decades.

Along the way we met a lot of interesting people: Names from the movie industry like
Robert Evans, Paul Newman, and George C. Scott, Wall Streeters like Robert Rubin, Mike and
Lowell Milken, and Warren Buffett, and academics like Nobelists Bill Sharpe, Myron Scholes,
and Clive Granger.

Here are some of the things we learned about building successful quantitative models in
finance. Unlike blackjack and gambling games, you only have one history from which to use
data (call this the Heraclitus principle: you can never invest in the same market twice). This
leads to estimates rather than precise conclusions. Like gambling games, the magnitude of
your bets should increase with expectation and decrease with risk. Further, one needs reserves
to protect against extreme moves. For the long-term compounder, the Kelly criterion handles
the problem of allocating capital to favorable situations. It shows that consistent overbetting
eventually leads to ruin. Such overbetting may have contributed to the misfortunes of Victor
Niederhoffer and of LTCM.

Our notions of risk management expanded from individual warrant and convertible hedges
to, by 1973, our entire portfolio. There were two principal aspects: local risk versus global risk
(or micro versus macro; or diffusion versus jump). Local risk dealt with “normal” fluctuations
in prices, whereas global risk meant sudden large or even catastrophic jumps in prices. To
manage local risk, in 1973–1974 we studied the terms in the power series expansion of the
Black–Scholes option formula, such as delta, gamma (which we called curvature) and others
that would be named for us later by the financial community, such as theta, vega and rho. We
also incorporated information about the yield “surface”, a plot of yield versus maturity and
credit rating. We used this to hedge our risk from fluctuations in yield versus duration and
credit rating.
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Controlling global risk is a quite different problem. We asked how the value of our portfolio
would change given changes of specified percentages in variables like the market index, various
shifts in the yield surface, and volatility levels. In particular we asked extreme questions:
what if a terrorist explodes a nuclear bomb in New York harbor? Our prime broker, Goldman
Sachs, assured us that duplicates of our records were safe in Iron Mountain. What if a gigantic
earthquake hit California or Japan? What if T-bills went from 7% to 15%? (they hit 14% a
couple of years later, in 1981). What if the market dropped 25% in a day, twice the worst day
ever? (it dropped 23% in a day 10 years later, in October 1987. We broke even on the day and
were up slightly for the month). Our rule was to limit global risk to acceptable levels, while
managing local risk so as to remain close to market neutral.

Two fallacies of which we were well aware were that previous historical limits on financial
variables should not be expected to necessarily hold in the future, and that the mathematically
convenient lognormal model for stock prices substantially underestimates the probabilities of
extreme moves (for this last, see my columns in Wilmott, March and May 2003). Both fallacies
reportedly contributed to the downfall of LTCM.

Two questions about risk which I try to answer when considering or reviewing any invest-
ment are: “What are the factor exposures”, and “What are the risks from extreme events?”.

Statistical arbitrage
Hedging with derivatives involves analytical modeling and, typically, positions whose securities
will have known relationships at a future date. A rather different modeling approach is involved
with a product called “statistical arbitrage”.

The key fact is the discovery of an empirical tendency for common stocks to have short-
term price reversal. This was discovered in December 1979 or January 1980 in our shop as part
of a newly initiated search for “indicators”, technical or fundamental variables which seemed
to affect the returns on common stocks. Sorting stocks from “most up” to “most down” by
short-term returns into deciles led to 20% annualized returns before commissions and market
impact costs on a portfolio that went long the “most down” stocks and short the “most up”
stocks. The annualized standard deviation was about 20% as well. We had found another
potential investment product. But we postponed implementing it in favor of expanding our
derivatives hedging.

For the record, we had also been looking at a related idea, now called “pairs trading”. The
idea was to find a pair of “related” stocks that show a statistical and perhaps casually induced
relationship, typically a strong positive correlation, expecting deviations from the historical
relationship to be corrected.

Meanwhile at Morgan Stanley, the brilliant idiosyncratic Gerry Bamberger (the “unknown
creator” of MS mythology) discovered an improved version in 1982: hedge within industry
groups according to a special algorithm. This ran profitably from 1982 or 1983 on. However,
feeling underappreciated, Bamberger left Morgan in 1985, co-ventured with us, and retired
rich in 1987. As a result of his retirement, we happened to suspend our statistical arbitrage
operation just before the 1987 crash. We restarted a few months later with our newly developed
factor-neutral global version of the model.

Too bad: simulations showed that the crash and the few months thereafter were by far the
best period ever for statistical arbitrage. It was so good that in future tests and simulations we
had to delete this period as an unrealistically favorable outlier.
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Statistical arbitrage ran successfully until the termination of Princeton Newport Partners at
the end of 1988.

In August 1992 we launched a new, simpler principal components version. This evolved
into the “omnivore” program, which incorporated additional predictors as they were discovered.
The results: in 10 years, from August 1992 through October 2002, we compounded at 26%
per annum net before our performance fee, 20% net to investors, and made a total of about
$350 million in profit. Some statistics: 10 day average turnover; typically about 200 long and
200 short positions; 10,000 separate bets per year, 100,000 separate bets in 10 years. The gross
expectation per bet at about (2/3)% × 1.5 leverage × 2 sides × 25 turnovers per year is about
50% per year. Commissions and market impact costs reduced this to about 26%.

Concluding remarks
Where do the ideas come from? Mine come from sitting and thinking, academic journals,
general and financial reading, networking, and discussions with other people.

In each of our three examples, the market was inefficient, and the inefficiency or mispricing
tended to diminish somewhat, but gradually over many years. Competition tends to drive down
returns, so continuous research and development is advisable. In the words of Leroy Satchel
Paige, “Don’t look back. Something might be gaining on you”.
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D
uring the 1980s financial economists, confronted with phenomena in financial
markets that were difficult to explain within the rational expectations and expected
utility framework, started to consider the possibility that some market participants
behave less than rationally, and to study whether this might affect markets as
a whole.

Initially, they made no explicit use of insights from psychology. Although the literature by
psychologist Daniel Kahneman and his co-author Amos Tversky on prospect theory had already
been published in 1979, financial economists were not aware either that this literature existed or that
it might be relevant for finance. They introduced information asymmetries and shifts in preferences
to explain the apparent anomalies, or simply assumed that people do not always behave rationally.

At a later stage, economists became aware that prospect theory and the psychological lit-
erature on heuristics and biases in judging information may provide a sophisticated model of
why people make decisions for what seem to be non-rational reasons. Perhaps the 1987 crash
provided an additional impulse to question the validity of the rational expectations framework.
Anyway, during the 1990s, the finance literature that uses psychological concepts to explain the
behaviour of market participants became a separate field of research. And it invented its own
label: “behavioural finance”. The 2002 economics Nobel prize awarded to Kahneman was a
further recognition of the contribution of psychology to the explanation of economic behaviour.

This study surveys the behavioural finance literature. It is set up as follows. In Section 1,
some financial puzzles, or anomalies, are briefly sketched. Section 2 introduces prospect theory.
This is a theory of decision making under risk which takes actual decision-making processes
by people into account, rather than postulating rationality. Prospect theory is to be seen as
an alternative to expected utility theory. Section 3 introduces the heuristics and biases used
by people when judging information. Again, these heuristics and biases are found in actual
behaviour, and are to be seen as an alternative to the rational expectations hypothesis. Section 4
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describes how behavioural finance may help solving the six puzzles mentioned in Section 1.
In Section 5, the implications of behavioural finance for market (in)efficiency are discussed.
Section 6 summarizes and concludes.

1 Six puzzles of finance
Puzzle 1: Asset price over- and underreaction
Various empirical studies conclude that asset prices and exchange rates tend to under- and
overreact to news. Cutler, Poterba and Simmons (1991) study various financial markets in the
period 1960–1988. They find autocorrelation of returns over a horizon varying from 4 months
to 1 year. Bernard (1992) studies the returns on individual stocks in the periods following
earnings announcements, measuring the surprise element in earnings and its effect on stock
prices. His conclusion is, that the more surprising an earnings announcement is, the more a
stock price will rise in the periods following the initial news release. Jegadeesh and Titman
(1993) and De Bondt and Thaler (1985) find results that point to inefficient pricing in financial
markets. Jegadeesh and Titman’s research suggests a pattern of underreaction: over a given
period (in the study under consideration, 6 months), the return on winning stocks exceeds that
on losing stocks. De Bondt and Thaler show that in the longer run, the opposite holds.

Puzzle 2: Excessive trading and the gender puzzle
Barber and Odean (2000) study trading patterns and returns of over 66,000 accounts held by
private investors with stockbrokers1 in the period 1991–1996. The average investor in their
sample would have realized a higher return if he had traded less. Moreover, the difference
in net return between the 20% investors that traded the least and the 20% that traded the
most was about 7% percentage point. The average net return of the group fell short of that of
Standard&Poor’s 500 by 1.5 percentage points. On the basis of this empirical evidence, Barber
and Odean conclude that the average individual (amateur) investor trades excessively. Barber
and Odean (2001) study the difference in investment behaviour between men and women by
analysing the behaviour of more than 35,000 investors over a 6 year period, distinguishing
between investment accounts opened by women and by men. They study the frequency of
transactions and the return on the individual accounts. Their study reveals that, on average,
men trade 1.5 times more frequently than women, and earn a return that is one percentage
point lower. The gender gap is even larger for singles. Single men trade 67% more often than
single women, and earn a return that is 1.5 percentage points lower.

Puzzle 3: Hypes and panic
Kaminsky and Schmukler (1999) investigate investors’ response to news in 1997–1998, at
the time of the Asian crisis. They conclude that the 20 largest daily price changes cannot be
fully accounted for by economic and political news. Kaminsky and Schmukler also find that
prices overreact more strongly as a crisis worsens, and that in such periods prices respond more
strongly to bad news than to good news. In a similar analysis, Keijer and Prast (2001) analyse
the response to news of investors in ICT companies quoted on the Amsterdam Stock Exchange
in the period 1 October 1999–1 March 2000, in the heydays of the ICT bubble. Classifying
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daily telecom news as good or bad, they study the difference in price development between
the Amsterdam technology index (MIT index) and the general AEX index. They find that this
difference turns out to respond significantly more strongly to good news than to bad news.

Puzzle 4: The equity premium puzzle
Mehra and Prescott (1985) find that between 1926 and 1985, the premium between risky and
risk-free assets was on average about 6% per year. In order to be able to explain this equity
premium within a rational framework, an unrealistically high degree of risk aversion had to
be assumed. Mehra and Prescott show that, in a model where individuals aim at smoothing
consumption, the coefficient of relative risk aversion would need to exceed 30 to account for
the equity premium. This is a puzzle, since both from a theoretical point of view and on the
basis of earlier estimations, this coefficient should be approximately 1.

Puzzle 5: The winner/loser puzzle
Investors sell winners more frequently than losers. Odean (2000) studies 163,000 individual
accounts at a brokerage firm. For each trading day during a period of one year, Odean counts
the fraction of winning stocks that were sold, and compares it to the fraction of losing stocks
that were sold. He finds that from January through November, investors sold their winning
stock 1.7 times more frequently than their losing stocks. In other words, winners had a 70 per
cent higher chance of being sold. This is an anomaly, especially as for tax reasons it is for
most investors more attractive to sell losers.

Puzzle 6: The dividend puzzle
Investors have a preference for cash dividends (Long, 1978; Loomis, 1968; Miller and Scholes,
1982). This is an anomaly as, in the absence of taxes, dividends and capital gains should be
perfect substitutes. Moreover, cash dividends often involve a tax disadvantage. Bhattacharya
(1979) argues that dividends have a signalling function. However, signalling does not seem
capable of explaining all the evidence, hence many consider this to be a puzzle (Brealey and
Myers, 1981).

2 Prospect theory
In 1979, Kahneman and Tversky launched their prospect theory in what, in retrospect, proved
a seminal paper. On the basis of experiments conducted among colleagues and students, they
concluded that the theory of expected utility maximization does not hold in practice. Expected
utility theory assumes that the individual maximizes his expected return on the basis of the
weighted sum of the various possible outcomes, with each weight being equal to the probabil-
ity that the corresponding outcome will be realized. Furthermore, the theory assumes that the
utility of a final state only depends on the final state; how this final state was reached is irrele-
vant. Finally, the theory usually assumes that the individual is risk-averse. These assumptions
imply that:

U(x1, p1; . . . . . . ; xn, pn) = p1u(x1) + · · · + pnu(xn) (1)
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where U is the overall utility of a prospect, (x1, p1; . . . . . . ; xn, pn) is a prospect (or gam-
ble), which is defined as a contract that results in outcome xi with probability pi and where
p1 + p2 + · · · + pn = 1.

(x1, p1; . . . . . . ; xn, pn) is acceptable at asset position w if U(w + x1, p1; . . . . . . ; w

+ xn, pn) > u(w) (2)

u′′ < 0 (3)

Condition (2) implies that, according to expected utility, a prospect is acceptable to an
individual if the utility resulting from integrating the prospect with the individual’s assets
exceeds the utility of those assets, u(w). Condition (3), the concavity of the utility function, is
not necessary for expected utility theory, but it is generally assumed to describe the preferences
of a representative individual and implies that the typical individual is risk-averse (Kahneman
and Tversky, 1979).

In the experiment set up by Kahneman and Tversky, subjects were asked to solve a range
of choice problems. It turned out that in their choices they consistently deviated from expected
utility maximization. For example, they evaluate losses and gains in an asymmetric manner. In
situations of winning they were risk-averse, while in situations of losing they were risk-seeking.
The experiments also showed that people are more sensitive to losses than to gains.2 In fact,
losses have a psychological impact that is about twice as large as the impact of gains. Moreover,
further experiments show that people’s risk attitude has more dimensions. Thus, a person’s risk
attitude depends on his recent history. After experiencing a financial loss, people become less
willing to take risks. After a series of gains, risk aversion decreases.

A simple value function according to prospect theory can be described by:

v(x) = xa for x ≥ 0; v(x) = −λ(−x)b for x < 0 (4)

where v is the psychological value that the individual attaches to situation x. From experimental
research it appears that the value of λ is approximately 2.25 and that a and b both equal 0.88
(Kahneman and Tversky, 1992).

Figure 1 gives a graphical presentation of a value function according to prospect theory.
Another important piece of prospect theory is the finding that people’s decision weights

do not correspond to objective probabilities. According to prospect theory, a decision process
consists of two stages. The first is the editing stage. In this stage, people frame prospects in
terms of losses and gains relative to a benchmark. In doing so, they apply rules of thumb, or
heuristics, that facilitate the interpretation of the various possibilities among which they have
to choose. The second stage of the decision process is the evaluation stage. After the various
prospects have been edited and framed as losses and gains, they are evaluated and the prospect
with the highest value is chosen. The rules of thumb used when editing and evaluating are
necessarily a simplification. For example, probabilities or outcomes are rounded, and extremely
unlikely outcomes tend to be discarded. As a result, decision weights are a non-linear function
of probabilities. Thus, for small p, p(p) > p, where p is the probability of an outcome and
p(p) is the decision weight. Thus, after the individual has passed the two stages of editing and
evaluation, he chooses the prospect that maximizes:

∑
π(pi)v(xi). (5)
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Figure 1: Prospect theory. The psychological value of gains and losses.
Based on Kahneman and Tversky (1979)

Prospect theory shows that people use mental accounting when making financial decisions.
Mental accounting is the tendency to classify different financial decision problems under sep-
arate mental accounts, while ignoring that it would be rational to integrate these choices into
one portfolio decision. Prospect theory decision rules are then applied to each account sep-
arately, ignoring possible interaction. Mental accounting explains why people buy a lottery
ticket, while at the same time taking out insurance, or, in other words, why people seek and
hedge risk (Friedman and Savage, 1948). Investors mentally keep separate accounts, one for
each investment, or one for covering downward risks – for which they use such instruments as
bonds – and one for benefiting from the upward potential, for which they use stocks. Although
portfolio theory predicts that it would be optimal to integrate these elements mentally, in prac-
tice people behave differently. One reason for this behaviour may be that the investor wishes
to exert self-control. If he keeps separate accounts for different sorts of expenditure, he may
be less easily tempted to use his nest egg for an impulse purchase (Thaler and Shefrin, 1981).
When a new stock is purchased, a new mental account is opened (Thaler 1980; also, see Shefrin
and Statman, 1985).3

Mental accounting, combined with loss aversion and a multidimensional risk attitude, results
in the framing effect. This is the phenomenon that decisions under risk are influenced by the
way the decision problem is framed. If a decision is framed in terms of losses, people tend
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to choose a risky outcome, whereas they tend to avoid risk when the problem is presented in
terms of winning. A frequently cited example to illustrate the framing effect is the following:

Imagine that you are an army official in a war, commanding 600 soldiers. You have to
choose between route A, where 200 soldiers will be saved, or route B, where there is a
one-thirds chance that all soldiers will be saved and a two-thirds chance that none will
be saved. Which route do you take?

Most people tend to choose route A when the decision problem is framed in this way. However,
the decision problem can also be framed as follows:

You have to choose between route A, where 400 soldiers will die, or route B, where there
is a one-third chance that no soldiers will die and a two-thirds chance that all will die.

When the decision problem is framed in this way, most people choose route B, although the
objective characteristics are no different from the first problem (Belsky and Gilovich, 1999).

Another result of loss aversion and mental accounting is that in evaluating outcomes people
tend to attach value to both changes and final states, rather than to final states only. An example,
taken from Antonides (1999), may illustrate this. Students were asked to judge who was happier,
Mr A or Mr B. Mr A bought a New York State lottery ticket and won $100, but he damaged
the rug in his apartment and had to pay his landlord $80. Mr B bought a lottery ticket and won
$20. About 70% of the students believed that Mr B was happier, although their final states – a
gain of $20 – are identical. This evaluation is the result of the fact that the payment, or loss,
of $80 has a stronger psychological impact.

From the value function, the following mental rules can be derived for the combined
value of outcomes or events. Examples are based on a situation with two outcomes, x and
y (Antonides, 1999).

• Both outcomes are positive. In this case (concavity of value function in region of gains),
v(x) + v(y) > v(x + y): segregation, that is experiencing these two events separately,
is preferred. Moral: do not wrap all Christmas presents together.

• Both outcomes are negative. In this case (convexity of value function in region of
losses), v(−x) + v(−y) < v(−x − y), so integration of losses is preferred. Example:
the psychological cost of suffering two losses on the same day, of say £100 and £50,
exceeds the psychological cost of suffering one loss of £150.

• Mixed outcomes, net result is positive. This is the outcome (x, −y) with x > y, and
so v(x) + v(−y) < v(x − y). Hence in this case, integration is preferred. An example:
withdrawal of income taxes from payments is less difficult to accept than having to pay
taxes separately next year.

• Mixed outcomes, net result is negative. In this event (x, −y) with x < y, integration
is preferred if the positive event x is a little bit smaller than y, whereas segregation is
preferred if x � y. This preference for segregation is called the “silver lining” effect
and is deliberately and frequently used by marketeers of financial products.

Figure 2 illustrates the mixed outcomes and silver lining effect. The essential characteristics of
prospect theory apply to both decision problems with a financial character and to non-monetary
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Figure 2: Mental accounting: the silver lining effect. Based on Antonides (1999), p. 257

choices. The Appendix presents some of the decision problems used by Kahneman and Tversky
in the experiments used for their 1979 paper on prospect theory.

3 Heuristics and biases in the use of information
Prospect theory deals with the evaluation of financial and non-monetary outcomes, or prefer-
ences, and is the first pillar of behavioural finance. The second pillar of behavioural finance
concentrates on beliefs, or the way in which people use information. Cognitive psychology has
found that people use heuristics and are biased in forming beliefs and in processing information.
As a result of these heuristics and biases, information is not used in an objective manner. This
section introduces a number of heuristics and biases that behavioural finance uses to account
for irrational behaviour in financial markets. They are: cognitive dissonance, conservatism,
overconfidence, biased self-attribution, availability heuristic, and representativeness heuristic.

Cognitive dissonance
Cognitive dissonance is the phenomenon of two cognitive elements – an opinion, new informa-
tion – conflicting with each other (Festinger, 1957). People want to reduce cognitive dissonance
in order to avoid the psychological pain of a poor self-image. Therefore, they tend to ignore,
reject or minimize information that suggests that they have made a wrong decision or hold on
to an incorrect belief. The result is that people filter information in a biased manner. Filter-
ing information is easier when the individual is part of a group whose members hold similar
opinions or have taken similar decisions.4 Therefore, herding may facilitate the reduction of
cognitive dissonance and reinforce biased information filtering. The theory of cognitive dis-
sonance may explain not only hypes, but also panic in financial markets, for it predicts that
if much dissonant information is released, it becomes more difficult to ignore it. At a certain
point the dissonance is equal to the resistance to revise the existing opinion, and the individual
will switch to actively seeking information that confirms that his earlier decision was wrong. If
he was part of a group, he will now break away from it. The group becomes smaller, and this
increases the dissonance of the remaining group members. This may lead to a sudden change
of direction of the herd.5
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Conservatism
Conservatism is defined as the phenomenon that people only gradually adjust their beliefs
to new information (Edwards, 1968). It therefore resembles the mechanism that plays a role
in the theory of cognitive dissonance. Experimental research indicates that it takes two to five
observations to bring about a change of information or opinion, whereas in the case of Bayesian
learning one observation would have sufficed. The more useful the new information, the stronger
is the conservatism. This is because new information that is at variance with existing knowledge
is harder to accept.

Overconfidence
Empirical research in cognitive psychology concludes that the average individual is over-
confident. Overconfidence implies that an individual overestimates his ability. The degree of
overconfidence varies among professions. It is strongest in professions that can easily shift the
blame for mistakes on others or unforeseen circumstances (Odean, 1998b). An economist or
financial market professional who in retrospect has failed to predict economic growth incor-
rectly may put this down to all sorts of unforeseeable political and economic events, or perhaps
even to irrational behaviour of investors and consumers. On the other hand, in professions
where no-one else is to blame, overconfidence is limited. Thus, a mathematician who cannot
prove a theorem has no one to blame but himself. There are also gender differences in over-
confidence. Men have been found to be, on average, more overconfident than women (Barber
and Odean, 2001).

Self-serving bias and biased self-attribution
The individual is inclined to interpret information in a way that is most favourable to himself,
even when he tries to be objective and impartial. People tend to discount the facts that contradict
the conclusions they want to reach and embrace the facts that support their own viewpoints
(Babcock and Loewenstein, 1997). This mechanism is called the self-serving bias. Also, people
tend to blame failures on others and attribute successes to their own ability. This phenomenon
is referred to as biased self-attribution (Zuckerman, 1979). The self-serving bias and biased
self-attribution contribute to the dynamics of overconfidence. The asymmetry in dealing with
successes and failures makes sure that people do not learn enough from their mistakes. In fact,
biased self-attribution increases overconfidence.

Availability heuristic
The availability heuristic is the tendency of people to estimate the frequency or probability of
an event by the ease with which it can be brought to mind (Herring, 1999). The car driver who
witnesses an accident immediately starts to drive more cautiously, even though he knows that
the probability of a car accident has not increased. It could be argued that seeing the accident has
contributed to his insight into the hazards of driving and that his decision to drive more carefully
is due to learning, and therefore consistent with rationality. But in practice, in the course of
time the driving style becomes more reckless again. In other words, the cautious driving style
is not the result of learning, but of a temporary increase in the subjective probability of car
accidents brought about by having recently witnessed one.

Representativeness heuristic
The representativeness heuristic is defined as the phenomenon that people look for a pattern
in a series of random events (Tversky and Kahneman, 1974). The representativeness heuristic
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leads to stereotyping and serves to make the world look more organized than it really is. It may
cause people to draw far-reaching conclusions on the basis of merely a few indications. The
representativeness heuristic is often illustrated by the ‘Great Bear’ effect. People watching a
starry sky are usually firmly resolved to detect a familiar pattern. The mechanism is also known
as the law of small numbers. People tend to generalize and draw conclusions on the basis of
too little statistical information.

4 Application to financial markets

4.1 Introduction
Behavioural finance aims at explaining these puzzles using elements from prospect theory to
explain investor preferences, and assuming that investors use heuristics, or rules of thumb, when
judging information and forming beliefs. Before turning to a behavioural finance explanation
of the six puzzles of finance (Section 5), the next sections will introduce prospect theory
(Section 2) and heuristics and biases in the judgement of information (Section 3).

This section shows how behavioural finance may explain the six financial puzzles introduced
in Section 1: over- and underreaction, excessive trading and the gender puzzle, the equity
premium puzzle, the winner/loser puzzle and the dividend puzzle. Table 1 presents an overview
of the puzzles and the behavioural concepts used to explain them. Puzzles 1, 2 and 3 are
explained by heuristics and biases in the judgement of information and the formation of beliefs.
Puzzles 4, 5 and 6 are explained with the help of prospect theory.

TABLE 1: FINANCE PUZZLES AND THEIR BEHAVIOURAL SOLUTIONS

Puzzle Solution

1 Over- and underreaction Conservatism; representativeness heuristic
2 Excessive trading and the gender puzzle Overconfidence
3 Hypes and panic Cognitive dissonance theory
4 Equity premium puzzle Mental accounting and loss aversion
5 Winner/loser puzzle Mental accounting and loss aversion
6 Dividend puzzle Mental accounting, loss aversion and self-control

4.2 Over- and underreaction of stock prices
An underreaction of stock prices occurs if the stock market reacts to news not only in the period
immediately after the news is released, but also in subsequent periods. Overreaction occurs in
the opposite case: the news is immediately followed by a stock price reaction, which in the
subsequent periods is partially compensated by one or more changes in the opposite direction.

Various behavioural finance models seek to explain these patterns of under- and over-
reactions. Barberis, Shleifer and Vishny (1998) use the concepts of conservatism and the
representativeness heuristic; Daniel, Hirschleifer and Subrahmanyam (1998) concentrate on
biased self-attribution and overconfidence.

Barberis, Shleifer and Vishny (1998) define underreaction as a situation in which the return
in the period following the publication of good news (and after the very first reaction of stock
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prices) is on average higher than it would have been had the news been bad. In an efficient
market, the news would be fully processed in the period following immediately upon the news
release. Hence, in subsequent periods, the development of stock prices would be independent
of the news released in the initial period. If, after a favourable news fact, prices continue to
rise, there must have been an underreaction in the period immediately following the news.
Indeed, if the reaction had been adequate, the rise would have been realized straight away.
An overreaction occurs if the price reacts too strongly. In that case, the stock price increase
(decrease) will be followed by decreases (increases).

Barberis, Shleifer and Vishny account for the pattern of under- and overreactions by com-
bining conservatism and the representativeness heuristic. They develop a model involving one
investor and one asset. All profit is paid out as dividend. The equilibrium price of the asset
equals the net present value of expected returns. Stock prices depend on news, because investors
use news to update their expectations about future earnings. However, conservatism causes news
to be insufficiently reflected in prices in the short term. The average investor learns more slowly
than would be optimal and prices take longer to reach the new equilibrium than would be the
case with rational Bayesian learning. This explains the short-term underreaction. In the longer
term, the representativeness heuristic induces the investor to attach too much value to a news
fact if it is part of a series of a random series of similar messages, in which the investor mis-
takenly perceives a pattern.6 The investor believes that one of two regimes applies, i.e. either
profits are ‘mean-reverting’, with a positive shock being followed by a negative one, or they
are characterized by a trend. If the investor has observed a series of good earnings shocks,
his belief that profits follow a trend grows. On the other hand, if he has observed a series
of switches from positive to negative earnings shocks and vice versa, he may switch to the
belief that earnings are mean-reverting. These updates of beliefs are meant to represent the
mechanisms of the representativeness heuristic and conservatism. Simulating earnings with a
random walk model, Barberis, Shleifer and Vishny show that, depending on the values chosen
for the parameters, these basic assumptions may produce a pattern of underreactions, a pattern
of overreactions or a pattern of underreactions alternated by overreactions.

Daniel, Hirschleifer and Subrahmanyam (1998) develop a model of investor behaviour that
takes account of overconfidence and biased self-attribution. They model these psychological
mechanisms by assuming that investors tend to overestimate their amount of private information
and their ability to interpret this information. Information is private if it has not (yet) been
disclosed publicly. Because of his overconfidence, the investor believes that he is one of the
few, if not the only one, to recognize the relevance of signals he receives. He believes he
has discovered a hot tip which gives him an information advantage over others, who will
not come into action until after the relevant information is public knowledge. If the private
information is favourable, the investor will buy, convinced as he is that this information has
not become incorporated yet into the prices. Daniel, Hirschleifer and Subrahmanyam show that
the investor following this line of reasoning tends to purchase more (if the private information
is favourable) than is warranted by the fundamental, which leads to an overreaction of stock
prices. Besides overconfidence, biased self-attribution also comes into play in this model, for the
investor interprets public information asymmetrically. If new public information corroborates
what the investor has already assumed on the basis of his private information, this will increase
investor confidence. If it does not, the investor blames others. Therefore, overconfidence will
not diminish and is likely to increase.
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4.3 Excessive trading and gender puzzle
Odean (1998b) develops a theoretical model which takes account of overconfidence. He mod-
els overconfidence by assuming that market participants overestimate their ability to interpret
information. Every market participant believes that he is better in picking up and interpreting
information, and that therefore the accuracy of the information he receives is above aver-
age. Thus, the model predicts that investors trade excessively. They assume that two types
of asset are traded, one risk-free, with zero interest rate, and one risky asset. There are N

price-taking investors (N = 8). Their a priori information is the same. All investors receive a
signal about the probability distribution of the return on the risky asset. Each investor believes
his signal to be more precise than the signals of others, but knows that there are some traders
receiving the same signal. So each investor believes he belongs to the group of investors that
is above average. Within this framework, overconfidence causes trading volume and stock
price fluctuations to increase, and stock price efficiency to decrease. However, Odean (1998b)
shows that overconfidence does not always stand in the way of market efficiency. In a mar-
ket of noise traders – traders who follow the market trend, despite being aware that share
and bond prices are inconsistent with fundamental factors – including an insider overesti-
mating himself, transaction volume and price fluctuations will increase, but pricing will be
more efficient

Opinion polls suggest that the average amateur investor is, in fact, overconfident. Gallup
conducted 15 surveys in the period June 1998–January 2000, each among 1000 investors
(Barber and Odean, 2001). One of the questions was, what return the respondents expected to
realize on their portfolio in the following year. The surveys also asked the investors’ expectations
of next year’s average stock market return. On average, respondents thought they could beat
the market, which is by definition impossible.7

As mentioned in Section 1, Barber and Odean (2000) indeed found that, first, the average
investor trades too much, and second, that the investors in their survey who traded the least
earned a return that was far above the return of the investors that traded the most. In order to
investigate whether overconfidence might indeed be the explanation of the excessive trading,
Barber and Odean (2001) studied differences in investment behaviour between men and women.
Psychological research has shown that, on average, men are more overconfident than women.
If it could be shown that female investors trade less frequently than men, while realizing
a higher return, this would support the assumption that the excessive trading might be due
to overconfidence, as predicted by Odean’s theoretical model. Barber and Odean studied the
investment behaviour of more than 35,000 investors over a 6-year period, distinguishing between
accounts opened by women and by men. They analysed the investment pattern, the frequency of
transactions, and the resulting returns. Their dual hypothesis was that men trade more frequently
than women, and that they realized a lower return. The results prove them right. On average,
men trade 1.5 times more frequently than women, and earn a return that is one percentage point
lower. The superior performance by women cannot be ascribed to their being more experienced
investors. Half of the women in the survey claimed to be experienced investors, against over
60% of men. Having found evidence for a possible relationship between overconfidence and
excessive trading, Barber and Odean went further to study the subset of singles in their survey.
It cannot be excluded that an investment account opened by a woman is managed by a man,
and vice versa, but this is less likely for singles than for married couples. Therefore, one
would expect the gender difference in trading frequency and return to be even larger in the
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singles subset. This is indeed what Barber and Odean found. The average male bachelor traded
67 per cent more frequently than his female counterpart, and realized a return that was almost
1.5 percentage points lower.

Barber and Odean considered an alternative explanation for excessive trading. It could be
that the average investor considers trading to be a hobby. In that case, the lower return might
be interpreted as the price the investor is willing to pay for this leisure activity. And the
difference between men and women might be explained by assuming that investing is more
of a hobby to men than it is to women. However, Barber and Odean rejected this possibility.
They calculated that the most active trader loses 3.9 per cent of his annual household income
by trading excessively. This exceeds all expenditures on leisure activities of a typical family
with an income similar to that of those in the sample.

4.4 Hypes and panic
Both empirical research by Kaminsky and Schmukler into the reaction of investors to news
during the Asian crisis, and empirical research by Keijer and Prast into the reaction of ICT stock
prices to news, found that investors seem to filter information in a biased manner, as predicted
by the theory of cognitive dissonance. Kaminsky and Schmukler found that prices overreact
more strongly as a crisis worsens, and that in such periods prices respond more strongly to
bad news than to good news. Keijer and Prast (2001) analysed the response of investors in
ICT companies quoted on the Amsterdam Stock Exchange in the period 1 October 1999–1
March 2000 to relevant news. Classifying daily telecom news as good or bad, they studied the
difference in price development between the Amsterdam technology index (MIT index) and the
general AEX index. This difference turned out to respond significantly more strongly to good
news than to bad news. Thus, Keijer and Prast found that the reaction coefficient to good news
is more than twice as large, in absolute value, than the reaction coefficient to bad news. These
reaction patterns fit in with the theory of cognitive dissonance, which predicts that once people
hold a fundamental opinion, they tend to ignore or minimize information that suggests they may
be wrong, and tend to pay too much attention to information that confirms their opinion. The
results by Kaminsky and Schmukler indicate panic, those by Keijer and Prast are suggestive of
a hype.8

4.5 Equity premium puzzle
Benartzi and Thaler (1995) showed that the equity premium puzzle is solved if it is assumed
that individuals behave in accordance with prospect theory. They modelled the behaviour of
investors who have a long planning horizon and whose aim of investing is not to realize
speculative profits, but rather to have a high return on a long-term investment. In their model,
the investor must choose between a portfolio only consisting of stocks and one containing just
bonds. These investors evaluate their portfolios on a regular basis, say a year, not with the aim
of changing it but, for example, because they need to state their income to tax officials or to a
compliance officer. The evaluation of their portfolio does have a psychological effect. Losses,
even if they are not realized, have a larger psychological impact than gains. This implies
that a portfolio consisting of risky assets should earn an expected return that compensates
for the emotional cost of these “paper losses”. Assuming a plausible degree of loss aversion,
namely a coefficient of 2.25, Benartzi and Thaler showed that an investor who has a 30-year
planning horizon and evaluates his portfolio annually, requires an equity premium of about
6.5 percentage points to be indifferent between stocks and bonds. At evaluation frequencies of
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two, five and ten times per year, the equity premiums should be 4.65, 3.0 and 2.0 percentage
points, respectively.9 Benartzi and Thaler note that it is conceivable that the psychological
involvement of individual investors regarding the value of their portfolios is stronger than that
of institutional investors. As the latter are major players in financial markets, they may be
expected to be less hampered by loss aversion. Still, the psychological impact of a regular
portfolio evaluation by their clients may be relevant to the position of fund managers and other
institutional investors. Loss aversion may also explain why pension funds, whose horizon is
basically infinitely long, invest relatively little in stocks.10 Recent research has shown, though,
that the equity premium is declining (Jagannathan, McGrattan and Scherbina, 2001). According
to Benartzi and Thaler’s model, this would signify that the average evaluation period has grown
longer. This phenomenon is not accounted for by the theory.

4.6 Winner/loser asymmetry
Investors are predisposed to hold their losing stocks for too long, and sell their winning stocks
too early (Shefrin and Statman, 1985). This is an anomaly, especially as in many countries
selling losers offers a tax advantage. Shefrin and Statman (1985) use prospect theory to explain
the asymmetry in the sale of losers and winners. Take the case where an investor needs cash.
He may choose between selling share A, which gained 20 per cent since he bought it, and
share B, which fell 20 per cent since he added it to his portfolio. The investor applies prospect
theory rules separately to the accounts of A and B. In doing so, he evaluates the selling prices
in terms of gains or losses relative to the price he paid for each stock. Thus, the price paid is
the reference point for the investor. Selling share B would imply that the investor would have
to close his mental account of share B with a loss. When selling share A, the investor can close
the mental account of share A with a profit. Thus, mental accounting and loss aversion make
the investor prefer selling winners rather than losers.

The prediction of the model by Shefrin and Statman is confirmed by the results of empirical
work by Odean (1998a) and Shefrin (2002). Odean studied 163,000 individual accounts at a
brokerage firm. For each trading day during a period of one year, Odean counted the fraction
of winning stocks that were sold, and compared it to the fraction of losing stocks that were
sold. He found that from January through November, investors sold their winning stock 1.7
times more frequently than their losing stocks. In other words, winners had a 70 per cent higher
chance of being sold. In December, these investors sold their losers more quickly, though only
by 2 per cent.

4.7 Dividend puzzle
The preference for cash dividends can be explained by mental accounting. Two different expla-
nations can be distinguished. The first explanation focuses on the need for self-control. The
investor puts capital gains and cash dividends into separate mental accounts. This is one way
of keeping control of spending. The investor worries that, once he decides to finance consump-
tion from spending part of his portfolio, he may spend his savings too quickly. As Shefrin
puts it: “ ‘Don’t dip into capital’ is akin to ‘don’t kill the goose that lays the golden eggs’ ”
(Shefrin, 2002, p. 30). When stock prices fall, dividends serve as a ‘silver lining’. Statman
(1999) formulates its as follows: “ ‘Not one drop’ is a good rule for people whose self-control
problems center on alcohol. ‘Consume from dividends but don’t dip into capital’ is a good
rule for investors whose self-control problems center on spending.” The second explanation
concentrates on loss aversion, mental accounting and framing. According to this explanation,
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when stock prices fall, dividends serve as a “silver lining”. This is the mixed outcome example
with x � y of Section 2 above. On the other hand, when stock prices rise, the investor likes
dividends because they are regarded as a separate gain. This is the “don’t wrap all Christmas
presents together” example of Section 2. Here dividend and capital are two positive outcomes.

5 Evaluation. Behavioural finance and market
(in)efficiency
Fama (1998) states that, while the existence of cognitive-psychological mechanisms may explain
why the average individual investor does not behave rationally, this need not imply that markets
are inefficient. Even if many market participants behave irrationally, arbitrage by a few rational
investors, he and others argue, is a sufficient condition for market efficiency.

Barberis and Thaler (2002) challenge this view, using two mottos to this end, i.e. Keynes’s
well-known statement “Markets can remain irrational longer than you can remain solvent” and
“When the rest of the world is mad, we must imitate them in some measure”. Barberis and
Thaler give a number of reasons for their proposition that it is unlikely that arbitrage always
leads to efficient pricing in financial markets. Their main argument is that there are risks and
costs involved in arbitrage. Thus, the irrationality of the participants in financial markets may
increase. The rational arbitrageur who buys undervalued stocks will incur a loss if market
participants grow even more pessimistic, no matter how right he may be about fundamentals.

Therefore, in view of the arbitrage risk, traders may wish to go along with the market,
even if they know that asset prices do not reflect economic fundamentals (Black, 1986; De
Long, Shleifer, Summers and Waldmann, 1990). This risk is even more important because of
the principal-agent problem in financial markets resulting from, as Shleifer and Vishny (1997)
formulate it, a “separation of brains and capital”. Professionals do not manage their own money,
but that of customers who, on average, do suffer from cognitive-psychological mechanisms. If a
professional incurs short-term losses by trading against the irrational market, this may harm his
reputation and induce customers to withdraw. The professional who anticipates this response
will adjust his behaviour accordingly. The professional who does not, and trades on the basis
of fundamentals, will lose customers, be increasingly restricted in arbitraging, and eventually
be forced to quit the market. From this perspective, it may be rational for a professional to
be myopic.

Barberis and Thaler (2002) mention several reasons why there is no full arbitrage. Contrary
to what theory suggests, there are costs involved in arbitrage, such as commission fees. Besides,
arbitrage often requires going short. This not only carries additional costs, but also meets with
regulatory constraints. Some, often major, market participants, e.g. pension funds, are simply
prohibited from taking short positions. Moreover, the identification of price efficiencies is costly.
Tracking market inefficiencies in order to conduct arbitrage is only rational if the expected
benefits exceed the costs, including those of gathering information (Merton, 1987). One final
reason, not given by Barberis and Thaler, for assuming that the market as a whole may be
inefficient is the fact that, in practice, well-informed individuals, too, appear to be suffering
from a subconscious tendency of biased judgement. Experimental studies of the self-serving bias
reveals that subjects, even after having been informed of the existence of a bias, thought that
not they themselves but others were liable to this bias (Babcock and Loewenstein, 1997). For
this reason it seems implausible that market participants are free from any biases in searching
and interpreting information.
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The assumption that, given fundamentals, prices can be inefficient for a long period is
empirically supported by Froot and Dabora (1999). On the basis of the price movements of
Royal Dutch/Shell stocks, Froot and Dabora show that prices may deviate from their equilibrium
for a long time. In 1907, Royal Dutch and Shell decided to merge. This was realized on a 60:40
basis. Henceforth, Royal Dutch stocks would represent 60 per cent of the two companies’ cash
flows, and Shell stocks 40 per cent. In other words, the price of a share in Royal Dutch
should be 1.5 times that of a share in Shell. Froot and Dabora establish that, irrespective of
the fundamental value of the Royal Dutch Shell share, there are structural deviations from the
equilibrium price ratio, which may amount to as high as 35%.

Fama also criticizes behavioural finance because the models that make use of cognitive-
psychological concepts only account for one anomaly at a time. In his opinion, this is an ad
hoc approach that sometimes leads to inconsistency between behavioural models. Fama does
have a point, in that a new paradigm may be expected to provide a consistent framework.
Behavioural finance appears to be on its way to doing just that. Its practitioners systematically
employ empirically established psychological mechanisms of human behaviour in addition to,
or instead of, the conventional assumption of rationality. Actual decision-making under risk
appears to be less simple than would be consistent with the assumptions of expected utility
theory and efficient markets theory.

6 Summary and conclusions
Behavioural finance has made two valuable innovative contributions to finance theory and to
empirical research. In the first place, it shows that market participants evaluate financial out-
comes in accordance with prospect theory, rather than expected utility theory. Many anomalies
in preferences result from rules of thumb that are applied when editing prospects to facilitate
decision making. Moreover, a greater sensitivity to losses than to gains implies that deci-
sions differ according to how a choice problem is framed. In the second place, behavioural
finance uses insights from cognitive psychology to take into account that people, when judging
information and forming beliefs, use heuristics and biases that are difficult, if not impossible,
to overcome.

As Statman (1999) puts it: “Standard finance people are modelled as ‘rational’, whereas
behavioural finance people are modelled as ‘normal’ ”. Behavioural finance explains financial
markets anomalies by taking actual behaviour as a starting point, rather than by postulating
rationality both as a norm and as a positive description of actual behaviour. One particularly
important question to be answered within this context is, of course, whether irrational behaviour
of individual market participants may also lead to inefficiency of the market as a whole. Indeed,
it is conceivable that, even if the average investor behaves according to the psychological mech-
anisms mentioned, the market as a whole will generate efficient outcomes anyway. However,
this is not the case, behavioural finance argues, for example because the arbitrage required to
compensate for price inefficiencies is costly and risky.

What does this imply for the future of finance? Statman (1999) raises the question of market
efficiency in a fundamental manner. According to Statman, it is important that a distinction be
made between two definitions of efficient markets. One reads that investors cannot beat the
market systematically, the other says that stock prices are always and fully determined by
economic fundamentals. Statman makes a plea to agree on two things: (1) that investors cannot
systematically beat the market; and (2) that prices may reflect both fundamental and emotional
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factors. This would pave the way for a further analysis of financial markets, allowing room for
both economic fundamentals and systematic psychological factors.
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Appendix (based on Kahneman
and Tversky, 1979)

Choice problem 1:
You may choose between:

(A) 50% probability of a three-week holiday to England, France and Italy, or
(B) a guaranteed one-week trip to England.

Choice problem 2:
You may choose between:

(C) a 5% probability of a three-week holiday to England, France and Italy, or
(D) a 10% probability of a one-week trip to England.

Whatever an individual’s preference, from the viewpoint of maximization of expected profit,
choice problems 1 and 2 are equivalent. The individual choosing B in Problem 1 is bound to
choose option D in Problem 2. Yet practice proved otherwise. In the first choice problem, 78
per cent of the respondents chose option B, while in the second problem 67 per cent of the
same group of respondents chose option C, instead of option D. Apparently, an increase in the
probability to win a holiday from 50 to 100 per cent (Problem 1) has a different effect than an
increase in the probability of winning a holiday from 5 to 10 per cent (Problem 2). The same
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phenomenon was perceived in experiments involving a choice between various probabilities of
winning a sum of money. Conclusion: as long as the odds of winning are high, people tend to
choose the option that offers the highest probability of winning. In situations where winning
is possible but not very likely, people tend to take the option offering the highest profit.
However, as a result of loss aversion, the opposite phenomenon occurs when a choice must be
made between two negative prospects. People appear to be eager to avoid situations in which
they are bound to lose, as the following example shows.

Choice problem 3:
You may choose between:

(E) an 80% probability of losing ¤4000
(F) the certainty that you will lose ¤3000

Choice problem 4:
You may choose between:

(G) a 20% probability of losing ¤4000 or
(H) a 25% probability of losing ¤3000

92 per cent of the respondents chose option E of Problem 3, while 58 per cent went for option
H in Problem 4. Apparently, the respondents considered the certainty of losing 3000 euro
unacceptable, although the expected loss entailed by this option is lower (and less variable,
hence involving a lower risk!) than the alternative option, E. As soon as an uncertainty factor
is introduced in both loss prospects, such as in Problem 4, the majority (but no more than 58
per cent) opt for minimization of the expected loss.
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T
he purpose of the present chapter is to review the evolution of credit risk modelling
developments in the recent past and to present some main research lines proposed in
2003. Particular attention is devoted to the increasing need to study the implications
of the credit risk modelling framework on the general cash-flow cycle of the firm,
represented by the ability of the firm to create value and growth.

A little bit of history . . .
Before the 1990s, a few academicians being left aside, credit risk was a modelling problem
that was dropped, thanks to either some assumption or by assuming the perfect availability of
guarantees and protections. In its search for other domains of application, the arbitrage pricing
way of thinking then started to generate interest in the field . . . but credit risk really emerged
as a fashionable theme of research when practitioners and regulators began to put the old
Basel Accord under the microscope. Suddenly, mathematicians, statisticians, finance researchers,
auditors, consultants, all the financial community, became aware of this new venture. From the
few earlier volunteers, we have to deal today with an exponentially growing literature. But
what are we really left with?

Contact address: Solvay Business School, University of Brussels, 21 av. F.D. Roosevelt, B-1050 Brussels, Belgium.
E-mail: hugues.pirotte@ulb.ac.be
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While insurers have always relied on mitigating credit risk through guaranties, financial
markets have always been looking for a pricing formula to be able to exchange new products
and thus complete the market.

Based on the ability of option pricing models to describe future financial decisions, a big
branch emerged, led by Merton in 1973, on the roots of the seminal Black–Scholes model,
in which Merton has indeed participated. This stream of research includes Shimko, Tejima,
Van Deventer, Longstaff, Schwartz, Anderson, Sundaresan, Leland, Toft, Briys and de Varenne,
among others. Some of them, like Leland and Toft, were indeed showing the importance of
considering some parameters as being endogenously determined.

Here are some figures extracted from Pirotte (1999), showing the results of Merton (1974),
Briys and de Varenne (1997) and Pirotte (1999) using equivalent parameter values. Figure 1
presents the shape of the expected cost of default, depending on the level chosen to stop
the going concern and the volatility of the assets of the firm, in a model where default may
happen earlier than at maturity and with a two-factor term structure of interest rates.1 Figure 2
compares the three cases mentioned. The hump-shaped pattern of credit spreads is one of the
most interesting, as far as we can show that credit spreads should not necessarily display a
monotone pattern.

15

10

5

0
0 0.1 0.2 0.3 0.4 0.5

100

50

0

E
xp

ec
te

d 
C

os
t o

f D
ef

au
lt

Volatility

Bar
rie

r l
ev

el

Figure 1: Expected cost of default for various default
triggering levels (barrier level) and assets volatility.
Reproduced from Pirotte (1999) with permission

But, while this structural approach of credit risk helps in understanding the value to share-
holders and debtholders in the firm’s capital structure context, it soon became clear that this
bottom-up approach was giving poor results in terms of efficient market pricing and was uncal-
ibrable. This opened the path to Jarrow and Turnbull, Duffie and Singleton and Madan and
Unal to present probabilistic approaches known as “reduced-form models”. Made for calibra-
tion, they were typically useful for the pricing of credit derivatives after calibrating on standard
debt issues.

But soon, as with market risks, understanding how credit risk was behaving in a portfolio
became the target. A big contributor to that enthusiasm was the desire to modernize the old
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Figure 2: Credit spreads as a function of the maturity for various structural models. “B & deV”
stands for the model of Briys & de Varenne (1997). The left-hand side of the figure presents the
obtained shapes for a low-leverage firm, while the right-hand figure shows the case for a highly
leveraged firm. Given the differences in the modelling of the term-structure of interest rates,
parameters are chosen so that we obtain equivalent interest-rate frameworks (constant r for
Merton) to analyse the models together. Different results will obtain if a much higher volatility of
long-term rates is permitted as we currently observe it. Reproduced from Pirotte (1999)

Basel accord. While the Cooke ratio of 8% had been a static notion offering no surprises
for almost a decade, the desire to make this accord more sensitive to institutional credit risk
management lit the fire again.

Research has literally exploded. Practitioners developed portfolio models, such as
CreditMetricsTM, CreditRisk + TM, Credit Portfolio ViewTM. Regulators proposed frameworks
for the appraisal of the probability of default and the recovery rate. They also proposed formula-
tions for the correlation of assets returns in a credit portfolio along with the capital requirement.
KMV restated the honour of structural models, proposing a marked-to-market rating framework
that showed real practical results. It was finally bought by Moody’s as a signal of the acceptance
of a new era in rating methodologies, more desirable than analysis based on simple financial
ratios or on “logits on any seemingly important variable”. A simple rule obtained, providing
consensus: structural models are for explaining, reduced-form models are for pricing. There is
still one problem, however: if credit risk models are also to be used for regulatory and control
purposes, how can we match the power of calibration to real credit spreads structures and the
power of rating determination?.2 Choices are obviously being made in the recommendations
but the authorities do not provide any argument on the cross-effects of these and their impact
on the requirements for different activities. They have indeed asked financial institutions to run
analyses on their own under the name of “quantitative impact studies”.

Is credit risk a new issue? Not really, it was already analysed before in contracts such as
convertible bonds. But today, financial markets now have credit derivatives to blow away the
credit risk exposure underlying the contract. Thinking in the “option” terminology, a convertible
bond is equivalent to a straight bond plus a stock conversion option minus an option to default
held by the issuers. Indeed, credit derivatives have boosted the motivation for the need of steady
marked-to-market credit risk pricing.
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On the other hand, we are still lacking a realistic and steady portfolio model. Even though
the Basel II discussions have raised concerns about the way to compute correlations between
assets, the subject does not seem to be really uncovered. Basel formulas present a deterministic
way to infer asset correlations and nobody knows really what they do mean in fine. Optimally,
correlations in a default model are linked to the propensity of two assets in reaching default over
a certain horizon. Are these correlations stable? Much less than sure. Uncovering credit risk also
means relaxing the perfect liquidity hypothesis. Unless we examine credit risk only in a perfectly
liquid market, a true issue is to know if “default passages” are concentrated (in time) in our port-
folio and how this concentration may bring “negative spirals”, where cash ends up to be the only
desired collateral (in opposition to what a good collateral may be in normal market conditions).

As a consequence, several issues were raised. First, empirical studies tried to shed some
light on the relative importance of specific and systematic factors in the evolution of the
counterparties’ credit-worthiness. Second, other techniques were proposed, such as the “copula”
method. But this seems to make the default occurrence of a second counterpart to be perfectly
revealed in time, once first one’s default is known. Finally, making statements on the effective
diversification in a portfolio is still dangerous, since that effect may vanish if correlations
revert to strongly positive in stressed market conditions. There is just one step then to the
extreme value theory. In particular, if default is a rare event and if “collapsing markets” is
even a rarer event, how can you sustainably switch to abnormal market conditions for your
experiment? Since every rare event is driven by particular conditions, how can we account for
on an average behaviour of the creditworthiness of market participants? This has all to deal
with “survivorship”. The Markov property of market-sensitive prices is no longer sustainable
when the existence of the position may be questionable for the foreseeable future.

Another field where little research was conducted previously was “sovereign credit risk”.
Table 1 lists some main contributions of the recent past, i.e., at the passage to the new

century, and the achievements of 2003, respectively. They are far from exhaustive and they
just pretend to be an essence of various branches of research. Please forgive me for the many
missing articles that would also deserve to be referenced here.

TABLE 1: CREDIT RISK APPRAISAL MODELS AND EVIDENCE

Theme Article

Recent past
Earlier modelling
Corporate finance Acharya, Huang, Sundaram, Subramanyam (2000) Costly financing, optimal

payout policies and the valuation of corporate debt.
Asset-Pricing Mella-Barral & Tychon (1999) Default risk in asset pricing.
Structural models Collin-Dufresne and Goldstein (2001) Do credit spreads reflect stationary

leverage ratios?
Sousa (2002) Corporate credit risk valuation using option pricing theory

methodology.
KMV, Crosbie (2002) Modeling default risk.
Hsu, Saa-Requejo and Santa-Clara (2002) Bond pricing with default risk.
Neftci (2001) Correlation of default events: some new tools.
Duffie and Singleton (1999) Modeling term structures of defaultable bonds.



CREDIT RISK METHODOLOGIES 63

TABLE 1 (continued )

Theme Article

Reduced-form models Duffie and Lando (2000) Term structures of credit spreads with incomplete
accounting information.

Portfolio Models Schonbucher (2000) Factor models for portfolio credit risk.
Schonbucher and Schubert (2001) Copula-dependent default risk in intensity

models.
Others Moody’s (2002) LossCalc model for predicting LGD.
Derivatives pricing Huge and Lando (1999) Swap pricing with two-sided default risk in a

rating-based model.

Earlier evidence
Market evidence Eberhart, Altman and Aggarwal (1998) The equity performance of firms

emerging from bankruptcy.
Chen and Huang (2001) Credit spread bounds and their implications for

credit risk modeling.
Dai and Singleton (2002) Term structure dynamics in theory and reality.
Newman and Rierson (2002) How downward-sloping are demand curves for

credit risk?
Dietsch and Petey (2002) The credit risk in SME loans portfolio.
Barnhill, Joutz and Maxwell (2000) Factors affecting the yields on

noninvestment-grade bond indices: a cointegration analysis.
Liu, Longstaff and Mandell (2000) The market price of credit risk – IRS

spreads.
Default risk vs. other

sources
Bakshi, Madan and Zhang (2001) Investigating the sources of default risk

lessons from empirically evaluating credit risk models.
Collin-Dufresne, Goldstein and Spencer (2001) The determinants of credit

spread changes.
Delianedis and Geske (2001) The components of corporate credit spreads.
Elton, Gruber, Aggrawal and Mann (2001) Explaining the rate spread on

corporate bonds.
Joutz, Mansi and Maxwell (2001) The dynamics of corporate credit spreads.
Campbell and Taksler (2002) Equity volatility and corporate bond yields.
Driessen (2002) Is default event risk priced in corporate bonds?
Mhuang (2002) How much of corporate-treasury yield spread is due to credit

risk?
Gabbi and Sironi (2002) Which factors affect corporate bonds pricing?

Structural models are Bohn (1999) Characterizing credit spreads.
not so bad? Gemmill (2002) Testing Merton’s model for credit spreads on zero-coupon

bonds.
Ericsson and Reneby (2002) Estimating structural bond pricing models.
Eom, Helwege and Huang (2002) Structural models of corporate bond

pricing: an empirical analysis.
Model testing in

general
Houweling, Hoek and Kleibergen (2001) The joint estimation of term

structures and credit spreads.

(continued overleaf )
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TABLE 1 (continued )

Theme Article

Achievements in 2003
Evidence
Market evidence Hull, Predescu and White (2003) The relationship between credit default

swap spreads, bond yields, and credit rating announcements.
Huang and Kong (2003) Explaining credit spread changes: new evidence

from option-adjusted bond indexes.
Lando and Mortensen (2003) Mispricing of StepUp bonds in the European

telecom sector.
Purda (2003) Controlling for anticipation in stock price reactions to credit

downgrades.
Schuermann (2003) What do we know about loss-given-default?
Varotto (2003) Credit risk diversification evidence from the Eurobond market.
Zhang (2003) What did the credit market expect of Argentina default

evidence from default swap data?
Odders-White and Ready (2003) Credit ratings and stock liquidity.

Sources of credit risk Houweling, Mening and Vorst (2003) How to measure corporate bond
liquidity?

Moody (2003) Systematic and idiosyncratic risk in middle-market default
prediction.

Pesaran, Schuermann, Treutler and Weiner (2003) Macroeconomic dynamics
and credit risk.

Huang and Huang (2003) How much of the corporate-treasury yield spread is
due to credit risk?

Altman, Brady, Resti and Sironi (2003) The link between default and
recovery rates.

Structural? Hull, Nelken and White (2003) Merton’s model, credit risk, and volatility
skews.

Modelling
Asset pricing Giesecke and Goldberg (2003) The market price of credit risk.

Giesecke (2003) Default and information.
Yu (2003) Accounting transparency and the term structure of credit spreads.
Binnenhei (2003) An analytic approach to rating transitions.
Chen, Filipovic and Poor (2003) A firm-specific model for bond and stock

valuation.
Chen and Filipovic (2003) A simple model for credit migration and spread

curves.
Credit risk modelling Gourrieroux, Monfort and Polimenis (2003) Affine models for credit risk

analysis.
Nikolova (2003) The informational content and accuracy of implied asset

volatility as a measure of total firm risk.
Estimation – modelling

on parameters
Guha and Sbuelz (2003) Structural RFV recovery form and defaultable debt

analysis.
Albanese and Chen (2003) Implied migration rates from credit barrier

models.
Hahnenstein (2003) Calibrating CreditMetrics correlation concept for

non-publicly-traded corporations.
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TABLE 1 (continued )

Theme Article

Hillegeist, Cram, Keating and Lundstedt (2003) Assessing the probability of
bankruptcy.

Schuermann and Jafry (2003) Measurement and estimation of credit
migration matrices.

Yu (2003) Default correlation in reduced-form models.
Houweling, Mentink and Vorst (2003) Valuing Euro rating-triggered StepUp

telecom bonds.
Bierens, Huang and Kong (2003) An econometric model of credit spreads

with rebalancing, ARCH and jump effects.
Chen (2003) The extended Geske–Johnson model and its consistency with

reduced form models.
Johannes and Sundaresan (2003) Pricing collateralized swaps.

Derivatives pricing Ayache, Forsyth and Vetzal (2003) Convertible bonds with credit risk.
Schönbucher (2003) A note on survival measures and the pricing of options

on credit default swaps.
Das, Sundaram and Sundaresan (2003) A simple unified model for pricing

derivative securities with equity, interest-rate and default risk.
Monitoring and control Krishnan, Ritchken and Thomson (2003) Monitoring and controlling bank

risk: does risky debt serve any purpose?
Leippold, Ebnoether and Vanini (2003) Optimal credit limit management.

Capital structure Huang, Ju and Yang (2003) A model of optimal capital structure with
stochastic interest rates.

Expectations for the future . . . some thoughts

Figure 3 presents a simple but already complex picture. Credit risk appraisal should be consistent
and compatible across uses (and therefore among agents in the economy): capital adequacy (with
the Basel II accord), credit risk sharing (with the existence of credit derivatives), shareholder
value creation, firm sustainable growth.

A great step will be made when we will be able to use such structural models to explain
further the capital equilibrium of the firm in a marked-to-market perspective. Let’s take a
concrete example.

We may want first to determine what is the objective: maximizing shareholder value vs.
maximizing firm value. Traditional finance based on financial statements give us some hints. On
the side of the shareholder value, we can think of the ROE and the value of equity represented
by a call on the assets of the firm. ROE depends on the return on invested capital (ROIC,
independent of the leverage), impacted negatively by the interest payout after tax and positively
by the leverage effect.

On the side of the value of the firm, we can mix ideas from the agency costs theory
together with pecking-order considerations, the avoidance of debt overhang problems and the
minimization of the WACC of the firm.
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Figure 3: Systemic credit risk and creating shareholder value. D stands for
“debt” and E for “equity”. Each financial intermediary is required to put in an
amount of capital (E), given the riskiness of their operations

Both perspectives will lead to the determination of a first estimation of the optimal capital
structure for the firm. This optimal capital structure, together with the payout policy and the profit
margin generated by the activity, will allow us to infer the sustainable growth rate for the company.

Up to this point, each step makes the assumption that the firm and its shareholders may
choose the structure on their own without the feedback of debtholders (naı̈ve approach). But
structural models allow us to easily compute the fair value of debt (and equity) for the various
inputs.3 In order to avoid instantaneous value transfers between shareholders and debtholders
at the inception of the debt contract, contractual parameters should make the theoretical value
of debt equal to the original investment by debtholders. Either the investment or the leverage
may be calibrated, resulting in a given credit spread out of the model.

After iterating and converging towards a set of inferred inputs, we can find out the optimal
leverage policy of the firm and the consequent sustainable growth that we can expect. It has to
be noted that previous research, such as Leland (1994) and Leland and Toft (1996), has already
dealt analytically with the endogenous determination of some parameters, obtaining optimal
capital structures and cost of capital for different debt and default designs. But no-one really
deals with the impact of credit risk requirements on the evolution of the economics of the firm
(value creation and growth). Structural models can go further, thanks to their modelling of the
firm, and “old” financial diagnosis can be recovered and combined with it to give some sort of
balance scorecard of financing and show the impacts on the firm’s activity as a going concern.

Moreover, we stand today on the modernization of the old Basel Accord for a determination
of capital requirements more sensitive to changes in creditworthiness. But we are completely
unaware of the impact that such modification will have on the supply of debt, and therefore
on the equilibrium between small, medium and big companies. Also, in this case, we deal not
only with credit spreads at equilibrium but also with the access to debt. What would happen if
small and medium enterprises (SMEs) would be forced to be systematically below their optimal
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capital structure? The next story would then undoubtedly be, “How to artificially generate value
from mergers”. On the other hand, all our “optimization” research ideas stand on the fact that
debtholders are valuing precisely the credit risk exposure in a game between shareholders and
debtholders. The new accord could also force some financial institutions (from the roots of their
cost of capital) to offer more sensitive credit conditions to the market.

Finally, future outcomes in the study of specific and systematic components of credit risk are
not obvious to forecast. In the latter paragraph, we typically have a situation where individual
reactions of SMEs to a common legal framework could lead to a bigger concentration, while at
the origin, the aim of the new accord is to be more sensitive to each issuer of the marketplace.

Here is a little summary to conclude on the ideas presented above:

• We need a steady consensus on what drives credit risk, having a better understanding of
the role of business cycles and the firm sensitivity to macro factors. What is then left as
specific risk?

• We need a methodology for estimating probabilities of default and recoveries, consistent
with firm-specific conditions of value creation and sustainable growth.
• Managers need understanding.
• Credit risk issues should be integrated to the balance scorecard.
• There is currently no relationship with the economics of the firm’s activity.
• Sustainable growth of startup companies could be approached.

• We need a consensus on an acceptable portfolio approach to analyse credit risk diversi-
fication.

• We need to check:
• Moral hazard and strategic consistency in pricing models.
• Absence of bias in regulation leading to artificial competing advantages. This is

essential for credit derivatives pricing.

FOOTNOTES & REFERENCES
1. It is not an extension at all of Merton. Contrary to what we could think, this can indeed
be seen as an unfortunate reduction of Merton’s case on the credit risk point of view. By
assuming that a barrier can trigger default earlier, we need now to define a parameter for the
loss function, while it is completely implicit in Merton’s model.
2. Some have presented ways to analyse and reconcile both approaches, such as Gordy (2000)
with a paper entitled ‘‘A comparative anatomy of credit risk models’’.
3. Be careful about the coherence of assumptions: if the firm model assumes payouts to
shareholders and debtholders before the average maturity of the debt burden, then the debt
pricing model must include such cash outflows.
Keeping aside the numerous references mentioned in the previous tables, the text presented
above was highly inspired by the following authors:

� Huge, Brian & David Lando (1999), ‘Swap Pricing with Two-sided Default Risk in a Ratings-
Based Model’, European Finance Review 3:239–268, 1999.
� Leland, Hayne E., 1994, ‘‘Corporate Debt Value, Bond Covenants and Optimal Capital
Structure’’, Journal of Finance, 49(4), September 1994, pp. 1213–1252.
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� Leland (1994), Leland and Toft (1996) for the determination of the optimal capital structure
(and cost of capital).
� Leland, H.E. and Toft, K.B., 1996, ‘‘Optimal Capital Structure, Endogenous Bankruptcy and
the Term Structure of Credit Spreads’’, Journal of Finance, 51(3), July 1996, pp. 987–1019.
� Lintner, J. (1965), ‘‘The Valuation of Risk Assets and the Selection of Risky Investments
in Stock Portfolios and Capital Budgets’’, Review of Economics and Statistics, 47, (February):
13–37.
� Merton (1973, 1974) for the seminal structural model.
� Merton, R.C. (1974), ‘‘On the Pricing of Corporate Debt: The Risk Structure of Interest Rates’’,
Journal of Finance, 29 (May): 499–70.
� Merton, R.C. (1977), ‘‘On the Pricing of Contingent Claims and the Modigliani-Miller Theorem’’,
Journal of Financial Economics, 5 (November): 241–9.
� Mossin, J. (1967), ‘‘Equillibrium in a Capital Asset Market’’, Econometrica, 35 (October):
768–83.
� Pirotte (1999) for the barrier extension in a two-factor setting for the interest-rate risk.
� Pirotte, H., 1999a, ‘‘implementing a Structural Valuation Model of Swap Credit-Sensitive
Rates’’, Working paper, Institute of Banking and Finance, Ecole des HEC, University of Lausanne,
December 1999, 32 pp.
� Pirotte, H., 1999b, ‘‘A Structural Model of the Term Structure of Credit Spreads with Stochastic
Recovery and Contractual Design’’, Working paper, Institute of Banking and Finance, Ecole des
HEC, University of Lausanne, December 1999, 85 pp.
� Sharpe, W.F. (1964), ‘‘Capital Asset Prices: A Theory of Market Equilibrium Under Conditions
of Risk’’, Journal of Finance, 19 (September): 425–42.
� Sharpe, Lintner & Mossin (1964, 1965, 1966) for the CAPM results and the use of the beta.



6
Modelling
and Measuring
Sovereign Credit Risk
Ephraim Clark

Quantitative Finance Review 2003

C
ontemporary credit risk modelling is dominated by two types of models, the struc-
tural models and the reduced-form models. The structural models are based on
Merton (1974, 1977) and view bonds as contingent claims on the borrowers’ assets.
The credit event is modelled as timing risk when the assets of the borrower reach
a threshold. In Merton (1974, 1977), Black and Cox (1976), Ho and Singer (1982),

Chance (1990) and Kim, Ramaswamy and Sundaresan (1993), default is modelled as occurring
at debt maturity if the assets of the borrower are less than the amount of the debt due. More
recent models, starting with Longstaff and Schwartz (1995), have randomized the timing of
the default event determined by when the value of the assets hits a predetermined barrier. The
reduced-form models, such as Jarrow and Turnbull (1995), Madan and Unal (1998) and Duffie
and Singleton (1999), model the timing of the default event as a Poisson process or a doubly
stochastic Poisson process (Lando, 1994).

These models are often applied to sovereign credit risk, but, because of the nature of
sovereign debt, they have some fundamental shortcomings. The reason is that both types of
models were conceived in the context of corporate bankruptcy, where there is a legal framework
for settling claims when the borrower is unable to service its debt. The inability to pay can be
de jure, such as when certain conditions on asset values are not respected, or de facto, such as
when the borrower runs out of cash. The assumption is that when default occurs, creditors can
seize the firm’s assets to “recover” as much as possible of what is owed them.

Because of the principle called “national sovereignty”, which lies at the heart of the political
world order, the foregoing context is clearly different from the context surrounding sovereign
credit risk. First of all, there is no recognized legal framework for sorting out sovereign defaults.1
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When a sovereign defaults, creditors have very little scope for seizing assets, as is the case in
corporate defaults. Consequently, instead of seizing assets that can be sold to pay off some or
all of the delinquent debt, creditors and sovereigns negotiate. The result usually includes some
combination of forgiveness, new money and, more importantly, the rescheduling of outstand-
ing contractual maturities, i.e., the transformation of contractual maturities into longer-term
liabilities.2 This introduces an element of uncertainty regarding the actual maturities of the
contractual cash flows, something that the structural and reduced-form models are not equipped
to handle.

Besides making asset recovery in the case of default practically impossible, “national
sovereignty” also endows countries with the de facto power to unilaterally abrogate or suspend
contractual obligations when deemed in the national interest. This is another major character-
istic that distinguishes sovereign debt from corporate debt. In the structural and reduced-form
models, the creditworthiness of a corporate borrower depends, for all practical purposes, on its
ability to pay. Where a sovereign borrower is concerned, however, besides the ability to pay,
creditworthiness depends on the government’s willingness or unwillingness to pay, even if it
has the ability.

The literature on sovereign credit risk has not overlooked the importance of the willingness
factor. Eaton, Gersovitz and Stiglitz (1986), for example, argued that because a country’s wealth
is always greater than its foreign debts, the real key to default is the government’s willingness to
pay. Borensztein and Pennacchi (1990) suggest that, besides other observable variables that are
tested, the price of sovereign debt should be related to an unobservable variable that expresses
the debtor country’s willingness to pay. Clark (1991) suggests that the price of sovereign debt is
related to a country’s willingness to pay, which is motivated by a desire to avoid the penalties
of default. Although analytically seductive, the problem with the concept of the willingness
(unwillingness) to pay is that it is not readily observable. Consequently, empirical testing of the
price of sovereign debt on the secondary market has tended to exclude this variable and focus
on financial variables (Feder and Just, 1977; Cline, 1984; McFadden et al., 1985; Callier, 1985),
structural variables (Berg and Sachs, 1988) or other phenomena, such as prices (Huizinga, 1989)
or debt overhang (Hajivassiliou, 1989).

Some recent developments of sovereign debt modelling deal explicitly with the foregoing
problems. Clark (2003) shows how the willingness to pay can be modelled as an American-style
call option, where the decision to default depends on the government optimizing the trade-off
between the gains to be reaped through non-payment and the costs associated with not paying.
Clark and Zenaidi (forthcoming) show how the reality of rescheduling and the uncertainty of
contractual maturities can be captured by modelling losses due to rescheduling and default as
Poisson processes covered by a hypothetical insurance policy.

The rest of this chapter is organized as follows. In Section 1, I review the latest applications
of the structural and reduced form models to sovereign debt. In Section 2, I outline the elements
of the models that deal with the willingness to pay and rescheduling, while Section 3 and
Section 4 conclude.

1 Structural and reduced form modelling
of sovereign debt
There has been no reduced-form modelling specific to sovereign debt. Work on sovereign debt
with respect to reduced-form models has concentrated on testing existing models and especially
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the Duffie and Singleton (1999) model. For example, this is the case for Andritzsky (2003)
and Zhang (2003) for Argentine bonds, Merrick (2001) for Argentine and Russian bonds and
Keswani (1999) and Pagès (2000) on Latin-American Brady bonds. Dullman and Windfuhr
(2000) test two affine diffusion models, the Vasicek (1977) and Cox–Ingersoll–Ross (1985)
models, on European government credit spreads.

The key to structural modelling of sovereign debt is constructing an appropriate underlying
security for a country that can drive the model. In the structural models for corporate debt,
the underlying security is the value of the firm’s assets. Clark (1991) has shown that the
corresponding underlying security for sovereign credit risk is the country’s international market
value (net export value), measured as the present value of a country’s expected net exports.3

Thus, in order to apply a structural default model, it is necessary to estimate this variable and
its parameters. Two methods have been proposed. Clark and Kassimatis (2003) use historical
investment data, interest rate parity and forward rate parity, while Clark (2003) suggests an
econometric estimation using historical data on net exports.

One of the most interesting developments is that this underlying international market value
can be combined with sovereign debt market data to create derivative products capable of
managing overall country risk. For example, one way to exploit the market information on
traded sovereign debt is to borrow from standard option pricing techniques and estimate the
implied volatility of the country’s international market value (see Clark, 2002b). This implied
volatility is a market-based measure of the country’s underlying riskiness. It can be obtained
by running the option pricing model with volatility as the unknown. The asset does not actually
have to be traded. It can be an indicator similar to those used for weather derivatives, like the
number of sunny days in a given month.

Once the country’s implied volatility has been estimated it can be used directly as a risk
management tool or serve as the underlying variable in other types of derivative products.
Clearly, if we have a reliable underlying variable, a whole range of derivative products for
country risk management, including forwards, futures, swaps and options, would be feasible.
Within this range, volatility swaps are particularly pertinent to the management of country risk.
Volatility swaps involve one side paying a constant, pre-determined volatility, S, on a notional
amount of L, while the other side pays ω, which would be the implied volatility of the country’s
international market value calculated on the payment dates.

2 Modelling the unwillingness to pay
The argument for modelling the unwillingness to pay as an American-style call option goes as
follows. Based on the generally accepted concept of national sovereignty, a government has
an ongoing de facto right to repudiate or default on its foreign debt, if this is deemed in the
national interest. There is, however, no obligation on the part of the government to default.
Thus, it is an option. It is an American-style option because the government can default at any
time it chooses. As I mentioned above, this it should do when deemed in the national interest,
and the national interest is when the benefits from defaulting are large enough to offset the
costs of doing so. Hence, if we measure the relative value of default with respect to the costs of
defaulting, we are in effect measuring the degree of the government’s unwillingness to honour
its contractual debt obligations. The higher the value of the option to default, the less willing
is the government to pay.
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Thus, the value of the option, noted as Y , depends on the nominal amount of foreign debt
outstanding, noted as x, and the indemnities and costs associated with default, noted as C:4

Y = Y [x(t), C(t)] (1)

Both x and C are assumed to follow geometric Brownian motion:

dx(t) = αx(t) dt + σx(t) dz(t) (2)

where α is the growth rate of the foreign debt, which depends on the economy’s requirements
for external financing, dz(t) is a Wiener process with zero mean and variance equal to dt , and
σ 2 is the variance parameter of dx(t)/x(t):

dC(t) = πC(t) dt + ωC(t) dw(t) (3)

where π is the trend parameter, ω2 is the variance parameter of the percentage change in C(t)

and dw(t) is a Wiener process with zero mean and variance equal to dt , with dz(t) dw(t) =
ρ dt , where ρ is the instantaneous correlation coefficient between x and C.

The argument for modelling debt as geometric Brownian motion is based on the nature of
external transactions and on the fact that debt cannot be negative. More precisely, the continuous,
random element stems from the balance of payments identity and the random, continuous nature
of autonomous commercial and capital transactions.5

The argument for modelling indemnities and costs associated with default as geometric
Brownian motion relates to the two forms that these indemnities and costs can take. The first
revolves around the costs associated with the loss of access to capital markets (Eaton and
Gersovitz, 1981). The second concerns the costs due to direct sanctions, such as the elimination
of trade credits or the seizure of assets (Bulow and Rogoff, 1989).

The costs related to capital market access will be influenced by the economy’s overall
performance, which varies stochastically over time, and the extent to which foreign resources,
both imported and borrowed, which also vary stochastically over time, play a role in the
economy. The costs related to direct sanctions will be influenced by the reactions to the default
of a wide range of players, including politicians, businessmen, bankers, international civil
servants and consumers. Typically, these reactions vary according to circumstances and current
perceptions surrounding them. Finally, perceptions themselves are likely to vary according to
the evolution of a complex set of economic, political, social, environmental, etc. variables at
the local, regional and international levels. In short, the sources of variation are numerous
and unpredictable enough that there should be a considerable random element in variations
of C.

Since the option to default can be exercised at any time, its value depends on when the
option is exercised. The government will want to exercise at the point that maximizes its value.
This problem can be solved with standard techniques. First, generate a new variable, g = x/C,
the value of the investment per dollar of default cost, where the time arguments have been
dropped for simplicity of notation.6 Next, make the change of variables y(g, 1) = Y (x, C)/C

and assume time independence.7 Use the capital asset pricing model to find Rg , the required
rate of return on g, so that the instantaneous payout rate κ is equal to Rg − µ = κ . Then,
going through the well-known steps of setting up a riskless hedge consisting of one unit of
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the option and −y ′(g) units of the investment, and applying Ito’s Lemma, gives the following
differential equation:

1
2δ2g2y ′′ + (r − κ)gy ′ − ry = 0 (4)

using the boundary conditions:

y(0) = 0 (5)

y(g∗) = g∗ − 1 (6)

y ′(g∗) = 1 (7)

makes it possible to solve for y where g∗ represents the value of g, where it will be optimal
for the government to act. Reversing the change of variables gives:

Y = CK1g
η1 (8)

where

η1, η2 = −(r − κ − δ2/2) ± √
(r − κ − δ2/2)2 + 2δ2r

δ2

K1 = 1

η1 − 1
g∗−η1

and

g∗ = η1

η1 − 1

Equation 8 expresses the government’s unwillingness to honour its international debt obli-
gations. The unwillingness grows as the gains from default grow with respect to the costs of
defaulting. In this context, default itself is the result of a rational welfare optimizing decision
based on relative costs and benefits.

Table 1 shows how changes in the parameters that drive the exercise price affect the value
of the option to default. An increase in the trend parameter of x increases the value of the
option, an increase in the trend parameter of C, decreases the value of the option, as does an
increase in the correlation of the changes in the exercise price with changes in the amount of
debt outstanding. The intuition behind these results is straightforward. Increases in x increase
the value of the call, increases in the exercise price reduce the value of the call, and the more
they move together, the more the increases in the value of the debt outstanding are offset by
increases in the cost of default.

TABLE 1: COMPARATIVE STATICS ON THE OPTION TO DEFAULT

∂Y/∂α > 0 ∂Y/∂π < 0 ∂Y/∂ρ < 0 ∂Y/∂σ ≤ 0, ≥ 0 ∂Y/∂ω ≤ 0,≥ 0

Interestingly, the effect of changes in σ and ω, the volatilities of x and C, is ambiguous.
Depending on the levels of the other parameters, as well as the levels of σ and ω themselves,
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the effect can be positive, negative or zero. In fact, because of the interaction of σ, ω and ρ in
determining the dynamics of g (δ and µ in footnote 6), the effect of an increase in either σ or
ω, up to a certain critical level, has the effect of reducing the value of x. Above this critical
level, further increases have the effect of increasing the value of x.

The foregoing model can be used for measuring and monitoring sovereign risk. The distance
to default can be measured as g∗ − g, the difference between the optimal ratio of x to C and
the current value of this ratio. Default occurs when g = g∗. The probability of default, then,
is the probability that g will remain below g∗. To calculate the probability of default, the fact
that g is lognormally distributed gives:

P [g < g∗] = 1 − P [g ≥ g∗] (9)

where

P [g ≥ g∗] = 1√
2
δ2T

c1∫
−∞

1

g
e−(ln g−m)2/2δ2T dg (10)

and

c1 = ln(g/g∗) + (µ − δ2/2)T

δ
√

T
(11)

To implement this procedure, first determine the time horizon or the family of time horizons,
T = T1, T2 . . . Tn, deemed to be relevant and then apply equations 9–11.

3 The total expected loss from default
as the value of a hypothetical insurance policy
Modelling the total expected loss from default as the value of a hypothetical insurance policy
that pays off any and all losses due to de facto or de jure default addresses the reality that there
is no recognized legal framework for sorting out sovereign defaults and very little scope for
creditors to seize assets as a means of recovering their loans. Thus, default is usually not a one-
off affair, as in corporate default. It is more likely to be a series of events where losses result
from a negotiated settlement involving a combination of forgiveness, new money, concessional
terms and the rescheduling of outstanding contractual maturities, i.e., the transformation of
contractual maturities into longer-term liabilities.

In this model there are two types of default events that occur at random times, according to
Poisson arrival processes. Type 1 refers to defaults accompanied by forgiveness, rescheduling
and/or new lending that cause losses but keep the loans alive. Type 2 refers to the more extreme
class of defaults, such as repudiations, that effectively kill the loans. Let q1 for type 1 defaults
and q2 for type 2 defaults represent random variables that increase by steps of 1 every time a
Poisson event occurs, with λ and φ their constant intensity parameters, such that:8

dq1(t) =
{

1 with probability λ dt

0 with probability 1 − λ dt.
(12)

dq2(t) =
{

1 with probability φ dt

0 with probability 1 − φ dt.
(13)
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The amount of losses due to type 1 events will be influenced by the reactions to the default
of a wide range of players, including politicians, businessmen, bankers, international civil
servants and consumers. Typically these reactions vary according to circumstances and current
perceptions surrounding them. Finally, perceptions themselves are likely to vary according to
the evolution of a complex set of economic, political, social, environmental, etc. variables at
the local, regional and international levels. In short, the sources of variation are numerous and
unpredictable enough that there should be a considerable random element in variations of the
loss in the case of default. Let x∗ represent the loss given default as a percentage of outstanding
nominal debt that follows geometric Brownian motion:

dx∗(t) = αx∗(t) dt + σ ∗x(t) dz(t) (14)

Thus, in the case of type 1 events, the expected loss per interval dt is equal to λx∗(t) dt .
In the case of type 2 events, the loan is effectively ended and the expected loss per interval dt

is equal to φx(t) dt .
To measure the total expected loss, V represents the value of a hypothetical, open-ended

insurance policy that covers creditors against losses arising from the country risk, so that when
losses occur, they are reimbursed by the insurance. “Open-ended” refers to the fact that the
amount of debt covered by the policy can vary over the life of the policy as new loans are
contracted and old loans are rolled over or paid off.9 In this way, the policy measures the present
value of total expected losses due to default over its specified life. The insurance policy, like
the debt, is time-independent.10 Thus, V = V [x∗(t)]. The expected total return on the insurance
policy is equal to E(dV ) plus the expected cash flows generated by the explicit events. For
type 1 events, the expected cash flow is equal to the expected loss, λx∗(t) dt . For type 2 events,
the insurance policy is cashed in for x; thus, the expected cash flow is φ(x − V ) dt .

Applying Ito’s Lemma and taking expectations gives:

rV dt = Vxαx∗ dt + 1

2
Vxxσ

2x∗2 dt + λx∗ dt + φ(x − V ) dt (15)

where the subscripts denote first and second partial derivatives. Using the boundary conditions
of no speculative bubbles and an absorbing barrier when x∗ goes to zero gives the solution:

V = λx∗

r + φ − α
+ φx

r + φ
(16)

Equation (16) quantifies country default risk. For it to make economic sense, r + φ − A

must be greater than zero. It says that the value of the insurance policy is equal to the present
value of the expected losses due to default discounted at the riskless rate plus a premium for
the probability of a policy ending event.

4 Conclusion
Sovereign debt differs from corporate debt in several significant ways. When a sovereign defaults,
creditors have very little scope for seizing assets, as is the case in corporate defaults. Furthermore,
countries have the de facto power to unilaterally abrogate or suspend contractual obligations
when deemed in the national interest. Consequently, sovereign defaults often depend more on the
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government’s willingness to pay than on its objective ability to do so. When a default does occur,
instead of seizing assets that can be sold to pay off some or all of the delinquent debt, its resolution
usually includes some combination of forgiveness, new money and the rescheduling of outstanding
contractual maturities. In this context, the total expected loss due to sovereign default includes the
reality of a series of loss-causing events as well as one, single, claim-ending repudiation.

In this chapter I have outlined how these characteristics can be modelled. The unwillingness
to pay can be modelled as a call option on the nominal amount of outstanding debt with a
stochastic exercise price. The resulting distance to default and default probabilities thus reflect
the reality that the government’s willingness to pay is a major determinant of sovereign default
risk. The total expected loss due to default that includes a series of loss causing events can
be modelled as the value of a hypothetical insurance policy that pays off any and all losses
resulting from default, where loss causing events are modelled as Poisson processes. It reflects
the fact that the total expected loss includes the reality of a series of smaller loss-causing
defaults, as well as the possibility of a total, definitive repudiation.

FOOTNOTES & REFERENCES
1. There are semi-official organizations, such as the Paris Club for sovereign creditors and the
London Club for private creditors.
2. The negotiations are usually carried out in the framework of the London and Paris Clubs.
3. Gray et al. (2003) propose a sectoral approach to modelling the macro financial risks of an
economy. Their macro-economic flow of funds in their Appendix 7 corresponds to net exports.
4. As in corporate defaults, sovereign default on a debt service payment puts the total debt
outstanding in default through pari passu and cross-default clauses that are routinely written
into the debt contracts. In practice, once default has occurred and the government has
demonstrated its willingness to suffer the costs this entails, a bargaining process begins,
usually within the Paris and London Clubs, whereby the government enters negotiations with
its creditors to trade the value of the exercised default option by recommencing payments in
exchange for concessions such as forgiveness, reschedulings, etc. Our analysis is limited to the
initial decision to default.
5. We consider jumps to new levels of nominal debt outstanding through forgiveness, reschedul-
ing, Brady deals or the like as part of the negotiation process that occurs subsequent to the
act of de facto or de jure default. This will be the subject of the next section.
6. The dynamics of this variable are:

dg = µg dt + δg ds, µ = α − π − σωρ + ω2, δ2 = σ 2 − 2σωρ + ω2, ds = σ dz − ω dw
δ

7. This is a common assumption, adopted, for example, by Modigliani and Miller (1958), Merton
(1974), Black and Cox (1976) and Leland (1994). Leland (1994) justifies this assumption
based on the conclusions of Brennan and Schwartz (1978), whereby the optimal strategy is
continuously rolled over short term debt under the constraint of positive net asset value. Thus,
as long as the firm is able to repay its debt, the debt is automatically rolled over.
8. In fact, the intensity parameters might be stochastic and/or changing over time. This can
be incorporated by modelling the jumps as a doubly stochastic Poisson process (Cox process)
with Bayesian updating (see Clark and Tunaru, 2003).
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9. The hypothetical insurance policy in question should measure the cost of overall country
default risk. Thus it is the amount of debt that is important and not the identity of the
individual creditors, who can change over the life of the policy.
10. The special case of when the debt has a definite maturity is treated in Clark and Zenaidi
(forthcoming).
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T
his essay was initially intended as the elaboration of the presentation I gave at the
Quantitative Finance Review in London in November 2003. The original title of
the talk was: “The equity-to-credit problem, or how to optimally hedge your credit
risk exposure with equity, equity options and credit default swaps”.

1
As will be soon apparent from my line of arguing, I will indeed tackle, in this essay, what has
become an urgent issue in those fields where credit volatility and equity volatility intermingle,
typically the pricing and hedging of convertible bonds. Originally perceived as equity deriva-
tives, the hybrid securities known as convertible bonds are steadily drifting towards the class
of credit derivatives. Indeed, the last stories of default have demonstrated the frailty of what
used to be the rock-bottom value of the convertible bond and a bedrock notion in its literature
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and analysis, the “bond floor”. It is probably more appropriate today to say that convertible
bonds are derivative both on the equity state and the default/no default state of the issuer as it
is no longer sufficient, for the purposes of quantitative analysis, to only specify the payoff of
the convertible bond in case of conversion into the underlying share. Indeed, a state-of-the-art
pricing model almost certainly requires, in addition, the specification of the payoff of the con-
vertible bond in case of default. I refer the reader to Ayache et al (2002, 2003) where all these
insights are quantitatively fleshed out.

Convertible bond pricing is perhaps the first derivative pricing problem to have raised the
question of the explicit relation between the credit spread and the share price. The hybrid
nature of the instrument is not the only reason, for the delta-neutral convertible bond volatility
arbitrageurs have long been worrying about the adjustment of the equity delta implied by such
a relation. I shall concern myself with this question, which epitomizes the equity-to-credit
problem. Let it be noted, in passing, that traders and arbitrageurs of non-convertible corporate
debt and even, in some cases, of pure credit derivative instruments such as credit default swaps,
are awakening to the notion of equity delta too. Hedging the credit exposure with the traded
equity of the issuer is another name for the equity-to-credit problem, and it reaches far beyond
the confines of convertible bonds.

2
Although a proper exposition of the equity-to-credit problem is supposed to follow the particular
order of moving from the credit problem as such to the bearing of the equity process on it, I will
follow the reverse order in this essay. Instead of asking what the equity can bring to the credit
problem, I will ask what the credit risk, or in other words the likelihood of default of the issuer,
can bring to an outstanding problem in the equity derivatives field, namely the equity volatility
smile. Convertible bonds are a bad case for distinguishing between subtleties of orders of
exposition like the ones I am pointing out. Obviously the convertible bond quantitative analyst
must concern himself both with credit spread term-structures and implied volatility smiles, as
witnessed in Andersen and Buffum (2002). Let it be noted, however, that convertible bond
pricing has complexities of its own that have recently engaged, and are still absorbing, the
specialists. Beside the complexity inherent in the structure itself (the non-linear interplay of the
multiple embedded options, the option to convert the bond, to redeem it earlier than maturity,
to put it back at a fixed price, etc.) and the growing popularity of exotic features (make-whole
premiums, contingent conversions, variable conversion ratios, etc.), it is the proper treatment
of default risk that has been the greatest subject of concern recently. Again, I refer the reader
to Ayache et al (2002, 2003). One will hardly want to worry about stochastic volatility and
volatility smiles on top of all these problems! The analyst is usually content to specify a certain
constant volatility parameter in his convertible bond pricing engine, inferring it roughly from
the implied volatility of equity options of similar strike and maturity, and turns to what is the
most pressing problem to his mind, that of calibrating a suitable default intensity term-structure
and, in the most demanding cases, of worrying whether default intensity should not be made a
function of the underlying equity as well.

It has been the rule, for all those reasons, that the equity volatility smile problem did not pose
itself per se in convertible bond pricing. This is despite the fact that convertible bonds are highly
exotic derivative instruments! With the issuer’s option of early redemption acting as a knock-out
and contingent conversion acting as a knock-in and their triggers being located far away from
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the conversion price, can we feel comfortable using a single implied volatility number in our
pricing engine? Not to mention that early puts, and likelihood of default, can also considerably
shorten the effective life of the bond. Have we not learnt from the independent smile literature
that exotic option pricing is irreducibly entangled with smiles and smile dynamics (Ayache et al,
2004)? Yet convertible bond pricing models continue to lead their lives separately from smile
models. A very tempting proposition could be to make use of local volatility in convertible bond
models. State-of-the-art convertible bond pricing engines, such as those produced by my own
company, are equipped to deal with local default intensity, or hazard rate, anyway; they rely
on unconditionally stable finite difference schemes and adaptive stepping as a prerequisite for
solving what may become a very hard numerical problem when local hazard surfaces need to be
calibrated to credit default swap market data, and convertible bond deltas and gammas computed
off them; so why not simply overlay the numerical solver with a local volatility surface?

Tempting as the proposition may be – as a matter of fact it is starting to receive some
attention (Andersen and Buffum, 2002) – I am resentful of the very way it suggests itself to us.
I will not dwell on the well-rehearsed and very deep arguments that go against local volatility,
precisely when exotic option pricing is of concern. The general philosophy of my company, in
this regard, has been given expression in Ayache et al (2004). What is noticeable, and I think
most dangerous, here, is the way the complexity – or shall I say the perversity? – compounds
itself. Since the model already accommodates local hazard rate surfaces, so the argument goes,
let us add local volatility surfaces. For how can we sustain the pressure exerted on the single
volatility number in our pricing engine any longer? Can we reasonably become the specialists
of local hazard rate surfaces and their calibration routines, can we reasonably propose a tool
which has exhausted one side of the problem and allows the calibration of full non-parametric
hazard rate surfaces to full surfaces of credit spread data (as against maturity and equity level),
and not set volatility free on the other side? What meaning can a single volatility number
retain, and how can it sit tight as the only remaining hinge, in the midst of such a complex
system? Shouldn’t the two surfaces be considered simultaneously and the two problems solved
hand-in-hand? Can we solve for local hazard rate and not jointly solve for local volatility? Can
we calibrate to surfaces of credit default swap spread data and not jointly calibrate to implied
volatility surfaces?

3
This is our problem, precisely. This is precisely the equity-to-credit problem. Since default (or
its probability) and the subsequent drop of the underlying share are among the greatest creators
of implied volatility skew and term structure, there is no way we could calibrate the default
process without worrying about the option data. The equity-to-credit problem is essentially a
smile problem. As a matter of fact, it is even worse than a smile problem. It speaks of a more
complex underlying process (jump-diffusion) and compounds two ill-posed inverse problems:
calibration of volatility instruments and calibration of credit instruments. (There already exists
a thick literature on the subject of smoothing, interpolating and extrapolating an arbitrage-free
local volatility surface, so try to imagine the result of adding the worry about a hazard rate
surface!)

Again, notice how the historical build-up of the problem, and the historical succession of
its proposed solutions (among which those proposed by my own company), have got us into
trouble. Because the convertible bond pricing problem is such a complex problem to begin
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with (hybrid nature, embedded options, endless exotic features), trying to formulate it outside
a strict diffusion framework is the last thing we want to do! It is not as though the pricing
of the convertible bond had become difficult, or perhaps even impossible, on account of the
underlying diffusion process, and this gave us sufficient reasons to reconsider that process and
contemplate jump-diffusion or stochastic volatility instead! The pricing of convertible bonds has
become difficult – and in some cases of outdated software, even impossible – for reasons having
strictly to do with the convertible, not the process. Only in simpler cases, where simpler exotic
structures are liquidly traded, for instance FX barrier options, has it prominently appeared that
the smile problem should be treated as such and solved as such. We have so many other things
to worry about in convertible bond pricing, before we get down to the smile problem! Enough
for now to have taken that first step outside diffusion, which consisted in adding a hazard rate
and a jump to zero of the underlying share! (How many people, by the way, recognize the fact
that this “simple” jump-diffusion process is already posing a full smile problem, and that the
implied volatility number they are importing into their convertible bond pricing system from
the prices of equivalent equity options, no longer means the same?)

Against this conservative-sounding kind of argument, I say this is precisely the time when,
on the contrary, a break with history should occur. Who said we should ever consider local
hazard rates in the first place? Because of the wrong sense of complexity that the convertible
bond may convey, the convertible bond problem is probably a wrong place to pose the equity-
to-credit problem afresh, and start looking for radical alternatives for solving it. Like we said,
convertible bond pricing specialists have been distracted by the wrong kind of difficulty – and
I sometimes fear we might be among them – and for this reason perhaps, lack the freshness
of the eye. This is why I have set out to pose the equity-to-credit problem as an equity smile
problem rather than a hybrid problem, and consider my task today to be the continuation of
the work on smiles and smile dynamics pioneered in Ayache et al (2004) as well as to find
out whether default risk, and its traded instruments such as credit default swaps, cannot help
us frame the smile problem better, by any chance. Only when the equity-to-credit problem is
addressed and solved as a smile problem proper, with the same critical spirit and independence
of vision as we have exercised in our previous work, will we go back to convertible bonds and
realize what we should have known from the start, namely, that their complexity ought to be
the driving motive for wanting to base their valuation on a sound theoretical ground – be it at
a big intellectual and cultural cost – not an excuse for evading it.

4
Anyone familiar with our general philosophy of derivative pricing must be guessing my point
at this juncture. If one thing is really dear to my heart when it comes to the smile problem, it is
the defence of homogeneous models. The case for homogeneity has been extensively argued in
Ayache et al (2004). There we showed, among other things, that the pricing of exotics and the
hedging of both vanillas and exotics are crucially dependent on the smile dynamics, and that the
need to discriminate between the empirical smile dynamics (with sticky-strike and sticky-delta
sitting at the two extremes) need not be answered by inhomogeneous models. We argued, on
the contrary, that a sufficiently comprehensive homogeneous model – a model we christened
“Nobody” – can perfectly address the exotic pricing and hedging issues under all kinds of
smile dynamics, provided that (a) the hedging problem is aptly formulated in the incomplete
markets framework, and (b) the model is calibrated to those quoted market prices which are
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the empirical reflection of the projected smile dynamics, the prices of the one-touches and the
forward starting options.

This is how we dispensed with the local volatility model and all its cross-breeds (universal
volatility, etc.). In yet another paper (Henrotte, 2004), we argued that even in fields where
inhomogeneous models are so deeply entrenched as to go unnoticed, for instance the modeling
of yield curves and credit spread curves, homogeneous models can have right of way. Term
structure is the direct consequence of stochastic character, after all, not of a dissymmetry inher-
ent in time, and a parsimonious time-homogeneous stochastic interest rate model, or stochastic
hazard rate model, or stochastic volatility model, can demonstrably reproduce any shape of
interest rate, or credit spread, or volatility term-structure.

Insisting that the equity-to-credit problem shall be posed and solved as a smile problem will
therefore strike our reader as an overt directive against inhomogeneous models. Unpacking the
claim, this would mean that volatility and hazard rate have to be modelled as two independent,
time and space homogeneous, stochastic processes, instead of being deterministic functions of
time and the underlying. Smile dynamics and credit dynamics would then be accounted for by
a suitable correlation with the equity process.

This sounds like a daring claim indeed, all the more so when structural models of the firm
(Merton, KMV, CreditGrades) seem to have entrenched the view that the triggering of default
is a deterministic function of the underlying equity price. The myth of the bankruptcy threshold
has transformed the very liberal notion of probability of default into the very concrete vision of
a “distance to default”, and it is commonplace nowadays to speak of credit spreads that explode
to infinity with a falling share, and of bond floors that strictly collapse to zero. As if somebody
had ever managed to measure such infinite spreads, or truly held bonds whose value vanished
strictly prior to default and not directly after!

Rather, this picture strikes me as the result of the confusion of possibility and actuality,
and it is unfortunately imposed on us by the particular mathematical representation. Take, for
instance, the so-called “reduced-form” models which are supposed to disconnect the structural
link between default and the equity price. The underlying equity, however, remains the state
variable governing the probability of default and this particular choice naturally leads us to
sampling equity values which are very close to zero (if only because the PDE numerical schemes
require suitable boundary conditions). And now the additional twist brought by default is that
a vanishing equity price – which may be vanishing only formally, just for the sake of writing
the boundary condition – cannot not get mixed up with the question of default. This causal
confusion stems from the fact that it all looks as if the equity price were the sole state variable,
therefore the cause of everything. As a matter of fact, since default is supposed to be triggered
independently by a Poisson process, a second state variable should be recognized here: the
Boolean admitting of “default” or “no default” as values.

Now of course a natural and most comprehensible recommendation in such a setting is to
suggest that the intensity of that process (or in another words the probability of its triggering)
may indeed increase with a falling equity price (see Appendix). But this need not imply in
any way that the probability of default should become equal to one exactly, or the intensity
reach infinity, at the limit where the share price is equal to zero. There is no reason why a
phenomenon (default), which normally originates from an independent cause (or a complex set
of causes summarized by the Poisson process), should know of no other cause, at the limit, but
the share price. The problem with equity-to-credit, when forced to fit inside the inhomogeneous,
deterministic representation of the relation, is that it forces all kinds of boundary conditions
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on us, not just the mathematical, formal one but also a material, causal one. Just because the
intensity of the default process is driven by the equity, we are forced to assign a value to the
probability of default for all equity prices, particularly when the equity is worth zero, and our
state of confusion about the true causal origin of the phenomenon (whether it is default which
causes the zero share price or the zero share price which causes default) leaves us no choice
but to assign infinity at the boundary and hope to have settled the issue with that. Any number
other than infinity would indeed seem unsatisfactory, or call for an even bigger problem. Why
should the credit spread be worth 20% rather than 30% at the limit of a worthless share? We
certainly do not wish to get involved into this extreme sort of corporate finance and, like a
game theorist friend of mine once said, “Infinity, in some cases, is the best approximation of
an otherwise arbitrary finite number!”

5
Think, by contrast, of a situation where the default intensity is an independent stochastic process.
Think, for instance, of a simple two-factor model such as Nobody, where the second factor
is taken care of by a discrete number of “regimes” (depending on the particular problem, this
may be volatility, or the hazard rate; see Henrotte, 2004). Each regime is characterized by a
given, constant, hazard rate, while the share price can formally vary from zero to infinity in
each. Regimes can be interpreted as different ratings of the issuing firm and transitions between
regimes are governed by a probability transition matrix. We must consider correlation between
the share price process and the regime transitions as it is indeed very unlikely that the share
should start falling dramatically and the firm not switch over to a regime of higher default
intensity, or indeed to the default regime! (I forgot to say that default receives an interpretation,
in such a framework, which is of a piece with the rest. In our discrete regime approach, default
is a regime like any other, only a very special one where the hazard rate, or the probability of
default, is no longer defined. See Appendix.)

Whatever the realistic interpretation of the model may be, the point is that the model does
not impose on us restrictions, or philosophical boundary conditions, such as imposed by the
inhomogeneous model above. When the firm is alive, it subsists in one of our discrete regimes,
with a given finite hazard rate. As the regime representation is only a discretization of the
credit state space, the general objection that could be levelled against us, according to which
the firm may, as a matter fact, not fall exactly in any of our discrete regimes but somewhere
in between, is answered by the fact that the regimes are probabilistically connected and it is
only the probabilistic averages (i.e. prices) that matter. So long as default is recognized as the
extreme regime in our discrete collection, what specific hazard rate numbers, or credit spreads,
the other regimes get, no longer matters. And that each individual regime may formally allow,
as its boundary condition, that the share may approach zero and the hazard rate remain fi-
nite, even constant, will not matter either.1

The material process and the formal process are separated in our model. Although there
formally exist states of the world where the share is close to zero and the credit spread no
larger than a given finite number, these scenarios will materially get a very low probability
because of the correlation between the share and the regime shifts. Moreover, correlation can
itself depend on the regime and increase as the firm shifts to regimes of higher default intensity.
In other words, to answer the question: “What happens when the share collapses?” all you have
to do is follow its material price process as it really unfolds in real time, and observe that
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the firm will jump between regimes, and eventually default. Yet you ask: “Will the hazard rate
ever reach infinity?” The answer is: “Not in any of the live regimes, no, and not in the default
regime either, for then it is too late.” Yet again: “Can we not imagine that the firm is actually
climbing to regimes of explosively high default intensity as the share approaches zero, only
those regimes are invisible to our discrete representation?”

Why not indeed, but then it is precisely the advantage of indeterminism over determinism
(of correlation over deterministic functions) not to force on us a determinate answer to that
question. It is precisely the advantage of having separated the hazard rate and the equity price
into two distinct state variables, and of having distinguished between formal cause and material
cause, to allow us to solve (or shall we say, dissolve) both problems simultaneously. “Why have
20% credit spread instead of 30% when the share price is equal to zero?” and the answer is:
“Let us have both. As a matter of fact, let us have other values as well, and the question of the
boundary condition will not matter anymore because it is only a formal device, required in each
regime.” “What is the real boundary condition then?” and the answer is: “It disappeared in the
probabilistic ‘interspace’. While the inhomogeneous model cannot avoid mixing the bottom of
the share price spectrum with the certainty of default, all that our homogeneous model offers,
by contrast, is a collection of regimes where the bottom of the share price is in each case
immaterial to default, and a separate default regime.”

6
Taking the suggestion that default is a regime like any other more seriously, we now realize that
it has been with us all along and implicit in everything we have ever said about default, even
in the traditional inhomogeneous framework. Surely enough, the hazard rate was a function
of the share price in that framework and default became certain as soon as the share hit its
lowest boundary, but the jump into default itself and its consequence for both the derivative
instrument and the underlying share were no different from what we are contemplating today
for the homogeneous case. As a matter of fact, we have already suggested in the previous
convertible bond article (Ayache et al, 2002) that “a softer appellation of the state of default
could be ‘distress regime’ ” and that “it would certainly make sense to imagine a continuation
of life after default.” What makes life end at default, after all, is just the assumption that the
share drops to zero and the derivative instrument to its recovery value and that the game is over.
But what if the share did not drop to zero but to some recovery value as well, then resumed
its trading? What if the event of default triggered a restructuring of the issuing firm and of its
outstanding debt, and the holders of the bonds were offered the opportunity to hold on their
assets and stand by their positions until further notice? What if the holder of the convertible
bond found it more optimal to postpone until later his right to convert into the underlying
share – provided he still owned a convertible bond after the restructuring – rather than opt out
of the game at the moment of default and take away the recovery value of the bond?

Theoretical and impractical as these questions may sound, they have at least the merit of
making us think how to properly extend our framework if need be. The suggestion in Ayache
et al (2002) was that we would end up solving a pair of coupled PDEs, one describing the pre-
default regime and the other the default, or distress, regime. The regimes are coupled through
the Poisson jump to default, and the transition is supposed to be irreversible in the sense that
the firm cannot recover from the distress regime, back to the normal regime. As the share starts
its journey, in the distress regime, with the recovery value it has hit after default, it was even
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suggested that its subsequent volatility might be different from the volatility in the normal,
pre-default regime.

To summarize: If the assumption should ever be made that the share might not drop to zero
upon default but to some recovery value and then resume its trading life, and if we should ever
consider holding on our instrument for reasons such as restructuring or rescheduling, then the
proper way to value the instrument as of today, would be to solve a system of two coupled PDEs,
possibly with different diffusion coefficients, perhaps even with different payout conditions
written on the instrument (for instance, the conversion ratio may change after restructuring, or
coupons may no longer be paid, etc.).

7
As we stand now, we are just one step away from the full, homogeneous, equity-to-credit
model that we’ve been hinting at. If the thread of default is capable alone of leading us to a
regime-switching model, even in the classical inhomogeneous case, what is to keep us from
spreading the idea over to the no-default side of the picture? If volatility is allowed to be
different in the default regime, why wouldn’t it be different in each of the pre-default regimes
which corresponded, in our homogeneous model, to different ratings of the issuing firm? In
other words, the suggestion here is this: Let both a stochastic volatility process and a stochastic
hazard rate process be taken care of by the regime representation. The regime is not a traditional
state variable, after all, in the sense that volatility is one such, and the hazard rate is another, in
the traditional stochastic volatility or stochastic hazard rate models that people usually have in
mind. A regime can be identified, not just by one hazard rate number λ as proposed in Henrotte
(2004) or one volatility number σ as proposed in Ayache et al (2004), but by the mathematical
pair (σ, λ). (See Appendix.) As a matter of fact it can generally be identified by the n-tuple
(σ, λ, r, s, . . .) where r , s, . . . might be other parameters of the pricing equation that we want
to turn stochastic, such as the short-term interest rate, etc.

We are touching here on an interesting, and I think, very deep, idea. This is the idea that
a pricing problem might be multi-factor yet we are able to handle it with the same unchanged
regime representation. I am being very cautious here in picking the right words. Notice that
I did not speak of a “multi-dimensional” pricing problem. People are used to thinking that
anything stochastic has somehow to be diffusing, therefore to be mathematically represented
by a full, continuous, spatial dimension. A three-factor pricing problem would mean solving a
three-space-dimensional PDE, etc. Whereas I contend that a regime-switching model with a few
regimes, say three or four, where each regime is characterized by a different triplet (σ, λ, r) and
the underlying share diffuses in each regime, can in theory handle the pricing of, say, convertible
bonds under stochastic volatility, hazard rate and interest rate. And this is achieved at no extra
computational cost other than solving a system of three or four coupled one-dimensional PDEs.
You can see now why I am at a loss for words, trying to frame the nature of the regimes. Surely
enough, the regime is our extra state variable, but I must refrain from calling it a “dimension”
as it is able to embed multiple dimensions, or rather, multiple factors, and I hesitate to call
the individual factors, σ , λ, r “dimensions”, as they do not represent separate state variables
that live independently in their own individual, continuous spaces. A multidimensional solid
need not be the tensor product of the individual dimensions, after all. I am not even sure we
can put a name on the regime. A regime is a state variable, surely enough. But what is it a
state of? Volatility, hazard rate, interest rate? Or is it an abstract entity with no name, a sort
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of container which may contain the name of volatility, of hazard rate and interest rate – or
any other collections of names depending on the particular pricing problem – and will assign
to these names the particular numbers that they get depending on the particular calibration to
market? It seems we have found one more reason why our model should be called “Nobody”,
the model with no name.

It remains to deal with the general objection that the market may, as a matter of fact, not fall
in any of the n-tuple regimes we are considering, all the more certainly so that our distinguished
regimes now require that volatility should be the particular number that the particular regime
says it is and, simultaneously, that the hazard rate should be the particular number, and the short
rate the particular number, that the particular regime says they are. Even worse, the real pair-
wise correlation between these three factors may be such that no transition between any pair
of the n-tuple regimes can reflect it. As before, we reply that the real volatility, the real hazard
rate, the real interest rate, and the real correlation are not observable. All that really matters
are the observable prices of traded instruments. And these prices are probabilistic averages
over the regimes. It is up to us to calibrate the regime-switching model to the market prices
of the volatility, credit risk, interest rate, and correlation instruments that we think are most
representative. Maybe we should increase the number of regimes – always an open question
that the relative ease of calibration can answer alone.

As the values that the parameters get inside the regimes and the intensities of transitions
between the regimes are determined by calibration only, the hope is that the calibration proce-
dure will settle on a certain solution – consequently our model on a certain specification – which
will serve no other purpose, in the end, but to price other instruments relative to the initial ones.
The general philosophical idea being here that, just as we could not put a name on the regime,
even less so will we be able to read in the regime some value of volatility, or hazard rate,
or interest rate, that we believe shall obtain in reality. This is another way of saying that the
philosophical doctrine known as instrumentalism is perfectly acceptable as an alternative to
metaphysical, or even semantic, realism.

8
Let me turn now to what is probably the deepest, and by far the most original, insight about
the regime-switching representation. (Notice that I am no longer calling it “regime-switching
model” as it is, I think, more general than a model.) The argument is rather subtle so please
bear with me. Earlier I said that a regime could be characterized by an n-tuple rather than the
single value of a single parameter, and I gave the combination of the hazard rate, volatility,
and the interest rate, as an example. The underlying share followed a diffusion process in each
one of the regimes anyway, so let us not worry about the underlying share for the moment; as
a matter of fact, I can refer to Ayache et al (2004), where it is suggested that the process of the
share inside a regime might as well be a full jump-diffusion, or that the share might undergo
one, or indeed several, jumps in value, as it switched over between regimes. But let us leave it
at that. Now suppose, for a moment, that the stochastic processes that we wish to worry about
are not exactly the volatility process and the process of some other financial variable, such as
the hazard rate. Suppose volatility is stochastic alright and the coefficients of its own stochastic
process are stochastic too. Since writing is such an endless process, all I am proposing here
is to take it one step further. Just as a diffusive, mean-reverting process was once written for
the volatility of the underlying Brownian diffusion, and gave us the Heston model or the Hull
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and White model of stochestic volatility, I propose today to write a further process for the
volatility of volatility – why not another diffusion? – or indeed for the mean-reversion coeffi-
cient of volatility, or for the correlation coefficient between the underlying share and volatility,
etc. More specifically, let our tentative model be:

dS = rS dt + √
vS dZ1

dv = κ(θ − v) dt + ε
√

v dZ2

dε2 = ξ dt + ϕ dZ3 (1)

In theory, the writing process should never stop, for this is the essence of trading and the
result of submitting the theoretical model to the market (Ayache and Tudball, 2004). Just as
the trading of the vanilla options turned the coefficient of the Black–Scholes formula, implied
volatility, into a stochastic variable and created the need for stochastic volatility models such as
Heston (or volatility smile models more generally), all we are noting here is that daily calibration
of the given smile model, as well as trading the derivative instruments which are higher up in
the hierarchy and specifically sensitive to the smile (for instance, the barrier options), will in
turn create the need for a higher-level model such as the one we are proposing. Just as implied
volatility once became a widely talked-about and a liquidly traded commodity, we are now
talking of the next evolutionary stage where smiles become a commodity and are traded in
turn. (Necessity of recalibration of the smile models and its counterpart, this open-endedness
of the trading/writing process, are perhaps the greatest challenges facing any theory of smiles
today. In my sense, they properly belong to the metatheory of smiles, or in other words, the
philosophy of derivative pricing.)

Taking my cue from what I said earlier, namely that a three-factor pricing model need
not be confused with a three-dimensional pricing problem, what I propose next is to apply
the regime-switching idea to the third process. Instead of assuming a diffusion process for
the volatility of volatility ε, why not consider a three-regime representation, [ε1, ε2, ε3], and
appropriate transitions between the regimes? [ε1, ε2, ε3] will be our regime-switching model
of stochastic volatility of volatility, and each individual regime εi will act as a super-container
containing a full Heston model with a different volatility of volatility parameter. And now the
regime-switching idea can be further invoked and the question asked how the Heston model
inside the super-container can be itself replaced with a regime-switching model of stochastic
volatility. Most probably the answer will be: put containers inside the super-container, with
sub-regimes of volatility, [σi1, σi2, σi3], now occurring inside each super-regime εi .

The problem is, ε was meant initially as the diffusion coefficient of the Heston volatility
process. As soon as the Heston model is replaced by a regime-switching model inside the
super-containers, ε becomes meaningless. The stuff inside the container blows up the super-
container. To keep out of trouble, we should turn the problem on its head. We should really
start with the Heston model, replace it with a regime-switching model of stochastic volatility,
then find an appropriate meaning for the super-container supposed to make the latter model
stochastic. As apparent from Ayache et al (2004), the regime-switching model of stochastic
volatility [σi1, σi2, σi3] is characterized by a bunch of parameters, (the individual values σij , the
intensities of transitions between sub-regimes j and the sizes of the simultaneous jumps of the
underlying), and not just three like Heston. There is no diffusion coefficient, or mean-reversion
coefficient, or long volatility coefficient in the regime-switching model of stochastic volatility,
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at least not explicitly, but a conjunction of regime and regime-switching parameters which can
only act together to reproduce any of these features. So the way to make our regime-switching
model of stochastic volatility become stochastic in its turn is to assign different conjunctions
of parameters to each super-container and not just a different single-valued parameter εi . Each
one of the super-regimes of the model of stochastic volatility of volatility becomes, so to speak,
a full regime-switching model of stochastic volatility.

Since transitions between super-regimes are modelled the same way as the transitions
between sub-regimes, i.e. through Poisson processes of given intensity (possibly with simulta-
neous jump in the underlying), and given the associative character of the operation of grouping
the sub-regimes into super-regimes, our regime-switching super-model of stochastic volatility of
volatility is in the end indistinguishable from a regime-switching model of stochastic volatility
with a large number of regimes. To fix the ideas, if we are talking about three super-regimes sup-
posed to represent the stochastic character of the volatility of volatility and three sub-regimes,
occurring inside each super-regime, supposed to represent the stochastic character of volatil-
ity, then the resulting construction will be indistinguishable from a regime-switching model of
stochastic volatility, with nine regimes.2

9
And now we are ready for the last step of the argument. Remember that calibration to the
market prices of derivative instruments is all that matters in our derivative pricing philosophy.
It is the only key to unlocking the relative value of other instruments (and locking their hedging
strategies; Ayache et al, 2004). There is nothing to tell us whether our model should have three,
four or nine different volatility regimes other than the number and the variety of the instruments
we are calibrating against, and our satisfaction with the calibration results. Given the large
number of parameters implied by a nine-regime-switching model, chances are that a more
parsimonious regime-switching model will fit the market prices just as well, and perhaps even
exhibit more robust and more stable calibration behaviour. Perhaps a three-regime-switching
model will do the job!

The most extreme form of the thought here is this: our volatility regime-switching repre-
sentation, Nobody, is not just a model of stochastic volatility; it is also a model of stochastic
volatility of volatility, and a model of stochastic volatility of volatility of volatility, etc. It contains
at once the whole endless model-writing chain. Or rather, it is open like the writing process is
open. So the question becomes: What could ever determine the particular hierarchical level at
which the particular instance of Nobody shall land? Like I said, the answer lies in the particular
nature and the particular prices of the derivative instruments we are calibrating against in the
particular instance. Imagine that the option prices are not given by the market but artificially pro-
duced by a “first-level” stochastic volatility model such as Heston. Then our regime-switching
model will match the corresponding vanilla smile and, for all practical purposes, mimic the
behaviour of a first-level stochastic volatility model. Now suppose the instruments of concern
are not plain vanilla but exotic structures, whose value, we know, is dependent on a level of
complexity higher up than the given static smile, e.g. smile dynamics. For instance, we know
from Ayache et al (2004) that first-level stochastic volatility models such as Heston may not
simultaneously match the prices of the vanillas and the cliquets, for they imply a certain smile
dynamics which may not accord with the cliquet prices. Higher-level models are called for in
this case, with volatility dynamics more complex than Heston, for instance “universal volatility
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models” or indeed models even more general, such as Nobody. Once Nobody is calibrated
to the vanillas and the cliquets, it will behave like a higher-level stochastic volatility model.
Finally imagine a situation where the instruments are very complex structures with no definite
sense of the particular hierarchical level at which their sensitivity stops, and that their prices
are just given by the market. Then hopefully Nobody will match those prices, and only the
market “will know”, in that case, at which level we landed.

Yet you complain:

“Surely there must be something out there to help us distinguish between models of
stochastic volatility and models of stochastic volatility of volatility (or at least, between
models of significantly different hierarchical levels). The probability distributions must
come out different, and there surely must come a stage where Nobody is ruled out a
priori. There must be some probability distribution that gets generated at some level
yet cannot be reached by the regime-switching representation, no matter the number
of regimes or the value of the parameters. For how could a two-factor model, such as
the particular instance of Nobody that we are considering (where volatility is the only
identifier marking the regimes), ever reproduce the richness of a multi-factor model such
as stochastic volatility of volatility of volatility . . .?”

My reply to you is that you first try to realize what you are saying. Your perplexity relates
back to the confusion we have already mentioned, between number of factors and number
of dimensions. Recall the nine-regime-switching stochastic volatility model [σij ] that we had
obtained after unpacking the sub-regimes j of stochastic volatility occurring inside the super-
regimes i of stochastic volatility of volatility. The double-index notation reflected the three-
factor nature of the model, so everything looked OK. Are you now saying that as soon as
associativity is invoked and we realize that all we have on our hands is a nine-regime-switching
model [σk], we lose the third factor? How could a change of notation, or in other words, a
mere change of name, have such deep consequences?

Underlying your worry about Nobody failing to account for a multi-factor situation is in
fact just a worry about different names that a thing can be called. And we had warned you that
Nobody was precisely the model with no name, and the regime precisely the state variable with
no particular label and no particular dimension attached to it! To put it differently, a regime-
switching model which has the name of a single factor – for instance volatility – written on each
regime, is not necessarily a one-factor, or a two-factor, or a three-factor model of stochastic
volatility. It can be anything.3 What it is really will largely depend on the “depth” and the
variety of the derivative instruments we are calibrating against. Let me put it this way. If
Nobody calibrates successfully to prices of vanillas, cliquets, as well as higher-order structures
which may be sensitive to the volatility of volatility of volatility, and none of the other models,
commonly known as one-factor or two-factor, does, then Nobody may be said to be of a “level
higher than two-factor”. Pushing the argument a little further, we may even wonder: Why
should what we have to say about Nobody depend on what other models can do? For all we
know, the other models may have never existed. Is it not our purpose to break with tradition
anyway? All that we can hope to say, then, is that Nobody was able to calibrate to the prices
of certain derivatives instruments traded in the market, period.
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And by the way, isn’t the whole language of “number of factors” just a heritage of the tra-
dition? At least this much is certain: the regime-switching representation is not reducible to
a classification in terms of number of factors. This, we have shown with two complementary
arguments: (a) the argument that the regime can be identified by an n-tuple of names relating
to different financial categories (volatility, hazard rate, interest rate); and (b) the argument that
it can alternatively be identified by a single name (for instance, volatility) yet the picture be
richer than the traditional two-factor framework. There is no question that talking of multiple
factors is legitimate in the first case. When we contemplate stochastic volatility, stochastic haz-
ard rate and stochastic interest rate, the situation is different from the one where the second
process concerns the volatility of the first, and the third the volatility of the second. Typically,
derivative instruments can have radically different underlyings in the first case. The underlying
that a credit default swap is written on (the state of default or no default of a certain issuer) is
very different from the underlying of an equity option, which is in turn very different from the
underlying of an interest rate option. Derivative instruments such as the vanilla equity option
and the cap and floored cliquet, by contrast, are written on the same underlying, although we
did refer to them, a paragraph back, as instruments of different “depth”. Even a variance swap
is written on the same underlying as the vanilla option. The only difference is that its payoff
explicitly depends on a variable, realized variance, which can only be measured over the whole
path of the underlying.

The point of this distinction is to suggest that talking of “multiple factors” in the second
case might be misleading and might have imposed itself on us for no other reason than the
written tradition and the tradition of writing – for no other reason, indeed, than that a model,
say, of stochastic volatility of volatility, has traditionally been written in three lines, as shown
above. The volatility process has a diffusion coefficient ε and this coefficient diffuses in turn,
etc. A new line is written every time and this suggests that a new kind of derivative instrument,
specific to the new kind of factor, can be written every time. Vanilla option writing is specific
to stochastic underlying; variance swap writing is specific to stochastic volatility, etc.

When you think about it, however, all that is really meant by the three lines written
above – or any additional number of lines for that matter – is jut a complex stochastic pro-
cess the underlying is supposed to be following, and the corresponding complex probability
distribution. Again, compare the situation where some truly different processes are involved: a
hazard rate process, an interest rate process.

The other real things are the derivative instruments. True, they may be differently styled, and
may admit of different levels of complexity, but they all fall back, in the end, on the underlying
they are written on. Our writer has created himself a fiction (that the Brownian diffusion
coefficient might be diffusing) and he is now growing a new fiction inside the fiction (that
the diffusion coefficient of the coefficient of the Brownian diffusion might itself be diffusing,
etc.). Think, by contrast, how the un-writable, un-nameable, dimension-less, story of regimes
manages to describe the world just as well, or even describe it better (calibrate to the traded
prices of derivatives, propose optimal hedging strategies), yet offers no predetermined format,
no predetermined number of lines, to fit the story in.

Another way of looking at things, and seeing how our writer entraps himself in his own
fiction, is to compare the a priori attitudes of the traditional representation and the regime-
switching representation, when both are brought face-to-face with the market. By committing
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himself to two or three lines of writing, the traditional writer faces a market which can be
completed a priori with the help of two or three traded instruments. Markets can be completed
a priori, under Heston or any other “first-level” stochastic volatility model, by trading an option
together with the underlying as a dynamic multi-hedging strategy, and they can be completed
a priori, under “second-level” models such as the one written above, by adding one further
instrument, etc. Our writer faces a market that he knows he can complete a priori with the
help of a given number of instruments, regardless of the variety, the depth, and the price
structure of the market he will face in effect. The regime-switching representation, by contrast,
does not impose such strictures on the future story. It cannot tell, in advance, the degree of
incompleteness of the market. It cannot tell a priori at which particular “writing level” it will
fall. Only the market and the result of calibration can. Philippe Henrotte, the head of theory
in my company and the father of Nobody, summarized the point beautifully: “The reason why
the regime-switching representation cannot be completed a priori is precisely that the regimes
bear no particular name!” As Jacques Derrida, the leading figure of French theory, would put
it, we’ve been held captive by a long tradition of logocentrism and the presence of the name.
Indeed the noticeable consequence of naming is to make present and actual for us what could
very well be different and have to be deferred, what could only be later.

11
The point is of importance because the real test of a smile model is to see how robust it is
to a reality that may contradict its assumptions. (This is the whole point of the metatheory of
smiles.) Complete markets are the least robust notion. You perturb them a little bit and they
become incomplete. Surely enough, Nobody will fall on what we have called a “particular
writing level” once it is calibrated; the market it describes will assume a certain degree of
incompleteness, and it will be susceptible of completion by using the appropriate number of
hedging instruments in the dynamic hedging strategies. The point is that such degree and such
level are dictated by the reality of the instruments we calibrated against. They are determined
a posteriori, not a priori. Should a new instrument become traded the next day, and its price
fall outside the range of prices that were attainable by the completed market of the day before,
then new calibration to that new instrument will open new levels to Nobody, and new degrees
of incompleteness. By contrast, you cannot but throw away your Heston, when such a situation
occurs. This also tells us that we should always leave the door open, in Nobody, for such
new possibilities and such self-upgradings. We should not strive to complete the market, at
any level of writing that we may be standing. To keep our hedging robust, we should always
keep it optimal, and never try to make it perfect. HERO is the measure of residual risk borne
by the optimal hedging strategy.4 What is interesting is how HERO decreases when additional
instruments are used in the hedging portfolio, or in other words, the hedging opportunity that
the additional instruments may offer. But HERO should never be driven down to zero. What
is interesting is the way we approach completeness, not completeness as such. For surely we
lose the sense and the measure of all that when HERO is equal to zero!

What we are really saying is that we might be offered a chance, with the regime-switching
representation, which was not available in any smile model before: the invaluable possibility
that Nobody might just be equipped to deal with model risk on top of the risk which is the
normal, contained subject matter of the models of risk. Somehow, Nobody might be “aware” of
its own metatheory. Recall that Nobody is not just a first order stochastic volatility model, but
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can potentially instantiate any of the higher order models corresponding to the higher levels of
writing. This level-invariance is due to the fact that a regime-switching model made stochastic,
and consequently calling for “regimes of regimes,” is in the end just another regime-switching
model. The regime-switching representation does not iterate or pile up in the same fashion as
the traditional lines of writing. Only the variety of the derivative instruments we are calibrating
against and the richness of their price structure can set the level of writing for us. For instance, a
newly traded instrument and a new range of prices can precipitate an “internal” transition from
a certain level to a higher level. Our stochastic volatility model suddenly becomes a stochastic
volatility of volatility model, yet with no visible change. We will still be looking at the same
old regime-switching representation, only we will be calling it different names. As a matter of
fact, this can work both ways. Why should the change be invisible in the one way, and not
in the other? What is to stop us indeed from thinking that the stochastic volatility of volatility
model was already available to us the day before? True, we may have not calibrated to the
relevant instruments the day before, or the relevant instruments may have not been available
the day before, but is this reason not to think that the thought was available to us the day
before?

Put differently, Nobody may have already opened itself to the self-upgrading the day before,
only the visible derivative instrument, specifically crystallizing the upgrading, was simply not
available the day before! Maybe the upgrading was in part contained in the set of derivative
instruments of the day before, and was just missing one last instrument to express itself in full.
Things may have already been “on the cards”, as the saying goes, or in other words, the market
may have already anticipated its own upgrading the day before. Or we may argue the other way
round. Although the new instrument takes us up one level, there might be no reason to believe
that its introduction will automatically bring a mutation in the market. At least not the first day.
Chances are, on the contrary, that the newly created instrument – I am thinking, for instance,
of a new complex structure, something like a complex cap and floored cliquet, which, although
written on the same underlying, is sensitive to higher order distortions, such as volatility of
volatility of volatility – chances are that it will begin its journey right on the tracks from the
day before, as the market participants will no doubt start pricing it with state-of-the-art models
not yet aware of the next level. It is only when the instrument comes alive and starts leading
a trading life of its own that the true change in the market will begin.

I guess my whole point is that changes of “writing levels”, or degrees of incompleteness,
can take place smoothly within the regime-switching representation, and can only cause breaks
and fractures within the writing tradition. Nobody can thus enjoy continuity of life and allow
us, for the first time, to really address the question of history. Indeed a big question, perhaps
the biggest, is whether the given smile model should be calibrated to the instant prices of
derivative instruments or to their history. This is the story of re-calibration looming again.
People are sooner or later led to back-test their model and they become very excited when they
notice that the parameters of the model are stable over successive re-calibrations. They think
they have hit upon some deeply significant invariant. Whether they admit it or not, everybody
is striving towards this end, and calibration to the history of prices is one way of making it
explicit. The main objection, however, is that any time series of any given length will end up
revealing some invariant or other when submitted to a model of sufficient complexity. This is
another way of objecting that the “true” data generating process may in fact admit of no finite
moments and may require time series of infinite length before any parameter is stably estimated.
As a matter of fact, being able to name an invariant may be the worst thing that could ever
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happen to the searchers engaged in that kind of quest. For what is then to stop us from writing
an extra line, and turning the name of the invariant into the name of a new stochastic process?

12
“Model risk”, “necessity of re-calibration”, “endlessness of the writing process”, are all different
names for the same big problem. Perhaps the big foundational problem which puts into question
the very possibility of quantitative finance as a science (Ayache in press; Ayache and Tudball,
2004). We all know that the option pricing tools that we are using are forward-looking. Precisely
for that reason, we all know that they are subject to the necessity of recalibration and to the
threat of model change, or in other words, model risk. Yet we lack the means to address that
problem almost by definition. A model can do anything except look into its own assumptions.
(“What by definition can hurt you is what you expect the least”; Taleb (2001).) This is why
we almost inevitably turn to history as the only way out of our predicament. That we may not
have the faintest idea how to address the problem of re-calibration makes historical calibration
look useful, to say the least, in comparison. Although a backward-looking procedure can be the
last thing we want to consider when addressing a forward-looking question, it is unfortunately
the only thing available. We have no choice but to entertain the momentary hope that history
might repeat itself.

Now think again of the essentially nameless character of our regime-switching representa-
tion. Since our regimes bear no particular name (the name of volatility, or volatility of volatility,
etc.), the temptation is simply not there to look back at the recent history of calibration of
Nobody, and try to identify a stable parameter. First of all, it is not even clear what level of
writing is getting instantiated everyday! Alternatively, we can look back at the series and read
into it any story we want. We can argue, for instance, that the full richness and the full incom-
pleteness of the market were right there with us from the start – just as Nobody was with us
from the start! – only the hidden variables became manifest, and Nobody was able to calibrate
to them, from that day when the relevant complex instrument became alive and started leading a
trading life of its own. So I guess the second part of the recommendation never to complete the
market and always to leave the door open for future upgrading is the recommendation never to
trust that Nobody has been perfectly calibrated to the market. “Calibration is just another word
for completion,” as Philippe Henrotte says, for an instrument whose price process we could
not attain with a suitable self-financing strategy involving the existing calibration instruments
would mean that a new level is up and that the new instrument adds richness to our existing
information set. Therefore it should independently be included in the calibration procedure, and
our past calibration was not right.

Whatever interpretation it may be that we care to put on Nobody’s recent history of cal-
ibration, the fact remains . . . that only the facts remain. Whether the richness was all there
from the start and Nobody was simply not “perfectly calibrated to the market” or whether the
richness all emerged when the new instrument first diverged from the known tracks and opened
the door for an actual upgrading of Nobody, is in the end a purely nominalistic issue and just a
question of how we want to call the story. The absence of writing inherent in Nobody relieves
us completely of the necessity either to read the past into the future or to read the future into
the past. Only the fact of recalibration remains and the hope, like I said, is that the HERO
shall pick up a component of model risk (or meta-risk) on top of the standard risk that it is
picking up at the object level, thus allowing smoothness of upgrading. Although theoretically
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unjustified – for the computation of HERO presupposes that the level of writing is fixed and
the model is final – this is just the hope that successive recalibrations and successive rehedging
operations shall prove robust as a matter of fact. Since a “stochasticized” Nobody is just an
instance of Nobody, the hope is that the two instances shall bear a few similarities other than
just by “name”!

In the end, the reason why I think that Nobody may just be offering us a chance to finally
address the question of history, is that this is the question whose answer we should expect to
be the least naı̈ve of all, or in other words, the least expected of all (for any answer falling
within our range of expectations will become history, therefore will be overtaken by history),
and that Nobody, whose inherent non-writing is essentially a non-answer, seems to offer just
the right kind of divergence and the right kind of . . . digression. By remaining open to the
future and by coming out virtually unchanged through the future upgradings, Nobody in fact
postpones any temptation we may have to look back at the past in order to figure out the future.
(As I said, the temptation may be due to a lack of choice.) Nobody takes over the task that
we thought was reserved for history, the task of softening up the future for us, and teaching
us patience in matters strictly relating to the future (as if history was the only thing we could
read in patience while waiting for the future). As it is both forward-looking and capable of
self-upgrading, Nobody allows us at last to deal with the future seriously (when we thought
history alone could achieve that purpose). In fact, Nobody reinstates the balance of power in
favour of the present (rather than the past or the future). Nobody is the perfect tool in the hands
of the trader (as I shall argue in a philosophical column in Wilmott magazine) and the pair that
the trader and Nobody will thus constitute is, in the last instance, essentially present (like the
living trader is present) and utterly self-upgrading (or geared to the future).

13
So far, my strategy has consisted in arguing that default lent itself naturally to the discrete
regime-switching representation on account of the two-valued nature of the state variable
(default / no default) and that the regimes could be further extended to the no default side
of the picture – naturally so as concerns the hazard rate (as different regimes got interpreted
as different ratings), and not so naturally as concerns volatility (as people traditionally had in
mind continuous diffusion processes of volatility). As a matter of fact, the second part of my
argument very quickly developed into a formidable digression on the regime-switching repre-
sentation, whose main purpose was to establish the originality, and I dare say, the uniqueness
of the proposed solution. Beside the advantages specific to the regime-switching representation
(its economy, its computational efficiency), and beyond the equity-to-credit problem, I have
attempted to show that the regimes might in fact provide just about everything everybody ever
wanted in a smile model and could not get before: robustness of calibration and its correlate,
the absence of presupposition with regard to the degree of incompleteness of the market (and
adaptation, instead, to the effective degree of incompleteness through effective calibration), as
well as the beginning of an answer to the abysmal question of recalibration. Incidentally, the
argument earned us a criticism of the traditional representation, the tradition of writing, and
debunked its self-created myths and mythicized names. Philosophically, this meant that our
regime-switching representation, Nobody, had seized mastery of the subject and taken prece-
dence over the other models, as it was able both to propose a working solution and to take an
unprecedented metatheoretical stand.
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It remains, however, to clear one last obstacle before moving on to the problem at hand, the
equity-to-credit problem. I would like to call this obstacle the “continuous–discrete fallacy”.
In a word, this is the general worry that the regime-switching representation might just not be
suitable for derivative pricing because of its discrete character. All is well when the variables
assume two, or perhaps only a few, discrete values (such as credit ratings or the default state), but
is a regime discretization of the credit spread able, for instance, to handle the pricing of options
on the credit spread? Is a three-regime-switching model of stochastic volatility able to price
volatility swaps? Also, how could such a formidable campaign ever be launched in the field of
smiles, and such a systematic attack ever be mounted against the traditional “continuous” smile
models, from such a frail and discrete base? Isn’t the regime-switching model “negligible”, and
almost degenerate, in the space of the smile models?

The proximate answer is that the convertible bond is an equity derivative, not a credit spread
derivative, and the equity is still getting modelled as a continuous diffusion process, spanning
all values from zero to infinity, inside each one of our regimes. As shown by our numerical
examples (see Appendix), recognizing two or three hazard rate regimes (actually four, if we
count the default regime) is amply sufficient to capture the impact of default on the pricing
and hedging of the convertible, or indeed to fully explain the term-structure of credit spreads.
Two or three volatility regimes are also sufficient to capture volatility risk and the relevance of
vega hedging. Actually, a three-regime stochastic volatility model or a three-regime stochastic
hazard rate model are much richer than you think. The intensities of transitions between regimes
participate fully in the specification of the model. Also, let us not forget the whole orientation
of my essay. My main topic is the equity smile, not credit risk, and my task is the continuation
of the work achieved in Ayache et al (2004). As I said, I am willing to consider default only
to the extent that it is a component of the equity smile and that the credit default swap prices
can help us calibrate and hedge our equity smiles better.

The ultimate answer, on the other hand, is that the regime-switching model is not negligible
after all. Nothing stops us in theory (or in practice) from multiplying the number of hazard
rate or volatility regimes up to the point where they become indistinguishable from the dis-
cretization of a “real”, continuous space. Nothing stops us from assuming as many regimes
(σi , λj ) as there are pairs in the tensor product of the full (discretized) continuous volatility
space and the full (discretized) continuous hazard rate space. Solving a diffusion PDE for the
underlying equity in each one of those regimes, and coupling this incredibly large number of
one-dimensional PDEs through the usual transitions between regimes, will then turn out to
be numerically indistinguishable from discretizing a full three-dimensional PDE in the (S, σ ,
λ) variables, and solving it with the usual techniques. As a matter of fact, the argument can
work both ways. For the equity diffusion process that we had assumed was taking place, so
far, in each one of our parsimonious regimes, and its numerical treatment by the usual PDE
discretization techniques, can now in turn be interpreted within the regime-switching repre-
sentation. Discretized Brownian motion is just a regime-switching model with a large number
of tinily spaced regimes. Numerically speaking, it is all then but a massive regime-switching
operation. All I am saying here is that, ultimately, everything becomes discrete (not to mention
that everything, actually, is initially discrete, as stocks trade by the tick and hedging takes place
in discrete time).

In conclusion, the regime-switching representation is the one and all-pervasive representa-
tion. Continuous path processes and continuous time finance are but useful fictions that were
invented to summarize the incredibly disarticulate picture left over by the regimes. The name
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of “volatility” (Black–Scholes), and following it, the name of “stochastic volatility” (Heston),
etc., are given names that merely indicate that the wiring between the regimes has been laid
out in a certain way and not another. Two or three names, two or three coefficients (volatil-
ity, mean-reversion, correlation, volatility of volatility, etc.), throw order and rigidity on an
incredibly rich and multifarious picture.

This immediately poses the following question: Among the two extreme situations we have
described, which one is in fact the poorest? Is it the situation where we have only a few volatil-
ity and hazard rate regimes and have no particular names attached to the model, or the situation
where we have infinitely many regimes but only a couple of names? Might not the order in
question be a restraining order? The main objection against Nobody was that the discrete regime
representation might be missing something important that the continuous representation could
provide. Shouldn’t we be worrying about the opposite by now? Shouldn’t we be worrying that
the continuous representation might be giving us much more than we actually need, and charg-
ing us a very high price for it – imposing names on us that we might not even need? Let us not
forget indeed that the tradition of writing and naming creates strata that are impermeable to each
other (volatility, volatility of volatility, etc.), when the nameless regimes manage at once to see
through the whole thing. As the numerical fate common to both representations demonstrates
their equivalence in the limit, and shows that it is all but a question of representation, perhaps
we could now step back from the limit and try to get the best of both worlds. Not wanting
an infinite number of regimes and not wanting the names either, perhaps we could find, in the
midfield, the compromise which is best adapted to each particular situation. At least we want
the freedom to do so.

Again, recall the freedom to be in any of the possible “writing levels”, that Nobody is
allowed by the absence of names. And imagine, for instance, a situation where calibration to
a newly introduced derivative instrument has exhausted all the possibilities offered by three
regimes of volatility and still could not be achieved to our satisfaction. This is typically the
situation where we contemplate adding a regime. Now adding a fourth regime achieves much
more in effect than adding a fourth state of volatility. It opens for us whole new levels of
writing and new degrees of incompleteness not previously available. On the other hand, it can
have richer consequences than adding a line of writing as in the classical writing tradition. The
writing levels of the classical tradition are stratified. Below the name of “volatility of volatility
of volatility” there just lies the immutable name of “volatility of volatility”. Whereas the three
regimes that lie “below” the fourth can now react to calibration in ways we could not even
dream of when all we had was three regimes. Actually, the three regimes are not below the
fourth, but at the same level. There is a sense of wholeness, of richness, and an overall feeling
of economy in the regime-switching representation that is unavailable to the stratified writing
tradition.

In the end, I do not exactly place the interesting debate between the discrete and the con-
tinuous. This is a wrong divide, and the two are in the end equivalent. Rather, our “digression”
into the regime-switching representation will have served the following philosophical purpose
(beside providing us with an extraordinary calibration, pricing and hedging tool). It has shown
us that the real difference is between worshipping the name and breaking the name, between
iconolatry and iconoclasm, if you will.

I have nothing against the Black–Scholes option pricing model, or the Heston option pricing
model. Numerically, that is to say, ultimately, they are but instances of Nobody. I guess what
I have against you is that you may be tempted to build up your world like a venerable writer,
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not like an engineer. You may be tempted to recognize in Black–Scholes or in Heston nothing
but the names and the strata that will allow you to append your own model and write your
own name.

Analytical pricing formulae are very hard to come by nowadays because of the complexity
of the derivative instruments and the complexity of the underlying processes. Computational
power, on the other hand, is allowing numerical speed-ups which compare with the analytical
formulae of yesterday. So what could be the point of insisting that the model should be cast
in terms of elegant continuous processes – so remote indeed from our nameless, shameless,
mess of a regime-switching representation! – other than the facility of writing the model on
paper, and producing a nice mathematical paper? True, continuous path Brownian motion is
what afforded the perfect replication in Black–Scholes and created the myth of the complete
markets. But the complete markets are precisely the thin leaf that we should try to escape at all
costs, or only admire from a distance as an elegant argument written on a nice piece of paper!
Complete markets are enmeshed with the guilty “tradition of the name” anyway. Options are
redundant in the Black–Scholes world; they do not truly exist and are only the diminutive name
of a particular dynamic trading strategy involving the underlying alone.

Derivative pricing science has been taken hostage by mathematicians when it should be
handed back to the financial theorists – how many working solutions mention incomplete mar-
kets and real hedging? – and to the engineers. But how come, you may wonder, a philosophical
argument as general as this – the argument against the naming and the writing – happens to
occur precisely in the field of finance, and more particularly so, the field of derivative pricing?
Doesn’t the same massive attack equally apply in other engineering fields? What is so specific
about derivative pricing that allows me today to draw such deep conclusions about the fallacy
of naming and the lure of writing?

The first answer is that derivative pricing is only starting to become a proper engineering
field. Inelegant and massively computational solutions have been occurring for some time now
in fluid dynamics, or structural mechanics, or thermodynamics. The second and most important
answer is that we enjoy a freedom in our specific engineering field which is hard to find in
other fields. Laws of gravity, laws of mechanics, and more generally laws of nature, compel
an Einstein, a Schrödinger or a Navier and Stokes to write the models they have written.
(Yet I am not so sure that an antirealist will not argue that laws of nature are not written in
nature after all, and that the physical theories that we have, and their quantitative models, are
mere computational tools.) We, by contrast, can “write” or “name” or “program” the model
that we want, so long as the model is robustly calibrated and some derivative instruments are
robustly priced and hedged relative to some others. (The searcher of the ultimate data generating
process can wait all the time he wants, even wait infinitely – but then he is not in the business of
derivative pricing.) We have all this freedom, yet some writers insist on following the inherited
path of research, and the inherited lines of writing! Path-dependency is an even worse case
than inhomogeneity . . .

Above all, I think the real strong argument for wanting to erase the previous lines of writing
and making the fresh start that I suggest, is that the open regime-switching representation can
address the problem of co-calibration just as easily as it addressed the problem of calibration
or re-calibration. Take the equity-to-credit problem, for instance (this way, I can circle back
to my original topic). A lot of effort has been spent recently in developing credit risk mod-
els quite separately from the smile models. While jump-diffusion, local volatility, stochastic
volatility or universal volatility have been suggested on the one side, stochastic interest rates,
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stochastic hazard rates and stochastic recovery rates have been suggested on the other. My
whole argument about the level-invariance of Nobody with respect to the volatility factor can
of course be reiterated with respect to the hazard rate factor. Nobody can scale up to any degree
of incompleteness that the market of credit derivatives may impose in effect (stochastic hazard
rate, stochastic volatility of hazard rate, stochastic volatility of volatility of hazard rate, etc.),
just as it scaled up in the volatility case. More interesting, perhaps, is the fact that Nobody can
co-calibrate to credit instruments and volatility instruments with no visible change. Wouldn’t
we have to wait, otherwise, for two distinct traditions of writers to deliver to us their successive
lines of writing?

This isn’t just going over the fact that the regimes of our regime-switching representation
can be identified by a pair (σ , λ), for I am now implying a deeper phenomenon, namely, that
the volatility skew implied in the market prices of out-of-the-money puts can positively give us
information on the default process and, reciprocally, that the CDS term-structure of spreads can
positively give us information on the value of equity options. The equity-to-credit problem is
precisely a smile problem. As a matter of fact, it may even be better-posed than the pure smile
problem, as the information from the CDS will have a tendency to help the calibration, and help
determine the solution (see Appendix). Provided, of course, our smile model and calibration
tool can handle co-calibration, and make it a friend, not an enemy. Nobody loves the idea that
CDS prices can be included in the calibration set, when other (stratified) models most certainly
resent it! What is a complication in the traditional representation is a simplification in ours. This
is exactly the correlate, in co-calibration, of the idea we have already explored in calibration
and re-calibration, according to which Nobody loves the prospect of adding barrier options, or
cliquets, or more complex structures still, in the calibration phase.

Appendix

p(S,t)

No Default
State

Default State

s (S,t )

l1→2

l2→3

p2→Default

p1→Default

Default State

p3→Default

l3→2

l2→1
l3→1

l1→3

s1

s2

s3

HomogeneousInhomogeneous

Figure 1: Comparative logic of the inhomogeneous and homogeneous
equity-to-credit models. The inhomogeneous model consists of one default regime
and one non-default regime. The implied volatility surface and the credit smile
surface are explained by a local volatility surface and a local hazard rate surface.
In the homogeneous model, volatility and hazard rate are stochastic and switch
between the three non-default regimes
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Figure 2: In our inhomogeneous model, the hazard rate function is the sum of
a time component g(t) and a space component f (S ). The space component
accounts for the dynamics of the credit spread curve against the moving
underlying stock. The time component ensures that a given credit spread term
structure is matched for a given stock level. Above is the plot of the space

component, f (S ) = p0

(
S0

S

)β

, S0 = $16, p0 = 5%, β = 0.9

TABLE 1: TERMS OF A CONVERTIBLE BOND (THE
TYCO 2.75% 2018 TO THE FIRST PUT DATE)

Maturity date 15/01/2008
Semi-annual coupon rate 2.75%
Nominal 100
Conversion ratio 4.38
Recovery rate 0
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Figure 3: Theoretical value of the convertible bond described in
Table 1 against the underlying equity in a inhomogeneous
equity-to-credit model. The pricing date is 3 February 2003. The
interest rate is flat 3%. The credit spread term structure is given in
Table 5 when the underlying stock is S = $16. The Brownian volatility
is 45.3%. The CB is worth $105.50 against S = $16, its Delta is 3.80
shares, its fixed income component is worth $81.75

TABLE 2: CONVERTIBLE BOND IN THE INHOMOGENEOUS MODEL. WE REPORT ITS
DELTA AGAINST STOCK LEVELS UNDER THE EQUITY-TO-CREDIT MODEL WHERE
THE HAZARD RATE FUNCTION IS GIVEN IN FIGURE 2. THE EQUITY-TO-CREDIT
DELTA INCREASES ON THE WAY DOWN AS THE BOND FLOOR COLLAPSES. WE ALSO
REPORT THE DELTA UNDER STATIC SPREAD FOR COMPARISON

Stock price Equity-to-credit delta Delta under static spread

16 3.81 2.91
14 3.86 2.66
12 3.96 2.37
10 4.16 2.01

8 4.58 1.59
6 5.38 1.10
4 7.33 0.57
2 10.80 0.13
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TABLE 3: CALIBRATED PARAMETERS OF THE HOMOGENEOUS
REGIME-SWITCHING STOCHASTIC VOLATILITY AND STOCHASTIC HAZARD RATE
MODEL, NOBODY (TWO NON-DEFAULT REGIMES AND ONE DEFAULT REGIME).
NOBODY IS CALIBRATED TO THE FULL IMPLIED VOLATILITY SURFACE GIVEN IN
TABLE 4 AND THE FULL CREDIT DEFAULT SWAP SPREAD TERM STRUCTURE GIVEN
IN TABLE 5. THE SOURCE OF MARKET DATA IS TYCO ON 3 FEBRUARY 2003 AND THE
UNDERLYING STOCK IS S = $16

Brownian diffusion (%) Total volatility (%)

Regime 1 49.86 61.18
Regime 2 27.54 40.83

Jump size (%) Jump intensity

Regime 1 → Regime 2 4.48 3.3429
Regime 2 → Regime 1 −58.68 0.1697
Regime 1 → Default Regime −100.00 0.1190
Regime 2 → Default Regime −100.00 0.0324

TABLE 4: QUALITY OF FIT OF A FULL IMPLIED VOLATILITY SURFACE WITH THE
EQUITY-TO-CREDIT HOMOGENEOUS REGIME-SWITCHING MODEL. SOURCE: TYCO
ON 3 FEBRUARY 2003. THE UNDERLYING STOCK IS S = $16

Strike (%)
Maturity

(years) 5 7.50 10 12.50 15 17.50 20 22.50 25 30 35 45

Market 158.10 112.70 79.80 58.10 49.40 56.30 72.40
21/02/2003 model 175.99 122.30 76.07 55.80 48.39 48.09

Market 122.20 92.90 71.20 56.00 48.40 45.40 53.10
21/03/2003 model 129.28 93.11 66.24 54.82 49.39 49.13 47.17

Market 138.20 108 82.80 66.30 54.60 47.20 45.40 45.70 53.20 65.30 78
17/04/2003 model 150 112.07 83.38 63.62 54.07 49.06 48.28 46.91 45.78 44.90 43.50

Market 99.10 87.30 72.60 60.50 52.10 47.00 44.70 43.60 44.30
18/07/2003 model 113.80 88.77 71.43 59.45 52.22 47.78 46.14 44.72 43.87

Market 92.40 75.40 64.40 56.50 51.40 47.10 45.00 42.80 43.20 45.20
16/01/2004 model 89.87 73.99 63.47 55.90 50.68 46.98 44.94 42.07 40.91 40.49

Market 73.70 58.60 49.40 46 42.70 41.10 41.10
21/01/2005 model 74.50 58.34 50.40 45.88 43.02 41.31 40.19
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Figure 4: Zooming on the quality of fit of the implied
volatility smile of options maturing on 17 April 2003.
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prices reported in the market. Probably those calls are not
so liquid
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TABLE 5: QUALITY OF FIT OF THE CREDIT DEFAULT SWAP TERM STRUCTURE
WITH THE EQUITY-TO-CREDIT HOMOGENEOUS REGIME-SWITCHING MODEL.
SOURCE: TYCO ON 3 FEBRUARY 2003. THE UNDERLYING STOCK IS S = $16

Maturity (years) Market premium (quarterly paid coupon) (%) Model premium (%)

1 1.25 1.50
2 1.17 1.22
3 1.14 1.13
4 1.11 1.08
5 1.09 1.05
6 1.05 1.03
7 1.03 1.02
8 1.01 1.01
9 0.99 1.00

10 0.98 0.99

TABLE 6: THE TYCO CONVERTIBLE BOND IS DYNAMICALLY OPTIMALLY HEDGED,
IN THE HOMOGENEOUS MODEL, WITH THE UNDERLYING STOCK ALONE. THE
SIMULATION TAKES PLACE ON 3 FEBRUARY 2003. IT USES NOBODY WITH THE
PARAMETERS INFERRED FROM CALIBRATION GIVEN IN TABLE 3. THE CB IS
WORTH $105.50 AGAINST S = $16 (SAME REFERENCE POINT AS IN THE
INHOMOGENEOUS MODEL). WE REPORT THE HERO, EXPRESSED IN DOLLARS, AND
THE OPTIMAL DYNAMIC HEDGING RATIO. THE HEDGING RATIO IS EXPRESSED AS
THE EQUIVALENT STOCK POSITION IN NUMBER OF SHARES (YOU SHOULD SELL
THE SHARES IN ORDER TO HEDGE). NOTICE THAT THE HEDGING RATIO FOR
S = $16 IS 3.79 SHARES, VERY CLOSE TO THE DELTA IN THE INHOMOGENEOUS
MODEL AGAINST THE SAME STOCK LEVEL (SEE TABLE 2). OPTIMAL HEDGING
UNDER DEFAULT RISK IS TO OUR MIND THE REAL REASON WHY YOU SHOULD GO
HEAVY ON THE DELTA, NOT SOME DETERMINISTIC FUNCTION LINKING THE
HAZARD RATE AND THE STOCK

Stock Price Optimal stock hedge ratio HERO

16 3.79 9.62
14 3.70 10.25
12 3.60 10.93
10 3.52 11.68

8 3.50 12.48
6 3.71 13.29
4 4.64 14.04
2 8.64 14.51
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TABLE 7: THE TYCO CONVERTIBLE BOND IS DYNAMICALLY OPTIMALLY HEDGED
IN THE HOMOGENEOUS MODEL WITH A COMBINATION OF THE CREDIT DEFAULT
SWAP AND THE UNDERLYING STOCK. WE USE THE 5-YEAR MATURITY CDS WHOSE
PREMIUM IS REPORTED IN TABLE 5. WE REPORT THE RESIDUAL HERO AND THE
DYNAMIC HEDGING RATIOS. THE CDS HEDGING RATIO IS EXPRESSED AS
EQUIVALENT CDS POSITION (YOU SHOULD BUY THE CDS AND SHORT THE STOCK
TO ACHIEVE THE OPTIMAL HEDGE). THE CDS HEDGE IS IN PERCENTAGE OF
NOMINAL. AS THE CDS TAKES CARE OF THE MAJOR JUMP DUE TO DEFAULT RISK,
THE STOCK HEDGES AGAINST THE DIFFUSION AND OTHER SMALL JUMPS. ITS
CONTRIBUTION IN THE HEDGE IS VERY SIMILAR TO THE DELTA UNDER STATIC
SPREAD (SEE TABLE 2)

Stock price CDS hedge ratio HERO Stock hedge ratio

16 −55.9 5.00 3.05
14 −59.7 5.10 2.80
12 −63.8 5.14 2.48
10 −68.2 5.06 2.08

8 −72.7 4.76 1.58
6 −76.9 4.11 1.00
4 −79.9 2.89 0.41
2 −81.2 1.06 0.04

TABLE 8: THE CONVERTIBLE BOND IS DYNAMICALLY OPTIMALLY HEDGED IN
THE HOMOGENEOUS MODEL WITH A COMBINATION OF THE UNDERLYING, THE CDS,
AND A CALL OPTION OF SAME MATURITY AS THE CB AND STRIKE PRICE K = $22.50.
WE REPORT THE DYNAMIC OPTIMAL HEDGING RATIOS ON BOTH THE CALL
OPTION AND THE CDS. THE HERO IS NOW ALMOST IDENTICALLY EQUAL TO ZERO
AS THE CDS AND THE CALL OPTION CANCEL THE DEFAULT RISK AND THE
VOLATILITY RISK. NOTICE THE STABILITY OF THE HEDGING STRATEGY. THE CB IS
ALMOST PERFECTLY DECOMPOSED INTO A VOLATILITY INSTRUMENT AND A
CREDIT INSTRUMENT

Stock price Hedging ratio (Call option) Hedging ratio (CDS)

16 4.18 −80.23
14 4.16 −80.36
12 4.12 −80.46
10 4.05 −80.53

8 3.92 −80.59
6 3.63 −80.67
4 2.62 −80.78
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TABLE 9: WE NOW TRY TO TAKE FULL ADVANTAGE OF OUR EQUITY-TO-CREDIT
HOMOGENEOUS MODEL. WE ANALYSE A NON-CONVERTIBLE BOND, OTHERWISE
IDENTICAL TO THE TYCO CB. THIS IS A PURE CREDIT PLAY. WE USE AN
OUT-OF-THE-MONEY PUT OPTION OF SAME MATURITY AS THE BOND AND STRIKE
K = $3, TO HEDGE DEFAULT RISK. WE REPORT THE DYNAMIC OPTIMAL HEDGING
RATIO IN EQUIVALENT PUT POSITION (YOU SHOULD BUY THE PUTS TO ACHIEVE
HEDGING) AND THE HERO. THE HERO INCREASES AS THE STOCK GOES DOWN
BECAUSE OF THE INCREASING VOLATILITY RISK BORNE BY THE PUTS. WE COULD
HAVE HEDGED DEFAULT RISK WITH THE UNDERLYING ALONE, BUT HERO WOULD
HAVE BEEN MUCH LARGER ($14.60 AGAINST S = $16)

Stock price Hedging ratio (put option) HERO

16 −41.59 1.45
14 −42.29 1.69
12 −43.28 1.99
10 −44.79 2.41

8 −47.27 3.01
6 −51.87 3.91
4 −62.87 5.45

TABLE 10: TO HEDGE AGAINST THE RESIDUAL VOLATILITY RISK MANIFESTED IN
TABLE 9 WE NOW ADD AN AT-THE-MONEY CALL IN THE HEDGED PORTFOLIO
INVOLVING THE CORPORATE BOND AND THE OUT-OF-THE-MONEY PUT. WE
REPORT THE DYNAMIC OPTIMAL HEDGING RATIOS ON BOTH OPTIONS AND THE
HERO. OBVIOUSLY, WE SHOULD SELL THE ATM CALL

Stock price Hedging ratio (put option) Hedging ratio (ATM call option) HERO

16 −44.54 1.02 1.22
14 −46.25 1.54 1.36
12 −48.82 2.45 1.54
10 −52.98 4.21 1.74
8 −61.27 8.52 1.95
6 −80.97 21.45 2.21
4 −184.26 110.61 2.53

FOOTNOTES & REFERENCES

1. It won’t matter for the prices (which are probabilistic averages) whether the model is
inhomogeneous or homogenous. But wouldn’t it matter for the hedging? More specifically,
would we be hedging with a heavier delta in the homogeneous model, as the share goes to
zero, the same way as in the inhomogeneous model (see Table 2)? The answer is yes, and it
revolves entirely around the question of incomplete markets and optimal hedging, as in Ayache
et al (2004). See Appendix.
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2. I must qualify the latter statement a little bit. If the individual values of volatility
characterizing the different sub-regimes inside a given super-regime i, [σi1, σi2, σi3], are equal
respectively to those occurring in a different super-regime k, [σk1, σk2, σk3], then the result
will be indistinguishable from a three-regime-switching model of stochastic volatility, only the
transitions between the regimes will occur in many more different ways.
3. Of course the picture would have been different if, instead of considering a nesting of
stochastic processes written one off another, such as stochastic volatility, stochastic volatility
of volatility, etc., we had considered a radically different second factor, such as the hazard
rate. For in that case, the regimes could not be labelled by anything short of two factors.
4. Our hedging strategies are optimal in the sense that you break even on average and the
standard deviation of the P&L of the hedged portfolio is minimal. HERO is this minimal standard
deviation (cf. Ayache et al, 2004).

� Andersen, L. and Buffum, D. (2002) Calibration and implementation of convertible bond
models. Journal of Computational Finance, 7(2).
� Ayache, E. The philosophy of quantitative finance. Wilmott (forthcoming).
� Ayache, E., Forsyth, P. A. and Vetzal, K. R. (2002) Next generation models for convertible
bonds with credit risk. Wilmott, December.
� Ayache, E., Forsyth, P. A. and Vetzal, K. R. (2003) Valuation of convertible bonds with credit
risk. The Journal of Derivatives, Fall, 9–29.
� Ayache, E., Henrotte, P., Nassar, S. and Wang, X. (2004) Can anyone solve the smile problem?
Wilmott, January.
� Ayache, E. and Tudball, D. (2004) One step beyond. Wilmott, January, 6.
� Henrotte, P. (2004) The case for time homogeneity. Wilmott, January.
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I
nvestment in emerging markets has become a prominent feature of the financial glob-
alization sweeping the world. Besides market risk, however, investments in emerging
markets are also exposed to political phenomena that are not generally present in the
more developed economies. The Mexican peso crisis and the Asian economic meltdown
are two of the more spectacular examples. This problem is well known to banks and

multinational companies by the name of country or political risk and, although assessment tech-
niques in these domains are relatively well developed, they are not really adapted to economic
and financial risk management. Traditional methods for assessing political risk range from the
comparative techniques of rating and mapping systems to the analytical techniques of special
reports, dynamic segmentation, expert systems, and probability determination to the economet-
ric techniques of model building and discriminant and logit analysis. These techniques are very
useful for identifying and analysing individual sources of political risk but are weak when it
comes to translating them into standard risk measures such as variance and standard variation.
Rating systems, although they are extremely popular, are ad hoc at best and have a dubious
track record. Based on subjective analysis, analytical techniques are essentially informed opin-
ions whose value depends on the quality of the analyst(s). The econometric techniques are more
objective but are backward looking and their value depends on the quality of the model and
the accuracy of the estimates of the exogenous variables. None of the techniques generate the
market based information that drives modern financial theory and practice.

Some important market based information is available in the prices of traded sovereign
securities. One popular technique is to use market prices to compute interest rate spreads.
The problem with spreads on individual instruments is that they reflect the special features
of the security being analysed. This can be overcome to a large extent by considering the
ensemble of a sovereign’s foreign obligations. However, spreads reflect general market risk as
well as the specific country’s political risk and are difficult to interpret in terms of variance and
standard deviation. For example, a three percent spread over a treasury yielding 2% reflects a
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E-mail: e.clark@countrymetrics.com www.countrymetrics.com
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lower level of volatility than a 3% spread over a treasury yielding 4%. This having been said,
market prices contain a wealth of forward looking information that can be used to measure a
country’s riskiness.

The implied volatility of a country
One way to exploit the market information on traded sovereign debt is to borrow from standard
option pricing techniques and estimate a country’s riskiness as its implied volatility. The implied
volatility for a market security can be obtained by running the option pricing model with
volatility as the unknown. This involves knowing the price of the underlying security, the price
of the option, its exercise price, its expiry date and the risk free rate of interest. Although in
the case of a country the risk free rate and, in many cases, the market value of the debt are the
only parameters that are readily observable, the other parameters can easily be estimated.

The key variable and also the most difficult to estimate is the price of the underlying security.
In the case of a country, it is nothing more or less than the country’s international market value.
From the standpoint of the international investor, he wants to know the value of the country’s
assets in terms of its ability to generate the foreign exchange that will enable payment of the
interest and dividends on his investments in that country. In this respect, it is no different from a
company. To estimate this value I use the standard financial technique of discounted cash flows.
Surprisingly enough, it is easier to estimate macroeconomic cash flows than it is to estimate
the cash flows of most private companies. Consider the following notation:

X = total exports not including investment income measured in USD
M = total imports not including investment income measured in USD

MC = imports of final consumption goods measured in USD
C = local consumption measured in USD
b = total income from the sale of the economy’s output of final goods and services

measured in USD
t = time

bt = Xt + Ct − MC
t

a = total expenditure by the economy for the purchase of final goods and services
measured in USD

at = Mt + Ct − MC
t

R = 1 + r where r represents the economy’s internal rate of return
Vt = the value of the economy at the beginning of period t measured in USD

From the definitions of b and a it is clear that b − a = X − M . The value of the economy
in USD can be written as the present value of expected macroeconomic cash flows:

Vt = E�(bt − at ) + (bt+1 − at+1)R
−1 + . . . + (bn − an)R

−(n−t)� (1)

where all transactions take place on the first day of each period. It is interesting to see the
relationship between this equation and the national accounts as they are usually presented. To
see this, first calculate Vt+1 and substitute into (1). Then multiply by 1 + r and rearrange.
Ignoring interest on net exports, which disappears in continuous time, this gives

Xt − Mt + Ct + (Vt+1 − Vt) = rVt + Ct (2)
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We recognize the left hand side (LHS) of equation (2) as net domestic product where net
investment in any year is equal to Vt+1 − Vt . The right hand side (RHS) is profits rVt plus cost
(consumption) Ct .

There are many ways to get an estimate of Vt . One technique that I have used is to define
a process for (b − a). For reasons I won’t go into here but which are linked to the balance of
payments identity, a mean reverting process seems appropriate. Let q(t) = (bt − at ) and

dq(t) = k
[α

k
eβt − q(t)

]
dt + σ dz (3)

where

k = the speed of adjustment parameter
(α/k)eβt = the long term mean of q

dz = a Wiener process with zero mean and variance equal to dt

σ 2 = the variance of dq(t)

Changes in q(t) will tend to move toward the long term mean, (α/k)eβt . The long term
mean can grow, decrease, or remain constant depending on whether β > 0, β < 0, β = 0.

If we note that for a national economy, the relevant time horizon is infinity so that V is a
function of q and not of t and apply Ito’s lemma and the boundary condition

Lim
q → ±∞|Dq(q)| < ∞ (4)

we get a differential equation whose solution is:

V (q) = q

r + k
+ αeβt

r(r + k)
(5)

To get an estimate of V we have to estimate the parameters α, β and k. To do this, we
solve equation (3), discretise the process and make a number of tedious manipulations, which
gives an equation that can be used to estimate the parameters for the process (3):

�q(t) = γ1 + γ2q(t) + ε(t) (6)

where

γ1 = α

k + β
eβt [eβ�t − e−k�t ]

and

γ2 = [e−k�t − 1]

Once Vt has been estimated, the implied volatility can be calculated in 4 steps:

1. Calculate the nominal value of total outstanding foreign debt.
2. Calculate the market value of total outstanding foreign debt.
3. Calculate the duration of total outstanding foreign debt.
4. Plug this information into the Black–Scholes formula:

B0 = V0N(−d1) + Ke−rtN(d2) (7)
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where B is the dollar market value of the debt, t is the duration of the debt, r is the USD risk
free rate of interest, K is the nominal dollar amount of foreign debt outstanding and N(d) is
the value of the standardized, normal cumulative distribution evaluated at d with

d1 = ln V0
K

+ (r + ω2

2 )t

ω
√

t
(8)

and

d2 = ln V0
K

+ (r − ω2

2 )t

ω
√

t
(9)

In the examples that follow, I show how the implied country volatility can be used as a tool
to measure country risk.

The Mexican peso crisis of 1994
On December 20, 1994 international investors were supposedly surprised by a 13% devaluation
of the Mexican peso that fell from 3.4647 for one dollar at the end of trading on December 19
to 3.9750 at the end of trading the next day. Furious flight from Mexican assets pressured the
peso to the point that two days later the authorities surrendered to the inevitable and allowed
the peso to float. By March it had fallen by 54% to 7.5 for one dollar. The wicked witch of the
international financial markets had waved its wand and turned Mexico, the handsome prince
of the emerging markets, into the ugly frog of a risky developing country. The stock market
plunged, interest rates soared, debt default was threatened and international investors (including
domestic residents capable of investing abroad) were ostensibly left with staggering losses that
even the loving kiss of a $50 billion rescue package organized by Princess USA was unable to
reverse. Furthermore, as the crisis sharpened, it also spread worldwide to the other “emerging
markets”, causing falling stock markets and massive capital outflows.

The conventional post mortem has it that economic reform and the government’s hard sell of
a NAFTA-linked economic miracle drew foreign investors into the Mexican economy to the tune
of more than $90 billion between 1990 and 1993. Aided by a newly privatized banking sector
loaning with reckless abandon, Mexico went on a consumption binge. Foreign capital financed a
sharp drop in the domestic savings rate and a current account deficit that grew to 6.5% of GDP
in 1993 and to 7.7% in 1994. International investors supposedly did not realize that the situation
was untenable over the medium term and the outgoing Salinas government doggedly refused to
either curb consumption or to devalue the peso. Nevertheless, it is generally agreed that when
the reckoning did come, investors were taken completely by surprise and Mexico’s underlying
economic and financial situation did not warrant the humiliating treatment inflicted on it by
the international financial markets. It is noted that the government’s budget was balanced, the
economy had been opened up and deregulated, exports were growing, inflation was low at 7%
and falling, economic growth was strong, and the North American Free Trade Agreement was
signed and being implemented.

According to conventional wisdom, then, the peso crisis was a mindless overreaction by
international investors to a bursting “speculative bubble” caused by a sudden realization of
the increased political uncertainty associated with the PRI’s steady loss of political control,
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punctuated by the uprising in the impoverished state of Chiapas, the assassinations of Luis
Donaldo Colosio, the ruling party’s presidential nominee, and Jose Francisco Ruiz Massieu, a
close friend and former brother-in-law of President Salinas, and a bungled devaluation. In other
words, conventional wisdom has it that investors were overreacting to perceived changes in the
country’s political fragility.

There are several shortcomings to this attractive conventional view, which seems to fit the
facts in general. First of all, it fails to explain how otherwise sophisticated international investors
could have remained oblivious so long to events that were known and had been developing over
an extended period. It also fails to explain what caused them to overreact when they finally did
get wise. Finally, it fails to explain what caused a crisis that was uniquely Mexican in nature to
spread to the other emerging markets in general, including those as far afield and economically
different as Hong Kong, Thailand, Indonesia, and Malaysia - to mention only a few - with no
apparent connection to Mexico.

Using the concept of implied country volatility developed in the preceding section, we
answer the first two questions. We answer the third question, the contagion effect, in the
following section when we discuss the Southeast Asian crisis.

Table 1 shows that international investors were not really surprised by Mexico’s meltdown.
The volatility implied by the observed risk premiums, which indicate Mexico’s riskiness as
perceived by the international financial community, increases steadily from 1991 to 1993. By
the end of 1993, the eve of scheduled presidential elections, Mexico’s perceived riskiness was
at the extremely high level of 70.46%, 54.5% higher than it was at the end of 1991. The
level of implied volatility suggests that investors were expecting a large move in Mexico’s
economic situation. There really was no “overreaction”. This evidence runs counter to the
popular argument of conventional wisdom that investors were surprised by, and overreacting
to, perceived changes in the country’s political fragility. It suggests that international investors
were aware of Mexico’s evolving economic and political situation and that they were adjusting
to it in a continuous, orderly manner from as far back as 1991.

TABLE 1: MEXICO’S IMPLIED
VOLATILITY

1991 1992 1993

45.60% 56.70% 70.46%

The Southeast Asian crisis of 1997
On July 2, 1997 the Thai baht was abruptly devalued by 20% despite weeks of desperate moves
to prop up the currency, including central bank intervention of $8.7 billion on the spot market
and $23 billion in forward contracts, interest rate increases from 12% to 18% and restrictions
on foreign speculators. By the end of the year the baht crisis had spread around the world. The
median devaluation of the five East Asian tigers hardest hit by the crisis – Indonesia, Korea,
Malaysia, the Philippines and Thailand – was 80%. The International Finance Corporation’s
(IFC) emerging stock market index dropped by 20% between June and December and its Asian
index fell by 53%. By the end of the year the baht had depreciated by 93%, the Hong Kong
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dollar, the Korean won and the Taiwan dollar were under attack and their stock markets were
nose-diving, currencies and equity prices in Eastern Europe and Latin America were falling
and in November, Korea, the world’s eleventh largest economy and an OECD-member country,
became the recipient of the world’s largest-ever rescue package.

What happened? Conventional wisdom has it that in spite of a benign international back-
ground with high rates of growth in world trade and declining spreads on international bor-
rowing, international investors suddenly awoke to the reality of structural weaknesses in the
private financial sector, including resource misallocation and maturity and currency mismatches
as well as public sector economic mismanagement regarding the exchange rate, financial reg-
ulation and implicit or explicit government guarantees. The rude awakening caused a crisis of
confidence that the five countries, vulnerable because of the build-up of private sector, short-
term, un-hedged debt, were unable to overcome. Nevertheless, it is generally agreed that when
the reckoning did come, the countries’ underlying economic and financial situation did not
warrant the humiliating treatment inflicted on it by the international financial markets. It is
noted that public borrowing was subdued, most of the countries were running a fiscal surplus,
inflation was low relative to most other developing countries and savings rates were high. With
this in mind, conventional wisdom has it that the Asian crisis was another mindless overreaction
by international investors.

Again, there are several shortcomings to this attractive conventional view, which seems to
fit the facts in general: 1) it fails to explain how otherwise sophisticated international investors
could have remained oblivious so long to events that were known and had been developing over
an extended period; 2) it also fails to explain what caused them to overreact when they finally
did get wise; 3) it fails to explain what caused a crisis that was uniquely Asian in nature to
spread to the other emerging markets in general, including those as far afield and economically
different as Latin America and Eastern Europe.

Using the concept of implied country volatility suggests that, as in the case of Mexico,
markets were neither surprised nor overreacting. In Table 2, we can observe that as far back as
1993, a year before the peso crisis, the market considered these countries as extremely risky with
implied volatility ranging from 41% to 78%. When the peso crisis manifested itself in 1994,
the markets were already expecting a large move in the Southeast Asian countries’ economies.
Furthermore, by 1996 implied volatility for Indonesia and Malaysia was at the levels reached
at the height of the Mexican peso crisis in 1994. For Korea, Thailand and the Philippines, it
had fallen only slightly. Over the whole period from 1993 to 1996, implied volatility rose for 3
countries (Indonesia, Malaysia and the Philippines) and fell for 2 (Korea and Thailand). These
two countries that experienced a fall in their implied volatility were the two that had the highest
implied volatilities in 1993. The reduction only brought them to the same level as the other
three countries. All this suggests that as early as 1993 the market was anticipating the potential
difficulties that would eventually materialize in 1997. It is interesting to note that Indonesia had
the highest implied volatility on the eve of the crisis and was the country that suffered most
when it hit. On the other hand, the Philippines had the lowest implied volatility and was the
least affected.

It might seem surprising to rate the Philippines as the lowest risk before 1997 but in light of
the actual 1997 events, this was, on the contrary, a very shrewd assessment. Indeed, as evidenced
by a posteriori results, even though the Philippines had not been able to achieve its neighbours’
economic performance over the last decade, it did not suffer their specific weaknesses to the
same extent.
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TABLE 2: IMPLIED VOLATILITY OF FIVE SOUTHEAST
ASIAN ECONOMIES

Year 1993 1994 1995 1996

Indonesia 55.0% 63.3% 56.2% 67.8%
Korea 77.7% 70.2% 67.9% 63.9%
Malaysia 43.6% 54.1% 47.0% 53.2%
Philippines 41.4% 49.8% 46.9% 46.2%
Thailand 63.3% 62.1% 56.5% 56.0%

Conclusion
In this paper I tried to outline the concept of implied country volatility, how it can be measured
and its pertinence to country risk assessment. It has shown itself to be a reliable tool with
many uses in international risk management. It is also interesting to note that the country’s
international market value, which makes it possible to estimate the implied country volatility,
is a powerful concept with documented results in forecasting sovereign debt reschedulings and
defaults as well as in the construction of international portfolios of stocks, long term government
bonds and money market instruments that outperform their benchmarks by wide margins.
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C
onvertible bonds are hybrid securities which offer equity-like returns when the
share of the issuing firm is strong, yet behave like conservative fixed-income
investments when the stock market is either stagnant or negative. Indeed the con-
vertible bond is essentially a bond that can be converted into shares, a feature
which allows the equilibrium of interests between the three parties involved, the

issuing company, the equity investor and the fixed-income investor to be struck more efficiently
than was the case when equity and fixed-income were treated as separate investment categories,
involving different, if not incompatible, standards. As the company issuing the convertible bond
sells an embedded option to convert into its shares, it expects its creditors to charge a lower fee
than would otherwise apply to its credit class, hence is able to pay lower coupons. Reciprocally,
the fixed-income investor earning these coupons is rewarded by his upside participation in the
performance of the share. The equity investor, on the other hand, whose basis of judgment is
the price of the equity and its expected return, makes up for the premium paid over parity by
the downside protection that the bond floor automatically provides, and by the fact that the
convertible bond coupons are usually set higher than the projected dividends (hence creating
the notion of a break-even date).

It is obvious, from this preliminary analysis, that the equity level will be the determining
factor in the convertible bond value, where “value” means what specifically distinguishes the
convertible bond from an ordinary fixed-income investment or an ordinary equity investment.
This is the reason why the quantitative analysis of convertible bonds lends itself naturally to
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the Black–Scholes analysis where the share price is the state variable, and dynamic hedging
strategies are the basis for the valuation of the embedded option. Not only will the convertible
bond value depend on the volatility of the share, but we shall expect the share price itself to set
the dividing line between equity behavior and bond behavior (as well as between the ensuing
concerns, respectively about share price volatility and credit quality volatility). It turns out
indeed that the Black–Scholes analysis provides just the right unifying framework to formulate
the convertible bond pricing problem. Unification comes at a cost, however. For we can no
longer ignore, once the share becomes the driving factor, what direct effect it may have on the
issuer’s credit quality. And if such an effect is to be assumed, we can no longer but model
it explicitly.

Credit spread and the fixed-income logic
The quantitative measure of credit quality has traditionally been the credit spread. Risky bonds
are priced by the market at a discount to sovereign debt, and the price difference, when expressed
in terms of the excess in the implied yield, is the credit spread. Bonds maturing at different dates
can imply different credit spreads, hence creating credit spread term structure. When the bonds
are zero coupons, the term structure of credit spread is equivalent to giving the whole array of
risky discount factors, etc. So credit spread is really a notion from fixed-income analysis, and for
that reason quite foreign to a framework such as Black–Scholes, where the state variable is the
underlying share. As long as bond pricing was the sole concern, all that the fixed-income analyst
needed was the spot yield curve and the spot credit spread curve. The necessity of modeling
stochastic credit spread, however, became evident with the emergence of credit derivatives.
But when the derivative payoff did not specifically depend on the credit spread (for instance
options on corporate bonds), a risky yield curve model could still be developed along the
lines of the traditional yield curve models (Hull and White, Black Derman Toy, Heath Jarrow
Morton), in such a way that the changes of credit spread curve and the changes of risk-free
yield curve would indistinguishably be captured by the overall changes of the risky yield curve.
Only when credit spread changes had to be separately modeled did the need arise to identify
the real “physical” variable underlying these changes, the instantaneous probability of default
of the issuer (assuming a deterministic recovery rate). Just as the instantaneous interest rate is
the state variable driving the basic yield curve models (e.g. Hull and White), the instantaneous
probability of default, or hazard rate, drives the stochastic credit spread models. One writes
directly the stochastic process followed by the hazard rate (possibly with a time dependent drift
in order to match a given spot credit spread curve) and generates different prices for risky zero
coupon bonds in different states of the world, in other words, different credit spread curves.

Credit spread and the convertible bond
The relation between the convertible bond and the credit spread seemed at first to arise only
from the “bond character” of the convertible. The embedded equity option would be priced in
the Black–Scholes framework alright, where discounting takes place at the risk-free interest
rate, but the presence of a fixed-income part of course implied that “something” had to be
discounted under a risky curve, if only to be consistent with the fixed-income analysis of the
issuer’s debt. The difficulty, however, was that bond component and equity component were
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not readily separable. On the contrary, we saw that the convertible bond could very well display
a mixed behavior, now like equity, now like bond, depending on the share level. This is why
the question “How exactly to apply the credit spread in the convertible bond pricing tree, and
how to link that to share price?” became the central problem in convertible bond valuation.

One early attempt interpreted the mixed behavior of the convertible bond in probabilistic
terms (Goldman, 1994). It is only with some probability, so the argument went, that the con-
vertible bond would end up like equity or end up like pure bond, and that probability was
identified with the probability of conversion. Ignoring what distortions might arise from other
embedded options, such as the issuer’s call or the holder’s put, the suggestion was to discount
the value of the convertible bond, at nodes of the pricing tree, with a weighted average of the
forward instantaneous risk-free interest rate and the forward instantaneous risky rate. The delta
of the convertible bond, now identified with the probability of conversion, would determine this
weighting. While this approach certainly fulfilled the wish that the convertible bond be treated
as equity when most likely to behave like equity, and as bond when most likely to behave
like bond, it certainly did not explain the financial-theoretic meaning of the mixed discounting.
Perhaps it can be argued, in a global CAPM framework, that some future cash flow ought to be
discounted with some exotic mixture of some given discount rates. The problem is, no sense
can be made of a situation where the mixing takes place locally, and the weighting varies from
one state of the world to the other.

More recently, another approach (Tsiveriotis and Fernandes 1998) thought better to interpret
the mixed behavior of the convertible in actuality rather than potentiality. If the convertible
bond is really a combination of a bond and an equity option, why not actually treat it like
one, and split it into two components, one to be discounted risk-free and the other risky?
When there is involved the possibility of early call or early put, however, the two discounting
procedures cannot take place completely separately, so what T&F have proposed is to throw
into the bond component whatever value accrues from the issuer’s liability (either promised or
contingent cash flows), and into the equity component whatever value accrues from the holder’s
contingent claim to convert into the issuer’s share or from the issuer’s own contingent claim
(the idea being that the issuer could always deliver his shares, default or no default, and that
he would not exercise his option to call back the convertible in case of default or shortage
of cash). The two components are priced as two distinct assets. The equity component has
the equity or nothing payoff as termination value, and the bond component (or the cash-only
component, as T&F labeled it) the cash or nothing payoff. The two backward recursions are
then coupled through the following algorithm. In case the convertible bond checks for early
conversion – or early call–in a certain state of the world, the equity component is set equal to
conversion value – or early redemption value – in that state, while the cash-only component is
set to zero; alternatively if the convertible bond checks for early put, the cash-only component
is set equal to the put strike and the equity component is set equal to zero. The cash-only
component, on the other hand, earns the coupons in all states of the world.

It is interesting to note the circularity, or self-reference, that is inherent in both approaches.
The value of the convertible bond crucially depends on the proportion in which the credit spread
is applied to it, yet this proportion ultimately depends on the convertible bond itself. In the first
approach the proportion is determined by the delta which is itself a derivative of the convertible
bond value, and in the second, the proportion is determined by the value of the cash-only
component relative to the equity component, which in turn depends on the particular constraint
that the convertible bond as a whole checks, the conversion constraint, the call constraint or
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the put constraint. Mathematically, this translates into non-linearity. This is the reflection of the
fact that the risky component of the convertible, which is the value that the holder is liable to
lose in case of default – and which, by the same token, he will argue he is entitled to recover a
fraction of when the assets of the defaulted company are liquidated – depends on the optimal
behavior of the holder himself.1 While the recovery entitlement of the holder of a straight bond
is a straightforward fraction of the present value of the bond, the holder of an option-embedded
bond, such as the convertible bond, will typically want to recover more, for he will invoke
what contingent rights he was holding on top of the fixed ones. And this notably depends on
his optimal exercise or conversion policy in case of no default.

The missing story of default
However, this whole explanation in terms of loss and recovery in case of default is totally
missing from the T&F paper. As a matter of fact, the problem with the T&F approach is that it
falls one step short of telling the whole story about the convertible bond under default risk. While
it certainly proposes an actual splitting of the convertible bond into two distinct components,
and reproduces its desired extreme behaviors (pure bond, pure equity) at the extremes of the
share price range, it does not say what actually happens to the convertible bond in case of
default. And default can take place anywhere between those two extremes. T&F’s line of
argument is simply to identify the cash-only component (why not through a complex procedure
involving two pricing PDEs and their local coupling), then to uncontroversially apply to it the
credit spread, in the old fixed-income logic.

A few paragraphs back, we argued that if one wishes to model the actual default process and
not just describe its phenomenological consequence, the credit spread, one has to get hold of the
real physical variable underlying it, the hazard rate. All the more so when a pricing framework,
such as Black–Scholes, already imposes on us a reduction in terms of state variables. Now it
certainly makes sense to choose a credit spread of some given finite maturity, say one year,
as state variable, and develop a stochastic model for credit quality in the same vein as the so-
called “market models” of interest rates. Furthermore, one can assume some explicit correlation
between the share process and the credit spread process and complete the program that we have
announced earlier, of explicitly modeling the effect of the issuer’s share on his credit quality.
The T&F approach would generalize to this framework, the tree of the cash-only component
would become two-dimensional and discounting would take place under local credit spread.
However, this would still not answer the question why the cash-only component has to be
discounted with credit spread in the first place, any better than just the postulation that it
somehow condenses the issuer’s liability and that credit spread should mimetically apply to it.

To our eyes, a model that relies on surface resemblance and no real explanatory argument is
not a satisfactory model. Lying at the crux of the T&F model is the proposition that the equity
component and the cash-only component are two identifiable, if hypothetical, contingent claims,
hence should follow the Black–Scholes PDE, the one with risk-free discounting and the other
with risky discounting. Now the Black–Scholes PDE is not just a pricing black box. It relies
on “physical” first principles which are the continuous hedge and the no-arbitrage argument.
The causal explanation of the Black–Scholes PDE is the precise elaboration of that which
happens to the hedge portfolio over the infinitesimal time increment dt. On the other hand,
given that the whole idea of the T&F splitting is to model the split behavior of the convertible
bond under default risk, then why not go all the way, and try to spell out exactly what can
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happen to the convertible bond in the eventuality of default? For the convertible bond is the
real contingent claim after all. T&F’s progress relative to the Goldman paper was that they took
the step from probabilistically mixing two distinct credit stories that are likely to happen to the
same instrument, to actually decomposing that instrument into two distinct credit entities. So
what we are now urging is that the credit story really be told about those two credit entities.

The story of default told at last
“What can happen in case of default” is a question hinging directly on the probability of default.
It imposes the instantaneous probability of default, rather than effects thereof such as the credit
spread, as the original cause – or true explanatory variable. The extension to the case of the
convertible bond under credit risk, not of the Black–Scholes PDE, but of the line of reasoning
underlying the Black–Scholes PDE, would then run as follows.

Calling p the instantaneous probability of default (or the intensity of the Poisson default pro-
cess), what “infinitesimally” happens to the composite portfolio, convertible bond and dynamic
hedge, under default risk is:

(a) with probability 1–pdt: no default. The usual Black–Scholes continuous hedge argu-
ment applies, the holdings in the underlying share are chosen is such way that the
hedge portfolio is immune to market risk over the time increment dt, and infinitesimal
P&L can be written as (assuming no dividends for simplicity):

δ� =
(
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dt

(b) with probability pdt: default. The infinitesimal P&L is literally swamped by the loss
of the defaultable fraction X:

δ� = −X

The expected P&L is then expressed as follows, neglecting second order terms:
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If we now assume that the probability of default is given in the risk neutral world,2 we can
equate the above expectation with the risk-free growth of the portfolio:

E(δ�) = r� dt

and obtain the following PDE:
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Differences explained
Once the problem of convertible bond valuation under default risk is framed in such a unifying
formalism, the differences between all the models that the practitioners have been using with
more or less rigor find an explanation in terms of different choices of X.

Grow risky, discount risky
Let X be the whole portfolio, or in other words let us assume that both the convertible bond
and the underlying share drop to zero in case of default, and the PDE will transform into:
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+ 1

2
σ 2S2 ∂2V

∂S2
+ (r + p)S

∂V

∂S
= (r + p)V

This corresponds to the popular model, mnemonically known as “Grow risky, Discount risky”.

The general model
A more general model is one in which the share drops to a residual value (1 − η)S upon default,
and the convertible bond holder is entitled to recovering a fraction F of his investment. He
would then have the option either to convert into shares at their residual value, or to recover
F . In this case, X would be expressed as:

X = V − max[κ(1 − η)S, F ] − ∂V

∂S
ηS

where κ is the conversion ratio, and the PDE governing the convertible bond value under default
risk would become:
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The question remains how to model F . Should it be a fraction of the face value N of the
convertible bond? Or should it be a fraction of the market value of the corresponding straight
bond: what the practitioners call its “investment value”? To be exact, the recovered fraction
should be established by the liquidator after default has taken place. However, we can assume
an a priori recovery rate applying uniformly to the issuer’s liabilities, whatever their nature,
certain or contingent. What you recover is proportional to what you are owed. The holder of a
coupon-bearing bond is owed more than the holder of a zero coupon bond, hence should recover
more. And the holder of a bond with an embedded option, say a put, is owed more than the
holder of a bullet bond, hence should recover more. The concept of probability, according to
Ian Hacking, emerged from those gambling situations where the players were for some reason
prevented from pursuing the game until the end. The game had to be settled one way or the
other, and the money at stake distributed according to some rationale. This is how the notion of
a player’s best chances of winning it first made its appearance, or in other words, his expected
gain. Settling the case of default of a convertible bond issue is no different. What the holder is
supposed to recover in case of early termination due to default is the recovery fraction of the
expected value of the cash flows he would otherwise get in case of no default.
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Modeling the cash claim of the convertible
bond holder
So what is it exactly that the holder of the convertible bond is owed prior to default?

The N -model
If you say it is a fraction of the face value N , then the PDE would look something like that:
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Let us call it the N -model.

The Z -model
If you say it is a fraction of the present value of the outstanding coupons and face value, then
you would have to determine first whether this present value should be computed under risky
or risk-free yield curve. It all depends on the interpretation of that which “the convertible bond
holder is owed prior to default”. Since we are in the business of building a mathematically
consistent model of the fair value of the convertible bond and we believe, for that matter, that
the market is the fairest dispenser of value, then a possible interpretation of “the value that the
holder of a convertible bond is owed prior to default” could simply be the fair value, or market
value, of the convertible bond itself! And this market value would already have the default risk
factored in it. Therefore a somewhat extreme model would be one where the holder simply
recovers a fraction of the convertible bond value prior to default (cf. the paper by A. Takahashi
et al., 2001):
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The reason why this is not satisfactory is that we had assumed on the other hand that the holder
would still have the right to convert into the residual value of the underlying share upon default,
so the PDE would really have to look like:
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The recovery rate of the underlying share (1 − η) and the recovery rate of the convertible bond
R being completely independent, we would then be faced with the possibility that κ(1 − η)S

may be greater than RV, even though κS ≤ V at all times. Nothing would then guarantee that
the holder may not optimally elect to convert into the residual value of the share, over and
above the fact that the value he is recovering anyhow, the recovery fraction of the convertible
bond, already incorporates the value of a conversion right! While the recovery procedure is
aimed at compensating the convertible bond investor in case of default, we certainly do not
suppose that it ends up doubling his conversion rights! Conversely, if RV is much greater than
κ(1 − η)S, say R = 1 and η = 1 in an extreme case, it would also seem strange that the holder
should recover the full convertible bond value (including the full value of the conversion right)
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when the share has actually dropped to zero! To sum up, if we are keen on leaving the holder
the right to convert right at the time of default, then the only way to avoid this conflict is to
assume that the value he is likely to recover, or in other words that which “he was owed prior
to default”, has been stripped of the conversion rights first.

So it seems we are back to modeling F as the present value of the underlying straight
bond, and the above digression would have only convinced us that the fair value of “what the
holder is owed prior to default” should take into account default risk, or in other words, that the
present value of the outstanding coupons and face value should be computed under the risky
curve. Thus we have:
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where Z, the present value of the straight bond, solves the same PDE as the convertible bond,
only without conversion rights:
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If the hazard rate were independent of S, the last PDE would integrate to:

Z(t) =
T∑

ti≥t

Cie
−
∫ ti

t
(r+p(1−R))du

where Ci are the outstanding cash-flows. (This is simply a forward calculation under the risky
yield curve). Otherwise we would have to solve in parallel two full PDEs, Let us call this
model the Z-model.

The P -model
So far we have considered two interpretations of the notion of recovery. These corresponded
to two different interpretations of the notion of default of the convertible bond. In one case,
the convertible bond was construed as a debt instrument, binding the issuer to redeem the
principal at maturity and to pay interest in the meantime. Default in this case meant that the
structure of the convertible bond as debt instrument was over, and that the investor had to be
reimbursed the amount of money he had initially invested. Recovery would then simply appear
as a case of early redemption, caused by default, and it would mean recovering a fraction of
the principal right away. In the other case, the convertible bond was construed as a tradable
asset whose fair market value represented all the value there is to consider, and default simply
meant that this value had dropped to zero. Recovery would then amount to recovering part
of the pre-default holdings, or in other words, a certain fixed proportion of this value. So in
the one case, default is a failure of a contractual obligation while in the other, it is simply
a failure of market value. Recovery is defined accordingly: in one case the holder is owed
the principal while in the other he is owed this market value, and the difference between the
two interpretations is further reflected in the fact that the recovered value in the first case is
purely nominal and independent of market conditions, while in the other, it is itself subject to
interest rates and credit spread discounting. The two models further differ in that the N -model
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does not really discriminate between the holder of a zero-coupon bond and the holder of a
coupon-bearing bond as far as recovery is concerned, while the Z-model does. However, the
two models have in common that the holder is offered an amount of cash (RN or RZ ) right
after default and right before he exercises his last option to convert, and that that is the end of
the story.

Now consider a refinement of the N -model where we wish to compensate the holder of
a coupon-bearing bond more than the holder of a zero-coupon bond. What should he recover
exactly? We cannot just pay back a fraction of the sum of the face value and the outstanding
coupons because the coupons were just the reflection of the scheduling of the issuer’s debt over
time. A more appropriate model seems to be one where the holder recovers a fraction of the
present value of the outstanding straight bond, where this present value is discounted under
the risk-free curve. In a sense, the occurrence of default eliminates default risk, and we wake
up the day after in a default-free world where this present value calculation is the only way
to discriminate between the holder of a zero coupon bond, and the holder of a coupon-bearing
bond. Hence the following PDE:

∂V

∂t
+ 1

2
σ 2S2 ∂2V

∂S2
+ (r + pη)S

∂V

∂S
= rV + p(V − max[κ(1 − η)S, RP ])

where:

P(t) =
T∑

ti≥t

Cie
−
∫ ti

t
r(u) du

Let us call this the P -model.
Although it looks as if the P -model is just intermediate between the N -model and the Z-

model (it achieves more than the N -model in integrating the coupons but achieves less than
the Z-model in not applying full discounting with the credit spread), in fact it opens a whole
a new perspective for it is the first among the models we’ve considered so far to assume that
life continues after default, and to bring the post-default world into the picture. Indeed the
discounting of the recovered value under risk-free curve, simple as it may seem, is in fact an
instance of a general category of models which we will examine later and which couple the
pre-default world and the post-default world.

The optimal model
For now let us just note that a common point between all the previous models is that none
of them involved non-linearity such as alluded to earlier. The situation is somewhat akin to
a free-boundary problem. In all the cases above, we imposed on the convertible bond PDE
that the recovery fraction be some value computed separately. Be it a fraction of the face
value, or of the present value of the outstanding payments, we never let F be determined
freely by the value of the convertible bond itself. As mentioned previously, the holder of
a risky bond with an embedded option will want to argue that he was owed more prior
to default than just the present value of the fixed income part of the bond. Having agreed
to exclude the option to convert from the treatment of recovery, this means that contingent
cash-flows such as puts and calls have ideally to be incorporated in the holder’s claim to
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recovery. The problem is that their precise value will depend on whatever optimal exercise
policy the holder was supposed to follow prior to default. Just as the free-boundary problem
inherent in American option pricing translates into maximizing the value of the American
option and the early exercise boundary is itself part of the solution (see Wilmott, 1998), we
feel that the fraction of the convertible bond with other embedded options that the holder
will ideally want to claim for recovery, is the greatest such fraction subject to the con-
straint that it may be legally argued, once default has taken place, that this fraction was
owed to the holder. We are implying, in other words, that our algorithm for computing the
recovery fraction F should really act as a lawyer trying to optimize his client’s interests,
and that the real lawyers should perhaps equip themselves with our convertible bond pric-
ing model under default risk, once it is completed, in order to best serve their client. And
just as the free-boundary problem is essentially non linear, we should expect ours to be
non linear.

Our proposed model: the AFV splitting
Trying to bring together all the desiderata and the constraints that our “philosophical” analysis
of default and recovery seems so far to suggest for the case of the convertible bond, we can
summarize them as follows:

– Split the convertible bond value into two components: V = B + C.
– B is the value that the holder will argue he was owed anyway prior to default, and

consequently will claim he must recover a fraction of according to some universal
recovery rate R. Hence F = RB, in our case.

– B will be worth at least the present value of the underlying straight bond, for the holder
will typically argue that he was owed more than this present value in case of an embedded
options such as a put.

– B should not include the option to convert. On the contrary, the option to convert acts
“externally” to the process of recovery, for the holder will retain the right to convert at
the residual value of the share once default and recovery have taken place.

– C would then have to incorporate this option to convert, and would consequently finish
as the holder’s last option to convert into the residual value of the share when default
takes place.

Given our general PDE for the convertible bond:

∂V

∂t
+ 1

2
σ 2S2 ∂2V

∂S2
+ (r + pη)S

∂V

∂S
= (r + p)V − p max[κ(1 − η)S, RB]

subject to the constraints of early call and early put:

V ≥ max(Bp, κS)

V ≤ max(Bc, κS)

(where Bp is the holder’s put strike price, and Bc the issuer’s call price, Bc > Bp), the fol-
lowing coupled PDEs should in effect be solved in order to value the convertible bond under
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default risk:

∂B

∂t
+ 1

2
σ 2S2 ∂2B

∂S2
+ (r + pη)S

∂B

∂S
= (r + p)B − pRB

∂C

∂t
+ 1

2
σ 2S2 ∂2C

∂S2
+ (r + pη)S

∂C

∂S
= (r + p)C − p max[κ(1 − η)S − RB, 0]

with initial conditions:

B(S, T ) = N

C(S, T ) = max(κS − N, 0)

and subject to the following algorithm (which is the cause of non-linearity):

– If Bp > κS and the continuation value of B + C is less than Bp then B := Bp − C

– Else if Bp ≤ κS and the continuation value of B + C is less than κS then C := κS − B

– If Bc < κS then C := κS − B

– Else if Bc ≥ κS and B + C is greater than Bc then C := Bc − B

– B := B + Coupon, on coupon dates

Notice that the term that multiplies the hazard rate in the right hand side of each PDE expresses
the recovery value of each one of the two components after default. For the bond component
B, this is the usual term, whereas for the option to convert, or equity component C, this is the
intrinsic value of the holder’s last option to convert into the residual value of the share.

Interpretation of the T&F model
in our framework
We argued earlier that T&F do not provide a justification of their mathematical model in terms
of what happens in effect to the convertible bond and to its components in case of default. Their
splitting is just a heuristic splitting which tries to fulfil at best the desiderata that we have listed
above, to the effect that the bond component should capture the cash-flows, fixed and contingent,
that the holder is owed, and the equity component should capture his right to convert, etc., only
it stops short of telling the whole, consistent story of default. What we call “telling the whole,
consistent story of default” is that we be able to write PDEs for B and C that govern their
respective values prior to default by way of explicitly stating the outcome of default for these
values. So it certainly would be interesting to try to test T&F’s model against our criterion.

The general PDE that the convertible bond value solves in the T&F model is the following:

∂V

∂t
+ 1

2
σ 2S2 ∂2V

∂S2
+ rS

∂V

∂S
= rV + pB

It falls in our general schema (1) with X = B, and it splits into:

∂B

∂t
+ 1

2
σ 2S2 ∂2B

∂S2
+ rS

∂B

∂S
= (r + p)B

∂C

∂t
+ 1

2
σ 2S2 ∂2C

∂S2
+ rS

∂C

∂S
= rC
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with initial conditions:

B(S, T ) =
∣∣∣∣ N if κS ≤ N

0 otherwise

C(S, T ) =
∣∣∣∣ 0 if κS ≤ N

κS otherwise

and subject to the following algorithm:

– If Bp > κS and the continuation value of B + C is less than Bp then B := Bp and
C := 0

– Else if Bp ≤ κS and the continuation value of B + C is less than κS then B := 0 and
C := κS

– If Bc < κS then B := 0 and C := κS

– Else if Bc ≥ κS and B + C is greater than Bc then B := 0 and C := Bc

– B := B+ Coupon, on coupon dates

Notice that T&F do not assume that the underlying share drops in the event of default, and that
they assume zero recovery.

If we were to recount the consequences of a default event on a convertible bond holder,
as this transpires through the T&F model, we would have to admit that he first loses B, and
second, that he carries on holding the Black–Scholes asset C which is unaffected by default.
In other words, life continues after default in the T&F model through the subsequent trading
and hedging of the equity component C. See in comparison how life stops in the AFV model
in case of default: the holder has to make a last optimal decision, either to exercise the right to
convert at residual value or to recover a cash amount. And notice that both the bond and equity
component are subject to default risk in the AFV model: they both undergo a jump, the bond
component to its recovery value, and the equity component to its intrinsic value.

The coupling of pre-default and post-default
worlds
Now it would certainly make sense to imagine a continuation of life after default. A softer
appellation of the state of default would be “distress regime”, and a more general model would
be one where the holder may have to reserve until later his decision to convert at the post-default
value of the share. Indeed it may not be optimal to exercise the option either to recover the
cash value or to convert at residual value of the share, right after default. Cases were witnessed
where the conversion ratio was revised after default. Not to mention that the volatility of the
underlying share is most likely to have dramatically changed too. Therefore, a more accurate
description would be one where the holder ends up holding an “ersatz-convertible bond” in
case of default, with bond floor equal to RB, underlying share spot level equal to residual value,
possibly a different conversion ratio (provided the issuer agrees to postpone the reimbursement
of the recovered value), all of which would have to be priced in a new world (i.e. a new PDE),
where volatility may be different, and, last but not least, where credit risk is different. Indeed
an open question is whether the post-default world is not default-free. Could a company that
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has already defaulted default once again on the recovery value of its previous debt? And if
it does, wouldn’t that mean that the post-default world itself has to be further coupled with a
post-default-post-default world?

Assuming for simplicity that default happens only once, or in other words that the distress
regime is default-free, the general convertible bond pricing model we are contemplating may
now be expressed in the following terms:

∂V

∂t
+ 1

2
σ 2S2 ∂2V

∂S2
+ (r + pη)S

∂V

∂S
= rV + p[V − V ′(S(1 − η), t)]

with the usual convertibility, puttability, and callability constraints:

V ≥ max(Bp, κS)

V ≤ max(Bc, κS)

and initial condition:

V (S, T ) = max(κS, N)

(V − V ′) is the jump that the convertible bond value undergoes in the event of default, and the
jump into default is now generally seen as a case of switching to the distress regime.

Case of no life after default
If life ends with the default event, then V ′(S, t) has to assume one of the following “stopped”
solutions:

– V ′(Sτ , τ ) = max(κSτ , RN): N -model
– V ′(Sτ , τ ) = max�κSτ , RZ(Sτ−)�: Z-model
– V ′(Sτ , τ ) = max�κSτ , RB(Sτ−)�: AFV model

where τ is the time of default and Sτ = Sτ−(1 − η).

Case of life after default
Otherwise, if V ′ is allowed to have a life after default, we may write for it the following,
default-free, PDE:

∂V ′

∂t
+ 1

2
σ ′2S2 ∂2V ′

∂S2
+ rS

∂V ′

∂S
= rV ′ (3)

Note that the volatility of the share in the distress regime has possibly new value σ ′.
Imposing the right constraints and the right initial and boundary conditions on this PDE,

will depend on the policy that the issuer wishes to pursue after default.

Suppose he agrees to pay the remaining fraction of coupons and face value at their pre-default
payment dates, but grants a conversion option just at the moment of default and not after, then
the ersatz-convertible bond V ′ will solve PDE (3) with:

– the following initial condition:

V ′(S, T ) = RN
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– the following jump-conditions on coupon dates:

V ′(S, t−) = V ′(S, t+) + R Coupon

– and the following “time of default” constraint:

V ′(S, τ ) ≥ κSτ

where τ is the time of default.
In other words, we would just have the P -model.

Suppose the issuer extends the conversion option and that he maintains the original scheduling
of the interest payments (to be applied now to the recovered fraction). The ersatz-convertible
bond V ′ will solve PDE (3) with, in this case,

– the following initial condition:

V ′(S, T ) = max(κS, RN)

– the following jump-conditions on coupon dates:

V ′(S, t−) = V ′(S, t+) + R Coupon

– and the following continuous constraint:

V ′(S, t) ≥ κS

So really the ersatz-convertible bond will behave like a mini-convertible bond in this case, with
a new bond floor and initial underlying value equal to the recovery value of the share S(1 − η).
(We are of course ignoring how the embedded put or call options would fare under the new
distress regime). This model really looks like the P -model, only the option either to convert
into the recovery value of the share or to recover a fraction of the outstanding straight bond
has been given time value.

Suppose the issuer extends the conversion option but doesn’t want to postpone the payment of
the cash recovery fraction B. V ′ will now solve PDE (3) with

– the following initial condition:

V ′(S, T ) = κS

– the following continuous constraint:

V ′(S, t) ≥ κS

– and the following “time of default” constraint:

V ′(S, τ ) ≥ RB(Sτ− , τ−)



NEXT GENERATION MODELS FOR CONVERTIBLE BONDS WITH CREDIT RISK 131

where τ is the time of default, and B the risky component. This constraint expresses the fact
that the holder has to make the optimal decision, at the time of default, whether to accept the
recovery cash value RB and end the game, or to go on holding his option to convert in the life
after default. However, due to the martingale property of the underlying asset, the solution of
PDE (3) with boundary conditions such as described, collapses to:

V ′(S(1 − η), τ ) = max[RB(S, τ−), κS(1 − η)]

So really this case would be equivalent to the AFV model.

Finally, suppose that the issuer extends the conversion option after default, only it is an option
with a very strange terminal payoff and knock-out barrier.

V ′ solves PDE (3)

– with initial condition

V ′(S, T ) =
∣∣∣∣ 0 if κS ≤ N

κS otherwise

– and boundary condition:

V ′(S, t) = 0 for all S and t such that it is optimal for the CB holder to exercise the put
V ′(S, t) = κS for all S and t such that it is optimal for the CB holder to convert the bond

As for the fraction B that is lost on default and likely to be partially recovered, it solves the
following risky PDE

∂B

∂t
+ 1

2
σ 2S2 ∂2B

∂S2
+ (r + pη)S

∂B

∂S
= (r + p)B

Only suppose that it is subject to the following, no less puzzling, initial and boundary conditions:

B(S, T ) =
∣∣∣∣ N if κS ≤ N

0 otherwise

and B(S, t) = 0 for all S and t such that it is optimal either for the issuer to call the bond, or
for the holder to convert it.

Bringing the pieces together, the convertible bond value would be governed by the follow-
ing PDE

∂V

∂t
+ 1

2
σ 2S2 ∂2V

∂S2
+ (r + pη)S

∂V

∂S
= rV + p[V − max(RB, V ′(S(1 − η), t)]

and it would switch to the following PDE in case of default and in case V ′(S(1 − η), τ ) >

RB(S, τ) at the time of default:

∂V ′

∂t
+ 1

2
σ ′2S2 ∂2V ′

∂S2
+ rS

∂V ′

∂S
= rV ′

where V ′ is this strange knock-out equity option.
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Conclusion: A philosophical refutation of T&F?
When R = 0 and η = 0 the mathematics of the last model becomes identical to T&F. They
both give the same value for the convertible bond and its components. All we have done really
is interpret the formalism of T&F in our general philosophy where the actual consequences
of default are spelled out exactly. An interpretation cannot prove a theory right or wrong.
It only gives us arguments to accept it, or to prefer another theory to it. The T&F model
is mathematically consistent. It produces the kind of behavior the trader expects from the
convertible bond at the extremities of the stock price range. However our general presentation
of the various recovery models has convinced us by now that there is much leeway in the
choice of model for B, the cash claim of the holder in the event of default.

Much as it seemed legitimate that the cash claim, or the value recovered, in the AFV model
should depend on the optimal behavior of the holder in case of no default (remember the case
for the cash settlement of interrupted gambling games), we see no reason why it should so
dramatically depend on such a hypothetical behavior in the T&F case, as to deny him any cash
recovery claim in those regions where he would have optimally converted. Even less so do we
see the reason why the contingent claim that the holder ends up holding in the life after default
should be knocked out in those regions where he would have optimally exercised the put.

T&F would of course object that we are over-interpreting their model. It is only when
viewed in the perspective of the post-default world, that the Black-Scholes component C and
the cash claim B look so strange! For if one were to stop at the surface, and envision the split
into B and C as just a rule for varying the weight of the credit spread in the overall discounting
procedure of the convertible bond value, then all that would matter is that the credit spread
be applied in the “right places”, and this is certainly what T&F achieves! The reason why we
feel uncomfortable with this minimalist requirement, however, is that we do not think we can
possibly shy away from the consequences of the default event. B is the risky component in the
T&F model; hence B is the fraction that I expect to lose in case of default. And if I don’t lose
everything then I keep something of some value, and then I have to explain why this something
has this value. The only explanation is that I can cash in immediately this something through
some action (either actual cash, or conversion on the spot), or that this something is just the
present value of something that lives through future actions and decisions . . .
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D
efault dependence is one of the biggest issues in quantitative finance at the
moment. One of the most popular products in which default dependence occurs
is the first to default swap. In this short article we are going to review different
pricing methodologies for this product.

The product. In a first to default swap (FTDS) the buyer has to pay a fixed
rate at each payment date until the default of any of the reference names defined in the swap
or until the maturity date of the swap – whichever comes first. In return for this payment the
buyer receives a one off payment on the first occurrence of default experienced by any of the
names defined in the swap contract. The contract has very similar payoffs to a vanilla credit
default swap (CDS). The main difference is in what constitutes an event causing payout for the
contract (in one case it is default of a single name and in the other it is the default of any of a
list of names).

Pricing via the risk neutral survival curve. The correspondence between the fixed rate of a
CDS and the risk neutral survival curve of a single reference name is known (assuming the
writer cannot default). Similarly there is a correspondence between the fixed rate of a FTDS and
the synthetic survival curve of the first to default. In this paper we are generally concerned with
calculating this synthetic first to default survival curve from the single name survival curves.
We know from the correspondence above that we can determine a fixed rate for the FTDS if
we have this. All we need to do is to find the first to default survival curve

S1(t) = Prob(min
i

ti ≥ t) (1)

where ti is the default time for asset i (which is in the basket). The difficulty is that there is no
unique way to make the first to default survival curve consistent with the single name survival
curves that we get from market data. There are in fact an infinite number of candidates for the
first to default survival curve.

Bounds for the first to default survival curve. There are two useful bounds for the first to
default survival curve that we can consider. Firstly at each time t the minimum of all individual
survival probabilities is an upper bound. Secondly if we assume negative correlation between
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assets is not possible then the product of all individual survival probabilities at time t is a
lower bound.

The copula method
The Gaussian copula method (see Li, 2000). Suppose there are α assets in the basket. For each
simulation we do the following:

• Simulate α correlated N (0,1) random variables φi , i = 1 . . . α.
• Find xi’s such that CND(φi) = xi for i = 1 . . . α.
• Find the default times ti’s by Si(ti) = xi for i = 1 . . . α.
• Find the first default time t∗ = mini ti .

In the above, CND is the cumulative normal distribution function and Si(t)’s are the marginal
survival curves. Repeating this procedure allows us to construct the first to default survival curve.

Example 1 Let’s assume that there are four assets in the basket and that the four hazard
rates are constant: h1 = 0.3%, h2 = 0.8%, h3 = 1.4%, h4 = 2%. We plot the first to default
survival curve for different correlation matrices (Figure 1). For each correlation matrix all
correlation coefficients are equal. We plot both the lower bound and the upper bound for the
first to default survival curve as well.
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Figure 1: First to default survival curves for different correlation matrices

Note that the effect of the correlation coefficient is to rotate the survival curve. Both bounds
are attainable: the upper bound is attained for correlation 1 and the lower bound for correlation
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0. Assuming maturity 5 years, zero interest rate, 25% recovery and CDS frequency 4, we can
find the ongoing premiums and see the effect of correlation:

Correlation 0 0.2 0.4 0.6 0.8 1

Price 4.5164 4.1451 3.7176 3.2395 2.6803 2.0017

For correlation 1, the theoretical result is 2. Indeed when correlation is 1 the asset with the
highest spread always defaults first.

Note as well that the shorter the maturity the higher the ongoing fee for the first to default
swap. In the table below we compute first to default ongoing premiums for different maturities
(correlation 0.5).

Maturity 1 2 3 4 5

Rate 3.8360 3.6875 3.6116 3.5349 3.4844

In the copula method one doesn’t have to use Gaussian distribution. One could use a
t-distribution, for instance.

t-copulas (see Mashal and Naldi, 2002). Using the same four marginal survival curves as
in the previous paragraph, let’s plot (Figure 2) the first to default survival curves produced
by Gaussian copula (“Gaussian”) and t-copula with degree of freedom 5 (“Student”) when
correlation coefficients are 0.5. The first to default survival curve produced by t-copula is
higher than the one produced by Gaussian copula. We have plotted as well the first to default
survival curve produced by the t-copula method in the case of zero correlation (“Student0” on
the graph). Note that it is well above the lower bound.
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Figure 2: First to default survival curves for Gaussian copula, Student and Gaussian
copula with higher correlation
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Under the same assumptions as before (correlation 0.5), the ongoing premium for Gaussian
copula is 3.4914 and it is 3.2768 for t-copula. The t-copula is computationally more expensive
than the Gaussian copula as it requires – for each first default time simulation – the simulation
of a chi-square distribution. Furthermore it is the cumulative distribution of the t-distribution
that needs to be computed this time.

The Hull–White model
In this model the credit index x of a company follows a standard Brownian motion. Default can
only occur at discrete times Tn’s, n = 1, . . . , N where TN is the maturity of the contract. At
each time Tn there’s a wall and defaults occur when the credit index hits the wall. The height
B(Tn) of the wall is such that the probability for the credit index for not hitting any of the
walls up to time Tn is equal to S(Tn), the survival probability of this company at that time. In
their paper Hull and White (2000) find B(T1), . . . , B(TN) by inverting integrals. Here we prefer
to invert the N backward Kolmogorov partial differential equations below. For n = 1, . . . , N

we’re looking for B(Tn) such that the solution V (0,0) (the probability of not hitting any of the
future barriers) of the problem below is V (0, 0) = S(Tn):

Vt + 1

2
Vxx = 0 (2)

with boundary conditions:

∀ m < n,V (Tm, x) = 0 for x ≤ B(Tm) (3)

and final condition:

V (Tn, x)

{
1 if x > B(Tn)

0 otherwise.

We do not want N to be too large as computation time would be too long and it could
introduce numerical problems near time 0 (for N very large we almost have a continuous
default barrier – for which the slope at time zero is minus infinity). Once we have found
the B(Tn)’s we find the first to default survival probabilities by simulating correlated discrete
Brownian motions. The first to default survival curve is found by loglinear interpolations and
the pdf for first default time is therefore slightly affected.1 In terms of computation time, for
each first default simulation we need to simulate N × α normal variables (sometimes less when
default occurs and we’re not interested in knowing the 2nd to default survival curve).

In Figure 3 we plot the Hull–White barriers as well as the thresholds of the Gaussian copula
method corresponding to spread 3% and recovery rate 25%.

In this model the correlation has a better intuitive interpretation and evaluation of the corre-
lation inputs is easier to do. In the Hull–White model correlation can be a function of time too.

Example 2 Let’s find the ongoing premiums for both models. We are going to price differ-
ent first to default swaps. The base scenario is maturity 5 years, annual frequency, correlation
0.5, 4 assets with constant spreads 30 bps, 80 bps, 140 bps and 200 bps, zero interest rate. Each
scenario (from 1 to 10) has only one input differing from the base scenario. For scenario 1,
correlation coefficients are 1, scenario 2 correlation coefficients are 0, scenario 3 interest rate is
10%, scenario 4 maturity is 10 years, scenario 5 maturity is 1 year, scenario 6 all four spreads
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Figure 3: Hull–White walls and Gaussian copula thresholds

are 20 bps, scenario 7 all four spreads are 500 bps, scenario 8 frequency is biannual, scenario 9
there are 10 assets and the spreads are 30 bps, 30 bps, 50 bps, 50 bps, 80 bps, 80 bps, 100 bps,
100 bps, 120 bps and 120 bps. For scenario 10 the hazard rate is not constant and the term
hazard rate is in the Appendix.

Copula HW Copula-HW (C-HW)/HW Scenario

base 3.517 3.596 −7.9% −2.197%

1 2 2 0% 0% correlation 1

2 4.585 4.583 0.2% 0.04% correlation 0

3 3.56 3.621 −6.1% −1.68% high interest rate

4 3.343 3.416 −7.3% −2.13% long maturity

5 3.9 3.894 0.6% 0.15% short maturity

6 0.666 0.684 −1.8% −2.63% low spreads

7 13.604 13.952 −34.8% −2.49% high spreads

8 3.496 3.563 −6.7% −1.88% high frequency

9 4.473 4.659 −18.6% −3.99% many assets

10 5.01 5.084 −7.4% −1.45% non-constant hazard
rate
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For scenarios 1, 2 and 5 both models give the same result. When correlation is 1 (scenario
1) the two models give the same result because in our example maxi Bi(Tn) is attained by
the same asset for each time Tn. For correlation 0 the result is true in general. For scenario 5
both models give the same result because we have used N = 1, and in this case both models
are equivalent.

As for the copula method, the Hull–White method can be used with non-Gaussian distri-
butions.

Summary and conclusion
There are different methods to go from a set of single name survival curves to a multiple asset
survival curve that can be used to price an Nth to default swap. We have reviewed briefly
and compared results for three of these methods (a) Gaussian copula (b) t-distribution cop-
ula and (c) Gaussian Hull–White method. We have shown that Gaussian copula and Gaussian
Hull–White give, over a range of scenarios, rather similar results and in some cases by con-
struction identical results. The Gaussian copula method is easy to implement and requires less
computational time than the Hull White method. Therefore for practical purposes the Gaussian
copula model is the more attractive to implement of these two.

The Gaussian distribution has thin tails compared to other distributions. Equity and other
markets have been shown by many studies to have fatter tails than those implied by the normal
distribution. As we are measuring events of default that are by nature tail events this is of
some concern to us. An alternative is to use a distribution with fat tails such as the Student’s
t distribution. We note that this change in assumption changes our results more significantly.

Appendix
Spreads for scenario 9.

Asset 1 Asset 2 Asset 3 Asset 4

1 year 0.5 4 1 0.5

2 years 1 3.5 1 0.5

3 years 1.5 3 1 0.5

4 years 2 2.5 1 0.5

5 years 2.5 2 1 0.5
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Taken to the Limit:
Simple and
Not-so-simple Loan Loss
Distributions
Philipp J. Schönbucher
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I
n his influential papers, Vasicek (1987, 1997) showed that in a simplified multi-obligor
version of the Merton (1974) credit risk model, the distribution of the losses of a large
loan portfolio can be described by the inverse Gaussian distribution function. In his
setup, the probability that the fraction L of defaults in the portfolio is less than a given
level q is given by

P[L ≤ q] = �

[
1√
�

(
√

1 − � �−1(q) − �−1(p))

]
(1)

where p is the default probability of any individual obligor in the portfolio, and � is the
asset value correlation between any two obligors (�(·) denotes the cumulative standard normal
distribution function).

Usually the loss distribution of a credit risk model can only be determined using lengthy
numerical simulations, thus a simple closed-form solution like (1) which involves just two
parameters has a lot of appeal: It can be very useful to understand the behaviour of the more
complex variants of the model, to find benchmark parameter values that can be fitted to historical
observations, or simply as a “quick and dirty” first approximation in all situations when setting
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up a full credit risk model would take too long. Furthermore, as the Credit Metrics model
(Gupton et al., 1997) is also based upon the Merton (1974) firm’s value setup, Vasicek’s result
can also be regarded as a limiting case of this very popular model, and many of the qualitative
features of the Credit Metrics model can be analysed in closed-form without having to resort
to the usual lengthy simulations. The accuracy of the approximation is remarkably good, the
approximation error becomes unacceptable only when very low asset value correlations � <

1%, very few obligors (<20) or extremely heterogeneous exposure sizes (e.g. one dominating
obligor) are considered.

Thus it is no surprise that the Vasicek model has been quickly adopted in practice, large
portfolios are managed on the basis of (1) and the relationship is also used in a regulatory
context to set risk measures for credit exposures.

Despite its widespread use, the Vasicek model does have some shortcomings beyond the
obvious over-simplification of identical default risks and exposure sizes of the obligors. For
instance, there are significant difficulties replicating the qualitative shape of the loss distribution.
For a given default probability parameter p, one can only vary � to fit both the main part of the
loss distribution and the tail of the distribution. If a manager of a CDO wants to calibrate � in
such a way that tails of the distribution are fitted well (i.e. such that the senior and super-senior
tranche of his CDO are priced correctly), then he may experience serious mispricing of the main
body of the distribution (i.e. the mezzanine and equity tranches). Furthermore, the shape of the
distribution changes significantly when different time horizons (and thus default probabilities)
are considered. Both problems have their roots in the implicit assumption of a joint Gaussian
distribution of the obligors’ asset value processes which imply a very specific transition from
the limiting case of independence (� = 0, all probability at L = p) to the fully dependent case
(� = 100%, all probability at L = 0 and L = 100%).

In this paper we will give a class of similar approximative loss distributions of large portfo-
lios where we do not use multivariate normally distributed random variables to trigger defaults.
Instead we model the dependencies between the defaults using Archimedean copula functions.
Archimedean copula functions are a tractable class of joint distribution functions with char-
acteristics that can be significantly different from the characteristics of a multivariate normal
distribution function.

The aim of this exercise is to analyse the effects that the specification of the dependency
structure between the individual default events can have on the loss distribution of the whole
portfolio. Therefore we can use a very stylised model and we can keep all other parameters
fixed, such as individual default probabilities, exposure size, and even the pairwise default
correlations, in order to isolate the effects of the dependency structure.

The main tool that we use to achieve this result is an algorithm for the generation of random
variates with a given Archimedean copula function as joint distribution function which was first
proposed by Marshall and Olkin (1988). This algorithm in itself may already be a valuable tool
for the reader, because a major obstacle against the wider adoption of alternative dependency
models in risk management to date was the lack of efficient numerical implementation schemes
for large-scale simulations.

In the next section we will introduce the notion of a copula function and motivate why it is
a good idea to check the results of a Gaussian model against alternative specifications of the
dependency structure. Then we will introduce the special class of Archimedean copulae and
give the algorithm to generate random variates whose dependency structure is described by
an Archimedean copula. We specify the algorithm for the Clayton, the Gumbel and the Frank
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copulae, three special cases where the data generating process can be given in closed-form.
Then, we enter the portfolio credit risk model and derive closed-form formulae for the loss
distribution of a large loan portfolio whose defaults are driven by random variables with this
type of dependence. The numerical implementation and comparison of these loss distributions
will show that the nature of the dependency structure does have a significant effect on the loss
distribution, even if the default correlation between any two obligors is held fixed.

The literature on dependency modelling and copula functions has grown substantially in
recent years, therefore we cannot give a full overview here. The reader is referred to the
excellent (but slightly technical) textbook by Joe (1997) for the basics; another popular textbook
is Nelsen (1999). The standard reference for the generation of non-uniform random variates is
Devroye (1986) which contains hundreds of algorithms. For the application of copula functions
to credit risk modelling we should mention Li (2000) and Schönbucher and Schubert (2001) and
Frey and McNeil (2001). Frey and McNeil (2001) give an overview of the different approaches
to portfolio credit risk modelling with a particular focus on the dependency structures implied
by the models. They also analyse the loss distribution of large loan portfolios in the more
general setup of Bernoulli Mixture models, and compare the differences between a Gaussian
(e.g. Credit Metrics) and t-Copula dependency structure.

Copula functions and Laplace transforms
Copula functions
Whenever several dependent dimensions of uncertainty have to be modelled, the standard (and
often also the only) approach is to somehow transform the problem in such a way that a
multivariate normal distribution can be used to model the uncertainty. In the modelling of
equities, exchange rates and interest-rates, multivariate lognormal distributions are used (i.e.
exponentials of normals), squared Gaussian and related models are also popular, and in portfolio
credit risk modelling the Credit Metrics model is driven by a multivariate normal distribution
of the obligor’s asset value processes.

Using a multivariate normal distribution as driver of the model leads to a so-called Gaussian
dependency structure of the key variables of the resulting model. This can be a restrictive
modelling choice; it is just one out of an infinite number of possible joint distribution functions.
The full set of all possible dependencies between I random variables is given by the set of all
I -dimensional copula functions.

So what is a copula? Roughly speaking:

An I -dimensional copula is a distribution function on [0, 1]I with uniform marginal
distributions.

That is all. Copulas concentrate on the dependency, so the marginal distribution is irrelevant.
It is set to a uniform distribution because this makes the later incorporation of other marginal
distributions straightforward, and we recover the benchmark case of the uniform distribution
on [0, 1] if we ignore the other I − 1 random variables.

The technical definitions of copulas that are given in the mathematical literature often
look quite different, but to a financial modeller, this is the definition to build an intuition
from. The reason why copulae provide a useful framework to analyse dependencies between
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random variables is the fact that to every multivariate distribution function there is a copula
which contains all information on dependence. This is the essence of the following theorem
by Sklar:

Theorem 1 (Sklar). X1, . . . , XI with marginal distribution functions F1, F2, . . . , FI and
joint distribution function F . Then there exists an I dimensional copula C such that:

F(x1, . . . , xI ) = C(F1(x1), F2(x2), . . . , FN(xI )) ∀x ∈ R
I ,

C(u1, . . . , uI ) = F(F
[−1]
1 (u1), . . . , F

[−1]
1 (uI )).

If F1, F2, . . . , FN are continuous, then C is unique.
In particular, the copula C(·) is the distribution function of the transformed random variables

U1 = F1(X1), . . . , UI = FI (XI ).

So, to every distribution function on R
I , there is a corresponding copula function. For

example, if the random variables Xi are independent, then the independence copula is just the
product of the ui

C(u1, . . . , uI ) = u1 · u2 · . . . · uI .

If X1, . . . , XI have a multivariate normal distribution with covariance matrix � and mean zero
(for simplicity), then the Gaussian copula is reached:

C(x1, . . . , xI ) = ��,0(�
[−1]
σ 2

11
(x1), . . . , �

[−1]
σ 2

II

(xI )),

where �σ 2() is the univariate cumulative normal distribution function with variance σ 2 and
mean zero, and �� the multivariate cumulative normal distribution function with covariance
matrix �.

As the next section will show, there are even more possibilities.

Archimedean copula functions
Copula functions do not impose any restrictions on the model at all, so in order to reach a model
that is to be useful in practical applications, a particular specification of the copula must be
chosen. As we want to provide an alternative to the Gaussian model, we use the Archimedean
copula functions as a benchmark model.

Definition 1 (Archimedean copula)
(i) An Archimedean copula function C : [0, 1]I → [0, 1] is a copula function which can

be represented in the following form:

C(x) = φ[−1]

(
I∑

i=1

φ(xi)

)
, (2)

with a suitable function φ : [0, 1] → R+ with φ(1) = 0, φ(0) = ∞.
(ii) The function φ : [0, 1] → R+ is called the generator of the copula.
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Not every function φ is a suitable generator for a copula function; there are restrictions on the
signs of the derivatives of φ which become more stringent with increasing dimension I . But
in the following case the existence of the copula can be ensured:

If F(x) is a distribution function of a positive random variable with F(x = 0) = 0 and

F̂ (y) =
∫ ∞

0
e−yxdF (x)

is its Laplace transform, then φ(t) := F̂ [−1](t) is the generator of a Archimedean copula of
dimension I for every I > 0. (In fact, φ[−1]() must be a Laplace transform if it is to be an
admissible generator for all dimensions I > 0.)

From equation (2) we can see that Archimedean copula models are exchangeable, i.e. the
dependency between any two (or i) different risk factors does not depend on the question
which two (or i) risk factors were chosen. For our aim of assessing portfolio credit risk in
large, homogeneous portfolios this does not pose a major restriction, in fact it is a desirable
property. (For other applications this may not be the case.)

In Table 1 we give some popular specifications of the generator functions φ and their inverses
φ[−1], together with the inverse Laplace transform of the inverse generator ψ(s) = L[−1]

φ[−1](s).
We will need Laplace transform and inverse Laplace transforms later on, so this may be a good
place to define them:

TABLE 1: SOME GENERATORS FOR ARCHIMEDEAN
COPULAS, THEIR INVERSES AND THEIR LAPLACE
TRANSFORMS. SOURCE: MARSHALL AND OLKIN (1988)

1. Name: Clayton
φ(t) = (t−θ − 1)

φ[−1](s) = (1 + s)−1/θ

Parameter: θ ≥ 0
γ -Distribution: Gamma (1/θ)

Density of γ :
1

	(1/θ)
e−yy(1−θ)/θ

2. Name: Gumbel
φ(t) = (− ln t)θ

φ[−1](t) = e(−s1/θ )

Parameter: θ ≥ 1
γ -Distribution: α-stable, α = 1/θ

Density of γ : (no closed-form is known)

3. Name: Frank

φ(t) = − ln
e−θt − 1

e−θ − 1

φ[−1](t) = − 1

θ
ln[1 − e−s(1 − e−θ )]

Parameter: θ ∈ R\[0]
γ -Distribution: Logarithmic series on N+ with α = (1 − e−θ )

Distribution of γ : P [γ = k] = −1

ln(1 − α)

αk

k
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Definition 2 (Laplace transform) Let Y be a non-negative random variable with distri-
bution function G(y) and density function g(y) (if a density exists). Then:

(i) The Laplace transform of Y is defined as:

LY (t) := E[e−tY ] =
∫ ∞

0
e−tydG(y) =

∫ ∞

0
e−tyg(y) dy =: Lg(t), ∀t ≥ 0. (3)

(ii) Let ψ : R+ → [0, 1]. If a solution exists, the inverse Laplace transform L[−1]
ψ of ψ is

defined as the function χ : R+ → [0, 1] which solves:

Lχ (t) =
∫ ∞

0
e−tyχ(y) dy = ψ(t), ∀t ≥ 0.

(iii) The distribution of Y is uniquely characterized by its Laplace transform.

Generation of copula-dependent random numbers
Despite the importance of an accurate model for the dependency structure of the returns of
the assets in a portfolio, an obstacle for practical implementation of any copula-based model
was the absence of an efficient method for generating copula-dependent random variates. These
dependent random variates are essential for the simulation of the portfolio’s risk/return profile,
and also for the development and testing of estimation methods for the parameters of these
distributions.

The most frequently used method is the conditional distributions method which involves
a differentiation step for each dimension of the problem. For this reason it is not practical in
dimensions larger than ten. As an alternative we propose a method which is based upon the
representation of a large class of copula functions with Laplace transforms and mixtures of
powers as described in Joe (1997).

Our strategy for the sampling of a random vector X with the distribution function above is
the following algorithm by Marshall and Olkin (1988).

Proposition 1 (Marshall/Olkin 1988). Let φ[−1] : R+ → [0, 1] and φ : [0, 1] → R+ be
continuous, strictly decreasing functions. Follow the following algorithm:

(a) Draw U1, . . . , UI i.i.d. uniformly distributed on [0, 1].
(b) Draw the mixing variable Y with the following properties:

• We call Y ’s distribution function G (and its density g if a density exists).
• Y is independent of U1, . . . , UI

• Y ’s Laplace transform is φ[−1](·)

LG(s) := E[e−sY ] =
∫ ∞

0
e−sydG(y) = φ[−1](s). (4)

(c) Define

Xi := φ[−1]

(
− 1

Y
ln Ui

)
1 ≤ i ≤ I. (5)
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Then the joint distribution function of the Xi, 1 ≤ i ≤ I is

P[X ≤ x] = φ[−1]

(
I∑

i=1

φ(xi)

)
,

the Xi have the Archimedean copula function with generator φ(·) as distribution function.

From (4) follows that the density of Y is the inverse Laplace transform of φ[−1]. In many
cases the distribution of Y can already be identified by looking at L[−1](φ[−1]) and an efficient
simulation algorithm may already be available. Otherwise Y can also be generated using a
uniform random variable V as follows:

Y := G[−1](V ) where G = L[−1](φ[−1]).

Proof First note that:

P[Xi ≤ xi |Y ] = exp{−φ(xi)Y },
and that the unconditional distribution function of Y is G. The claim of the proposition follows
by using iterated expectations:

P[X ≤ x] = E

[
I∏

i=1

P[Xi ≤ xi |Y ]

]

= E

[
I∏

i=1

exp{−φ(xi)Y }
]

= E

[
exp

{
−Y

I∑
i=1

φ(xi)

}]

= LG

(
I∑

i=1

φ(xi)

)
= φ[−1]

(
I∑

i=1

φ(xi)

)
. (6)

The key point about the algorithm shown above is that conditional on the realisation of Y ,
the random variables Xi are independent. This conditional independence property was exploited
in the proof of the algorithm, and it will also drive the results in the credit risk model.

The portfolio credit risk model
We now have a recipe (a set of recipes) to generate a set of I dependent random variables with
uniform marginal distributions. Let us use this recipe to define a simple portfolio default risk
model. The model setup is as follows:

Assumption 1 (Finite Portfolio):

• There are I obligors, we consider defaults up to a fixed time-horizon T .
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• All obligors have the same exposure size and the same loss in default. Thus, the number
D of defaults is sufficient to determine the loss of the portfolio.

• Obligor i has the default probability pi until T .
• Obligor i defaults, if and only if Xi ≤ pi , where Xi is generated by the algorithm of

proposition 3.1.

The loan loss distribution for a finite portfolio
In this setup, the loan loss distribution can be easily derived by conditioning on the mixing
variable Y . Conditional on Y = y, the default probability of an obligor i is:

pi(y) : = P[Xi ≤ pi |Y = y] = P
[
φ[−1]

(
− 1

y
ln Ui

)
≤ pi

]

= P
[
− 1

y
ln Ui ≥ φ(pi)

]
= P[ln Ui ≤ −yφ(pi)]

= P[Ui ≤ exp{−yφ(pi)}] = exp{−yφ(pi)}
If all obligors have the same unconditional default probability p = pi, ∀i ≤ I , then

p(y) = exp{−yφ(p)} and the probability of k defaults in the portfolio is

P[D = k] =
∫ ∞

0

(
I

k

)
pk(y)(1 − p(y))I−kG(dy). (7)

The large portfolio approximation
Assumption 2 (Large Portfolio) In addition to assumption 1 we assume:

• All obligors have the same unconditional default probability p.
• The number of obligors I is very large (I → ∞), the relevant quantity for the portfolio

risk is the fraction L of defaulted obligors in the portfolio.

By the law of large numbers, the fraction L of defaults will almost surely be p(y) in the
limit of the very large portfolio, whenever the mixing variable Y has taken the value of y.
Thus, the probability of having more than a fraction q of defaults in the portfolio is:

P[L ≤ q] = P[p(Y ) ≤ q] = P[exp{−Yφ(p)} ≤ q] = P[−Yφ(p) ≤ ln q]

= P
[
−Y ≤ ln q

φ(p)

]
= P

[
Y ≥ − ln q

φ(p)

]
= 1 − G

(
− ln q

φ(p)

)
.

The distribution F and the density f of the limiting loss distribution are thus

F(q) = 1 − G

(
− ln q

φ(p)

)
, (8)

f (q) = 1

qφ(p)
g

(
− ln q

φ(p)

)
, (9)

where we assumed in (9) that the mixing variable has a density.
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Some examples
Armed with the large portfolio loss distribution functions (8) and (9), we can now analyse
the effects of using different dependency specifications (i.e. different copulae, generated by
different generator functions φ) and compare them to the standard Gaussian specification used
by Vasicek.

We only compare the Clayton and the Gumbel model to the Gaussian case, and excluded
the Frank copula. This was done because the mixing variable in the Frank copula does not have
a density (it is integer-valued), and because the main effects should already become clear with
these two comparison cases.

We use the following case as our benchmark:

Assumption 3 (Benchmark Case):

• The individual default probability is p = 5%.
• The linear correlation between two default events is ρ = 10%.

The Vasicek set-up
First, we define our benchmark case, the Gaussian model used by Vasicek.

Assumption 4 (Vasicek model):

(1) The default of each obligor i is triggered by the realisation of the value Vi of the assets
of its firm.

(2) Vi is normally distributed. Without loss of generality1, the Vi are standardised Vi ∼
�(0, 1).

(3) Obligor i defaults if its firm’s value Vi is below a barrier K , i.e. if Vi ≤ K . K is
chosen such that the individual default probability p is matched: p = �(K).

(4) The values of the assets of the obligors are driven by: one common factor Y , and an
idiosyncratic standard normal noise component εi

Vi(T ) = √
� Y + √

1 − � εi ∀i ≤ I,

where Y and εi, i ≤ I are i.i.d. �(0, 1)-distributed.

Again, conditional on the realisation of the systematic factor Y , the firm’s values and the
defaults are independent, only now the default risk enters additively as a systematic factor
Y in the evolution of the firm’s asset values. The asset correlation between two obligors is
� = E[Vi(T )Vj (T )]. This model is very similar to the JPMorgan Credit Metrics model; it can
be transformed to our copula-setup by defining:

Xi := �(Vi) and p := �(K).

Thus, the Vasicek model can be written as a copula model with a Gaussian copula function.
The resulting loss distribution in the large portfolio setup is:

F(q) := P[L ≤ q] = �

(
1√
�

(
√

1 − � �−1(q) − �−1(p))

)
.
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The probability density function f (q):

f (q) =
√

1 − �

�
exp

{
1

2
(�−1(q))2 − 1

2�
(�−1(p) − √

1 − � �−1(q))2

}
.

Figure 1 shows the limiting large portfolio loss distribution for various values of the asset
correlation. In order to be able to distinguish the tail behaviour, the figure is also shown in
log-scale. For relatively small values of the asset correlation, the loss distribution is peaked
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Figure 1: Loan loss distributions for the Vasicek model, p = 5%,
various asset correlations (�V = 10%, 20%, 30, 55%)
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around the average default rate 5%, but with increasing asset value correlation (and thus default
correlation), the distribution skewed and has a single (but finite) peak at zero. This is a “balancing”
effect that compensates the shift of probability mass into the tail of the loss distribution. Figure 2
shows the development of the loss distribution if the asset correlation is increased to extremely
large levels. In extreme cases, the distribution exhibits a second peak at q = 1, i.e. 100% losses.
The loss distribution approaches the scenario with the highest default dependency, this is the
scenario in which either all firms default (with 5% probability), or none (with 95% probability).

The Clayton copula
The density of the loss distribution in the Clayton copula model is given by (9), where φ() is the
generator of the Clayton copula and g() the density of a gamma distribution with parameter 1/θ .
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Figure 2: Loan loss distributions for the Vasicek model, p = 5%,
various large asset correlations (�V = 50%, 75%, 90%)
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Figures 3 and 4 show the loan loss distributions in the Clayton model for small (θ = 5%,
10%, 18.12%) and large (θ = 50%, 100%, 200%) parameter values. (The parameter θ in the
Clayton model is unbounded.) The qualitative behaviour of the model resembles that of the
Gaussian/Vasicek model: again we have a single peak around the average loss rate in the cases
of low default dependency, the distribution shifts to skewed distribution with a single peak at
q = 0 as the dependency is increased, and finally, for very large dependencies, we approach
the extreme case with a second peak at 100% defaults.
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Figure 3: Loan loss distributions for the Clayton model, p = 5%,
parameter (θ = 5%, 10%, 18.12%). (θ = 0 corresponds to independence,
dependence increases with θ )
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Figure 4: Loan loss distributions for the Clayton model, p = 5%, large
dependency parameter (θ = 50%, 100%, 200%)

The Gumbel copula

For the Gumbel copula we again must substitute in (9), but now φ() is the generator of the
Gumbel copula and g() the density2 of a α-stable distribution with parameter α = 1/θ .

Figures 5 and 6 show the loan loss distributions in the Gumbel model. We see a markedly
different behaviour from the Gaussian and the Clayton case. This behaviour is driven by the
special properties of the Gumbel copula: The Gumbel copula exhibits strong upper tail depen-
dency. This means that – even if linear correlations or similar measures look the same – the
Gumbel distribution implies far more joint extreme events than for example the Gaussian copula
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Figure 5: Loan loss distributions for the Gumbel model, p = 5%,
parameter (θ = 1.05, 1.1, 1.2, 1.39). (θ = 1 corresponds to independence,
dependence increases with θ )

which has no tail dependency. (The Clayton copula exhibits lower tail dependency, i.e. extreme
movements only cluster in one direction.)

Figure 5 shows very clearly the implications of the strong tail dependency: as we move
away from the independence case (θ = 1, all mass at q = p = 5%), the probability mass is not
simply flattening out and widening a bit as it did in the Gaussian case or the Clayton copula.
No: the probability mass moves directly to the extreme event, here the “no defaults at all”
(q = 0) event. Therefore, a second peak appears at q = 0 with a trough of probability for the
intermediate events, in fact, at q = 0 there is a singularity in the density of the loss distribution.
This can be seen nicely at the plot for θ = 1.1. As dependency is further increased, the peak
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Figure 6: Loan loss distributions for the Gumbel model, p = 5%,
large dependency parameter (θ = 1.5, 2, 3, 5, 8)

around q = 5% disappears, and in the end the distribution slowly approaches the perfect positive
dependence limit with mass only at q = 0 and q = 100%.

Comparison for constant bivariate default correlation
If the default correlation (i.e. the linear correlation coefficient) between two default events is
fixed at ρ = 10%, we have to choose the following model parameters: �V = 30.55% in the
Vasicek model, θ = 18.12% in the Clayton model, and θ = 1.39 in the Gumbel model. This
level of bivariate default correlation corresponds to a high, but not unrealistic level of default
correlation in the loan portfolio.

In general, just specifying the default correlation between any two obligors does not com-
pletely determine the loss distribution of the whole portfolio. There are many more defaults
involved in the events that we are considering here. Even in a portfolio of just 100 obligors,
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a 10% loss rate would amount to 10 defaults, and it requires a lot of faith to assume that the
joint default probabilities of any two obligors gives us much information on the probability of
this event. (It does give some information, though.) For the comparison, we used the default
correlation primarily to fix the last remaining parameter in the models, and we are interested
how large the differences between the different models may be.

Figure 7 shows the result of the model comparison. There are two surprises: first, the
Gaussian (Vasicek) model and the Clayton model imply almost identical loss distributions,
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Figure 7: Loan loss distributions for the Gaussian (Vasicek), the
Clayton and the Gumbel model. Default correlation between two
default events is fixed at ρ = 10%. Individual default probability
p = 5%. The parameter values are �v = 30.55% (Vasicek);
θ = 18.12% (Clayton); and θ = 1.39 (Gumbel)
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and it seems that for these models, the bivariate default correlations do have very similar
implications for the loss distribution.

The second surprise is the large deviation of the Gumbel model from the other two. The
Gumbel model has significantly more probability mass for losses between 10% and 30% of the
portfolio (and for zero losses: the density is infinite there), but then again it has significantly
less probability mass for higher default events (losses larger than 30%). This result cannot
be driven by any correlation-type measure that only measures the dependency between two
obligors’ defaults, it is driven by higher order moments.

Finally, we should mention that the Frank copula would imply a loss distribution that is
yet again fundamentally different. The mixing variable in the Frank copula only takes values
on the positive integers. Thus, the large portfolio losses can only take a countable number of
values. The loss distribution will be discrete, with discrete steps for different values of Y .

Conclusion
This paper has shown three things. First, modelling joint distributions in a different way than
just using a variant of the multivariate normal distribution function is feasible. In particular,
there are algorithms (such as the one by Marshall and Olkin, 1988) that allow the efficient
generation of dependent random numbers in high dimensions. We gave a few examples, but
the class of Laplace transforms of positive random variables (and thus of possible dependency
structures) that can be generated with the Marshall and Olkin (1988) algorithm is much larger.

Second, it is worthwhile to investigate the effect of the implicit assumption of a Gaussian
dependency structure on the risk measures and the returns distribution of the portfolio. As we
have seen in the credit risk case, this effect can be either minor (if one only compares the
Vasicek model to the Clayton-dependent model) or significant (if one thinks the Gumbel copula
is a realistic alternative).

And finally, we have provided an application of this modelling strategy to the field of credit
risk modelling. Credit risk is a particularly interesting application because here the consequences
of extreme events are large, and much less data is available than for example for equity returns.
Yet, the simple 0-1 structure of default-survival allowed us the derivation of some closed-form
solutions for the loss distributions of large portfolio loan losses, and we could compare the
implications of these models without having to resort to lengthy simulations.

FOOTNOTES & REFERENCES
1. This amounts to a shift in the coordinate system and a subsequent linear scaling. As the
default barrier K will be chosen to fit the default probability (and thus implicitly follows the
same transformation), this transformation does not change the structure of the model.
2. There is no closed-form solution for the density of a α-stable distribution, but it can be
readily evaluated from its Fourier transform.
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Sovereign Debt Default
Risk: Quantifying the
(Un)Willingness to Pay
Ephraim Clark

Wilmott magazine, May 2003

T
he creditworthiness of a corporate borrower depends, for all practical purposes, on its
ability to pay. Sovereign borrowers generally have the power to unilaterally abrogate
contractual obligations, and, thus, besides the ability to pay, their creditworthiness
depends on the government’s willingness or unwillingness to pay even if it has
the ability.

The literature on country risk has recognized the importance of the willingness factor. Eaton,
Gersovitz and Stiglitz (1986), for example, argued that because a country’s wealth is always
greater than its foreign debts, the real key to default is the government’s willingness to pay.
Borensztein and Pennacchi (1990) suggest that besides other observable variables that are tested,
the price of sovereign debt should be related to an unobservable variable that expresses the debtor
country’s willingness to pay. Clark (1991) suggests that the price of sovereign debt is related to
a country’s willingness to pay which is motivated by a desire to avoid the penalties of default.

From a practical point of view for default risk analysis, the problem with the concept of
the willingness (unwillingness) to pay is that it is not readily observable. However, although it
is not directly observable, it can be measured, as we shall see, with a high degree of accuracy
as an American style call option where the decision to default depends on the government
optimizing the trade-off between the gains to be reaped through non payment and the costs
associated with not paying. Furthermore, the model generates estimates of the parameters that
make it possible to make reasonable forecasts of sovereign debt defaults.

The model: unwillingness as an option
The argument for modelling the unwillingness to pay as an American style call option goes
as follows. Based on the generally accepted concept of national sovereignty, a government has

Contact address: Middlesex University, The Burroughs, London NW4 4BT, UK
E-mail: e.clark@countrymetrics.com Telephone: (44) 0181 411 5130 www.countrymetrics.com
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an ongoing de facto right to repudiate or default on its foreign debt, if this is deemed in the
national interest. There is, however, no obligation on the part of the government to default.
Thus, it is an option. It is an American style option because the government can default at any
time it chooses. As we mentioned, this it will do when deemed in the national interest and
the national interest is when the benefits from defaulting are large enough to offset the costs
of doing so. Hence, if we measure the relative value of default with respect to the costs of
defaulting, we are in effect measuring the degree of the government’s unwillingness to honour
its contractual debt obligations. The higher the value of the option to default, the less willing
is the government to pay.

To value this option, let x represent the nominal amount of foreign debt outstanding. This is
the amount at stake if the government decides to default.1 To the extent that autonomous com-
mercial and capital transactions are not perfectly offsetting, the nominal amount of sovereign
foreign debt outstanding has a random element that can be represented by geometric Brown-
ian motion:2

dx(t) = αx(t) dt + σx(t) dz(t) (1)

where α = the growth rate of the foreign debt, which depends on the economy’s require-
ments for external financing.

dz(t) = a Wiener process with zero mean and variance equal to dt .
σ 2 = the variance parameter of dx(t)/x(t).

The instantaneous dividend rate or convenience yield is equal to R − α = ψ .
When the government defaults, the net value that it receives is equal to the amount of the

debt outstanding less the penalties and other costs associated with its action. In the literature,
these penalties and costs take two forms. The first revolves around the costs associated with the
loss of access to capital markets (Eaton and Gersovitz, 1981). The second concerns the costs
due to direct sanctions such as the elimination of trade credits or the seizure of assets (Bulow
and Rogoff, 1989).

Let C represent the indemnities and costs associated with default. These costs will be
influenced by the economy’s overall performance, which varies stochastically over time, and the
extent to which foreign resources, both imported and borrowed, which also vary stochastically
over time, play a role in the economy. They will also be influenced by the reactions to the
default of a wide range of players including politicians, businessmen, bankers, international civil
servants, and consumers. Typically these reactions vary according to circumstances and current
perceptions surrounding them. Finally, perceptions themselves are likely to vary according to
the evolution of a complex set of economic, political, social, environmental, etc. variables at
the local, regional, and international levels. In short, the sources of variation are numerous and
unpredictable enough that there should be a considerable random element in variations of C.

Since default costs cannot be negative and since the sources of variation are numerous and
random, the stochastic element of C can be represented by geometric Brownian motion. If there
is a long term trend, due, for example, to a relationship between C and gross domestic product
(GDP) or C and outstanding debt or to ongoing initiatives of the IMF and the World Bank that
make it more or less difficult to default, the following process will describe the evolution of C

through time:

dC(t) = πC(t) dt + ωC(t) dw(t) (2)
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where π is the trend parameter, ω2 is the variance parameter of the percentage change in C(t)
and dw(t) is a Wiener process with zero mean and variance equal to dt , with dz(t)dw(t) = ρ dt

where ρ is the instantaneous correlation coefficient between x and C.
Let Y represent the value of the government’s option to default. It is a function of x and C:

Y = Y (x(t), C(t)) (3)

Since this option can be exercised at any time its value depends on when the option is exercised.
The government will want to exercise at the point that maximizes its value. To solve this
problem, consider a new variable g = x/C, the value of the investment per dollar of default
cost, where the time arguments have been dropped for simplicity of notation. Using (1), (2)
and Ito’s lemma gives:

dg = µg dt + δg ds (4)

where:

µ = α − π − σωρ + ω2

δ2 = σ 2 − 2σωρ + ω2

ds = σ dz − ω dw

δ

Make the change of variables y(g, 1) = Y (x, C)/C. Use the capital asset pricing model
to find Rg , the required rate of return on g, so that the instantaneous payout rate κ is equal
to Rg − µ = κ . Then, with the instantaneous payout or convenience yield equal to κg dt ,
going through the well known steps of setting up a riskless hedge consisting of one unit of
the option and −y ′(g) units of the investment and applying Ito’s Lemma gives the following
differential equation:

1
2δ2g2y ′′ + (r − κ)gy ′ − ry = 0 (5)

The general solution to (5) is:

y = K1g
η1 + K2g

η2 (6)

where η1 > 1 (because κ > 0) and η2 < 0 are the roots to the quadratic equation in η:

η1, η2 = −(r − κ − δ2/2) ± √
(r − κ − δ2/2)2 + 2δ2r

δ2

The particular solution depends on the boundary conditions. When g goes to zero, the option
has no value. Thus, the first boundary condition is:

y(0) = 0 (7)

which makes K2 = 0.
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When the government defaults, it will receive x − C, that is, the amount of debt outstanding
less the indemnities and other costs associated with the act of default. In terms of equation 6,
this implies that default will yield g − 1. However, there will be a level of g, designated by
g∗, where it will be optimal for the government to act. At values of g lower than g∗, the value
of the right to default will be higher than the net value of defaulting and, consequently, it will
be in the government’s interest to put off defaulting until the net value of defaulting is at least
as high as the value of the right to default that will be lost. At the boundary, then, the value of
the right to default is just equal to the net value to be obtained through defaulting:

y(g∗) = g∗ − 1 (8)

The smooth pasting condition that makes it possible to find g∗ jointly with y(g) is:

y ′(g∗) = 1 (9)

Thus, the solution to (6) is:

y = K1g
η1 (10)

where:

K1 = 1

η1 − 1
g∗−η1

and:

g∗ = η1

η1 − 1

and the government’s option to default can be evaluated as:

Y = CK1g
η1 (11)

Equation 11 expresses the government’s unwillingness to honor its international debt obli-
gations. The unwillingness grows as the gains from default grow with respect to the costs of
defaulting. In this context, default itself is the result of a rational welfare optimizing decision
based on relative costs and benefits.

Implementing the methodology
To implement the foregoing methodology, we need estimates of the parameters α, π, σ, ω, ρ

and κ(r can be observed). These parameters can be estimated directly from the times series
of D and C. The World Bank and a number of private services provide data on D, total
outstanding country debt. The time series for C must be estimated. Estimating C involves
estimating the costs pointed out by Eaton and Gersovitz (1981) that are associated with the loss
of access to capital markets as well as the costs pointed out by Bulow and Rogoff (1989) that
are due to direct sanctions such as the elimination of trade credits or the seizure of assets. To
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do this, we can apply the countrymetrics methodology (www.countrymetrics.com) developed
by Clark (1991) and summarized in Clark (2002). This methodology involves two steps. First,
the country’s international market value is estimated year by year. Second, an algorithm is
generated that estimates the percentage of this value that would be lost in the case of default.

Once the time series for D and C and their parameters have been estimated, they can
be applied in equation 11 to calculate the value of the unwillingness to pay. The resulting
estimate of the unwillingness to pay can then be used in default risk analysis. One way that
the information can be used is to forecast sovereign debt discounts on the secondary market.
Clark and Zenaidi (1999), for example, showed that the option value of the unwillingness to
pay is a significant explanatory variable for the sovereign debt discounts on the 21 countries
they studied from 1986–1994, when standing alone and when combined with the other major
variables outlined in the literature.

The information can also be used to forecast debt defaults. From boundary conditions 8
and 9 we can calculate the value of g∗. This value represents the ratio of debt to the cost of
default that triggers a default. This figure can be compared with the actual ratio to measure
the “distance to default” from which a forecast can be derived. For example, in my talk at
the GARP Credit and Counterparty Risk Summit, I used this methodology to forecast an
Argentine default within the year. True to form, Argentina defaulted on its foreign debt and,
what is even more interesting, the default is entirely due to its “willingness to pay”. In fact,
Argentina’s foreign exchange reserves are many times higher than the payment that has been
defaulted.

I will conclude this paper with another forecast. Much has been written on Brazil’s election
results and its willingness to continue paying on its sizeable foreign debt. I have run the
figures on this and find that the distance to default is actually longer with the incoming populist
government than it was with the outgoing conservative government. The bad news is that Brazil
has already entered the default zone, and unless a large amount of new money is forthcoming,
default will be triggered. Thus, for Brazil, I am looking either for a default, a major rescheduling
or a bailout within the next 12 months.

FOOTNOTES & REFERENCES

1. As in corporate defaults, sovereign default on a debt service payment puts the total debt
outstanding in default through pari passu and cross default clauses that are routinely written
into the debt contracts. In practice, once default has occurred and the government has
demonstrated its willingness to suffer the costs this entails, a bargaining process begins,
usually within the Paris and London Clubs, whereby the government enters negotiations with
its creditors to trade the value of the exercised default option by recommencing payments in
exchange for concessions such as forgiveness, reschedulings, etc. Our analysis is limited to the
initial decision to default.
2. The continuous, random element stems from the balance of payments identity and the
random, continuous nature of autonomous commercial and capital transactions where sovereign
capital transactions make up the difference. We consider jumps to new levels of nominal debt
outstanding through forgiveness, rescheduling, Brady deals or the like as part of the negotiation
process that occurs subsequent to the act of de facto or de jure default. This will be the subject
of another paper.
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Chord of Association
Aaron Brown1
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A writer expresses himself in words that have been used before because they give his
meaning better than he can give it himself, or because they are beautiful or witty, or
because he expects them to touch a chord of association in his reader, or because he
wishes to show that he is learned and well read. Quotations due to the last motive are
invariably ill-advised; the discerning reader detects it and is contemptuous; the undis-
cerning is perhaps impressed, but even then is at the same time repelled, pretentious
quotations being the surest road to tedium.2

I
like the opening quotation because it contains a double metaphor for association. It
discusses the effect of a quotation on the reader’s opinion of the author. Of course, the
author’s use of a quotation also changes its meaning. When John Donne wrote the phrase
“for whom the bell tolls”, it meant one thing. When Ernest Hemmingway chose it as the
title of a novel, it changed both how readers interpreted his novel, and how everyone

thought about the phrase afterwards. When Metallica later used it as a song title, the meanings
shifted again. I use the word “association” to refer to interaction among factors in which all of
them are affected.

“Chord of association” is an evocative phrase for this definition. If the strings of a piano are
undamped (which can be done with one of the foot pedals) the vibration of any string causes the
other strings to vibrate in proportion to the least common denominator of their lengths. Striking
one note produces a chord, and the chords reinforce each other in infinite progression. Random
vibrations will cause the piano to sing. It is not that one string causes another to vibrate, it’s
that all the strings together interact to make the song. This is a good metaphor for memory,
and also for financial market price movements.

A more precise related concept is correlation. For two standardized3 random variables, the
correlation coefficient is the expectation of their product. Correlation is a useful concept, but it
also can be a misleading one. I offer the following quiz to start you thinking about the issues I
want to discuss. Spend a few minutes pondering these questions and settle on your best answers,
then read on to see my opinion.

Contact address: Morgan Stanley, 750 7th Avenue, 11th Floor, New York, NY 10019.
E-mail: AC.Brown@MorganStanley.com

This article represents the personal opinion of the author and does not necessarily reflect the views of Morgan
Stanley or any other entity.
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Correlation quiz
1. You lend money to 10 different entities, each with a 10% probability of default. Defaults

are uncorrelated. What is the probability that all 10 loans will default?
2. The manager of a large cap equity mutual fund wants to keep his portfolio standard

deviation within 10% of the S&P 500 index standard deviation. How many stocks of
average volatility and beta must he buy to accomplish this?

3. The Sharpe ratio of a portfolio is defined as:

µp − r0

σp

where µp is the expected return on the portfolio, σp is the standard deviation and r0 is
the risk-free rate of interest. For a manager who holds the S&P 500 index, which will
improve her Sharpe ratio more, finding a stock with:
(a) Average volatility and correlation with the S&P 500, but 2% more expected

return, or:
(b) Average volatility and expected return, but zero correlation with the S&P 500?

4. Which financial institution will have the lower firmwide 99% value-at-risk (VaR), a
firm with:
(a) 100 different businesses, each with $1 million VaR on a stand-alone basis and

average correlation of 0.1 between businesses, or:
(b) 10 different businesses, each with $10 million VaR on a stand-alone basis and no

correlation between businesses?

It takes two to tango, but it takes more
to make money
One basic problem with correlation is that it is a pairwise concept. A correlation matrix can show
interactions among more than two variables, but each matrix element is defined by a pairwise
relation. Think of quotations or piano strings to realize how limited pairwise analysis can be.

For a more practical example, consider the correlation of short-term interest rates and long-
term rates. Suppose short-term rates are cut by central bank action. This will cause borrowers
to shorten their maturities in order to get cheaper funds and lenders to lengthen their maturities
to get higher yields. Fewer borrowers and more lenders in the long end will cause long-term
interest rates to fall, arguing for a positive correlation between short-term and long-term rates.

The lower interest rates will stimulate economic activity, lead to an increase in the money
supply and weaken the currency. All three factors will fuel inflation. Inflation will push long-
term interest rates up. So we can equally well argue that the correlation should be negative, a
decrease in short-term rates leads to an increase in long-term rates. And I have only covered
two out of hundreds of economically important interactions, and only for one type of shock.

There is no meaningful general answer to the question of the correlation between short-term
and long-term interest rates. Of course I can measure a correlation coefficient using historical
data, but the answer I get will depend on the time period, sampling interval and lag. It will
not be useful either for understanding the relation between short-term and long-term rates, nor
predicting future movements.
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Even when people do not explicitly use correlation coefficient in an argument, they may
have an underlying assumption that pairwise information is enough to make a judgment about
the joint probability of more than two events.

Quiz answer 1
If the defaults are independent then the probability of all 10 loans defaulting is the product of
their individual probabilities, or 10−10, one chance in ten billion. But all we are told is that
the defaults are uncorrelated, which means the chance of any pair of them defaulting is the
product of their individual probabilities. So, the chance of any two loans defaulting is one in
one hundred.

Suppose there are two possible cases. One percent of the time, all loans default. The other
99% of the time, the loans are placed into a hat with one blank piece of paper, and one is
drawn at random to default. If the blank paper is drawn, no loan defaults.

It’s easy to verify that the probability of any individual loan defaulting is 10%, composed
of 1% chance of all loans defaulting and 99%/11 = 9% of being drawn from the hat in the
other case. It’s even easier to see that the chance of any two specific loans defaulting is 1%,
because it can only happen in the first case. So the loans have the specified chance of default
and zero correlation. But the chance of all 10 loans defaulting is one in one hundred, not one
in ten billion. I could easily make other assumptions that make the chance of all 10 loans
defaulting zero.

This is not simply a textbook illustration. Although the correlation between two unrelated
borrowers defaulting is typically low, we observe occasional spikes in default rates that cannot
be explained by pairwise analysis. Most investment grade defaults happen during these spikes,
making them more important for estimating credit risk than the normal periods in between. The
effect is less pronounced in equity markets, but it is well known that when the market goes
down sharply, individual stock correlations go up. The worst days in the stock market are much
worse than can be explained by average pairwise correlations between stocks and the market.

Pairwise correlations cannot tell us much about probabilities that involve more than two
events. In principle, we could get around this problem by looking at third and higher cross-
moments, but this quickly becomes impractical. There are too many of them to estimate reliably,
and small errors in even one cross moment can lead to significant overall errors.

A non-financial example of this issue is the 1996 fire in the Channel Tunnel. An expensive
professional safety design study estimated that a serious fire would occur once every 300 years
and that a series of safeguards reduced the risk of major damage to negligible levels. The basic
argument was that a long string of individually unlikely and uncorrelated events would have
to occur before a fire could kill anyone or threaten the tunnel itself. Yet the fire occurred in
only 2 years, and all the safeguards failed (although fortunately no-one died and the tunnel
was repaired).

My advice in this situation is to estimate the probability of disaster as the product of the
probabilities of the two most unlikely events, rather than all the events. Since correlation is
pairwise, that’s all we can safely assume. It’s also an example of the famous applied mathematics
counting rule of thumb, 0, 1, ∞. Things either don’t exist, or are unique, or there are an infinite
number of them. Either none of your safeguards will fail, or one will, or all will. So once two
go, you might as well assume they all go. All bets are off. You’re already in such unlikely
territory that something you didn’t factor into your calculations probably happened.
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The Chunnel fire began on a train in France, before it entered the tunnel. The smoke detec-
tors on the train failed, and five of the six detectors in the tunnel. Guards saw the fire but
were unable to contact the central command station because of communication problems and
absent personnel. The detector and communications failures can be reasonably considered to
be uncorrelated random events, although arguably both stemmed from complacency and slop-
piness. However, all the failures after that point were results of the damage caused by the fire
(among other things, it destroyed the power and communications facilities and triggered a false
derailment alarm) and panic.

Conditional expectation
People often use the correlation coefficient to form a conditional expectation. For example,
if scores on the math and verbal SAT tests have a correlation of 0.75, and we know that a
student scored two standard deviations above the mean on the math test, we predict a score of
0.75 × 2 = 1.5 standard deviations above the mean on the verbal test. When people make this
argument, they are thinking of a graph like Figure 1. The points are randomly scattered around
a line with slope of 0.75. If you observe an X value, the corresponding point on the line seems
to be a pretty good guess of what Y will be.
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Figure 1: Two variables with correlation 0.75
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But Figure 2 shows another graph of two variables with a correlation of 0.75. Now the line
gives absurd predictions. If we observe an X value not near −1 or +1, we can’t say anything
about the conditional expectation of Y because we have no data. If X is near −1, the one thing
we know is Y is not likely to be near the line. For positive X, the relation between X and Y

is negative, not positive. If this were the relation between math and verbal SAT scores, and we
knew someone scored two standard deviations above the mean on the math test, it would be
silly to predict a verbal score 1.5 standard deviations above the mean. We don’t have any data
for that observation, but extrapolation suggests a verbal score a little below the mean.
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Figure 2: Another two variables with correlation 0.75

The data suggest that there are three types of students: one below average on both tests,
one below average in math but about average on verbal, and one above average in math with
a strict negative relation between math and verbal scores. This pattern cannot be described by
any one statistic. The problem isn’t that correlation coefficient is a bad measure of conditional
expectation, it’s that conditional expectation is too complicated to pack into any one number.
In cases like this, which are very common in finance, you first have to figure out what cluster
of points you’re in, then you can make meaningful predictions from simple statistics.

Figure 3 shows the standardized daily returns of Johnson & Johnson stock vs. Procter &
Gamble from January 2000 to January 2004. The solid line showing correlation of 0.4 clearly
does not describe the data. The correlation between these two similar companies is much higher,
about 0.75, except for 7 March 2000, when P&G stock fell 31 per cent on bad earnings news



172 THE BEST OF WILMOTT

−6
−12 −9 −6 −3 0 3

−3

0

3

6

Standardized return on P&G stock

S
ta

nd
ar

di
ze

d 
re

tu
rn

 o
n 

J&
J 

st
oc

k

Figure 3: What is the correlation between J&J and P&G stock
returns?

(in retrospect, it was an early warning of the market-wide crash to come 3 days later). Neither
0.75 nor 0.4 describes the relationship between the returns on these two stocks.

Quiz answer 2
Before tackling this question, let’s review some basic correlation mathematics. The standard
deviation of log return of a portfolio is equal to:

√√√√ n∑
i=1

ω2
i σ

2
i +

n∑
i=i

n∑
j �=i

ρijωiωjσiσj

where ωi is the weight of security i in the portfolio, σi is the standard deviation of log return of
security i and ρij is correlation coefficient between the log returns of security i and security j .

If all the weights, standard deviations and correlations are equal, a little algebra reduces this
expression to:

σ

√
ρ + 1 − ρ

n

This expression is very important in finance. It tells us that diversification can only help us
reduce the standard deviation of a portfolio to the square root of the average correlation coef-
ficient times the average standard deviation of individual security (we have to be loose about
the definition of “average” here). A lot of people have in the backs of their minds the zero
correlation case, like casino gambling or life insurance (approximately anyway), where infinite
diversification can eliminate all risk.

For large capitalization, US stocks volatilities and correlations vary quite a bit over time, but
long-term average values of 32% annual volatility and pairwise correlation of 0.4 are reasonable.
That implies a market standard deviation of 0.32

√
0.4 = 0.2, which is about right.



CHORD OF ASSOCIATION 173

The quiz question asks how many stocks we need to get within a given range of the standard
deviation of the market. So we have to solve for n in:

σ
√

ρ

σ

√
ρ + 1 − ρ

n

= k

That gives us:

n = k2

1 − k2

1 − ρ

ρ

The first term depends only on how close we want to get to the standard deviation of the market,
for 10 per cent (i.e. k = 0.9) it is about 4.5. The second term depends only on the average
pairwise correlation among stocks, and is 1.5 for ? = 0.4. So seven average stocks will get us
a standard deviation within about 10 per cent of what we can get by buying the entire market.

This assumes the individual stocks are average. It is not hard to find four stocks with average
pairwise correlations of 0.2; they combine to give a portfolio standard deviation of:

√
0.2 + 0.8

4
= √

0.4 times the average standard deviation of the individual stocks

This is the same diversification benefit as you get by holding the entire market. If you can find
more than four such stocks, you can get better diversification than the holding the market.

The idea that small portfolios can have more diversification benefit than the entire market
is surprising to many people, because they are thinking of the uncorrelated case. With uncorre-
lated returns, the more securities you buy, the lower your portfolio standard deviation. This is
why most mutual funds hold 100 or more stocks and diversification rules from the Securities
and Exchange Commission (SEC), Internal Revenue Service and pension fund organizations
encourage excessive diversification. The SEC rules for a well-diversified fund4 are the most
stringent; no stock can make up more than 5 per cent of the portfolio. While you could meet
that test with 20 stocks, you would have to hold exactly equal shares in each, and rebalance
constantly, selling your winners and buying more of your losers. The practical minimum is 40
stocks to meet all diversification tests without special effort.

At that level, each additional stock reduces standard deviation by less than one basis point,
assuming it has average correlation and volatility. If stocks are selected and monitored carefully,
holding the extra stock almost certainly adds more cost than diversification benefit, except
perhaps in the largest funds. Excessive faith in diversification thus contributes to mutual funds
that pay no serious attention to governance at their portfolio companies and rely on sell-side
analysts for research. Another problem is the rules force a high correlation with the market,
which means portfolio managers can distinguish themselves only through high turnover trading,
derivative bets or other techniques far riskier than portfolio concentration.

The Capital Asset Pricing Model (CAPM) has also contributed to misunderstanding correla-
tion. The CAPM tells us the expected excess return on any security above the risk-free rate of
interest is proportional to its correlation with the market. That suggests relying on low correla-
tion among stocks to reduce risk will give lower expected returns. But the standard deviation
of the portfolio depends on the pairwise correlation of its constituent stocks with each other,
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not with the market. It is easy to find efficient portfolios in the CAPM sense with a dozen or
fewer stocks. The CAPM says no-one can beat the market, but it doesn’t say you can’t do just
as well with only few stocks, thus saving on research, monitoring and trading costs. Moreover,
the empirical evidence for the CAPM, while strong in general, leaves plenty of room for the
possibility of small portfolios with significantly above-market returns. The recent evidence from
hedge funds suggests that superior Sharpe ratios are achievable through judicious management
of correlation.

Causation and the central limit theorem
The first thing students learn about correlation in statistics class is “correlation does not imply
causation”. The dictum is promptly forgotten. That it needs to be said at all shows how easy it
is to slide from one concept to the other. If A is correlated with B, it is hard to resist the idea
that A causes B or B causes A or A and B are caused by some third factor.

Without getting into metaphysics, the problem with this assumption in finance is that the
correlation between A and B is generally caused by many factors. Consider two stock returns,
such as Johnson & Johnson and Procter & Gamble above. Some events, like J&J winning
market share from P&G, will induce a negative correlation. Others, like a general increase in
consumer spending, will affect both in the same direction. When P&G announces worse than
expected earnings, investors may react by switching to J&J stock, or by selling both on the
assumption that J&J will have similar news. When the market in general goes down investors
might rationally decide that stocks are cheaper, and buy more, or that the expected return of
the market has fallen, so they should sell stocks.

With all these unmeasurable effects relating thousands of securities, it is not surprising that
correlations are unstable. But the central limit theorem appears to offer a way out. In the long
run, all the higher order effects will diversify away, and all I need to know is the average mean,
standard deviation and correlation coefficients to specify the joint distribution of my variables.

This is an “asymptotic” argument, meaning it relies upon something going to infinity. There
are two schools of thought about asymptotics. One holds that proving something asymptotically
is like a newspaper reporting that something is “rumoured”. When you read that something is
rumoured, you know the paper could find no-one to say it was true, or might be true, or even
that it was rumoured to be true. So it’s probably not true. Similarly, if something can be proved
only asymptotically, it’s probably false.

The other side has two subschools. The low self-esteem crowd figures that if an estima-
tor is asymptotically optimal, hell, if it’s any kind of optimal, it’s good enough for me. The
mathematical purists delight in asymptotics that don’t kick in until unimaginably high num-
bers of observations. This means they have found something ideally true that contradicts all
possible experience.

I’m in the middle on this one, I say do the asymptotics. Sometimes they help you with your
second observation, sometimes they are worthless with all the data in the universe. So how
does the asymptotic argument for correlation coefficient stack-up?

Suppose I flip a fair coin 1000 times, winning $1 for every head and paying $1 for every
tail. If I use the Normal approximation to the binomial distribution, my 99% VaR for this is
$74; 1% of the time I will lose more than $74. The actual probability of losing more than $74
is 0.88%. An error of this size will not faze risk managers; there are much bigger errors in any
practical VaR calculation. But it does surprise a lot of people to learn that 1000 independent
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Bernoulli trials, about the friendliest test imaginable for the central limit theorem, have a 12%
error solely from assuming Normality.

Now suppose there is a pairwise correlation among the flips of 0.003. The Normal approxi-
mation says VaR doubles. A pairwise correlation of −0.001 cuts the Normal approximation to
VaR to $2. When you learn that the standard error of measuring the correlation coefficient in
this case is 0.004, and changes of that much in the correlation coefficient move VaR from $2
to $150, it’s clear that correlation coefficient is not a useful statistic in this context.

It gets worse. The Normal approximation is useless for setting VaR. If all the coin flips have
zero pairwise correlation with each other, the true VaR can be anywhere from zero to $316,
more than four times the Normal approximation VaR. If the central limit theorem doesn’t work
for 1000 uncorrelated Bernoulli trials, it is not reliable for much financial data.

Quiz answer 3
The very best large cap equity mutual funds seem to outperform index funds, on a risk-adjusted
basis, by about 2% per year. This is the difference between a 5-star fund that attracts lots of
new capital, and one that never gets enough assets under management to break even. Michael
Price managed three funds with 2% outperformance over 20 years, and sold them for $610
million in 1996.

Using 4% for the long-term expected excess return on the S&P 500 (the return on the index
minus the risk-free rate of interest) and 20% for the standard deviation, an S&P 500 index fund
has a Sharpe ratio of 0.04/0.2 = 0.2. It takes 0.06/0.2 = 0.3 to get to Michael Price territory.

A stock with an excess expected return of 6% and average correlation (0.4 with other stocks,√
0.4 = 0.63 with the S&P 500) and volatility (32%) can help us get there. We get the best

Sharpe ratio by putting one-third of the portfolio in this stock and two-thirds in the market.
That gives us an excess return of 0.0467, with a standard deviation of

√
0.467 = 0.216. The

Sharpe ratio is 0.216.
A stock with average expected return (4%, the same as the market), and average volatility

(32%) but zero correlation should be weighted two-sevenths, with five-sevenths in the market.
Our excess return remains at 4%, of course, but the standard deviation falls to

√
1/35 = 0.169.

That gives a Sharpe Ratio of 0.237, more than double the improvement of the high expected
return stock.

Low correlation stocks have another advantage. Each one you find helps more than the
last one, three zero correlation stocks are enough to get our Sharpe ratio up to the target 0.3.
Each high expected return stock helps less than the previous one; we can never get up to 0.3,
however many we find.

This raises the question of why there is a massive industry looking for stocks with better
than average expected returns, and little public effort expended on finding stocks with low
correlations. The question is even stranger when we consider that no one has ever succeeded
demonstrably at the first task, while the second is easy. Hedge funds exploit it every day, but
regulation discourages people from selling it to the public.

Suppose you did find a stock you thought had an excess expected return of 2%. To verify
that it had positive excess expected return at the conventional two standard deviation level
of statistical confidence would take 1000 years. It takes only 10 observations to get the same
confidence for a zero correlation stock. For large cap stocks, you could do that in one day. That
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makes the search for high expected return stocks a matter of pure faith. Precise measurement can
quickly find low correlation stocks, and just as quickly alert the manager when things change.

The correlation problem
To move from the theoretical to the practical, consider an investor planning some international
diversification. I took data for the 36 national equity indices with good quality daily price quotes.
Then I computed the level of investment in each that led to a $1 million 99% 1-day VaR.

Figure 4 shows the average VaR that results from combining different numbers of these
portfolios, with equal weights. For one portfolio, the VaR is $1 million by construction. For
two portfolios the average VaR should have fallen to $830,000, based on the average correlation
among indices; in fact, it fell to only $890,000. However, this is not what I call the correlation
problem. There are several reasons why the actual result will not be as good as the theoretical
prediction. This sort of result is about as good as you ever get with real financial data.
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Figure 4: Diversification benefits in international investing

As the number of international indices added goes up, the actual results follow the theoretical
curve, just a little less steep. But when you add the ninth index, the VaR actually goes up. After
that point, further diversification does not seem to help. The theoretical VaR drops another
$50,000, but the actual VaR does not change.

This is something you will see a lot in financial data. Diversification effects are similar to
what is predicted by the correlation matrix until you get more than a certain number of securities,
then they stop helping. If you are looking at things near the centre of the distribution, standard
deviation for example, diversification will help for more securities than if you are looking at
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the tails, as we do in risk management. If you go far enough out in the tails, diversification
does not even help with two securities.

I consider this to be the oldest problem in finance. A lot of people would say standard
deviation is a bigger problem than correlation. I think standard deviation is like energy, it’s
what makes finance work. If prices didn’t change over time, there would be no reason to
store or plan. If prices didn’t change over space, there would be no incentive to trade. There
would be no dynamic business models; the only job would be taking 12 eggs and selling
them as a dozen. So standard deviation is an essential to economic activity, not a finan-
cial problem.

Although standard deviation is good, like energy, it can shock you, burn you, blow you up.
Correlation offers to tame standard deviation. If correlation is low we can diversify, if it’s high
we can hedge. But as we’ve seen, its value is limited.

The oldest known diversification advice comes from Ecclesiastes, chapter 11 verse 2 (in the
King James translation): “Give a portion to seven, and also to eight; for thou knowest not what
evil shall be upon the earth”. It is significant that the Bible does not say “diversify as much as
possible” or “buy hundreds of individual stocks”. Ecclesiastes wrote at a time of sophisticated
trade throughout the Mediterranean. His readers certainly knew there were bigger numbers than
eight. But they had already observed that diversification doesn’t help much beyond that number.
Dividing into more portions increases cost and reduces oversight without protecting against the
unknown evils of the earth.

Two thousand years later, in another sophisticated Mediterranean trading environment,
Shakespeare5 has Shylock say:

“Ho, no, no, no, no; my meaning in saying he is a good man is to have you understand
me that he is sufficient . . . he hath an argosy bound to Tripolis, another to the Indies; I
understand, moreover, upon the Rialto, he hath a third in Mexico, a fourth for England?
And other ventures he hath . . . ships are but boards, sailors but men; there be land-rats
and water-rats, water-thieves and land-thieves? I mean pirates; and then there is the peril
of waters, winds and rocks. The man is . . . sufficient. Three thousand ducats – I think
I may take his bond.”

Shylock is obviously putting some faith in the power of diversification based on the number
of Antonio’s ventures, and their geographic dispersion. The next part of the speech is often
misinterpreted as a counterargument, as if Shylock is weighing the pros and cons of the loan.
However, it is clearly meant as additional support. This shows a sophisticated statistical under-
standing, that for a given total amount of risk the more varieties there are the less the chance
that any single risk will increase in probability enough to frustrate all the ventures.

I don’t want to give away too much of the plot for those who haven’t read it, but the story
turns on the possibility that none of Antonio’s ships come in (we later learn there are seven
altogether). Although probability theory was undeveloped at the time, marine insurance was
an important industry. Underwriters had already observed, in modern language, that failures of
two ships on unrelated voyages were close to independent; but that failures of larger numbers
of ships were far more common than extrapolation of individual probabilities would predict.
Thus, Shakespeare’s audience was familiar with the argument that, while diversification helped
for a few ships, it was plausible that seven ships to seven different destinations could fail for
seven different reasons.



178 THE BEST OF WILMOTT

Quiz answer 4
Let’s first tackle this problem assuming the firm uses a Normal approximation to VaR. In that
case, VaR is proportional to standard deviation. Total firmwide VaR will be the sum of the
stand-alone VaR ($100 million in both cases) times

√
ρ + (1 − ρ)/n. In that case ρ = 0.1 and

n = 100 implies a VaR of $33.0 million, while ρ = 0 and n = 10 means that VaR is lower,
only $31.6 million. The lesson is that even small correlations among businesses limits the value
of diversification. There is no practical way to distinguish between businesses with correlations
of 0 and 0.1. Large financial institutions cannot assume that diversification among markets,
businesses and regions reduces risk capital requirements beyond a certain point, even if there
are no measurable correlations among the businesses.

If VaR is not computed with a Normal approximation, we cannot compute the firmwide VaR.
However, we can still analyse the question. Zero correlation means the probability of simultane-
ous VaR breaks in two specific businesses is 0.0001. A correlation of 0.1 raises that probability
by a factor of 11 to 0.00109. The firm with 10 zero correlation businesses cannot have two simul-
taneous VaR breaks with probability more than 0.0045 which is less than 1%. So the firmwide
VaR must be set by a scenario in which only one business loses more than $10 million.

With bad risk controls, it’s possible for the probability distribution of losses to pile up just
before the VaR point, and spread out afterwards. So with a VaR of $10 million, for example,
you get a lot of days with losses between $9 and $10 million, and once you exceed $10 million
you have expected losses of $100 million or more. That is why we cannot compute the firmwide
VaR. However, with good risk controls the pathological distributions should not occur and we
can set reasonable upper bounds for firmwide VaR.

One VaR break at the firm with 10 businesses should not cause the firmwide VaR to exceed
$50 million. The nine businesses that do not have VaR breaks shouldn’t lose more than the
square root of nine times their VaRs (remember, these businesses are uncorrelated, so half of
them make money on average). The one that breaks VaR should not do worse than lose twice
the VaR amount.

The firm with 100 businesses could see 34 VaR breaks on one day in 100, that is consis-
tent with the individual probability of 1 per cent and the correlation of 0.1. Using the same
assumptions as above, that sets a reasonable upper limit on firmwide VaR of $76 million.

Of course there’s quite a bit of guesswork in these upper bound calculations. But all risk
managers I know are more comfortable contemplating 1 business in 10 breaking VaR than 34
businesses in 100.

The future
The monuments of ancient Egypt are the most spectacular buildings of the ancient world. They
are covered with intricate hieroglyphic writing that seems to offer insight into the wisdom of the
ancients. However for a millennium and a half, all knowledge of how to read the hieroglyphics
was lost.

In 1799, a French engineer discovered the Rosetta stone, which led to decipherment of the
ancient texts. Imagine the excitement of seeing the solution to such a problem, knowing that
soon the long-dead voices of ancient builders would be heard again.
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We now find ourselves in a similar position with respect to the much older mystery of cor-
relation. It has bedeviled investors since before there was money, yet it remains our best friend
against excessive standard deviation. It behaves in strange and unpredictable ways. Correlation
assumptions are found in many pricing models, but there is not yet any consensus model for
what it is, or how it evolves.

For the first time liquid markets are emerging in correlation products. This happened with
volatility in the 1970s and 1980s. When Black and Scholes announced their famous model,
volatility was an unobservable. It showed up in lots of financial models, but no one knew what
it was. For example, there was disagreement about whether the occasional large movements in
security prices were caused by fat-tailed distributions of constant standard deviation or Normal
distributions with varying standard deviation.

Liquid option markets not only answered this question (standard deviation varies), but proved
to everyone’s surprise that there is a term and moneyness structure to volatility that transcends
individual securities and markets. Volatility has gone from something entirely unobservable to
something we understand and can measure better than expected return.

It took 21 years to analyse the Rosetta stone, and about the same amount of time to really
figure out volatility. There’s no reason to assume correlation will be faster. But I can guess
about the result.

In the first place, we don’t need and won’t get a theory of every pairwise correlation in
financial markets. The most important feature of correlation is diversification potential: the
risk of the market divided by the average risk of the constituent securities. In theory, this
is the square root of the average pairwise correlation coefficient (again, being sloppy about
the definition of “average”). In practice it probably has nothing to do with that. For different
definitions of risk and different markets we will get different answers, but I predict we will
find implied correlation, defined as the square of the implied volatility of an option on the
market divided by the weighted average implied volatility of its components, will turn out
to have a rich tenor and moneyness structure with common features across markets. I further
predict that the definition of prudent investment management will be fundamentally altered as
a result.

Another important use of correlation is in hedging. Here the key is computing the lowest
risk combination of securities. In theory this is found by inverting the covariance matrix,
which adds a numerically unstable process to a statistically unreliable result. And that’s only
if the underlying theory is sound, which it isn’t. I predict that we will find statistically and
numerically reliable techniques for dynamic risk management that will significantly reduce the
total risk in the economy and significantly improve the efficiency of capital allocation. True
innovation flourishes when it gets full credit for its correlation advantages over doing things
the safest way.

Finally, correlation is essential to risk management. We need to find a way to get more than
two layers of protection on things, and that will require more subtle understanding of correlation.
Here I predict that we will find that existing risk management is far more expensive and stifling
than it need be. With a better correlations we can tolerate less diversification, less intrusive
monitoring, smaller amounts of capital and faster innovation.

Put it all together and the next 20 years have the potential to give us a sound theory of
association that will relegate correlation to financial museums. The oldest financial problem
will be solved forever.
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FOOTNOTES

1. I would like to thank Paul Wilmott for inviting me to the 2003 London Quantitative Finance
Review conference at which this paper was first presented. It was improved considerably as a
result of questions and comments from the audience in London and at subsequent presentations
at Citigroup’s Fixed Income Research Seminar and Brown Bag Lunch talk. I particularly want to
credit the insightful discussions with Kent Osband (whose book Iceberg Risk gave me many of
the ideas presented here, and explains them in much more depth), Ed Thorpe, Deborah Pastor,
John Adams, Bryce Ferguson, Evan Picoult, Richard Brandt, Jorge Sobehart, Domenic Conner
and Jack Fuller.
2. Henry Watson Fowler and Francis George Fowler, A Dictionary of Modern English Usage, 1926,
‘‘Quotation’’.
3. Random variables with mean zero and standard deviation one. I can standardize a random
variable by subtracting the mean, then dividing by the standard deviation.
4. A fund need not be well-diversified, but the designation helps enormously in marketing. I
once ran a public mutual fund that held only four stocks. I had to plan carefully to preserve
the fund’s tax exemption and to qualify it to be held in pension plans. I failed to persuade
major fund rating services to report on it, or brokerage firms to offer it. Virtually no-one, from
SEC lawyers to investment management professionals, believed you could prudently hold fewer
than 20 stocks.
5. The Merchant of Venice, Act I, Scene 3.
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“

Y
esterday the S&P500 went up by 3%”. Is this number telling all the story if half

the stocks went up 5% and half went down 1%? Surely one can do a little better
and give two figures, the average and the dispersion around this average, that two
of us have recently christened the variety (Lillo and Mantegna, 2000).

Call ri(t) the return of asset i on day t . The variety V(t) is simply the root
mean square of the stock returns on a given day:

V2(t) = 1

N

N∑
i=1

(ri(t) − rm(t))2, (1)

where N is the number of stocks and rm = (1/N)
∑

i ri is the market average. If the variety
is, say, 0.1%, then most stocks have indeed made between 2.9% and 3.1%. But if the variety
is 10%, then stocks followed rather different trends during the day and their average happened
to be positive, but this is just an average information.

The variety is not the volatility of the index. The volatility refers to the amplitude of the
fluctuations of the index from one day to the next, not the dispersion of the result between dif-
ferent stocks. Consider a day where the market has gone down 5% with a variety of 0.1% – that
is, all stocks have gone down by nearly 5%. This is a very volatile day, but with a low variety.
Note that low variety means that it is hard to diversify: all stocks behave the same way.
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† Service de Physique de L’Etat Condensé, Centre d’Études de Saclay, Orune des Merisiers, 91191 Gif-Sur-Yvette
cedex, France.
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The intuition is however that there should be a correlation between volatility and variety,
probably a positive one: when the market makes big swings, stocks are expected to be all
over the place. This is actually true. Indeed the correlation coefficient between V(t) and |rm|
is 0.68.1 The variety is, on average, larger when the amplitude of the market return is larger
(see the discussion below). Very much like the volatility, the variety is correlated in time: there
are long periods where the market volatility is high and where the market variety is high (see
Figure 1). Technically, the temporal correlation function of these two objects reveal a similar
slow (power-law like) decay with time.

A theoretical relation between variety and market average return can be obtained within the
framework of the one-factor model, that suggests that the variety increases when the market
volatility increases. The one-factor model assumes that ri(t) can be written as:

ri(t) = αi + βiRm(t) + εi(t), (2)

where αi is the expected value of the component of security i’s return that is independent of
the market’s performance (this parameter usually plays a minor role and we shall neglect it),
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Figure 1: Time evolution of the daily variety V(t) of 1071 NYSE
stocks continuously traded from January 1987 to December 1998.
The time evolution presents slow dynamics and several bursts. The
highest peak is observed at and immediately after the Black Monday.
The highest value corresponds to the day after Black Monday. In the
inset we show the autocorrelation function (ACF) of V(t). The
autocorrelation has a slow decay in time and is still as high as 0.15
after 100 trading days
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βi is a coefficient usually close to unity that we will assume to be time independent, Rm(t)

is the market factor and εi(t) is called the idiosyncratic return, by construction uncorrelated
both with the market and with other idiosyncratic factors. Note that in the standard one-factor
model the distributions of Rm and εi are chosen to be Gaussian with constant variances; we do
not make this assumption and let these distributions be completely general including possible
volatility fluctuations.

In the study of the properties of the one-factor model it is useful to consider the variety v(t)
of idiosyncratic part, defined as

v2(t) = 1

N

N∑
i=1

[εi(t)]
2. (3)

Under the above assumptions the relation between the variety and the market average return is
well approximated by (see Box 1 for details):

V2(t) � v2(t) + �β2r2
m(t), (4)

where �β2 is the variance of the β’s divided by the square of their mean.
Therefore, even if the idiosyncratic variety v is constant, Eq. (4) predicts an increase of the

volatility with r2
m, which is a proxy of the market volatility. Because �β2 is small, however,

this increase is rather small. As we shall now discuss, the effect is enhanced by the fact that v

itself increases with the market volatility.
In its simplest version, the one-factor model assumes that the idiosyncratic part εi is inde-

pendent of the market return. In this case, the variety of idiosyncratic terms v(t) is constant
in time and independent from rm. In Figure 2 we show the variety of idiosyncratic terms as
a function of the market return. In contrast with these predictions, the empirical results show
that a significant correlation between v(t) and rm(t) indeed exists. The degree of correlation
is different for positive and negative values of the market average. In fact, the best linear
least-squares fit between v(t) and rm(t) provides different slopes when the fit is performed for
positive (slope +0.55) or negative (slope −0.30) value of the market average. We have again
checked that these slopes are not governed by outliers by repeating the fitting procedure in a
robust way. The best fits obtained with this procedure are shown in Figure 2 as dashed lines.
The slopes of the two lines are −0.25 and 0.51 for negative and positive value of the market
average, respectively. Therefore, from Eq. (4) we find that the increase of variety in highly
volatile periods is stronger than what is expected from the simplest one-factor model, although
not as strong for negative (crashes) as it is for positive (rally) days. By analysing the three
largest crashes occurred at the NYSE in the period from January 1987 to December 1998, we
observe two characteristics of the variety which are recurrent during the investigated crashes:
(i) the variety increases substantially starting from the crash day and remains at a level higher
than typical for a period of time of the order of sixty trading days; (ii) the highest value of the
variety is observed the trading day immediately after the crash.

An important quantity for risk management purposes is the degree of correlation between
stocks. If this correlation is too high, diversification of risk becomes very difficult to achieve.
A natural way (Cizeau et al, 2001) to characterize the average correlation between all stocks i,
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Box 1: Proof of Eqs. (4) and (6)

Here we show that if the number of stocks N is large, then up to terms of order 1/
√

N,
Eqs. (4) and (6) indeed hold. We start from Eq. (2) with αi ≡ 0. Summing over i = 1, . . . , N
this equation, we find:

rm(t) = Rm(t)
1
N

N∑
i=1

βi + 1
N

N∑
i=1

εi(t) (7)

Since for a given t the idiosyncratic factors are uncorrelated from stock to stock, the
second term on the right hand side is of order 1/

√
N, and can thus be neglected in a first

approximation, giving:

rm(t) � βRm(t), (8)

where β ≡ ∑N
i=1 βi/N. In order to obtain Eq. (4), we square Eq. (2) and summing over

i = 1, . . . , N, we find:

1
N

N∑
i=1

r2
i (t) = R2

m(t)
1
N

N∑
i=1

β2
i + 1

N

N∑
i=1

ε2
i (t) + 2Rm(t)

1
N

N∑
i=1

βiεi(t) (9)

Under the assumption that εi(t) and βi are uncorrelated the last term can be neglected and
the variety V(t) defined in Eq. (1) is given by:

V2(t) � v2(t) + (β2 − β
2
)R2

m(t) (10)

This is the relation between V(t) and the market factor Rm(t). By inserting Eq. (8) in the
previous equation one obtains Eq. (4).

Now consider Eq. (5). Using the fact that
∑N

i=1 ri/N = rm, we find that the numerator is
equal to r2

m up to terms of order 1/N. Inserting Eq. (2) in the denominator and again neglecting
the cross-product terms that are of order 1/

√
N, we find:

C(t) � r2
m(t)

β2R2
m(t) + v2(t)

� 1
χ + F(t)

, F(t) ≡ v2(t)
r2
m(t)

, (11)

where χ ≡ β2/β
2
. This quantity is empirically found to be �1.05 for the S&P 500, and we

have therefore replaced it by 1 in Eq. (6).

j on a given day C(t) is to define the following quantity:

C(t) =
1

N(N − 1)

∑
i �=j ri(t)rj (t)

1

N

∑
i r

2
i (t)

. (5)
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Figure 2: Daily variety v of idiosyncratic terms of the one-factor model
(Eq. (3)) as a function of the market average rm of the 1071 NYSE stocks
continuously traded from January 1987 to December 1998. Each circle
refers to one trading day of the investigated period. In the main panel we
show the trading days with rm belonging to the interval from −0.05 to 0.05,
whereas in the inset we show the whole data set including five most extreme
days. The two solid lines are linear fits over all days of positive (right line)
and negative (left line) market average. The slope of the two lines are
+0.55 ± 0.02 (right) and −0.30 ± 0.02 (left). The tick distance in the
ordinate of the inset is equal to the one of the main panel. The two dashed
lines are linear fits obtained with a robust local M-estimates minimizing the
absolute deviation. The slope of the two lines are +0.51 (right) and −0.25
(left). These values are quite close to the previously obtained ones, showing
that the role of outliers is minor

As shown in Box 1, to a good approximation one finds:

C(t) � 1

1 + F(t)
, F (t) ≡ v2(t)

r2
m(t)

, (6)

As mentioned above, the variety of the idiosyncratic terms is constant in time in the simplest
one-factor model. The correlation structure in this version of the one-factor model is very simple
and time independent. Still, the quantity C, taken for a proxy of the correlations on a given
day, increases with the ‘volatility’ r2

m, simply because F decreases. As shown in Figure 3, the
simplest one factor model in fact overestimates this increase (Cizeau et al, 2001). Because the
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Figure 3: Correlation measure C conditional to the absolute market
return to be larger than |rm |, both for the empirical data and for surrogate
data using a (non Gaussian) one-factor model. Note that both show a
similar apparent increase of correlations with |rm |. This effect is actually
overestimated by the one-factor model with fixed residual volatilities. |rm | is
in percents

idiosyncratic variety v2(t) tends to increase when |rm| increases (see Figure 2), the quantity
F (t) is in fact larger and C is smaller. This may suggest that, at odds with the common lore,
correlations actually are less effective than expected using a one-factor model in high volatility
periods: the unexpected increase of variety gives an additional opportunity for diversification.
Other, more subtle indicators of correlations, like the exceedance correlation function defined
in Box 2 and shown in Figure 4 (see Longin and Solnik, 2001), actually confirm that the
commonly reported increase of correlations during highly volatile bear periods might only
reflect the inadequacy of the indicators that are used to measure them.

Therefore, the idiosyncrasies are by construction uncorrelated, but not independent of the
market. This shows up in the variety; does it also appear in different quantities? We have
proposed above to add to the market return the variety as a second indicator. One can probably
handle a third one, which gives a refined information of what happened in the market on a
particular day. The natural question is indeed: what fraction f of stocks did actually better
than the market? A balanced market would have f = 50%. If f is larger than 50%, then the
majority of the stocks beat the market, but a few ones lagging behind rather badly, and vice
versa. A closely related measure is the asymmetry A, defined as A(t) = rm(t) − r∗(t), where
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Figure 4: Average exceedance correlation functions between
all pair of stocks as a function of the level parameter θ , both for
real data and the surrogate non Gaussian one-factor model

Box 2: Exceedance Correlations

In order to test the structure of the cross-correlations during highly volatile periods, Longin
and Solnik (2001) have proposed to study the ‘exceedance correlation’, defined for a given pair
ij of stocks as follows:

ρ+
ij (θ) = 〈r̃i r̃j〉>θ − 〈r̃i〉>θ 〈r̃j〉>θ√

(〈r̃2
i 〉>θ − 〈r̃i〉2

>θ)(〈r̃2
j 〉>θ − 〈r̃j〉2

>θ)
, (12)

where the subscript > θ means that both normalized returns are larger than θ , and r̃i are
normalized centred returns. The negative exceedance correlation ρ−

ij (θ) is defined similarly,
the conditioning being now on returns smaller than θ . We have plotted the average over all
pairs of stocks ρ+(θ) for positive θ and ρ−(θ) for negative θ both for empirical data and
for surrogate data generated according to a non-Gaussian one factor model Eq. (2), where
both the market factor and the idiosyncratic factors have fat tails compatible with empirical
data (Cizeau et al, 2001). Note that empirical exceedance correlations grow with |θ | and are
strongly asymmetric. For a Gaussian model, ρ±(θ) would have a symmetric tent shape, i.e. it
would decrease with |θ |!

In conclusion, most of the downside exceedance correlations seen in Figure 4 can be
explained if one factors in properly the fat tails of the unconditional distributions of stock
returns and the skewness of the index (Cizeau et al, 2001), and does not require a specific
correlation increase mechanism.
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the median r∗ is, by definition, the return such that 50% of the stocks are above, 50% below.
If f is larger than 50%, then the median is larger than the average, and vice versa. Is the
asymmetry A also correlated with the market factor? Figure 5 shows that it is indeed the case:
large positive days show a positive skewness in the distribution of returns – that is, a few stocks
do exceptionally well – whereas large negative days show the opposite behaviour. In the figure
each day is represented by a circle and all the circles cluster in a pattern which has a sigmoidal
shape. The asymmetrical behaviour observed during two extreme market events is shown in
the insets of Figure 5 where we present the probability density function of returns observed in
the most extreme trading days of the period investigated by Lillo and Mantegna (2000). This
empirical observation cannot be explained by a one-factor model. This has been shown by two
different approaches: (i) by comparing empirical results with surrogate data generated by a one-
factor model by Lillo and Mantegna (2000) and (ii) by considering directly the asymmetry of
daily idiosyncrasies (Cizeau et al, 2001). Intuitively, one possible explanation of this anomalous
skewness (and a corresponding increase of variety) might be related to the existence of sectors
which strongly separate from each other during volatile days.
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Figure 5: Daily asymmetry A of the probability density function of daily
returns of a set of 1071 NYSE stocks continuously traded from January
1987 to December 1998 as a function of the market average rm . Each circle
refers to one trading day of the investigated period. In the insets we show
the probability density function of daily returns observed for the two most
extreme market days of the period investigated. Specifically, the left inset
refers to Black Monday (19 October 1987) and the right inset refers to 21
October 1987. The negative (left inset) and positive (right inset) skewness
of the distribution is clearly seen in both cases
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The above remarks on the dynamics of stocks seen as a population are important for risk
control, in particular for option books, and for long-short equity trading programs. The variety
is in these cases almost as important to monitor as the volatility. Since this quantity has a very
intuitive interpretation and an unambiguous definition [given by Eq. (1)], this could become a
liquid financial instrument which may be used to hedge market neutral positions. Indeed, market
neutrality is usually insured for ‘typical’ days, but is destroyed in high variety days. Buying
the variety would in this case reduce the risk of these approximate market neutral portfolios.
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I
t is well known that the perfect Black–Scholes hedge only works in the ideal case of a
continuous time, log-Brownian evolution of the price of the underlying. Unfortunately,
this model is rather remote from reality: the distribution of price changes has “fat tails”,
which persist even for rather long time lags (see, e.g. Granger and Ding, 1997; Guillaume
et al, 1997; Gopikrishnan et al, 1998; Plerou et al, 1999; Bouchaud and Potters, 2000).

This makes the whole idea of zero-risk strategies and perfect replication shady. An alternative
view was proposed in Bouchaud and Potters (2000), Schweizer (1995), where one accepts from
the start that the risk associated with option trading is in general non zero, but can be minimized
by adopting an appropriate hedging strategy (this is also discussed in Wilmott, 1998). If the risk
is defined as the variance of the global wealth balance, as was proposed in Schweizer (1995)
and Bouchaud and Potters (2000), one can obtain a expression for the optimal hedge that is
valid under rather mild assumptions on the dynamics of price changes. This optimal strategy
allows one to compute the “residual” risk, which is in general non-zero, and actually rather
large in practice. For typical one month at the money options, the minimal standard deviation
of the wealth balance is of the order of a third of the option price itself! This more general
theory allows one to recover all the Black–Scholes results in the special case of Gaussian
returns in the continuous time limit, in particular the well-known “�-hedge”, which states that
the optimal strategy is the derivative of the option price with respect to the underlying.

However, as soon as the risk is non zero, the various possible definitions of “risk” become
inequivalent. One can for example define the risk through a higher moment of the wealth balance
distribution – for example the fourth moment (whereas the variance is the second moment). This
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Condensé, Centre d’Études de Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette cedex, France



192 THE BEST OF WILMOTT

is interesting since higher moments are more sensitive to extreme events. The minimization of
the fourth moment of the distribution therefore allows one to reduce the probability of large
losses, which is indeed often a concern to risk managers. One could also consider the ‘value-
at-risk’ (defined as the loss level with a certain small probability) as the relevant measure of
large risks (Wilmott (1998)), and aim at minimizing that quantity: this is a generalization of
the present work which is still in progress (Pochart and Bouchaud, in preparation; Bouchaud
and Potters, 2000). However, our main conclusions remain valid for this case as well.

Our results can be summarized as follows: the optimal strategy obtained using the fourth
moment as a measure of risk varies much less with the moneyness of the underlying than both
the Black–Scholes �-hedge and the optimal variance hedge. This is very interesting because
it means that when the price of the underlying changes, the corresponding change in the hedge
position is reduced. Therefore, the transaction costs associated to option hedging decrease as
one attempts to hedge away large risks. Our numerical estimates show that this reduction is
substantial. This result is also important for the global stability of markets: it is well known that
the hedging strategies can feedback on the dynamics of the markets, as happened during the
crash of October 1987, where the massive use of the Black–Scholes hedge (through ‘Insurance
Portfolio’ strategies) amplified the drop of the market. Therefore, part of the ‘fat-tails’ observed
in the dynamics of price changes can be attributed to this non-linear feedback effect. By reducing
the sensitivity of the hedge on the price of the underlying, one can also hope to reduce this
destabilizing feedback.

Let us present our mathematical and numerical results in a rather cursory way (a more
detailed version will be published separately (Selmi, in preparation; Selmi and Bouchaud, in
preparation). In order to keep the discussion simple, we will assume that the interest rate is
zero. In this case, the global wealth balance �W associated to the writing of a plain vanilla
European call option can be written as:

�W = C − max(xN − xs, 0) +
N∑

i=1

φi(xi)[xi+1 − xi], N = T

τ
(1)

where C is the option premium, xi the price of the underlying at time t = iτ, φ(x) the hedging
strategy, T the maturity of the option, xs the strike and τ the time interval between re-hedging.
Previous studies focused on the risk defined as R2 = 〈�W 2〉, while the fair game option
premium is such that 〈�W 〉 = 0 (here, 〈. . .〉 means an average over the historical distribution).
As stated above, this allows one to recover precisely the standard Black–Scholes results if the
statistics of price returns is Gaussian and one lets τ tend to 0 (continuous time limit). This is
shown in full detail in Bouchaud and Potters (2000).

Here, we consider as an alternative measure of the risk the quantity R4 = 〈�W 4〉. The
corresponding optimal hedge is such that the functional derivative of R4 with respect to φi(x)

is zero. This leads to a rather involved cubic equation on φi(x) (whereas the minimization of
R2 leads to a simple linear equation on φi(x)). Further insight can be gained by first assuming
a static (time independent) strategy, i.e. φi(x) ≡ φ0(x). The corresponding cubic equation only
depends on the terminal price distribution and can then be solved explicitly, leading to a unique
real solution φ∗

4 between 0 and 1. We show in Figure 1 the evolution of the optimal strategy
φ∗

4 as a function of the moneyness, in the case where the terminal distribution is a symmetric
exponential (which is often a good description of financial data), for T = 1 month and a daily
volatility of 1%. The corresponding price of the at-the-money call is 2.73. On the same figure,
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Figure 1: Three different strategies: φ∗
2 minimizes the variance of the wealth

balance, φ∗
4 minimizes its fourth moment, whereas φ∗

BS is the Black–Scholes
�-hedge. The strike price is 100, the maturity equal to one month, the daily
volatility is 1% and the terminal price distribution is assumed to be a
symmetric exponential, with an excess kurtosis of 3. The three strategies are
equal to 1/2 at the money. Note that φ∗

4 varies much less than the other two
with moneyness

we have also plotted the Black–Scholes �-hedge, and the hedge φ∗
2 corresponding to the

minimization of R2. All these strategies vary between zero for deeply out of the money options
to one for deeply in the money options, which is expected. However, as mentioned above, the
variation of φ∗ with moneyness is much weaker when R4 is chosen as the measure of risk.
For example, for in the money options (resp. out of the money), φ∗

4 is smaller (resp. greater)
than the Black–Scholes � or than φ∗

2 . This is because a possible large drop of the stock, which
would suddenly drive the option out of the money and therefore lead to large losses due to the
long position on stocks, is better taken into account by considering R4. One can illustrate this
result differently by plotting the derivative of φ∗ with respect to the price of the stock, which
is the ‘Gamma’ of the option – see Figure 2. One sees that in our example the at-the-money
Gamma is decreased by a factor 3.5 compared to the Black–Scholes Gamma. The corresponding
average transaction costs for re-hedging are therefore also expected to decrease by the same
amount. This is confirmed by numerical tests on market data (Selmi, in preparation; Selmi and
Bouchaud, in preparation).

It is interesting to study the full probability distribution function of �W for the following
three cases: un-hedged, hedged à la Black–Scholes or hedged following φ∗

4 . Of particular
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Figure 2: The three corresponding ‘Gamma’s’, defined as the derivative of
the strategy φ∗ with respect to the price of the underlying. This quantity is
important since the transaction costs for at the money options are proportional
to � (100)

interest is the probability p of large losses – for example, the probability of losing a certain
amount |�W ∗|, defined as:

p =
∫ −|�W ∗|

−∞
d�W P(�W) (2)

The results for |�W ∗| = 10 (which is four times the option premium) are shown in Figure 3
for different values of the strike price. One sees that even in the restrictive framework of a
purely static hedge, φ∗

4 allows one to decrease substantially the probability of large losses. For
xs = 110, this probability is decreased by a factor 3 to 4 as compared to the Black–Scholes
hedge! For at-the-money options, since the static strategies are identical (φ∗

BS = φ∗
4 = 1/2), one

finds no difference in p.
We have up to now considered the simple case of a purely static strategy. In the case of

the minimization of R2, one can show that the fully dynamical hedge can be obtained by a
simple time translation of the static one, that is, one can compute φ∗

2i by again assuming a
static hedge, but with an initial time translated from 0 to t = iτ . This can be traced back to the
fact that if the price increments are uncorrelated (but not necessarily independent), the variance
of the total wealth balance is the sum of the variances of the ‘instantaneous’ wealth balances
�Wi = Wi+1 − Wi . This is no longer true if one wants to minimize R4. However, we have
shown for N = 2 that the simple ‘translated’ strategy φ∗

4 is numerically very close to (but
different from) the true optimum. Since we are in the neighbourhood of a quadratic minimum,
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Figure 3: The probability p of losing four times the premium, as a function
of the strike price, for the three different strategies: un-hedged,
Black–Scholes, and φ∗

4 . Note the substantial decrease of p for out and in the
money options, even in this restrictive case where the strategy is purely static

an error of order ε on the strategy will only increase the risk to order ε2 and is therefore often
completely negligible (note that a similar argument also holds in the case of φ∗

2 : even if the
Black–Scholes � is in general different from φ∗

2 , the difference is often small and leads to a
very small increase of the risk – see the discussion in Bouchaud and Potters, 2000).

Finally, it is important to note that the optimal φ∗
4 hedge for a book of options on the

same underlying is not the simple linear superposition of the optimal hedge for the individual
options in the book, whereas this is indeed the correct result for variance hedging. However,
we have found in the case of a book containing two options with different strikes but the same
maturity, that the difference between the optimal hedge and the simple linear prescription is
again numerically very small.

As a conclusion, we hope to have convinced the reader that as soon as one accepts to abandon
the zero-risk paradigm of Black–Scholes, very interesting issues concerning risk control arise
because different definitions of the risk become inequivalent (in the Black–Scholes world, the
risk is zero, whatever the definition of risk!). Therefore, optimal hedges depend on the quantity
one wishes to minimize. We have shown here that a definition of the risk more sensitive to the
extreme events generically leads to a decrease of the sensitivity of the hedge on the price of
the underlying (the ‘gamma’). Therefore, both the transaction costs and the impact of hedging
on the price dynamics of the underlying are reduced.



196 THE BEST OF WILMOTT

Appendix: technical details
We give in this section the explicit form of the equations obeyed by the optimal strategies φ∗

2
and φ∗

4 . We introduce the following notation: dPN(x ′) is the probability to find the final price
at x ′ within dx ′, conditioned to the present value x of the underlying asset. We introduce the
following notations:

µn =
∫

dPN(x ′)(x ′ − x)n;

νn,m =
∫

x ′>xs

dPN(x ′)(x ′ − x)n(x ′ − xs)
m, (3)

and consider here the simple case where µ1 = 0. In this case, the option price is given by ν0,1.
The minimization equation giving φ∗

2 then reads (Bouchaud and Potters, 2000):

µ2φ
∗
2 − ν1,1 = 0. (4)

Similarly, the equation for φ∗
4 reads (Selmi, in preparation; Selmi and Bouchaud, in preparation):

a4φ
∗3
4 + 3a3φ

∗2
4 + a2φ

∗
4 + a1 = 0, (5)

with:

a4 = µ4; a3 = ν0,1µ3 − ν3,1; a2 = 3ν2
0,1µ2 − 6ν0,1ν2,1 + ν2,2; (6)

and:

a1 = −3ν2
0,1ν1,1 + 3ν0,1ν1,2 − 4ν1,3. (7)
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On Exercising American
Options: The Risk
of Making More Money
than You Expected
Hyungsok Ahn∗ and Paul Wilmott∗∗

Wilmott magazine, March 2003

T
he price of an American option is dictated by the concept of optimal, exercise. But
optimal is defined from the perspective of the option writer, who is assumed to be
able to delta hedge. This theory for when to exercise the option is well known.
However, buyers of American options may, and do, exercise early or late for a
variety of reasons.

Suppose you are long an in-the-money American call, and you are concerned that the market
may collapse. What can you do? You may close the position by selling the option, you may
start delta hedging, or you may exercise the option. When the contract is OTC and there are
significant costs in trading the underlying then two of these possibilities disappear. Here we
present some ideas on trading options containing embedded decisions, such as those found in
American options. We consider reasons why the option holder may make “suboptimal” decisions
and also see what effect these decisions have on the profit made by the option writer.

1 Introduction
The American option is a contract that allows the holder to exercise before the contract’s
maturity, should she1 so desire. Because of the flexibility of choosing the exercise time, the
fair value of the contract is calculated as the value of the option in the worst case for the
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200 THE BEST OF WILMOTT

issuer among all feasible exercise strategies that the option holder may choose. This is the
price-maximization strategy.

The fundamental concept of the absence of arbitrage is still an integral part of determining
the price. The issuer can construct a hedged portfolio involving the trading of the underlying
asset in such a way that the value of the replicating portfolio (i.e., the up-front premium for
the option plus the result of trading) is not less than his liability even when his counterparty
exercises the option at the least favorable time.

Typically the price-maximizing exercise time, and hence the least favorable exercise time for
the issuer, is described as an optimal stopping time, and the resulting pricing equation becomes
a partial differential equation involving a free boundary.

This valuation is undoubtedly fair. If the value were less than this ‘optimal’ then the holder
of the option could, if she so desired and were able, delta hedge her long position and then
exercise her option at the price-maximizing exercise time. In this case, the balances of both
the issuer and the holder would be zero at exercise. However, the option holder would have
locked in a profit equal to the difference between the price at which the option was sold and
its price-maximized fair value.

How to price American options
Part of the problem in valuing options with early exercise is to decide when the option will
be exercised. Is there, in some sense, a best or optimal time for exercise? To correctly price
American options we must place ourselves in the shoes of the option writer. We must be clear
about the principles behind his strategy: the writer is hedging his option position by trading
in the underlying asset. The hedging strategy is dynamic, referred to as “delta hedging”. The
position in the underlying asset in maintained delta neutral so as to be insensitive to movement
of the asset.

By maintaining such a hedge, the writer does not care about the direction in which the
underlying moves, he eliminates all asset price risk. However, he does remain exposed to the
exercise strategy of the option holder.

Since the writer cannot possibly know what the holder’s strategy will be, how can the
writer reduce his exposure to this strategy? The answer is simple. The writer assumes that
the holder exercises at the worst possible time for the writer. He assumes that the option is
exercised at the moment that gives the writer the least profit. This is referred to as the opti-
mal stopping time although as far as the writer is concerned it is the last thing he wants
to happen.

So, out of all the possible exercise strategies we must find the one that gives the option the
least value to the writer or equivalently the highest value to the holder.

This sounds very complicated but anyone who has implemented the binomial or finite-
difference method knows that it is just a matter of adding one line of code to the program.
That line of code simply tests at each node in the tree whether the theoretical option value is
greater than the payoff, if it is not then the payoff is used instead, and this corresponds to a
time at which the option should be exercised.

We will review the mathematics of this problem in Section 5.

When should the holder exercise?
The holder of the option is probably not delta hedging. It is unlikely that she is insensitive
to the direction of the underlying asset. The initial assumption concerning the writer of the
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option does not apply to the holder. Should the holder therefore act in the ‘optimal’ way as
previously described?

Consider the very simplest possible scenario. You buy a call option because you believe that
the underlying asset is going to rise significantly. If you are correct you will make a substantial
return. If there are no dividends on the underlying then it is ‘theoretically’ never optimal to
exercise before expiry.

Now suppose that the stock does indeed rise, but the economic situation makes you believe
that a sudden fall is imminent. What should you do? The obvious solution is to sell the option
and lock in your profit.

Selling the option may be quite straightforward if it is a liquid exchange-traded contract. But
selling the option may not be possible, for example if the option is OTC. Many OTC contracts
have features similar to early exercise. Indeed, any time that a contract allows the holder some
freedom to make decisions about the future value or behavior of the contract we have exactly
the same scenario concerning price-maximization. We shall return to this later, and consider
some examples.

If you can’t sell the option then you could start delta hedging and continue this until expiry.
This might be relatively simple if the option is deep in the money. But if it is not, and if
there are significant costs associated with buying and selling the underlying this may not be as
easy as it would appear. Moreover, delta hedging requires access to a sophisticated dynamic
model. This may not be available to the option holder especially if the contract is a complex
OTC one.

In many situations, the only way of locking in the profit may be to exercise the option early.
The “theory” says don’t exercise, but if the stock does fall then you lose the profit. At this
stage it is important to remember that the theory is not relevant to you.

Clearly, the writer and the holder of the option have different priorities, what is optimal
to one is not necessarily optimal to the other. The holder of the option may simply have a
gut feeling about the stock and decide to exercise. That is perfectly valid. Or she may have a
stop-loss strategy in place.

She may even use a complex utility-maximization strategy.
It is highly unlikely that her exercise time will correspond to that calculated by the writer

of the option.
We will examine optimal exercise from the holder’s perspective in Sections 6 and 7.

How does the writer feel about exercise?
The writer has received a sum of money in exchange for the option. That sum of money
was calculated assuming that the option holder exercises at a certain optimal time. This optimal
exercise strategy gives the option its highest theoretical value. The writer receives this maximum
amount even though the holder may exercise at any time.

Provided that his model is correct and that continuous delta hedging is possible, it is obvious
that the writer can never lose. The worst that can happen to him is that the option is exercised
at this theoretical optimal time. But this has already been priced into the premium he received.

On the other hand, if the holder exercises at some other time he can only benefit.
In Section 8 we examine the windfall profit made by the option writer, due to a utility-

maximizing holder strategy rather than a price-maximizing one.
We will now consider some more scenarios in which the option holder may exercise non

optimally, first in the world of exchange-traded options, and then in the OTC world.
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2 Exchange-traded products
Various entities participate in the exchange-traded option markets. There are regulated trading
shops, who are forced to maintain risk-free portfolios by regulators, using the market for the
purpose of providing retail brokerage service, hedging their portfolio (including their long-
dated structured portfolios), and a limited amount of speculative trading. There are unregulated
entities, such as hedge funds and asset management companies, engaged in model trading based
upon their proprietary speculation engines. There are also many personal investors enjoying
punting with money from their own pocket.

Among all these market participants, only the regulated entities have a clear motivation for
delta hedging. Others seek the best out of their invested capital while taking the risk of potential
loss. Option markets are very appealing to those risk takers, because of the limited downside of
option contracts and the leverage effect. In fact, a significant number of market participants is
speculating on the market direction and volatility. To those risk takers, fair value of an option
is merely the cover they pay when they enter the market expecting a significant upside. It is
certainly not clear that the option holder is better off exercising her American option at the
price-maximizing exercise time.

The price of an option depends upon the risk-neutral measure, which ignores the physical
drift of the underlying asset price. The reason is that the existence of an option immediately
allows one to construct a locally risk-free portfolio, and hence the risk-free rate is the only one
that governs its price. As a result, the price-maximizing exercise time is also independent of
the physical drift.

Can we assert that the optimal exercise time for the option holder is not affected by the
market direction?

Consider the situation in which the American option you purchased when it was out-of-the-
money becomes in-the-money, but now you feel that the market will move away from you.
What would you do? One answer would be to close your position by selling the option. But who
will purchase your option? There may be some who have the opposite opinion about the market
direction, but they may prefer out-of-the-money or at-the-money options, simply because they
will pay less for them. Hedgers will try to use the futures or forward market instead, for the
same reason. Thus, selling your option may not be a feasible option, unless you can offer a
substantial discount. (In-the-money options are not liquid. This does not invalidate the method
of calculating the fair value, because risk-neutral valuation requires only the liquidity of the
underlying asset not that of the options.) What about locking in your value by making your
position delta neutral? Not a bad idea.

As every practitioner knows, delta hedging is far from being the simple risk-elimination strat-
egy that one reads about in text books. In practice, the inability to hedge continuously and the
presence of transaction costs on the underlying make delta hedging a less-than-perfect strategy.

But even if delta hedging could be done perfectly. There is still a simple situation in which
writer and holder may disagree on the optimal exercise time. A different view on the volatility
of the underlying asset is one obvious reason why investors may exercise their options at
different times. And the same is true when investors are exposed to different interest rates.

In summary, it is nonsense to argue that a single exercise strategy is optimal for every
investor. As an aside, there is empirical evidence (Overdahl and Martin, 1994, for example)
that a substantial portion of all exercised American call options are exercised before their
theoretical price-maximizing exercise boundary.
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3 OTC products
Although a transaction of an American option in its pure form is rare in the OTC market, there
are many structures that involve interactive decision making by each party during the lifetime
of the contract. The results of embedded decisions are unknown a priori, and therefore, the
fair valuation assumes that the outcome of decisions is such that the contract has the highest
possible value. The reason for this is that the risk-neutral value of a contingent claim must
not be smaller than the cost of maintaining the hedged portfolio, regardless of the result of the
embedded decisions. If a party maintains a risk-free portfolio, he will be able to extract the
fair value.

There follow several examples of contracts containing embedded decisions for which the
fair valuation assumes that the contract writer is delta hedging and eliminates exposure to the
contract holder’s decisions by maximizing the price.

Equity-linked note
Consider the situation that an investment bank provides capital to a client and receives fixed
interest on the notional amount and a series of call options on its client’s equity as an upside
participation. In addition, suppose that the note is cancelable: the client can pay back the
notional and terminate the deal at any of the contract-specified dates. The benefit to the client
in this deal is that she can lower the funding cost by sharing her returns when her busi-
ness is successful. The bank will value the product under the assumption that the client’s
decision making is “economical”, which is the worst case for the bank, and try to extract
every penny of the option by maintaining a risk-free portfolio. On the other hand, hedging
the option is neither in the client’s best interest nor a feasible strategy because trading her
own equity may be illegal. The client will make decisions based upon her best interest at
any time. There is no reason why the client will choose early termination of the note at the
price-maximizing boundary.

Knock-out instalment option
The knock-out instalment option in the term sheet shown in Figure 1 has a put payoff but expires
worthless if the barrier is ever exceeded during the contract life. It differs from a vanilla up-
and-out put in that it is not paid for with an up-front premium but in monthly instalments.
The holder must decide each month whether it is worth paying the next instalment to keep the
contract alive. This product is well suited as a credit hedge. The put payoff protects against
bankruptcy as the share price would drop to zero in that event. The knock-out feature and
the instalment plan makes the protection more affordable. If the holder’s goal is to reduce her
credit exposure, as is customary, then she would definitely not delta hedge. She will decide on
whether to pay the next instalment based upon whether she is comfortable with her exposure
or not.

In pricing this contract we put ourselves in the shoes of the delta-hedging writer. We then
consider all possible combinations of payment of instalments and choose that which gives the
option its highest value. Thus the pricing principle is exactly the same as for contracts with
early exercise, the main difference being that there are now more decisions to be made; there
is one decision to be made per month, instead of the single whether-to-exercise-or-not decision
in an American option.
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Preliminary and Indicative
For Discussion Purposes Only

USD/JPY KO Instalment-Premium Option

Notional
Amount

USD 50,000,000

Option Type 133.25 (ATMS) USD Put/JPY Call with KO and Instalment
Premium
6 months from Trade Date
If, at any time from Trade Date to Maturity, the USD/JPY spot rate
trades in the interbank market at or above JPY 140.00 per USD,
the option will automatically be cancelled, with no further rights or
obligations arising for the parties thereto.
JPY 1.50 per USD

Maturity
Knockout 
Mechanism

Upfront 
Premium
Instalments JPY 1.50 per USD, payable monthly from Trade Date (5

 instalments)
As long as the instalments continue to be paid, the option will be
kept alive, but the Counterparty has the right to cease paying the
instalments and to thereby let the option be cancelled at any time.
JPY 133.25 per USD

Instalment
Mechanism

Spot Reference

This indicative termsheet is neither an offer to buy or sell securities or an OTC derivative product which includes options, 
swaps, forwards and structured notes having similar features to OTC derivative transactions, nor a solicitation to buy or sell 
securities or an OTC derivative product. The proposal contained in the foregoing is not a complete description of the terms of a
particular transaction and is subject to change without limitation.

Figure 1: Term sheet for a knock-out instalment option

Equity unwinder
An equity unwinder is a typical structure for a company which owns a substantial amount of
shares of another company as a result of M&A, for example, but wants to dispose of them
for cash. To avoid possible devaluation of the shares, the shareholder keeps the option of
determining an unwinding schedule. In return, she shares her potential over-achievement with
her cash provider. In a sophisticated variant, the cash provider shorts a put for credit protection,
and decides the number of shares to be unwound within the contract-specified limits. The cash
provider will value the product under the assumption that his client will unwind the shares in
such a way that his hedge cost is maximal. On the other hand, the shareholder has no reason for
hedging, which would only mean that she has to buy back a certain amount of shares that were
supposed to be disposed. In fact, some contracts even specify that buy-back is a trigger event
for insolvency, because it can be viewed as market manipulation. The shareholder’s decision
will heavily depend upon the market direction.

Convertible bond
A convertible bond (CB) is a coupon-paying bond which the holder can exchange for equity in
a contract-specified ratio at contract-specified times before maturity. Because of this additional
feature, a CB is not only a cheap funding vehicle, but also a strategic tool for M&A. When
will the CB be converted? As in the previous case, the bond issuer may not be eligible to
trade his own equity. In fact, he has no other choice but to enjoy the cheap funding for a
while. The fair valuation assumes that the holder maintains a risk-free portfolio and converts
the bond at the price-maximizing exercise boundary in order to extract the maximal risk-free
compensation for the cheap coupons. However, a significant number of the convertible bond
holders are speculators; speculating on direction, volatility or credit-worthiness.
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Chooser range note
The vanilla range note has cashflows linked to the number of days that the reference rate
(typically a LIBOR rate) lies within a specified band. In the Chooser Range Note (CRN), the
band is not pre-specified in the contract but is chosen by the contract holder at the start of
each period. In the example in the term sheet shown in Figure 2 there are four decisions to be
made, one at the start of each period. And that decision is not of the simple binary type (“Do
I exercise or not”, “Do I pay the instalment or not”) but is far more complex. At the start of
each period the holder must choose a range, represented by, say, its mid-point. Thus there is a
continuous and infinite amount of possibilities.

Preliminary and Indicative
For Discussion Purposes Only

GBP 2YR Chooser Range Accrual Note Linked to 6 month GBP LIBOR

The note pays a coupon based on the number of days that 6-month LIBOR sets within
an 80bps range. The range is chosen by the buyer at the beginning of each coupon
period.

Issue Date
Maturity Date
Issue Price
Coupon
N
D
RANGE

OBSERVATI
ON PERIOD

24th March 2000
24th March 2002
100%
[6 month LIBOR + 1.00%] x N/D
Number of business days that 6 month LIBOR is within the RANGE
Number of business days in the OBSERVATION PERIOD
Determined by the buyer two days prior to the beginning of each 
OBSERVATION PERIOD
Period 1: 24th March 2000−24th September 2000
Period 2: 24th September 2000−24th March 2001
Period 3: 24th March 2001−24th September 2001
Period 4: 24th September 2001−24th March 2002

This indicative termsheet is neither an offer to buy or sell securities or an OTC derivative product which 
includes options, swaps, forwards and structured notes having similar features to OTC derivative transactions, 
nor a solicitation to buy or sell securities or an OTC derivative product. The proposal contained in the 
foregoing is not a complete description of the terms of a particular transaction and is subject to change without 
limitation. 

Figure 2: Term sheet for a chooser range note

But again, this is not as complicated as it seems. The contract is priced from the hedger’s
perspective and the ranges are chosen so as to give the contract the highest possible value. We
will not go into the details, just note that the problem must be solved in three dimensions, one
for time, one for the interest rate model and one for the mid point of the range.

The hedging writer of the contract is exposed to risk-neutral interest rates, and the forward
curve, the contract holder will choose ranges depending on her view on the direction of real
rates. Since forward rates contain a component of “market price of risk” and since actual rates
rarely show the same dramatic slope in rates and curvature as seen in the forward curve, then it
is unlikely that the holder of the contract will choose the range that coincides with that giving
the contract its highest value.

We will return to this example later.

Passport option
The final example is the passport option (also known as the perfect trader option, and other less
polite expressions), perhaps the ultimate in contracts with embedded decisions. For here there
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is a continuous spectrum of decisions to be made at each moment in time. The passport option
is like insurance for your trading account. Invest in a stock, buying and selling according to
your views (but only up to the limit specified in the term sheet; see Figure 3), and keep track
of the amount of money that you make or lose. The amount that you accumulate is called the
trading account. It will be positive if you have done well and negative if you have done badly.
The passport option is a call option with zero strike on the money in this account. In other
words, you keep the final profit but if it is negative then it is written off.

Preliminary and Indicative
For Discussion Purposes Only

USD/DEM  ‘Perfect Trader’ Option

Notional
Amount
Option Maturity
Allowed 
Position 
Transaction 
Frequency
Settlement
Amount
Upfront 
Premium

USD 25,000,000+

Three months from Trade Date
Long or short up to Notional Amount

Up to two times daily

Max(0,sum total in DEM of the gains + losses on each of the trades)

3.35% of Notional Amount

This indicative termsheet is neither an offer to buy or sell securities or an OTC derivative product which includes options, 
swaps, forwards and structured notes having similar features to OTC derivative transactions, nor a solicitation to buy or sell 
securities or an OTC derivative product. The proposal contained in the foregoing is not a complete description of the terms of a
particular transaction and is subject to change without limitation. 

Figure 3: Term sheet for a passport option

Clearly there are many decisions to be made. At each instant you must decide whether to
buy or sell the underlying. To value this contract requires some knowledge of stochastic control.
We put ourselves in the shoes of the delta hedger and assume that the holder makes decisions
so as to give the contract its highest value. It is extremely unlikely that the holder will choose
exactly the same strategy as deemed ‘optimal’ by the writer. See Ahn, Penaud, and Wilmott
(1999) for details.

It is not too difficult to understand how this product came about. The product is popular
among asset managers who engage in speculative trading.

4 Who wins and who loses?
Trading an option is not a two-person zero-sum game, because both the issuer and the holder
can trade the underlying asset with other investors. If the issuer maintains a risk-free portfolio
by trading the underlying asset while the holder leaves her position naked, the issuer’s balance
will be non-negative in the end while the holder’s depends upon whether or not she guessed
market direction correctly. If the holder exercises her option at her own optimal time, there
is also a possibility that both issuer and holder can make a profit at the same time. Does this
violate the conservation law? Not really, even if we consider an extreme case that everyone in
the option market makes a profit. There would then have been an influx of capital from the
spot market due to delta hedging.
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Let us consider the potential cashflows in some detail. In Figure 4 we see the profit made
by shareholders in a stock that has risen in value over some period, say a year. At the moment
there are no options on this stock.
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Figure 4: Profit made by shareholders in a rising market: No
options traded

Now let us introduce an American option (or any contract that incorporates some choice/deci-
sions for the holder) into this scenario, the expiry of the option coinciding with the horizon
in the previous case, that is, one year. The stock will evolve dynamically exactly as in the
non-option case.

What are the cashflows now?

1. If the writer sells the option for “fair value”, according to the delta-hedging-and-price-
maximizing method, and the holder exercises at the price-maximizing boundary then
the writer makes no profit. The premium paid for the option is paid by the holder and
is added to the profit made by the shareholders. The mechanism for the transfer of
premium from holder to shareholders is simply the process of delta hedging.

2. On exercise or expiry the holder of the option may get a payoff. If the contract is a
simple call and ends up in the money then the holder gets the difference between the
share price and the strike price. This again does not have any impact on the writer of
the option, but via delta hedging, it is taken from the profit of the shareholders.

3. Of course, the writer of the option is in practice going to add a mark-up, his profit
margin. This is paid for by the option holder.

4. The final cashflow in this picture is concerned entirely with the non optimal, in the price-
maximizing sense, exercise of the option. There is a windfall profit made by the option
writer whenever the holder exercises ‘non optimally.’ (This profit could be thought of
as part of the payoff, but in the diagram we have subtracted it from the shareholders.)

Figure 5 shows all of these cashflows. In the perfect Black–Scholes world the option writer
profits only from mark-up and from the windfall. The option holder will gain or lose according
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to the balance between the premium they pay and the payoff they receive. The market value of
all the positions at expiry/exercise adds up to the value of the shareholders’ profit in a world
without options.
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Figure 5: Profit made by shareholders in a rising market:
American options traded

We are now going to embark on the mathematical journey. During this journey we ask that
the reader hold the following thoughts:

• The writer is in the Black–Scholes world.
• The option holder can’t or won’t delta hedge.
• The option cannot be sold, think of it as OTC.

This means that the holder cannot or will not exit her position other than by exercising.

5 Optimal trading strategy: The classical
formulation
First, we explain the classical valuation of American options. For a rigorous derivation see
Myneni’s article (1992), which contains a survey of the literature on the subject. In what
follows, we assume that the underlying is tradable and its price satisfies the following stochastic
differential equation (SDE):

dS(t) = M(t)S(t) dt + σS(t) dW(t) (1)

where W is a standard Wiener process, σ is volatility, and M is an adapted process. The only
motivation for assuming a constant volatility is brevity. In fact, the following results can be
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easily modified to accommodate other volatility structures. All we need is a suitable condition
that (1) has a sensible solution.

As shown in Harrison and Pliska (1981), the complete-market assumption allows a trader
to replicate the payoff of an arbitrary contingent claim by trading the underlying. Thus, we
consider that an issuer of an option carries � units of the underlying. The value of his portfolio
at any moment is

�S(t) − V (t, S(t))

where V is the fair market price of the option he sold. The issuer wants to make sure that his
portfolio earns at least as much as cash in his bank account:

� dS(t) − dV (t, S(t)) ≥ �S(t)c dt − rV (t, S(t)) dt (2)

where c is the rate of cost for carrying the underlying and r the risk-free rate. For the time
being, we assume that V (t, S) is continuously differentiable with respect to the time variable
and twice continuously differentiable with respect to spot, which guarantees:

dV (t, S(t)) = Vt(t, S(t)) dt + VS(t, S(t)) dS(t) + 1
2σ 2S2(t)VSS(t, S(t)) dt. (3)

It is required for the issuer to pick � = VS in order to fulfill (2) because the random fluctuation
is of order dt1/2 and is much larger than dt terms. Incorporating this choice and rearranging (2),
we find an equivalent condition for the issuer:

LV = Vt + cSVS + 1
2σ 2S2VSS − rV ≤ 0. (4)

At the same time, the value of the option must never fall below its immediate exercise value,
because this would result in a simple arbitrage opportunity. This sets another restriction on the
value function:

V ≥ X(S) (5)

where X(S) denotes the exercise value. At each time t , the option holder may or may not
exercise her option. If (5) holds strictly, then exercising the option at that instant is not the least
favorable outcome for the issuer, because he can cash in the difference. In this case, (4) must
vanish, because the issuer would have a “free lunch”. Therefore we obtain the third condition:

(LV ) · (V − X) = 0. (6)

The inequalities (4),(5), and (6), together with terminal condition V = X, form a parabolic
obstacle problem. We refer to Friedman (1988) for the existence and the uniqueness of the
solution to such problems. Wilmott, Dewynne and Howison (1993) present a numerical method
for solving the problem.

The curve that divides V = X from V > X to equal is often referred to as free boundary.
As we explained, the free boundary for the above parabolic obstacle problem is the price-
maximizing exercise boundary. Jaillet, Lamberton, and Lapeyre (1990) showed that the solution
of the parabolic obstacle problem has a continuous gradient at the free boundary, and Van
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Moerbeke (1976) showed that the free boundary is continuously differentiable. Thus, Itô’s
formula (3) is valid at least in a weak sense: see San Martin and Protter (1993) for details.

Figure 6 shows the fair value of an American put option versus the underlying. Where the
fair value first touches the payoff is the price-maximizing free boundary.

In asset, time space we find a free boundary dividing the hold and exercise regions (see
Figure 7).

The exercise strategy should depend on whether or not you
are delta hedging
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Figure 6: American put value vs. underlying
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Figure 7: Underlying/time domain for an American option
showing the free boundary dividing the exercise region from the
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6 Optimal exercise from the holder’s perspective
Having dealt with the theoretically correct option-valuation problem we turn our attention to
the problem as seen by the option holder. We present several possibilities for her exercise
strategies. Remember that for the reasons explained above, should she wish to exit her position
the only available possibility may be early exercise.

In order to provide concrete results we must first present a framework for a consistent and
quantitative trading strategy.

As we mentioned earlier, feasible strategies for speculative traders are buying, selling, or
exercising an option. The optimal strategy is predicated upon the trader’s risk preference and
both physical and risk-neutral dynamics of the spot. Choosing a risk preference is rather arbi-
trary, and in reality none of us knows how to postulate our own risk preference. However, one
would ideally pick a systematic risk preference, because of the consistency of the decision and
the automation of the decision-making process. We will assume that the trader’s risk preference
is governed by an expected value of a utility function u that is strictly increasing and twice
continuously differentiable.

Assessing the dynamics of the spot, in practice, requires statistical analysis of the historical
data, filtering the drift (as it is not observable), and calibration of the volatility structure. Here,
we will keep the form (1) with:

dM(t) = b(t, M(t), S(t)) dt + a(t, M(t), S(t)) dZ(t) (7)

where Z is a standard Brownian motion with d[Z,W ]t = ρ dt . If ρ = 1, a = −βσ , and:

b(t, M, S) = −β
(
M + 1

2σ 2
)

then the spot is essentially an exponential of an Ornstein–Uhlenbeck process. Another possible
natural postulation is to make M itself mean-revert to a certain growth rate.

At time t , the investor, who longs an American option, faces the following optimal stop-
ping problem:

U(t, S, M) = sup
τ≥t

Et [u(Q(τ, S(τ)))] (8)

where the discounted termination value Q is defined as:

Q(t, S) = e−λt (V (t, S)IB(S) + X(S)IBc(S)).

As before, X is the exercise value and V is the market price of the option. In addition,
λ is the accrual rate of the trader’s capital, and B is the liquidity zone that depends upon
the moneyness of the contract. For example, the boundary of B may simply be the same as
the strike, meaning that when the contract becomes in-the-money, it is not traded. Finally, the
conditional expectation is under the physical measure.

The optimal stopping problem (8) is not much different from the risk-neutral valuation of
an American option, mathematically, and the maximum utility value function U is a solution
of a parabolic obstacle problem. First:

U ≥ u(Q). (9)
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This is because the maximum expected utility is not smaller than the utility of immediate
exercise or liquidation, which is a special case of many feasible stopping times. Next, the
following inequality holds for each t < T − δ:

U(t, S, M) ≥ Et [U(t + δ, S(t + δ), M(t + δ))]. (10)

To see this, note that the right-hand side of (10) is the expected utility when the option holder
pursues optimal stopping only after δ elapses. In other words, the trader is dormant until time
t + δ and she tries to find an optimal stopping time from then on. Thus, the value of this expected
utility shouldn’t exceed the maximum expected utility, which is on the left-hand side of (10).

The implication of this in an infinitesimal time is the following:

LpU = Ut + bUM + MSUS + 1
2a2UMM + ρaσSUSM + 1

2σ 2S2USS ≤ 0 (11)

which is obtained from Dynkin’s formula. If LpU < 0, then the maximum expected utility is
expected to fall in an infinitesimal time, and hence the optimal strategy is to exercise or sell
the option immediately. Therefore:

(LpU)(U − u(Q)) = 0. (12)

The set of variational inequalities (9), (11), and (12), together with terminal data U(t, S, M) =
u(X(S)) characterize the maximum expected utility. The optimal stopping time is the first time
the spot and its drift hit the free boundary of the inequalities. If the spot is in the liquid zone, the
stopping means selling, exercising otherwise.

Expected utility is a consistent risk preference that separates different outcomes. When it
comes to seeing what this means in dollar terms, however, it is not that transparent. In this
case, it is easier to use the certainty equivalence, which is the cash amount that is indifferent
from the random payoff of the optimal strategy:

H(t, S, M) = eλtu−1(U(t, S, M)).

It can be shown that, by chain rule, the maximum utility certainty equivalent satisfies the
following non-linear variational inequalities:

H(t, S, M) ≥ V (t, S)IB(S) + X(S)IBc(S) (13)

NpH = Ht + bHM + MSHS + 1

2
a2HMM + ρaσSHSM + 1

2
σ 2S2HSS

(14)
− λH + 1

2

u′′

u′ e
−λt ((aHM)2 + ρaσSHMHS + (σSHS)2) ≤ 0

(NpH(t, S, M))(H(t, S, M) − V (t, S)IB(S) − X(S)IBc(S)) = 0. (15)

Therefore the optimal strategy depends upon the physical drift and Pratt’s measure of absolute
risk aversion −u′′/u′, and is different from the price-maximizing boundary. The distortion in
discount is caused by the non-linearity of the utility function.

Figure 8 is for illustrative purposes only (and in just S, t space), but shows a possible
utility-maximizing boundary.
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Figure 8: An example of the possible exercise boundary
adopted by the option holder

7 The exercise boundary for the holder:
examples
In the previous section, we have seen that the exercise boundary of the utility-maximizing
strategy can be quite different from the classical exercise boundary. There are several factors
that determine the behavior of the utility-maximizing exercise boundary. In fact, we will show
that the factors are those we’ve already discussed in the introduction. Throughout this section,
we will assume that the drift M is simply a constant, say µ, and ignore the scenario of selling
the option. In this way, we can present our ideas without too many technical details.

Theorem The utility-maximizing exercise time for an American option has the following
properties:

(i) If the absolute risk aversion is sufficiently large, then there is a positive probability
of early exercise for both calls and puts.

(ii) The exercise time for a call option is non-decreasing in drift.
(iii) The exercise time for a put option is non-increasing in drift.

Proof Note that the exercise region coincides with the space-time domain of NH < 0. If
the absolute risk aversion −u′′/u′ tends to infinity uniformly in its argument, then {(t, s) : NH <

0, 0 ≤ t ≤ T , s > 0} is a set of a positive measure. Since the support of a non-degenerate geo-
metric Brownian motion (i.e., σ 2 > 0) occupies the entire positive plane, the utility-maximizing
exercise time can be less than the maturity with a positive probability. This proves (i). When
the option is a call, HS is positive. Thus NH becomes more negative when the drift becomes
smaller. If the option is a put, HS is negative, and hence NH becomes more negative when the
drift becomes larger. Therefore we have (ii) and (iii).
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Our next task is to locate the boundary when the time to maturity is arbitrarily close to
zero. Note that the certainty equivalence H tends to X as t → T and the utility-maximizing
exercise boundary (as a function of time) is continuously differentiable. Thus when t is near
T , the utility-maximizing exercise boundary is close to the boundary of NX < 0. This is the
boundary at maturity. If X(S) = max(S − K, 0) (i.e., a call option), then the boundary is above
the strike K for each t and hence the boundary at maturity is:

∂

[
S > K :

1

2
σ 2S2 u′′

u′ (e
−λT (S − K))e−λT + (µ − λ)S + λK < 0

]
. (16)

Here, the symbol ∂ is used for indicating the boundary of a set. Similarly, if X(S) = max(K −
S, 0) (i.e., a put option), the boundary at maturity is:

∂

[
S < K :

1

2
σ 2S2 u′′

u′ (e
−λT (K − S))e−λT − (µ − λ)S − λK < 0

]
. (17)

Sometimes (16) and (17) may contain more than a point. In such a case, the free bound-
ary bifurcates.

In the remainder of this section, we provide an explicit expression for the boundary at
maturity when the option holder’s utility belongs to one of the following categories: the CARA,
the HARA, and expected return (i.e., linear utility).

Constant absolute risk aversion, CARA
CARA is when the absolute risk aversion is a constant regardless of the wealth of the investor.
That is, −u′′/u′ ≡ γ for a positive constant γ . Up to a constant, the utility is of the form
u(ω) = −αe−γω for a positive constant α.

First we consider a call option. Expression (16) becomes:

max

(
K,

1

γ σ 2
(µ − λ +

√
(µ − λ)2 + 2γ σ 2Kλe−λT eλT

)
. (18)

Note that (18) tends to infinity as γ tends to zero. Hence as the risk aversion of the option
holder vanishes, the utility-maximizing exercise time tends to the maturity which coincides with
the classical exercise time for call provided that the carrying cost is the same as the risk-free
rate. Next we consider a put option. The inequality in (17) is:

− 1
2σ 2γ e−λT S2 − (µ − λ)S − λK < 0. (19)

If the physical drift exceeds the holder’s time value of cash (µ ≥ λ), (19) is true for all positive
S. Thus the boundary at maturity is K . Suppose that µ < λ. The quadratic inequality (19) is
always satisfied if:

D = (µ − λ)2 − 2γ σ 2Kλe−λT < 0.

In this case, the boundary at maturity is also K . Finally, if D ≥ 0 as well as µ < λ, the boundary
at maturity is:

min

(
K,

1

γ σ 2

(
λ − µ +

√
(λ − µ)2 − 2γ σ 2Kλe−λT eλT

))
.
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Hyperbolic absolute risk aversion, HARA
Merton (1990) provides a complete description of this family of utility functions. The hyperbolic
absolute risk aversion means −u′′/u′ = γ/(ω + α) for a positive constant γ . This utility applies
in the case when the wealth of the investor is bounded below: ω + α > 0. Thus the richer the
investor is, the less risk averse. Up to a constant shift:

U(ω) =




1

βγ

(ω + α)1−γ

1 − γ
, if γ �= 1

1

β
log(ω + α), else

where β > 0. The parameter α is assumed positive as the option payoff could be zero. Simple
algebra reduces the inequalities in (16) and (17) to quadratic inequalities. For example, (16) is
equivalent to:

∂[S > K : AS2 + BS + C < 0]

where A = (µ − λ − σ 2γ/2)e−λT , B = (µ − λ)(α − e−λT K) + λe−λT K , and C = λK(α −
e−λT K). The continuation region and the exercise boundary depend upon the choice of
parameters.

An unusual case is when the parameters satisfy the following:

λ + 1

2
σ 2γ < µ <

1

2
σ 2γ

e−λT K

α
.

In this case, the continuation region near maturity is separated by the exercise region:[
S : K < S <

−B + √
B2 − 4AC

2A

]
.

If the physical drift is sufficiently large, the option is very valuable to the holder when the
option is very in-the-money. If not, the curvature reduces the holder’s utility. Also note that
there is no exercise boundary if:

µ > λ + 1
2σ 2γ and α > e−λT K.

This is the case when the physical drift is large while the risk aversion is not.

Expected return
This is a special case of u(ω) = αω + β for a positive constant α. As u′′ vanishes in this case,
our analysis of the boundary at maturity becomes straightforward. When the option is a call, the
inequality in (16) becomes (µ − λ)S + λK < 0. This is never satisfied if µ ≥ λ. In this case,
the utility-maximizing exercise time is the maturity. If µ < λ, on the other hand, the boundary
at maturity is:

max

(
K,

λ

λ − µ
K

)
.
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Next we consider a put option. If µ ≥ λ, then the inequality in (17) is always satisfied, and the
boundary at maturity is K . If µ < r , the boundary at maturity becomes:

min

(
K,

λ

λ − µ
K

)
.

8 The hedger’s windfall profit
We have observed that the option holder’s exercise time can differ from the price-maximizing
exercise time for various reasons. When this happens, the issuer gains from the difference.
In this section, we examine the profit from selling American options to utility-maximizing
investors. To avoid the complication of modeling investors with different risk preference, we
will simply exclude the case when the ownership of the option changes before the expira-
tion.

The issuer charges V (0, S(0)) at time 0, hedges his short position until the option is exer-
cised or expired. The discounted potential liability of the issuer is e−rτX(S(τ)) where τ is
the termination time, either early exercise or expiration. The present value of the issuer’s
profit becomes:

V (0, S(0)) +
∫ τ

0
e−rt�(dS(t) − cS(t) dt) − e−rτX(S(τ)). (20)

The second term in the equation (20) is the result of delta hedging with the cost of carry.
First we add and subtract e−rτV (τ, S(τ)) from the profit (20). Applying Itô’s formula to

V yields:

V (0, S(0)) +
∫ τ

0
e−rt�(dS(t) − cS(t) dt) − e−rτV (τ, S(τ))

= −
∫ τ

0
dte−rtLV

where L is as defined as in (4). Thus, we may rewrite the profit (20) as:

−
∫ τ

0
dte−rtLV + e−rτ (V (τ, S(τ)) − X(S(τ))).

We define the expected profit at time t as:

�(t, S, M) = Et

[
−

∫ τ

0
dte−rtLV + e−rτ (V (τ, S(τ)) − X(S(τ)))

]
.

We will show that � satisfies a diffusion equation with a moving boundary which is known
a priori. Recall that we ignore the ownership changes. Thus, if H is the maximum expected
certainty equivalence of the option holder, then its free boundary gives the optimal exercise
time τ . Let H and V be the domains defined by H > X and V > X, respectively. These are
the regions of continuation for the utility maximization and the price maximization. We also
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define G = H\V. Since LV vanishes on V, the expected profit � satisfies:

Lp� − e−rtLV IG = 0 (21)

subject to �(T , S, M) = 0 and � = e−rt (V − X) on ∂H, the utility-maximizing exercise bound-
ary. In the above, Lp is defined as in (11). The indicator IG is one if (t, s) belongs to G and zero
otherwise. If the option is a call and the cost of carry is the same as the risk-free rate, the source
term of (21) vanishes because G is empty. If the option is a put, then V = X on the complement
of V, and therefore:

e−rtLV IG = −re−rtKIG

where K is the strike price. Here we have used the fact that the price-maximizing exercise
boundary is not above the strike when the option is a put.

Figure 9 combines both the price-maximizing and utility-maximizing boundaries on the
same graph, and shows the region in which the writer’s windfall profit is the sudden excess
and the gradually incremented excess.
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Figure 9: Underlying/time domain showing the two boundaries
(price optimal and utility optimal), and the relevant governing
equations/boundary conditions

Example 1: Maximization of the expected profit
Figure 10 shows the expected profit from selling an at-the-money American put to an investor
who maximizes expected profit. In this case, the option holder’s criterion in choosing the
exercise time is free from risk aversion, and hence the outcome can be considered as the
marginal effect of the physical drift to the issuer’s expected gain. The initial asset price is
50, the asset volatility is 20% per annum, the maturity of the option is six months, and the
risk-free rate, carrying cost rate, and the option holder’s discount rate are set to 8% per annum.
When the physical drift coincides with this rate, the holder’s exercise boundary is inside the
price-maximizing exercise boundary. In this case, G is empty and the only source of the issuer’s
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profit is the difference between the value of the option and the exercise value (i.e., the value
of P on the moving boundary ∂H). If the physical drift is less than the rate, then the holder’s
exercise boundary is outside of the price-maximizing exercise boundary, and hence the issuer’s
profit grows with the occupation time of the asset price in between the two boundaries. This
explains the asymmetry in the picture.
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Figure 10: Expected windfall profit vs. growth of
the underlying

Example 2: Maximization of expected CARA utility
Figure 11 is the issuer’s expected profit as a function of the absolute risk aversion. The option
holder’s exercise time maximizes the expected CARA utility, while the physical drift coincides
with the rate (8%). Thus, the outcome is the marginal effect of the absolute risk aversion to the
issuer’s expected profit. Again, the option is an at-the-money American put, and parameters are
set as before. If the absolute risk aversion vanishes and the physical drift coincides with the
rate, then the utility-maximizing exercise boundary coincides with the price-maximizing one,
and hence the expected profit vanishes.

Example 3: The chooser range note
We end with a few words on the Chooser Range Note whose term sheet we saw earlier.

This contract requires the holder to make four decisions during its life. Each of these four
decisions involves choosing the mid point of an interest rate range, a continuous spectrum of
possibilities.

In Figure 12 we see the forward rate curve as it might be at the start of the contract’s life.
The shape of this curve is more often than not upward sloping, representing adjustment for the
price of risk. One expects a higher return for holding something for a longer term.

The figure also shows a possible evolution of short-term interest rates. It is this path which
determines, in part, the final payoff. Notice how the path of rates does not follow the forward
curve. Obviously it is stochastic, but it does not usually exhibit the rapid growth at the short end.
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Figure 12: Typical forward rate curve at start of contract’s
life, and typical evolution of actual short-term interest rates
over its life

Figure 13 shows a plausible choice of price-maximizing ranges. These will naturally be
dependent upon the forward curve (the figure is schematic only. The actual ranges ‘chosen’ by
the writer when maximizing the price will depend on the volatility of interest rates as well. But
this is not the place to go into detail about the pricing of such contracts.)

Figure 14 shows the ranges as chosen by the holder of the contract. She makes a decision
about each range at the start of each new period. Of course, her choice will be closely related
to where the short-term rate is at that time, with some allowance for her view.

Clearly there is great scope for a significant difference between the price-maximizing choice
and the final choices made by the holder. Our concept applies equally well to this case as to
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Figure 13: The price-maximizing ranges will depend on the
risk-neutral, forward rate curve (schematic only; the choice will
also depend on the volatility of the curve)
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Figure 14: The ranges chosen by the holder are more likely to
represent the best guess at the evolution of actual rates

the exercise of American options; the writer of the option can expect a windfall profit which
depends on the difference between the holder’s strategy and the price-maximizing strategy.

Conclusion
The theory of optimal stopping has been applied to the valuation of American options. People
are prone to misuse the terminologies of the theory of optimal stopping when they talk about
American options. For example, the price-maximizing exercise boundary has been referred to
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as the optimal exercise boundary, while it is optimal to neither the issuer nor the option holder.
This causes confusion to students, practitioners, and even academic researchers in the field.

In this article, we have presented various reasons why American options may be exercised
on boundaries other than the one that is assumed in the fair pricing. The hedger can gain from
the discrepancy between the actual exercise time and the price-maximizing exercise time. The
concept applies to many OTC structure products as well: users of these products are forced
to use strategies other than maintaining a risk-free portfolio, or voluntarily take risk, pursuing
their own rational strategies. Financial institutions, who provide these custom-made products,
can capitalize on the difference between the classical theory and the rational practice.

A relevant issue, which we haven’t discussed here, is whether the issuer should report his
risk based upon the worst-case scenario. Mortgage backed securities with prepayment are cases
in point. Should a bank report prepayment risk based upon the scenario that every mortgage
owner behaves optimally? Or should a power marketer report attrition risk based upon the
scenario that every client performs optimal gaming? When was the last time you switched your
utility provider or long-distance communication provider?

FOOTNOTE & REFERENCES

1. This is definitely not political correctness. In our examples the holder of the option is female
and the writer male, to aid our descriptions.

� Ahn, H., Penaud, A. and Wilmott, P. (2000) Various passport options and their valuation.
Applied Mathematical Finance 6, 275–292.
� Friedman, A. (1988) Variational Principles and Free Boundary Problems. Robert E. Krieger
Publishing, New York.
� Harrison, J. M. and Pliska, S. R. (1981) Martingales and stochastic integrals in the theory of
continuous trading. Stoch Proc Appl, 11, 215–260.
� Jaillet, P., Lamberton, D. and Lapeyre, B. (1990) Variational inequalities and the pricing of
American options. Acta Appl Math, 21, 263–289.
� Merton, R. C. (1990) Continuous-Time Finance. Blackwell, Oxford.
� Myneni, R. (1992) The pricing of the American option. Annals Appl. Probab. 2(1), 1–23.
� Overdahl, J. A. and Martin, P. G. (1994) The exercise of equity options: theory and empirical
tests. J. Derivatives, Fall, 38–51.
� San Martin, J. and Protter, P. (1993) General change of variables formulas for semi-
martingales in one and finite dimensions. Probab. Theory Rel. Fields 97, 363–381.
� Van Moerbeke, P. (1976) On optimal stopping and free boundary problems. Arch. Rational
Mech. Anal. 60, 101–148.
� Wilmott, P., Dewynne, J. N. and Howison, S. D. (1993) Option Pricing: Mathematical Models
and Computation. Oxford Financial Press, Oxford.





17
Phi-alpha Optimal
Portfolios and Extreme
Risk Management
R. Douglas Martin,∗† Svetlozar (Zari) Rachev,∗∗†#

and Frederic Siboulet†

Wilmott magazine, November 2003

When anyone asks me how I can describe my experience of nearly forty years at sea,
I merely say uneventful. Of course there have been winter gales and storms and fog
and the like, but in all my experience, I have never been in an accident of any sort
worth speaking about. I have seen but one vessel in distress in all my years at sea (. . .)
I never saw a wreck and have never been wrecked, nor was I ever in any predicament
that threatened to end in disaster of any sort.

E. J. Smith, Captain, 1907, RMS Titanic

High market volatility demands new solutions

P
aul Wilmott likes to recount the ritual by which he questions his students on the
likelihood of Black Monday 1987. Under the commonly accepted Gaussian risk
factor distribution assumption, they calculate that there should be no such event in
the entire existence of the universe and beyond!

The last two decades have witnessed a considerable increase in the volatility of
financial markets – dramatically so in the last few years. Extreme events are the corollary of
that increased volatility.
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Legacy risk systems have done a reasonable job at managing ordinary financial events.
However up to now, very few institutions or vendors have demonstrated the systematic ability
to deal with the unusual event, the one that should almost never happen. Therefore, one can
reasonably question the soundness of some of the current risk management practices and tools
used in Wall Street as far as extreme risk is concerned.

The two principal approaches to modeling asset returns are based either on Historical or on
Normal (Gaussian) distribution. Neither approach adequately captures unusual asset price and
return behaviors. The Historical model is bounded by the scope of the available observations and
the Normal model inherently cannot produce atypical returns. The financial industry is belea-
guered with both under-optimized portfolios with often-shabby ex-post risk-adjusted returns, as
well as deceptive aggregate risk indicators (e.g. VaR) that lead to substantial unexpected losses.

The inadequacy of the Normal distribution is well recognized by the risk management
community. Yet up to now, no consistent and comprehensive alternative probability models
had adequately addressed unusual returns. To quote one major vendor:

It has often been argued that the true distributions returns (even after standardizing by
the volatility) imply a larger probability of extreme returns than that implied from the
Normal distribution. Although we could try to specify a distribution that fits returns better,
it would be a daunting task, especially if we consider that the new distribution would
have to provide a good fit across all asset classes. (Technical Manual, RMG, 2001).

In response to the challenge, we use Stable risk-factor distributions and generalized risk-
factor dependencies, thereby creating a paradigm shift to consistent and uniform use of the most
viable class of non-Normal probability models in finance. This approach leads to distinctly
improved financial risk management and portfolio optimization solutions for highly volatile
markets with extreme events.

The stable distribution framework
Stable distributions
In spite of wide-spread awareness that most risk factor distributions are heavy-tailed, to date,
risk management systems have essentially relied either on historical, or on univariate and multi-
variate Normal (or Gaussian) distributions for Monte Carlo scenario generation. Unfortunately,
historical scenarios only capture conditions actually observed in the past, and in effect use
empirical probabilities that are zero outside the range of the observed data, a clearly unde-
sirable feature. On the other hand Gaussian Monte Carlo scenarios have probability densities
that converge to zero too quickly (exponentially fast) to accurately model real-world risk factor
distributions that generate extreme losses. When such large returns occur separately from the
bulk of the data they are often called outliers.

Figure 1 shows quantile–quantile (qq)-plots of daily returns versus the best-fit Normal dis-
tribution of nine randomly selected Micro-cap stocks for the two-year period 2000–2001. If the
returns were Normally distributed, the quantile points in the qq-plots would all fall close to a
straight line. Instead they all deviate significantly from a straight line (particularly in the tails),
reflecting a higher probability of occurrence of extreme values than predicted by the Normal
distribution, and showing several outliers.
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Figure 1

Such behavior occurs in many asset and risk factor classes, including well-known indices
such as the S&P 500, and corporate bond prices. The latter are well known to have quite non-
Gaussian distributions that have substantial negative skews to reflect down-grading and default
events. For such returns, non-Normal distribution models are required to accurately model the
tail behavior and compute probabilities of extreme returns.

Various non-Normal distributions have been proposed for modeling extreme events, including:

• Mixtures of two or more Normal distributions.
• t-distributions, hyperbolic distributions, and other scale mixtures of normal distributions.
• Gamma distributions.
• Extreme Value distributions.
• Stable non-Gaussian distributions (also known as Lévy-Stable and Pareto-Stable distri-

butions).

Among the above, only Stable distributions have attractive enough mathematical properties
to be a viable alternative to Normal distributions in trading, optimization and risk management
systems. A major drawback of all alternative models is their lack of stability. Benoit Mandelbrot
(1963) demonstrated that the stability property is highly desirable for asset returns. These
advantages are particularly evident in the context of portfolio analysis and risk management.

An attractive feature of Stable models, not shared by other distribution models, is that they
allow generation of Gaussian-based financial theories and, thus allow construction of a coherent
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and general framework for financial modeling. These generalizations are possible only because
of specific probabilistic properties that are unique to (Gaussian and non-Gaussian) Stable laws,
namely; the Stability property, the Central Limit Theorem, and the Invariance Principle for
Stable processes.

Benoit Mandelbrot (1963), then Eugene Fama (1963), provided seminal evidence that Stable
distributions are good models for capturing the heavy-tailed (leptokurtic) returns of securities.
Many follow-on studies came to the same conclusion, and the overall Stable distributions theory
for finance is provided in the definitive work of Rachev and Mittnik (2000).

But in spite the convincing evidence, Stable distributions have seen virtually no use in capital
markets. There have been several barriers to the application of stable models, both conceptual
and technical:

• Except for three special cases, described below, Stable distributions have no closed form
expressions for their probability densities.

• Except for Normal distributions, which are a limiting case of Stable distributions (with
α = 2 and β = 0), Stable distributions have infinite variance and only a mean value for
α > 1.

• Without a general expression for stable probability densities, one cannot directly imple-
ment maximum likelihood methods for fitting these densities, even in the case of a single
(univariate) set of returns.

The availability of practical techniques for fitting univariate and multivariate stable distribu-
tions to asset and risk factor returns has been the barrier to the progress of Stable distributions in
finance. Only the recent development of advanced numerical methods has removed this obstacle.
These patented methods form the foundation of the CognityTM market & credit risk management
and portfolio optimization solution (see further comments in the concluding section).

Univariate Stable distributions A Stable distribution for a random risk factor X is defined by
its characteristic function:

F(t) = E(eitX) =
∫

eitXfµ,σ (x) dx,

where:

fµ,σ (x) = 1

σ
f

(
x − µ

σ

)

is any probability density function in a location-scale family for X:

log F(t) =




−σα|t |α
(

1 − iβsgn(t) tan
(πα

2

))
+ iµt, α �= 1

−σ |t |
(

1 − iβ
2

π
sgn(t) log |t |

)
+ iµt, α = 1




A stable distribution is therefore determined by the four key parameters:

1. α determines density’s kurtosis with 0 < α ≤ 2 (e.g. tail weight).
2. β determines density’s skewness with −1 ≤ β ≤ 1.
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3. σ is a scale parameter (in the Gaussian case, α = 2 and 2σ 2 is the variance).
4. µ is a location parameter (µ is the mean if 1 < α ≤ 2).

Stable distributions for risk factors allow for skewed distributions when β �= 0 and fat tails
relative to the Gaussian distribution when α < 2. Figure 2 shows the effect of α on tail thickness
of the density as well as peakedness at the origin relative to the Normal distribution (collectively
the “kurtosis” of the density), for the case of β = 0, µ = 0, and σ = 1. As the values of α

decrease the distribution exhibits fatter tails and more peakedness at the origin.
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The case of α = 2 and β = 0 and with the reparameterization in scale, σ̃ = √
2σ , yields

the Gaussian distribution, whose density is given by:

fµσ̃ (x) = 1√
2πσ̃

e
− (x−µ)2

2σ̃ 2 .

The case α = 1 and β = 0 yields the Cauchy distribution with much fatter tails than the
Gaussian, and is given by:

fµ,σ (x) = 1

π · σ

(
1 +

(
x − µ

σ

)2
)−1

Figure 3 illustrates the influence of β on the skewness of the density for α = 1.5, µ = 0 and
σ = 1. Increasing (decreasing) values of β result in skewness to the right (left).

Fitting Stable and Normal distributions: DJIA example. Aside from the Gaussian, Cauchy, and
one other special case of stable distribution for a positive random variable with α = 0.5, there
is no closed form expression for the probability density of a Stable random variable.

Thus one is not able to directly estimate the parameters of a Stable distribution by the method
of maximum likelihood. To estimate the four parameters of the stable laws, the CognityTM
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solution uses a special patent-pending version of the FFT (Fast Fourier Transform) approach
to numerically calculate the densities with high accuracy, and then applies MLE (Maximum
Likelihood Estimation) to estimate the parameters.

The results from applying the CognityTM Stable distribution modeling to the DJIA daily
returns from 1 January 1990 to 14 February 2003 is displayed in Figure 4. In both cases a
GARCH model has been used to account for the clustering of volatility.

Figure 4 shows the left-hand tail detail of the resulting stable density, along with that of
a Normal density fitted using the sample mean and sample standard deviation, and that of a
non-parametric kernel density estimate (labeled “Empirical” in the plot legend). The parameter
estimates are:

• Stable parameters α̂ = 1.699, β̂ = −0.120, µ̂ = 0.0002, and σ̂ = 0.006.
• Normal density parameter estimates µ̂ = 0.0003, and σ̂ = 0.010.
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Note that the Stable density tail behavior is reasonably consistent with the Empirical non-
parametric density estimate, indicating the existence of some extreme returns. At the same time
it is clear from the figure that the tail of the Normal density is much too thin, and will provide
inaccurate estimates of tail probabilities for the DJIA returns. Table 1 shows just how bad the
Normal tail probabilities are for several negative returns values.

TABLE 1: PROBABILITY (DJIA RETURN < X )

x −0.04 −0.05 −0.06 −0.07

Stable Fit 0.0066 0.0043 0.0031 0.0023
Normal Fit 0.000056 0.0000007 3.68E-09 7.86E-12

A daily return smaller than −0.04 with the Stable distribution occurs with probability 0.0066,
or roughly seven times every four years, whereas such a return with the Normal fit occurs on
the order of once every four years.

Similarly, a return smaller than −0.05 with the Stable occurs about once per year and with
the Normal fit about once every forty years. Clearly the Normal distribution fit is an exceedingly
optimistic predictor of DJIA tail return values.

Figure 5 displays the central portion of the fitted densities as well as the tails, and shows
that the Normal fit is not nearly peaked enough near the origin as compared with the empirical
density estimate (even though the GARCH model was applied), while the stable distribution
matches the empirical estimate quite well in the center as well as in the tails.
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Fitting Stable distributions: micro-caps example. Noting that micro-cap stock returns are con-
sistently strongly non-normal (see sample of normal qq-plots at the beginning of this section),
we fit stable distributions to a random sample of 182 micro-cap daily returns for the two-year
period 2000–2001. The results of the 95% confidence interval for the estimation of the tail
weight parameter alpha are displayed in the boxplot in Figure 6.
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ESTIMATED ALPHAS OF 182 MICRO-CAP STOCKS

Figure 6

The median of the estimated alphas is 1.57, and the upper and lower quartiles are 1.69 and
1.46 respectively. Somewhat surprisingly, the distribution of the estimated tail weight parameter
alpha turns out to be quite Normal.

Multivariate Stable distribution modeling Multivariate Stable distribution modeling involves
univariate Stable distributions for each risk factor, each with its own parameter estimates
α̂i , β̂i , µ̂i, σ̂i , i = 1, 2, · · · , K , where K is the number of risk factors, along with a depen-
dency structure.

One way to produce the dependency structure is through a subordinated process approach as
follows. First compute a robust mean vector and covariance matrix estimate of the risk factors
by trimming a small percentage of the observations on a coordinate-wise basis (to get rid of the
outliers, and have a good covariance estimate for the central bulk of the data). Next you generate
multivariate normal scenarios with this mean vector and covariance matrix. Then you multiply
each random variable component of the scenarios by a Stable subordinator which is a strictly
positive Stable random variable with index α̂i /2, i = 1, 2, · · · ,K . The vector of subordinators
is usually independent of the normal scenario vectors, but it can also be dependent. See, for
example, Rachev and Mittnik (2000), and Rachev, Schwartz and Khindanova (2003).

Another very promising approach to building the cross-sectional dependence model is
through the use of copulas, an approach that is quite attractive because it allows for modeling
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higher correlations during extreme market movements, thereby accurately reflecting lower port-
folio diversification at such times. The next section briefly discussion copulas.

Copula multivariate dependence models
Why copulas? Classical correlations and covariances are quite limited measures of dependence,
and are only adequate in the case of multivariate Gaussian distributions. A key failure of cor-
relations is that, for non-Gaussian distributions, zero correlation does not imply independence,
a phenomenon that arises in the context of time-varying volatilities represented by ARCH and
GARH models. The reason we use copulas is that we need more general models of dependence,
ones which:

• Are not tied to the elliptical character of the multivariate normal distribution.
• Have multivariate contours and corresponding data behavior that reflect the local varia-

tion in dependence that is related to the level of returns, in particular, those shapes that
correspond to higher dependence for extreme values of two or more of the returns.

What are copulas? A copula may be defined as a multivariate cumulative distribution function
with uniform marginal distributions:

C(u1, u2, · · · , un), ui ∈ [0, 1] for i = 1, 2, · · · , n
where:

C(ui) = ui for i = 1, 2, · · · , n.

It is known that for any multivariate cumulative distribution function:

F(x1, x2, · · · , xn) = P(X1 ≤ x1, X2 ≤ x2, · · · Xn ≤ xn)

there exists a copula C such that:

F(x1, x2, · · · , xn) = C(F1(x1), F2(x2), · · · , Fn(xn))

where the Fi(xi) are the marginal distributions of F(x1, x2, · · · , xn), and conversely for any
copula C the right-hand-side of the above equation defines a multivariate distribution function
F(x1, x2, · · · , xn). See, for example, Bradley and Taqqu (2001) and Embrechts et al (2003).

The main idea behind the use of copulas is that one can first specify the marginal distri-
butions in whatever way makes sense, e.g. fitting marginal distribution models to risk factor
data, and then specify a copula C to capture the multivariate dependency structure in the best
suited manner.

There are many classes of copula, particularly for the special case of bivariate distributions.
For more than two risk factors beside the traditional Gaussian copula, the t-copula is very
tractable for implementation and provides a possibility to model dependencies of extreme events.
It is defined as:

Cν,c(u1, u2, · · · , un) = �((ν + n)/2)

�(ν/2)
√|c|(νπ)n

∫ t−1
ν (u1)

−∞
· · ·

∫ t−1
ν (un)

−∞

(
1 + sc−1s

ν

)
ds

where c is a correlation matrix.
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A sample of 2000 bivariate simulated risk factors generated by a t-copula with 1.5 degrees
of freedom and Normal marginal distributions is displayed in Figure 7.

The example illustrates that these two risk factors are somewhat uncorrelated for small to
moderately large returns, but are highly correlated for the infrequent occurrence of very large
returns. This can be seen by noting that the density contours of points in the scatter plot are
somewhat eliptical near the origin, but are nowhere close to eliptical for more extreme events.
This situation is in contrast to a Gaussian linear dependency relationship where the density
contours are expected to be eliptical.

Volatility modeling and Stable vs. Normal VaR
It is well known that risk factors returns exhibit volatility clustering, and that even after adjusting
for such clustering the returns will still be non-normal and contain extreme values. There may
also be some serial dependency effects to account for. In order to adequately model these
collective behaviors we recommend using ARIMA models with an ARCH/GARCH “time-
varying” volatility input, where the latter has Stable (non-Gaussian) innovations. This approach
is more flexible and accurate than the commonly used simple EWMA (exponentially weighted
moving average) volatility model, and provides accurate time-varying estimates of VaR and
Expected Tail Loss (ETL) risk measures. See the next section for discussion of ETL vs. VaR
that emphasizes the advantages of ETL. However, we stress that those who must use VaR to
satisfy regulatory requirements will get much better results with Stable VaR than with Normal
VaR, as the following example vividly shows.

Consider the following portfolio of Brady bonds:

• Brazil C 04/14.
• Brazil EIB 04/06.
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• Venezuela DCB Floater 12/07.
• Samsung KRW Ord Shares.
• Thai Farmers Bank THB.

We have run Normal, Historical and Stable 99% (1% tail probability) VaR calculations for
one-year of daily data from January 9, 2001 to January 9, 2002. We used a moving window
with 250 historical observations for the Normal VaR model, 500 for the historical VaR model
and 700 for the Stable VaR model. For each of these cases we used a GARCH(1,1) model
for volatility clustering of the risk factors, with Stable innovations. We back-tested these VaR
calculations by using the VaR values as one-step ahead predictors, and got the results shown
in Figure 8.
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The figure shows: the returns of the Brady bond portfolio (top curve); the Normal + EWMA
(à la RiskMetrics) VaR (curve with jumpy behavior, just below the returns); the Historical VaR
(the smoother curve mostly below but sometimes crossing the Normal + EWMA VaR); the
Stable + GARCH VaR (the bottom curve). The results with regard to exceedances of the 99%
VaR, and keeping in mind Basel II guidelines, may be summarized as follows:

• Normal 99% VaR produced 12 exceedances.
• Historical 99% VaR produced 9 exceedances.
• Stable 99% VaR produced 1 exceedence.
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Clearly Stable (+GARCH) 99% VaR produces much better results with regard to Basel II
compliance. This comes at the price of higher initial capital reserves, but results in a much
safer level of capital reserves and a very clean bill of health with regard to compliance. Note
that some organizations may be fined and will have to increase their capital reserves by up to
33%, which at some times for some portfolios will result in larger capital reserves than when
using the Stable VaR, this in addition to being viewed as having inadequate risk measures. This
unfortunate situation is much less likely to happen to the organization using Stable VaR.

ETL is the next generation risk measure
Why not value-at-risk (VaR)?
There is no doubt that VaR’s popularity is in large part due to its simplicity and its ease of
calculation for 1 to 5% confidence levels. However, there is a price to be paid for the simplicity
of VaR in the form of several limitations:

• VaR does not give any indication of the risk beyond the quantile!
• VaR portfolio optimization is a non-convex, non-smooth problem with multiple local

minima that can result in portfolio composition discontinuities. Furthermore it requires
complex calculation techniques such as integer programming.

• VaR is not sub-additive; i.e. the VaR of the aggregated portfolio can be larger than the
sum of the VaR’s of the sub-portfolios.

• Finally, and most importantly, VaR can be a very misleading risk indicator: examples
exist where an investor, unintentionally or not, decreases portfolio VaR while simulta-
neously increasing the expected losses beyond the VaR, i.e., by increasing the “tail risk”
of the portfolio (see the discussion of ETL below).

In addition to these intrinsic limitations, specific VaR implementations are fraught with
further flaws:

• Historical VaR limits the range of the scenarios to data values that have actually been
observed, while Normal Monte Carlo tends to seriously underestimate the probability of
extreme returns. In either case, the probability functions beyond the sample range are
either zero or excessively close to zero.

• Lacking the ability to accurately model extreme returns, practitioners are forced to use
stress testing as a palliative to the limitations of traditional VaR models. In doing so,
they use a large degree of subjectivity in the design of the stress test and in the selection
of past data to use in making a risk assessment.

• The traditional modeling of risk factor dependences cannot account for intraday volatility
patterns, long-term volatility patterns, or more importantly unusual extreme volatility. In
stressed markets, the simple linear diversification assumptions fail, and atypical short-
term concentration patterns that bind all the assets in a bearish spiral emerge.

Yamai and Yoshiba (2002) note in their concluding remarks:

The widespread use of VaR for risk management could lead to market instability. Basak
and Shapiro (2001) show that when investors use VaR for their risk management, their
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optimizing behavior may result in market positions that are subject to extreme loss
because VaR provides misleading information regarding the distribution’s tail.

ETL and Stable vs. Normal distributions
Expected Tail Loss (ETL) is simply the average (or expected value) loss for losses larger than
VaR. ETL is also known as Conditional Value-at-Risk (CVaR), or Expected Shortfall (ES).

Usual (1 to 5%) Normal ETL is close to Normal VaR (See VaR by Jorion, 2001 p. 98):

• For CI = 5%, VaR = 1.645 and ETL = 2.062.
• For CI = 1%, VaR = 2.336 and ETL = 2.667.

By failing to capture kurtosis, Normal distributions underestimate ETL. The ubiquitous
Normal assumption makes ETL difficult to interpret, in spite of ETL’s remarkable properties (see
below). Unlike Normal distributions, Stable distributions capture leptokurtic tails (“fat tails”).
Unlike Normal ETL, Stable ETL provides reliable values. Further, when Stable distributions
are used, ETL is generally substantially different from VaR.

Figure 9 shows the time series of daily returns for the stock OXM from January 2000 to
December 2001. Observe the occurrences of extreme values.
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While this series also displays obvious volatility clustering, that deserves to be modeled
as described in the next section, we shall ignore this aspect for the moment. Rather, here we
provide a compelling example of the difference between ETL and VaR based on a well-fitting
stable distribution, as compared with a poor fitting Normal distribution.

Figure 10 shows a histogram of the OXM returns with a Normal density fitted using the sam-
ple mean and sample standard deviation, and a Stable density fitted using maximum-likelihood
estimates of the Stable distribution parameters. The Stable density is shown by the solid line
and the normal density is shown by the dashed line. The former is obviously a better fit than
the latter, when using the histogram of the data values as a reference. The estimated Stable
tail thickness index is α̂ = 1.62. The 1% VaR values for the Normal and Stable fitted densities
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are 0.047 and 0.059 respectively, a ratio of 1.26 which reflects the heavier-tailed nature of the
Stable fit.

Figure 11 displays the same histogram and fitted densities with 1% ETL values instead of
the 1% VaR values. The 1% ETL values for the Normal and Stable fitted densities are 0.054
and 0.147, respectively, a ratio of a little over three-to-one. This larger ratio is due to the Stable
density’s heavy tail contribution to ETL relative to the Normal density fit.
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Unlike VaR, ETL has a number of attractive properties:

• ETL gives an informed view of losses beyond VaR.
• ETL is a convex, smooth function of portfolio weights, and is therefore attractive to

optimize portfolios (see Uryasev and Rockafellar, 2000). This point is vividly illustrated
in the subsection below on ETL and Portfolio Optimization.

• ETL is sub-additive and satisfies a complete set of coherent risk measure properties (see
Artzner et al, 1999).

• ETL is a form of expected loss (i.e. a conditional expected loss) and is a very convenient
form for use in scenario-based portfolio optimization. It is also quite a natural risk-
adjustment to expected return (see STARR, or Stable Tail Adjusted Return Ratio).

The limitations of current Normal risk factor models and the absence of regulator blessing
have held back the widespread use of ETL, in spite of its highly attractive properties.

For portfolio optimization, we recommend the use of Stable ETL, and limiting the use of His-
torical, Normal or Stable VaR to regulatory reporting purposes. At the same time, organizations
should consider the advantages of Stable ETL for risk assessment purposes and non-regulatory
reporting purposes.

The following quotation is relevant:

Expected Tail Loss gives an indication of extreme losses, should they occur. Although
it has not become a standard in the financial industry, expected tail loss is likely to play
a major role, as it currently does in the insurance industry. (Embrechts et al, 1997).

Portfolio optimization and ETL vs. VaR
To the surprise of many, portfolio optimization with ETL turns out to be a smooth, convex
problem with a unique solution (Rockafellar and Uryasev, 2000). These properties are in sharp
contrast to the non-convex, rough VaR optimization problem.

The contrast between VAR and ETL portfolio optimization surfaces is illustrated in
Figure 12(a) and (b) for a simple two-asset portfolio. The horizontal axes show one of the
portfolio weights (from 0 to 100%) and the vertical axes display portfolio VAR and ETL
respectively. The data consist of 200 simulated uncorrelated returns.

The VAR objective function is quite rough with respect to varying the portfolio weight(s),
while that of the ETL objective function is smooth and convex. One can see that optimizing
with ETL is a much more tractable problem than optimizing with VaR.

Rockafellar and Uryasev (2000), show that the ETL Optimal Portfolio (ETLOP) weight
vector can be obtained based on historical (or scenario) returns data by minimizing a relatively
simple convex function (Rockafellar and Uryasev used the term CVaR, whereas we use the less
confusing synonym ETL). Assuming p assets with single period returns ri = (ri1, ri2, · · · , rip),
for period i, and a portfolio weight vector w = (w1, w2, . . . , wp), the function to be mini-
mized is:

F(w, γ ) = γ + 1

ε · n
n∑

i=1

[w′ri − γ ]+

where [x]+ denotes the positive part of x. This function is to be minimized jointly with respect
to w and γ , where ε is the tail probability for which the expected tail loss is computed. Typically
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ε = .05 or .01, but larger values may be useful, as we discuss in the section on Choice of tail
permeability. The authors further show that this optimization problem can be cast as a LP
(linear programming) problem, solvable using any high-quality LP software.

CognityTM combines this approach along with multivariate Stable scenario generation.
The stable scenarios provide accurate and well-behaved estimates of ETL for the optimiza-
tion problem.

Stable ETL leads to higher risk adjusted returns
ETLOP (Expected Tail Loss Optimal Portfolio) techniques, combined with multivariate Stable
distribution modeling, can lead to significant improvements in risk adjusted return as compared
to not only Normal VAROP methods but also compared to Normal ETL optimization. In
practice, a VAR Optimal Portfolio (VAROP) is difficult to compute accurately with more than
two or three assets.

Figures 13 and 14 are supplied to illustrate the claim that Stable ETLOP produces consis-
tently better risk-adjusted returns. These figures show the risk adjusted return MU/VAR (mean
return divided by VAR) and MU/ETL (mean return divided by ETL) for 1% VAROP and
ETLOP, and using a multi-period fixed-mix optimization in all cases.

In this simple example, the portfolio to be optimized consists of two assets, cash and the
S&P 500. The example is based on monthly data from February 1965 to December 1999. Since
we assume full investment, the VAROP depends only on a single portfolio weight and the
optimal weight(s) is found by a simple grid search on the interval 0 to 1. The use of a grid
search technique, overcomes the problems with non-convex and non-smooth VAR optimization.
In this example the optimizer is maximizing MU − c · V AR and MU − c · ET L, where c is
the risk aversion (parameter), and with VAR or ETL as the penalty function.

Figure 13 shows that even using VAROP, one gets a significant relative gain in risk-adjusted
return using Stable scenarios when compared to Normal scenarios, and with the relative gain
increasing with increasing risk aversion. The reason for the latter behavior is that with Stable
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distributions the optimization pays more attention to the S&P returns distribution tails, and
allocates less investment to the S&P under stable distributions than under Normal distributions
as risk aversion increases.

Figure 14 below for the risk-adjusted return for the ETLOP has the same vertical axis range
as the previous plot for VAROP. The figure below shows that the use of ETL results in much
greater gain under the Stable distribution relative to the Normal than in the case of VAROP.
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At every level of risk aversion, the investment in the S&P 500 is even less in ETLOP than
in the case of the VAROP. This behavior is to be expected because the ETL approach pays
attention to the losses beyond VAR (the expected value of the extreme loss), and which in the
Stable case are much greater than in the Normal case.

The φα paradigm and φα optimal portfolios
The phi-alpha (φα) paradigm
Our approach uses multi-dimensional risk factor models based on multivariate Stable process
models for risk management and constructing optimal portfolios, and stresses the use of Stable
ETL as the risk measure of choice. These Stable distribution models incorporate generalized
dependence structure with copulas, and include time varying volatilities based on GARCH
models with Stable innovations. Collectively these modeling foundations form the basis of a
new, powerful overall basis for investment decisions that we call the Phi-Alpha (φα) Paradigm.

Currently the φα Paradigm has the following basic components: φα scenario engines, φα

integrated market risk and credit risk (with integrated operational risk under development), φα

optimal portfolios and efficient frontiers, and φα derivative pricing. Going forward, additional
classes of φα investment decision models will be developed, such as φα betas, φα factor models,
and φα asset liability models. The rich structure of these models will encompass the heavy-
tailed distributions of the asset returns, stochastic trends, heteroscedasticity, short- and long-
range dependence, and more. We use the term “φα model” to describe any such model in
order to keep in mind the importance of the Stable tail-thickness parameter α in financial
investment decisions.

It is essential to keep in mind the following φα fundamental principles concerning risk factors:

(P1) Risk factor returns have Stable distributions where each risk factor i typically has a
different Stable tail-index αi .

(P2) Risk factor returns are associated through models that describe the dependence between
the individual factors more accurately than classical correlations. Often these will be
copula models.

(P3) Risk factor modeling typically includes a φα-econometric model in the form of
multivariate ARIMA-GARCH processes with residuals driven by fractional Stable
innovations. The φα econometric model captures clustering and long-range depen-
dence of the volatility.

Phi-alpha (φα) optimal portfolios
A Phi-Alpha (φα) optimal portfolio is one that minimizes portfolio expected tail loss (ETL)
subject to a constraint of achieving expected portfolio returns at least as large as an investor
defined level, where both quantities are evaluated in φα . Alternatively, a φα optimal portfolio
solves the dual problem of maximizing portfolio expected return subject to a constraint that
portfolio expected tail loss (ETL) is not greater than an investor defined level, where again
both quantities are evaluated in φα . In order to define the above ETL precisely we use the
following quantities:

Rp: the random return of portfolio p

SERp: the φα expected return of portfolio p
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Lp = −Rp + SERp: the loss of portfolio p relative to its φα expected return
ε: a tail probability of the φα distribution Lp

SVaRp(ε): the φα Value-at-Risk for portfolio p

The latter is defined by the equation:

Pr[Lp > SVaRp(ε)] = ε

where the probability is calculated in φα , that is SVaRp(ε) is the ε-quantile of the φα distribution
of Lp. In the value-at-risk literature (1 − ε) × 100% is called the confidence level. Here we
prefer to use the simpler, unambiguous term tail probability. Now we define the φα expected
tail loss as:

SETLp(ε) = E[Lp|Lp > SVaRp(ε)]

where the conditional expectation is also computed in φα . Note that the φα expected value
of Lp is zero. We use the “S” in SERp, SVaRp(ε) and SETLp(ε) as a reminder that Stable
distributions are a key aspect of the φα (but not the only aspect!).

Proponents of (Gaussian) VaR typically use tail probabilities of .01 or .05. When using
SETLp(ε) risk managers may wish to use other tail probabilities such as 0.1, 0.15, 0.20, 0.25,
or 0.5. We note that use of different tail probabilities is similar in spirit to using different utility
functions. We return to discuss this point further below.

The following assumptions are in force for the φα investor:

(A1) The universe of assets is Q (the set of mandate admissible portfolios).
(A2) The investor may borrow or deposit at the risk-free rate rf without restriction.
(A3) The portfolio is optimized under a set of asset allocation constraints λ.
(A4) The investor seeks an expected return of at least µ (alternatively an ETL risk of at

most η).

To simplify the notation we shall let A3 be implicit in the following discussion. At times
we shall also suppress the ε when its value is taken as fixed and understood.

The φα investor’s optimal portfolio is:

ωα(µ|ε) = arg minq∈QSETLq(ε)

subject to:

SERq ≥ µ.

In other words the φα optimum portfolio ωα minimizes the φα expected tail loss (SETL) among
all portfolios with φα mean return (SER) at least µ, for fixed tail probability ε asset allocation
constraints λ. Alternatively, the φα optimum portfolio ωα solves the dual problem:

ωα(η|ε) = arg maxq∈QSERq

subject to:

SETLq(ε) ≤ η.
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The φα efficient frontier is given by ωα(µ|ε) as a function of µ for fixed ε, as indicated in
Figure 15. If the portfolio includes cash account with risk free rate rf , then φα efficient frontier
will be the φα capital market line (CMLα) that connects the risk-free rate on the vertical axis
with the φα tangency portfolio (Tα), as indicated in the figure.

SER

SETL

CMLa

Ta

rf

fa efficient frontier

Figure 15

We now have a φα separation principal analogous to the classical separation principal: The
tangency portfolio Tα can be computed without reference to the risk-return preferences of any
investor. Then an investor chooses a portfolio along the φα capital market line CMLα according
to his/her risk-return preference.

We note that it is convenient to think of ωα in two alternative ways: (1) the φα optimal
portfolio, or (2) the vector of φα optimal portfolio weights.

Keep in mind that in practice when a finite sample of returns one ends up with a φα efficient
frontier, tangency portfolio and capital market line that are estimates of true values for these
quantities. Under regularity conditions these estimates will converge to true values as the sample
size increases to infinity.

Markowitz mean-variance portfolios are sub-optimal
While the φα investor has a φα optimal portfolio described above, let’s assume that the mean-
variance investor is not aware of the φα paradigm and constructs a mean-variance optimal
portfolio. We assume that the mean-variance investor operates under the same assumptions
A1–A4 as the φα investor. Let ERq be the expected return and σq the standard deviation of
the returns of a portfolio q. The mean-variance investor’s optimal portfolio is:

ω2(µ) = arg minq∈Qσq

subject to:

ERq ≥ µ.

The mean-variance optimal portfolio can also be constructed by solving the obvious dual opti-
mization problem of maximizing the expected return for a constrained risk level. One knows
that, in the mean-variance paradigm, contrary to the φα paradigm, the mean-variance optimal
portfolio is independent of any ETL tail probability specification.
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The subscript 2 is used in ω2 as a reminder that when α = 2 you have the limiting Gaus-
sian distribution member of the Stable distribution family, and in that case the mean-variance
portfolio is optimal. Alternatively you can think of the subscript 2 as a reminder that the mean-
variance optimal portfolio is a second-order optimal portfolio, i.e., an optimal portfolio based
on only first and second moments.

Note that the mean-variance investor ends up with a different portfolio, i.e., a different set
of portfolio weights with different risk versus return characteristics, than the φα investor.

The performance of the mean-variance portfolio, like that of the φα portfolio, is evaluated
under the φα distributional model, i.e., its expected return and expected tail loss are computed
under the φα distributional model. If in fact the distribution of the returns were exactly mul-
tivariate Gaussian (which they never are) then the φα investor and the mean-variance investor
would end up with one and the same optimal portfolio. However, when the returns are non-
Gaussian φα returns, the mean-variance portfolio is sub-optimal. This is because the φα investor
constructs his/her optimal portfolio using the φα distribution model, whereas the mean-variance
investor does not. Thus the mean-variance investor’s frontier lies below and to the right of the
φα efficient frontier, as shown in Figure 16, along with the mean-variance tangency portfolio
T2 and mean-variance capital market line CML2.
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As an example of the performance improvement achievable with the φα optimal portfolio
approach, we computed the φα efficient frontier and the mean-variance frontier for a portfolio
of 47 micro-cap stocks with the smallest alphas from the random selection of 182 micro-caps
described above. The results are displayed in Figure 17. The results are based on 3,000 scenarios
from the fitted φα multivariate distribution model based on two years of daily data during years
2000 and 2001. We note that, as is generally the case, each of the 47 stock returns has its own
estimate Stable tail index α̂i , i = 1, 2, . . ., 47.

Here we have plotted values of TailRisk = ε · SETL(ε), for ε = .01, as a natural decision
theoretic risk measure, rather than SETL(ε) itself. We note that over a large range of tail risk
the φα efficient frontier dominates the mean-variance frontier by 14–20 bp daily!

We note that the 47 micro-caps with the smallest alphas used for this example have quite
heavy tails as indicated by the boxplot of their estimated alphas, shown in Figure 18.
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Here the median of the estimated alphas is 1.38, while the upper and lower quartiles are
1.43 and 1.28 respectively. Evidently there is a fair amount of information in the non-Gaussian
tails of such micro-caps that can be exploited by the φα approach.

We also note that the gap between the φα efficient frontier and the Markowitz mean-variance
frontier will decrease as the Stable tail index values αi get closer to 2, i.e., as the multivariate
distribution gets closer to a multivariate Normal distribution. This will be the case, for example,
when moving from micro-cap and small-cap stocks to mid-cap and large cap stocks.
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The Excess Profit Pi-Alpha
Let’s first construct the traditional Markowitz mean-variance optimal portfolio for a selected
risk level, as measured by the variance. Let xε = SETL(ε) be the value of the Stable expected
tail loss of that mean-variance portfolio. Let’s then construct the Phi-Alpha optimal portfolio
with the identical Stable expected tail loss value xε (assuming it exist). By construction, both
portfolios have the same Phi-Alpha risk level. Also, let SERωα

(xε) be the φα expected return
of that φα optimal portfolio, and let SERωα

(xε) be the φα expected return of that Markowitz
mean-variance optimal portfolio. We define the excess profit (Pi-Alpha) of the φα portfolio in
basis points as:

πα = πα(ε, xε) = [SERωα
(xε) − SERω2(xε)] ∗ 100.

In the case of portfolios with no cash component the values of Stable expected returns above
are the ordinate values where the vertical line at xε intersects the two frontiers (see the figure
above). When cash is present these expected returns are the values where the vertical line at
xε intersects the capital market lines CMLα and CML2.

Based on our current studies, yearly πα in the range of tens to possibly one or two hundred
basis points are achievable, depending upon the portfolio under management.

New ratios: from Sharpe to STARI and STARR
The Sharpe Ratio for a given portfolio p is defined as follows:

SRp = ERp − rf

σp

(2)

where ERp is the portfolio expected return, σp is the portfolio return standard deviation as a
measure of portfolio risk, and rf is the risk-free rate. While the Sharpe ratio is the single most
widely used portfolio performance measure, it has several disadvantages due to its use of the
standard deviation as risk measure:

• σp is a symmetric measure that does not focus on downside risk.
• σp is not a coherent measure of risk (see Artzner et al, 1999).
• The classical estimate of σp is a highly unstable measure of risk when the portfolio has

a heavy-tailed distribution.
• σp and has infinite value for non-Gaussian Stable distributions.

Stable Tail Adjusted Return Indicator. As an alternative performance measure that does not suffer
these disadvantages, we propose the Stable Tail Adjusted Return Indicator (STARI) defined as:

STARI p(ε) = SERp − rf

SETLp(ε)
. (3)

Referring to Figure 16, one sees that the overall maximum STARI is attained by the φα opti-
mal portfolio, and is the slope of the φα capital market line CMLα . On the other hand, the
maximum STARI of Markowitz’s mean-variance optimal portfolio is equal to the slope of the
mean-variance capital market line CML2. CML2 is always dominated by CMLα , and CML2

is equal to CMLα only when the returns distribution is multivariate normal in which case
αi = 2 for all risk factors i.
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We conclude that the risk adjusted return of the φα optimal portfolio ωα is generally superior
to the risk adjusted return of Markowitz’s mean variance optimal portfolio ω2. The φα paradigm
results in improved investment performance.

Stable Tail Adjusted Return Ratio. While STARI provides a natural measure of return per unit
risk, the numerical values obtained are not in a range familiar to users of the Sharpe ratio, even
in the case where the returns are multivariate normal. However, it is easy to rescale STARI
so that when the returns are normally distributed the rescaled STARI is equal to the Sharpe
ratio. We use the term Stable Tail Adjusted Return Ratio (STARR) for this rescaled ratio, and
its formula is:

STARRp(ε) = SERp − rf

SETLp(ε)/NETL0,1(ε)
(4)

where NETL0,1(ε) is the ETL for a standard normal distribution at tail probability ε.
It is easy to check that STARRp(ε) coincides with the Sharpe ratio SRp when the portfolio

has a normal distribution. First one easily verifies that:

NETL0,1(ε) = 1

ε
√

2π
e
− (N0,1VaR(ε))2

2

where N0,1VaR(ε) = −−1(ε) is the VaR of a standard normal distribution at tail probability ε

and  is the standard normal cumulative distribution function, i.e., N0,1VaR(ε) is the ε-quantile
of the standard normal distribution. Now suppose that the loss Lp of portfolio p has a normal
distribution standard deviation σp, recall that the loss has zero expected value, and call the
corresponding expected tail loss NETLp(ε). Then:

1) NETLp(ε) = σp NETL0,1(ε) (easy to verify)
2) SETLp(ε) = NETLp(ε)

3) SERp = ERp (in any event).

Using NTARR to denote the resulting STARR, we have:

NTARRp = SRp

which is now independent of ε.

The choice of tail probability
We mentioned earlier that when using SETLp(ε) rather than VaRp(ε), risk managers and port-
folio optimizers may wish to use other values of ε than the conventional VaR values of 0.01 or
0.05, for example values such as 0.1, 0.15, 0.2, 0.25 and 0.5 may be of interest. The choice of
a particular ε amounts to a choice of particular risk measure in the SETL family of measures,
and such a choice is akin to the choice of a utility function. The tail probability parameter ε

is at the asset managers disposal to choose according to his/her asset management and risk
control objectives.

Note choosing a tail probability ε is not the same as choosing a risk aversion parameter.
Maximizing:

SERp − c · SETLp(ε)
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for various choices of risk aversion parameter c for a fixed value of ε merely corresponds to
choosing different points along the φα efficient frontier. On the other hand changing ε results
in different shapes and locations of the φα efficient frontier, and corresponding different excess
profits πα relative to a mean-variance portfolio.

It is intuitively clear that increasing ε will decrease the degree to which a φα optimal
portfolio depends on extreme tail losses. Where ε = 0.5, which may well be of interest to
some managers since it uses the average loss below zero of Lp as its penalty function, small
to moderate losses are mixed in with extreme losses in determining the optimal portfolio. Our
studies to date show that some of the excess profit πα advantage relative to Markowitz mean-
variance optimal portfolios will be given up as ε increases, and that not surprisingly, this effect
is most noticeable for portfolios with smaller Stable tail index values (i.e. fatter tails).

In summary: the smaller the tail probability ε, i.e. the more concentrated in the tail that the
manager calculates risk, the higher (in general) the expected excess mean return πα of the φα

optimal portfolio over the mean-variance optimal portfolio.
It will be interesting to see what values of ε will be used by fund managers of various types

and styles in the future.

The Cognity implementation of the φα paradigm
The φα Paradigm described in this section has been implemented in the CognityTM Risk Man-
agement and Portfolio Optimization product. This product contains separate Market Risk, Credit
Risk and Portfolio Optimization modules, with integrated Market and Credit Risk, and imple-
mented in Java based architecture to support Web delivery.
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E
uropean options are often priced and hedged using Black’s model, or, equivalently,
the Black–Scholes model. In Black’s model there is a one-to-one relation between
the price of a European option and the volatility parameter σB . Consequently, option
prices are often quoted by stating the implied volatility σB , the unique value of the
volatility which yields the option’s dollar price when used in Black’s model. In

theory, the volatility σB in Black’s model is a constant. In practice, options with different
strikes K require different volatilities σB to match their market prices. See Figure 1. Handling
these market skews and smiles correctly is critical to fixed income and foreign exchange desks,
since these desks usually have large exposures across a wide range of strikes. Yet the inherent
contradiction of using different volatilities for different options makes it difficult to successfully
manage these risks using Black’s model.

The development of local volatility models by Dupire (1994, 1997) and Derman and Kani
(1994, 1998) was a major advance in handling smiles and skews. Local volatility models are
self-consistent, arbitrage-free, and can be calibrated to precisely match observed market smiles
and skews. Currently these models are the most popular way of managing smile and skew risk.
However, as we shall discover in the next section, the dynamic behavior of smiles and skews
predicted by local vol models is exactly opposite the behavior observed in the marketplace:
when the price of the underlying asset decreases, local vol models predict that the smile
shifts to higher prices; when the price increases, these models predict that the smile shifts
to lower prices. In reality, asset prices and market smiles move in the same direction. This
contradiction between the model and the marketplace tends to de-stabilize the delta and vega
hedges derived from local volatility models, and often these hedges perform worse than the
naive Black–Scholes’ hedges.
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Figure 1: Implied volatility for the June 99 Eurodollar options.
Shown are close-of-day values along with the volatilities
predicted by the SABR model. Data taken from Bloomberg
information services, 23 March 1999

To resolve this problem, we derive the SABR model, a stochastic volatility model in which
the asset price and volatility are correlated. Singular perturbation techniques are used to obtain
the prices of European options under the SABR model, and from these prices we obtain a
closed-form algebraic formula for the implied volatility as a function of today’s forward price
f and the strike K . This closed-form formula for the implied volatility allows the market
price and the market risks, including vanna and volga risks, to be obtained immediately from
Black’s formula. It also provides good, and sometimes spectacular, fits to the implied volatility
curves observed in the marketplace (see Figure 1). More importantly, the formula shows that
the SABR model captures the correct dynamics of the smile, and thus yields stable hedges.

Reprise
Consider a European call option on an asset A with exercise date tex , settlement date tset , and
strike K . If the holder exercises the option on tex , then on the settlement date tset he receives
the underlying asset A and pays the strike K . To derive the value of the option, define F̂ (t)

to be the forward price of the asset for a forward contract that matures on the settlement date
tset , and define f = F̂ (0) to be today’s forward price. Also let D(t) be the discount factor for
date t ; that is, let D(t) be the value today of $1 to be delivered on date t . Martingale pricing
theory (Harrison and Kreps, 1979; Harrison and Pliska, 1981; Karatzas et al, 1991; Steele, 2001)
asserts that under the “usual conditions,” there is a measure, known as the forward measure,
under which the value of a European option can be written as the expected value of the payoff.
The value of a call options is:

Vcall = D(tset )E
{

[F̂ (tex ) − K]+|F0

}
(1a)
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and the value of the corresponding European put is:

Vput = D(tset )E{[K − F̂ (tex )]
+|F0}

≡ Vcall + D(tset )[K − f ]
(1b)

Here the expectation E is over the forward measure, and “|F0” can be interpreted as “given
all information available at t = 0”. Martingale pricing theory also shows that the forward price
F̂ (t) is a Martingale under this measure, so the Martingale representation theorem shows that
F̂ (t) obeys:

dF̂ = C(t, ∗) dW, F̂ (0) = f (1c)

for some coefficient C(t, ∗), where dW is Brownian motion in this measure. The coefficient
C(t, ∗) may be deterministic or random, and may depend on any information that can be
resolved by time t . This is as far as the fundamental theory of arbitrage free pricing goes. In
particular, one cannot determine the coefficient C(t, ∗) on purely theoretical grounds. Instead
one must postulate a mathematical model for C(t, ∗).

European swaptions fit within an identical framework. Consider a European swaption with
exercise date tex and fixed rate (strike) Rfix . Let R̂s(t) be the swaption’s forward swap rate as
seen at date t , and let R0 = R̂s(0) be the forward swap rate as seen today. Jamshidean (1997)
shows that one can choose a measure in which the value of a payer swaption is:

Vpay = L0E
{

[R̂s(tex ) − Rfix ]+|F0

}
(2a)

and the value of a receiver swaption is:

Vrec = L0E{[Rfix − R̂s(tex )]
+|F0}

≡ Vpay + L0[Rfix − R0]
(2b)

Here the level L0 is today’s value of the annuity, which is a known quantity, and E is the
expectation over the level measure of Jamshidean (1997). In this article it is also shown that
the forward swap rate, R̂s(t), is a Martingale in this measure, so once again we have:

dR̂s = C(t, ∗) dW, R̂s(0) = R0 (2c)

where dW is Brownian motion. As before, the coefficient C(t, ∗) may be deterministic or
random, and cannot be determined from fundamental theory. Apart from notation, this is iden-
tical to the framework provided by equations (1a–1c) for European calls and puts. Caplets
and floorlets can also be included in this picture, since they are just one period payer and
receiver swaptions. For the remainder of the paper, we adopt the notation of (1a–1c) for
general European options.

Black’s model and implied volatilities
To go any further requires postulating a model for the coefficient C(t, ∗). Black (1976) postu-
lated that the coefficient C(t, ∗) is σBF̂ (t), where the volatilty σB is a constant. The forward
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price F̂ (t) is then geometric Brownian motion:

dF̂ = σBF̂ (t) dW, F̂ (0) = f (3)

Evaluating the expected values in (2.1a, 2.1b) under this model then yields Black’s formula:

Vcall = D(tset ){fN(d1) − KN(d2)} (4a)

Vput = Vcall + D(tset )[K − f ] (4b)

where

d1,2 = log f/K ± 1
2σ 2

Btex

σB

√
tex

(4c)

for the price of European calls and puts, as is well known (Black, 1976; Hull, 1997; Wilmott,
2000).

All parameters in Black’s formula are easily observed, except for the volatility σB . An
option’s implied volatility is the value of σB that needs to be used in Black’s formula so that
this formula matches the market price of the option. Since the call (and put) prices in (4a–4c)
are increasing functions of σB , the volatility σB implied by the market price of an option is
unique. Indeed, in many markets it is standard practice to quote prices in terms of the implied
volatility σB ; the option’s dollar price is then recovered by substituting the agreed upon σB into
Black’s formula.

The derivation of Black’s formula presumes that the volatility σB is a constant for each
underlying asset A. However, the implied volatility needed to match market prices nearly
always varies with both the strike K and the time-to-exercise tex (see Figure 2). Changing the
volatility σB means that a different model is being used for the underlying asset for each K

and tex . This causes several problems managing large books of options.
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Figure 2: Implied volatility σB (K ) as a function of the strike
K for 1 month, 3 month, 6 month, and 12 month European
options on an asset with forward price 100
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The first problem is pricing exotics. Suppose one needs to price a call option with strike K1

which has, say, a down-and-out knock-out at K2 < K1. Should we use the implied volatility at
the call’s strike K1, the implied volatility at the barrier K2, or some combination of the two to
price this option? Clearly, this option cannot be priced without a single, self-consistent, model
that works for all strikes without “adjustments”.

The second problem is hedging. Since different models are being used for different strikes,
it is not clear that the delta and vega risks calculated at one strike are consistent with the same
risks calculated at other strikes. For example, suppose that our 1 month option book is long
high strike options with a total � risk of +$1 MM , and is long low strike options with a
� of −$1 MM . Is our option book really �-neutral, or do we have residual delta risk that
needs to be hedged? Since different models are used at each strike, it is not clear that the risks
offset each other. Consolidating vega risk raises similar concerns. Should we assume parallel
or proportional shifts in volatility to calculate the total vega risk of our book? More explicitly,
suppose that σB is 20% at K = 100 and 24% at K = 90, as shown for the 1 m options in
Figure 2. Should we calculate vega by bumping σB by, say, 0.2% for both options? Or by
bumping σB by 0.2% for the first option and by 0.24% for the second option? These questions
are critical to effective book management, since this requires consolidating the delta and vega
risks of all options on a given asset before hedging, so that only the net exposure of the book is
hedged. Clearly one cannot answer these questions without a model that works for all strikes K .

The third problem concerns evolution of the implied volatility curve σB(K). Since the
implied volatility σB depends on the strike K , it is likely to also depend on the current value f

of the forward price: σB = σB(f, K). In this case there would be systematic changes in σB as
the forward price f of the underlying changes. See Figure 2. Some of the vega risks of Black’s
model would actually be due to changes in the price of the underlying asset, and should be
hedged more properly (and cheaply) as delta risks.

Local volatility models
An apparent solution to these problems is provided by the local volatility model of Dupire
(1994), which is also attributed to Derman and Kani (1994, 1998). In an insightful work,
Dupire essentially argued that Black was too bold in setting the coefficient C(t, ∗) to σBF̂ .
Instead one should only assume that C is Markovian: C = C(t, F̂ ). Re-writing C(t, F̂ ) as
σloc(t, F̂ )F̂ then yields the “local volatility model,” where the forward price of the asset is:

dF̂ = σloc(t, F̂ )F̂ dW, F̂ (0) = f (5a)

in the forward measure. Dupire argued that instead of theorizing about the unknown local
volatility function σloc(t, F̂ ), one should obtain σloc(t, F̂ ) directly from the marketplace by
“calibrating” the local volatility model to market prices of liquid European options.

In calibration, one starts with a given local volatility function σloc(t, F̂ ), and evaluates:

Vcall = D(tset )E
{

[F̂ (tex ) − K]+|F̂ (0) = f
}

(5b)

≡ Vput + D(tset )(f − K) (5c)

to obtain the theoretical prices of the options; one then varies the local volatility function
σloc(t, F̂ ) until these theoretical prices match the actual market prices of the option for each
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strike K and exercise date tex . In practice liquid markets usually exist only for options with
specific exercise dates t1

ex , t
2
ex , t

3
ex , . . .; for example, for 1 m, 2 m, 3 m, 6 m, and 12 m from

today. Commonly the local vols σloc(t, F̂ ) are taken to be piecewise constant in time:

σloc(t, F̂ ) = σ
(1)

loc (F̂ ) for t < t1
ex

σloc(t, F̂ ) = σ
(j)

loc (F̂ ) for tj−1
ex < t < tjex j = 2, 3, . . . J (6)

σloc(t, F̂ ) = σ
(J )

loc (F̂ ) for t > tJex

One first calibrates σ
(1)

loc (F̂ ) to reproduce the option prices at t1
ex for all strikes K , then calibrates

σ
(2)

loc (F̂ ) to reproduce the option prices at t2
ex , for all K , and so forth. This calibration process can

be greatly simplified by using the results in Hagan and Woodward (1999) and Hagan et al (in
preparation). There we solve to obtain the prices of European options under the local volatility
model (5a–5c), and from these prices we obtain explicit algebraic formulas for the implied
volatility of the local vol models.

Once σloc(t, F̂ ) has been obtained by calibration, the local volatility model is a single,
self-consistent model which correctly reproduces the market prices of calls (and puts) for all
strikes K and exercise dates tex without “adjustment”. Prices of exotic options can now be
calculated from this model without ambiguity. This model yields consistent delta and vega
risks for all options, so these risks can be consolidated across strikes. Finally, perturbing f and
re-calculating the option prices enables one to determine how the implied volatilities change
with changes in the underlying asset price. Thus, the local volatility model thus provides a

method of pricing and hedging options in the presence of market smiles and skews. It is
perhaps the most popular method of managing exotic equity and foreign exchange options.
Unfortunately, the local volatility model predicts the wrong dynamics of the implied volatility
curve, which leads to inaccurate and often unstable hedges.

To illustrate the problem, consider the special case in which the local vol is a function of
F̂ only:

dF̂ = σloc(F̂ )F̂ dW, F̂ (0) = f (7)

In Hagan and Woodward (1999) and Hagan et al (in preparation). singular perturbation methods
were used to analyze this model. There it was found that European call and put prices are given
by Black’s formula (4a–4c) with the implied volatility:

σB(K, f ) = σloc

(
1

2
[f + K]

){
1 + 1

24

σ ′′
loc

(
1
2 [f + K]

)
σloc

(
1
2 [f + K]

) (f − K)2 + · · · (8)

On the right-hand side, the first term dominates the solution and the second term provides a
much smaller correction The omitted terms are very small, usually less than 1% of the first term.

The behavior of local volatility models can be largely understood by examining the first
term in (8). The implied volatility depends on both the strike K and the current forward price
f . So suppose that today the forward price is f0 and the implied volatility curve seen in the
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marketplace is σ 0
B(K). Calibrating the model to the market clearly requires choosing the local

volatility to be

σloc(F̂ ) = σ 0
B(2F̂ − f0){1 + · · ·} (9)

Now that the model is calibrated, let us examine its predictions. Suppose that the forward value
changes from f0 to some new value f . From (8), (9) we see that the model predicts that the
new implied volatility curve is:

σB(K, f ) = σ 0
B(K + f − f0){1 + · · ·} (10)

for an option with strike K , given that the current value of the forward price is f . In particular,
if the forward price f0 increases to f , the implied volatility curve moves to the left ; if f0

decreases to f , the implied volatility curve moves to the right. Local volatility models predict
that the market smile/skew moves in the opposite direction as the price of the underlying asset.
This is opposite to typical market behavior, in which smiles and skews move in the same
direction as the underlying.

To demonstrate the problem concretely, suppose that today’s implied volatility is a perfect
smile:

σ 0
B(K) = α + β[K − f0]2 (11a)

around today’s forward price f0. Then equation (8) implies that the local volatility is:

σloc(F̂ ) = α + 3β(F̂ − f0)
2 + · · · (11b)

As the forward price f evolves away from f0 due to normal market fluctuations, equation (8)
predicts that the implied volatility is:

σB(K, f ) = α + β[K − ( 3
2f0 − 1

2f )]2 + 3
4β(f − f0)

2 + · · · (11c)

The implied volatility curve not only moves in the opposite direction as the underlying, but
the curve also shifts upward regardless of whether f increases or decreases. Exact results
are illustrated in Figures 3–5. There we assumed that the local volatility σloc(F̂ ) was given
by (11b), and used finite difference methods to obtain essentially exact values for the option
prices, and thus implied volatilities.

Hedges calculated from the local volatility model are wrong. To see this, let BS (f, K, σB, tex )

be Black’s formula (4a–4c) for, say, a call option. Under the local volatility model, the value
of a call option is given by Black’s formula:

Vcall = BS (f, K, σB(K, f ), tex ) (12a)

with the volatility σB(K, f ) given by (8). Differentiating with respect to f yields the � risk:

� ≡ ∂Vcall

∂f
= ∂BS

∂f
+ ∂BS

∂σB

∂σB(K, f )

∂f
(12b)
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Figure 3: Exact implied volatility σB (K , f0) (solid line)
obtained from the local volatility σloc(F̂ ) (dashed line)
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Figure 4: Implied volatility σB (K , f ) if the forward price
decreases from f0 to f (solid line)
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Figure 5: Implied volatility σB (K , f ) if the forward prices
increases from f0 to f (solid line)
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predicted by the local volatility model. The first term is clearly the � risk one would calculate
from Black’s model using the implied volatility from the market. The second term is the local
volatility model’s correction to the � risk, which consists of the Black vega risk multiplied by
the predicted change in σB due to changes in the underlying forward price f . In real markets
the implied volatility moves in the opposite direction as the direction predicted by the model.
Therefore, the correction term needed for real markets should have the opposite sign as the
correction predicted by the local volatility model. The original Black model yields more accurate
hedges than the local volatility model, even though the local vol model is self-consistent across
strikes and Black’s model is inconsistent.

Local volatility models are also peculiar theoretically. Using any function for the local
volatility σloc(t, F̂ ) except for a power law:

C(t, ∗) = α(t)F̂ β (13)

σloc(t, F̂ ) = α(t)F̂ β/F̂ = α(t)/F̂ 1−β (14)

introduces an intrinsic “length scale” for the forward price F̂ into the model. That is, the
model becomes inhomogeneous in the forward price F̂ . Although intrinsic length scales are
theoretically possible, it is difficult to understand the financial origin and meaning of these
scales (Wan, 1991), and one naturally wonders whether such scales should be introduced into
a model without specific theoretical justification.

The SABR model
The failure of the local volatility model means that we cannot use a Markovian model based on a
single Brownian motion to manage our smile risk. Instead of making the model non-Markovian,
or basing it on non-Brownian motion, we choose to develop a two factor model. To select the
second factor, we note that most markets experience both relatively quiescent and relatively
chaotic periods. This suggests that volatility is not constant, but is itself a random function of
time. Respecting the preceding discussion, we choose the unknown coefficient C(t, ∗) to be
α̂F̂ β , where the “volatility” α̂ is itself a stochastic process. Choosing the simplest reasonable
process for α̂ now yields the “stochastic-αβρ model,” which has become known as the SABR
model. In this model, the forward price and volatility are

dF̂ = α̂F̂ β dW1, F̂ (0) = f (15a)

dα̂ = να̂ dW2, α̂(0) = α (15b)

under the forward measure, where the two processes are correlated by:

dW1 dW2 = ρ dt (15c)

Many other stochastic volatility models have been proposed (e.g., Hull and White, 1987; Heston,
1993; Lewis, 2000; Fouque et al, 2000). However, the SABR model has the virtue of being
the simplest stochastic volatility model which is homogenous in F̂ and α̂. We shall find that
the SABR model can be used to accurately fit the implied volatility curves observed in the
marketplace for any single exercise date tex . More importantly, it predicts the correct dynamics
of the implied volatility curves. This makes the SABR model an effective means to manage the
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smile risk in markets where each asset only has a single exercise date; these markets include
the swaption and caplet/floorlet markets.

As written, the SABR model may or may not fit the observed volatility surface of an asset
which has European options at several different exercise dates; such markets include foreign
exchange options and most equity options. Fitting volatility surfaces requires the dynamic SABR
model which is discussed in the Appendix.

It has been claimed by many authors that stochastic volatility models are models of incom-
plete markets, because the stochastic volatility risk cannot be hedged. This is not true. It is
true that the risk to changes in α̂ (the vega risk) cannot be hedged by buying or selling the
underlying asset. However, vega risk can be hedged by buying or selling options on the asset
in exactly the same way that �-hedging is used to neutralize the risks to changes in the price
F̂ . In practice, vega risks are hedged by buying and selling options as a matter of routine, so
whether the market would be complete if these risks were not hedged is a moot question.

The SABR model (15a–15c) is analyzed in Appendix B. There singular perturbation tech-
niques are used to obtain the prices of European options. From these prices, the options’ implied
volatility σB(K, f ) is then obtained. The upshot of this analysis is that under the SABR model,
the price of European options is given by Black’s formula:

Vcall = D(tset ){fN(d1) − KN(d2)} (16a)

Vput = Vcall + D(tset )[K − f ] (16b)

with:

d1,2 = log f/K ± 1
2σ 2

Btex

σB

√
tex

(16c)

where the implied volatility σB(K, f ) is given by:

σB(K, f )

= α

(f K)(1−β)/2

{
1 + (1 − β)2

24
log2 f/K + (1 − β)4

1920
log4 f/K + · · ·

} ·
(

z

x(z)

)

·
{

1 +
[
(1 − β)2

24

α2

(f K)1−β
+ 1

4

ρβνα

(f K)(1−β)/2
+ 2 − 3ρ2

24
ν2

]
tex + · · · (17a)

Here

z = ν

α
(f K)(1−β)/2 log f/K (17b)

and x(z) is defined by:

x(z) = log

{√
1 − 2ρz + z2 + z − ρ

1 − ρ

}
(17c)
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For the special case of at-the-money options, options struck at K = f , this formula reduces to:

σATM = σB(f, f ) = α

f (1−β)

{
1 +

[
(1 − β)2

24

α2

f 2−2β

+1

4

ρβαν

f (1−β)
+ 2 − 3ρ2

24
ν2

]
tex + · · ·

(18)

These formulas are the main result of this paper. Although it appears formidable, the formula
is explicit and only involves elementary trigonometric functions. Implementing the SABR model
for vanilla options is very easy, since once this formula is programmed, we just need to send
the options to a Black pricer. In the next section we examine the qualitative behavior of this
formula, and how it can be used to manage smile risk.

The complexity of the formula is needed for accurate pricing. Omitting the last line of (17a),
for example, can result in a relative error that exceeds 3 per cent in extreme cases. Although this
error term seems small, it is large enough to be required for accurate pricing. The omitted terms
“+ · · ·” are much, much smaller. Indeed, even though we have derived more accurate expressions
by continuing the perturbation expansion to higher order, (17a–17c) is the formula we use to
value and hedge our vanilla swaptions, caps, and floors. We have not implemented the higher
order results, believing that the increased precision of the higher order results is superfluous.

There are two special cases of note: β = 1, representing a stochastic log normal model), and
β = 0, representing a stochastic normal model. The implied volatility for these special cases is
obtained in the last section of Appendix B.

Managing smile risk
The complexity of the above formula for σB(K, f ) obscures the qualitative behavior of the
SABR model. To make the model’s phenomenology and dynamics more transparent, note that
formula (17a–17c) can be approximated as:

σB(K, f ) = α

f 1−β

{
1 − 1

2
(1 − β − ρλ) log K/f

+ 1

12
[(1 − β)2 + (2 − 3ρ2)λ2] log2 K/f + · · ·

(19a)

provided that the strike K is not too far from the current forward f . Here the ratio:

λ = ν

α
f 1−β (19b)

measures the strength ν of the volatility of volatility (the “volvol”) compared to the local
volatility α/f 1−β at the current forward. Although equations (19a–19b) should not be used to
price real deals, they are accurate enough to depict the qualitative behavior of the SABR model
faithfully.

As f varies during normal trading, the curve that the ATM volatility σB(f, f ) traces is
known as the backbone, while the smile and skew refer to the implied volatility σB(K, f ) as
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a function of strike K for a fixed f . That is, the market smile/skew gives a snapshot of the
market prices for different strikes K at a given instance, when the forward f has a specific
price. Figures 6 and 7 show the dynamics of the smile/skew predicted by the SABR model.
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Figure 6: Backbone and smiles for β = 0. As the forward f varies,
the implied volatility σB (f , f ) of ATM options traverses the backbone
(dashed curve). Shown are the smiles σB (K , f ) for three different
values of the forward. Volatility data from 1 into 1 swaption on 4/28/00,
courtesy of Cantor-Fitzgerald
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Figure 7: Backbone and smiles as above, but for β = 1

Let us now consider the implied volatility σB(K, f ) in detail. The first factor α/f 1−β in (19a)
is the implied volatility for at-the-money (ATM) options, options whose strike K equals the
current forward f . So the backbone traversed by ATM options is essentially σB(f, f ) = α/f 1−β

for the SABR model. The backbone is almost entirely determined by the exponent β, with the
exponent β = 0 (a stochastic Gaussian model) giving a steeply downward sloping backbone,
and the exponent β = 1, giving a nearly flat backbone.

The second term − 1
2 (1 − β − ρλ) log K/f represents the skew, the slope of the implied

volatility with respect to the strike K . The − 1
2 (1 − β) log K/f part is the beta skew, which is

downward sloping since 0 ≤ β ≤ 1. It arises because the “local volatility” α̂F̂ β/F̂ 1 = α̂/F̂ 1−β

is a decreasing function of the forward price. The second part 1
2ρλ log K/f is the vanna

skew, the skew caused by the correlation between the volatility and the asset price. Typically
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the volatility and asset price are negatively correlated, so on average, the volatility α would
decrease (increase) when the forward f increases (decreases). It thus seems unsurprising that
a negative correlation ρ causes a downward sloping vanna skew.

It is interesting to compare the skew to the slope of the backbone. As f changes to f ′ the
ATM vol changes to:

σB(f ′, f ′) = α

f 1−β

{
1 − (1 − β)

f ′ − f

f
+ · · ·

}
(20a)

Near K = f , the β component of skew expands as

σB(K, f ) = α

f 1−β

{
1 − 1

2
(1 − β)

K − f

f
+ · · ·

}
(20b)

so the slope of the backbone σB(f, f ) is twice as steep as the slope of the smile σB(K, f ) due
to the β-component of the skew.

The last term in (19a) also contains two parts. The first part 1
12 (1 − β)2 log2 K/f appears to

be a smile (quadratic) term, but it is dominated by the downward sloping beta skew, and, at rea-
sonable strikes K , it just modifies this skew somewhat. The second part 1

12 (2 − 3ρ2)λ2 log2 K/f

is the smile induced by the volga (vol-gamma) effect. Physically this smile arises because of
“adverse selection”: unusually large movements of the forward F̂ happen more often when
the volatility α increases, and less often when α decreases, so strikes K far from the money
represent, on average, high volatility environments.

Fitting market data
The exponent β and correlation ρ affect the volatility smile in similar ways. They both cause
a downward sloping skew in σB(K, f ) as the strike K varies. From a single market snapshot
of σB(K, f ) as a function of K at a given f , it is difficult to distinguish between the two
parameters. This is demonstrated by Figure 8. There we fit the SABR parameters α, ρ, ν with
β = 0 and then re-fit the parameters α, ρ, ν with β = 1. Note that there is no substantial
difference in the quality of the fits, despite the presence of market noise. This matches our
general experience: market smiles can be fit equally well with any specific value of β. In
particular, β cannot be determined by fitting a market smile since this would clearly amount to
“fitting the noise.”

Figure 8 also exhibits a common data quality issue. Options with strikes K away from
the current forward f trade less frequently than at-the-money and near-the-money options.
Consequently, as K moves away from f , the volatility quotes become more suspect because
they are more likely to be out-of-date and not represent bona fide offers to buy or sell options.

Suppose for the moment that the exponent β is known or has been selected. Taking a
snapshot of the market yields the implied volatility σB(K, f ) as a function of the strike K

at the current forward price f . With β given, fitting the SABR model is a straightforward
procedure. The three parameters α, ρ, and ν have different effects on the curve: the parameter
α mainly controls the overall height of the curve, changing the correlation ρ controls the curve’s
skew, and changing the vol of vol ν controls how much smile the curve exhibits. Because of
the widely separated roles these parameters play, the fitted parameter values tend to be very
stable, even in the presence of large amounts of market noise.
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Figure 8: Implied volatilities as a function of strike. Shown
are the curves obtained by fitting the SABR model with
exponent β = 0 and with β = 1 to the 1y into 1y swaption vol
observed on 4/28/00. As usual, both fits are equally good. Data
courtesy of Cantor-Fitzgerald

The exponent β can be determined from historical observations of the “backbone” or
selected from “aesthetic considerations.” Equation (18) shows that the implied volatility of
ATM options is:

log σB(f, f ) = log α − (1 − β) log f + log

{
1 +

[
(1 − β)2

24

α2

f 2−2β

+1

4

ρβαν

f (1−β)
+ 2 − 3ρ2

24
ν2

]
tex + · · · .

} (21)

The exponent β can be extracted from a log plot of historical observations of f, σATM pairs.
Since both f and α are stochastic variables, this fitting procedure can be quite noisy, and as
the [· · ·]tex term is typically less than 1 or 2 per cent, it is usually ignored in fitting β.

Selecting β from “aesthetic” or other a priori considerations usually results in β = 1
(stochastic lognormal), β = 0 (stochastic normal), or β = 1

2 (stochastic CIR) models. Propo-
nents of β = 1 cite log normal models as being “more natural.” or believe that the horizontal
backbone best represents their market. These proponents often include desks trading foreign
exchange options. Proponents of β = 0 usually believe that a normal model, with its symmetric
break-even points, is a more effective tool for managing risks, and would claim that β = 0 is
essential for trading markets like Yen interest rates, where the forwards f can be negative or
near zero. Proponents of β = 1

2 are usually US interest rate desks that have developed trust in
CIR models.

It is usually more convenient to use the at-the-money volatility σATM , β, ρ, and ν as the
SABR parameters instead of the original parameters α, β, ρ, ν. The parameter α is then found
whenever needed by inverting (18) on the fly; this inversion is numerically easy since the
[· · ·]tex term is small. With this parameterization, fitting the SABR model requires fitting ρ and
ν to the implied volatility curve, with σATM and β given. In many markets, the ATM volatilities
need to be updated frequently, say once or twice a day, while the smiles and skews need to be
updated infrequently, say once or twice a month. With the new parameterization, σATM can be
updated as often as needed, with ρ, ν (and β) updated only as needed.
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Let us apply SABR to options on US dollar interest rates. There are three key groups of
European options on US rates: Eurodollar future options, caps/floors, and European swaptions.
Eurodollar future options are exchange-traded options on the 3 month Libor rate; like interest
rate futures, EDF options are quoted on 100(1 − rLibor ). Figure 1 fits the SABR model (with
β = 1) to the implied volatility for the June 99 contracts, and Figures 9–12 fit the model (also
with β = 1) to the implied volatility for the September 99, December 99, March 00 and June 00
contracts. All prices were obtained from Bloomberg Information Services on 23 March 1999.
Two points are shown for the same strike where there are quotes for both puts and calls. Note
that market liquidity dries up for the later contracts, and for strikes that are too far from the
money. Consequently, more market noise is seen for these options.

Caps and floors are sums of caplets and floorlets; each caplet and floorlet is a European
option on the 3 month Libor rate. We do not consider the cap/floor market here because the
broker-quoted cap prices must be “stripped” to obtain the caplet volatilities before SABR can
be applied.
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Figure 12: Volatility of the Jun 00 EDF options

A m year into n year swaption is a European option with m years to the exercise date (the
maturity); if it is exercised, then one receives an n year swap (the tenor, or underlying) on the 3
month Libor rate. For almost all maturities and tenors, the US swaption market is liquid for at-
the-money swaptions, but is ill-liquid for swaptions struck away from the money. Hence, market
data is somewhat suspect for swaptions that are not struck near the money. Figures 13–16 fits
the SABR model (with β = 1) to the prices of m into 5Y swaptions observed on 28 April 2000.
Data supplied courtesy of Cantor-Fitzgerald.

We observe that the smile and skew depend heavily on the time-to-exercise for Eurodollar
future options and swaptions. The smile is pronounced for short-dated options and flattens for
longer dated options; the skew is overwhelmed by the smile for short-dated options, but is
important for long-dated options. This picture is confirmed Tables 1 and 2. These tables show
the values of the vol of vol ν and correlation ρ obtained by fitting the smile and skew of each
“m into n” swaption, again using the data from 28 April 2000. Note that the vol of vol ν is
very high for short dated options, and decreases as the time-to-exercise increases, while the
correlations starts near zero and becomes substantially negative. Also note that there is little
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Figure 15: Volatilities of 5 year into 5 year
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Figure 16: Volatilities of 10 year into 5 year
options
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TABLE 1: VOLATILITY OF VOLATILITY ν FOR EUROPEAN SWAPTIONS. ROWS ARE
TIME–TO–EXERCISE; COLUMNS ARE TENOR OF THE UNDERLYING SWAP

1Y 2Y 3Y 4Y 5Y 7Y 10Y

1M 76.2% 75.4% 74.6% 74.1% 75.2% 73.7% 74.1%

3M 65.1% 62.0% 60.7% 60.1% 62.9% 59.7% 59.5%

6M 57.1% 52.6% 51.4% 50.8% 49.4% 50.4% 50.0%

1Y 59.8% 49.3% 47.1% 46.7% 46.0% 45.6% 44.7%

3Y 42.1% 39.1% 38.4% 38.4% 36.9% 38.0% 37.6%

5Y 33.4% 33.2% 33.1% 32.6% 31.3% 32.3% 32.2%

7Y 30.2% 29.2% 29.0% 28.2% 26.2% 27.2% 27.0%

10Y 26.7% 26.3% 26.0% 25.6% 24.8% 24.7% 24.5%

TABLE 2: MATRIX OF CORRELATIONS ρ BETWEEN THE UNDERLYING AND THE
VOLATILITY FOR EUROPEAN SWAPTIONS

1Y 2Y 3Y 4Y 5Y 7Y 10Y

1M 4.2% −0.2% −0.7% −1.0% −2.5% −1.8% −2.3%

3M 2.5% −4.9% −5.9% −6.5% −6.9% −7.6% −8.5%

6M 5.0% −3.6% −4.9% −5.6% −7.1% −7.0% −8.0%

1Y −4.4% −8.1% −8.8% −9.3% −9.8% −10.2% −10.9%

3Y −7.3% −14.3% −17.1% −17.1% −16.6% −17.9% −18.9%

5Y −11.1% −17.3% −18.5% −18.8% −19.0% −20.0% −21.6%

7Y −13.7% −22.0% −23.6% −24.0% −25.0% −26.1% −28.7%

10Y −14.8% −25.5% −27.7% −29.2% −31.7% −32.3% −33.7%

dependence of the market skew/smile on the length of the underlying swap; both ν and ρ are
fairly constant across each row. This matches our general experience: in most markets there is a
strong smile for short-dated options which relaxes as the time-to-expiry increases; consequently
the volatility of volatility ν is large for short dated options and smaller for long-dated options,
regardless of the particular underlying. Our experience with correlations is less clear: in some
markets a nearly flat skew for short maturity options develops into a strongly downward sloping
skew for longer maturities. In other markets there is a strong downward skew for all option
maturities, and in still other markets the skew is close to zero for all maturities.
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Managing smile risk
After choosing β and fitting ρ, ν, and either α or σATM , the SABR model

dF̂ = α̂F̂ β dW1, F̂ (0) = f (22a)

dα̂ = να̂ dW2, α̂(0) = α (22b)

with

dW1 dW2 = ρ dt (22c)

fits the smiles and skews observed in the market quite well, especially considering the quality
of price quotes away from the money. Let us take for granted that it fits well enough. Then
we have a single, self-consistent model that fits the option prices for all strikes K without
“adjustment”, so we can use this model to price exotic options without ambiguity. The SABR
model also predicts that whenever the forward price f changes, the implied volatility curve
shifts in the same direction and by the same amount as the price f . This predicted dynamics
of the smile matches market experience. If β < 1, the “backbone” is downward sloping, so
the shift in the implied volatility curve is not purely horizontal. Instead, this curve shifts up
and down as the at-the-money point traverses the backbone. Our experience suggests that the
parameters ρ and ν are very stable (β is assumed to be a given constant), and need to be re-fit
only every few weeks. This stability may be because the SABR model reproduces the usual
dynamics of smiles and skews. In contrast, the at-the-money volatility σATM or, equivalently,
α may need to be updated every few hours in fast-paced markets.

Since the SABR model is a single self-consistent model for all strikes K , the risks calculated
at one strike are consistent with the risks calculated at other strikes. Therefore the risks of all
the options on the same asset can be added together, and only the residual risk needs to be
hedged.

Let us set aside the � risk for the moment, and calculate the other risks. Let BS(f, K, σB, tex )

be Black’s formula (4a–4c) for, say, a call option. According to the SABR model, the value
of a call is:

Vcall = BS (f, K, σB(K, f ), tex ) (23)

where the volatility σB(K, f ) ≡ σB(K, f ; α, β, ρ, ν) is given by equations (17a–17c). Differ-
entiating (in practice risks are calculated by finite differences: valuing the option at α, re-valuing
the option after bumping the forward to α + δ, and then subtracting to determine the risk. This
saves differentiating complex formulas such as (17a–17c)). with respect to α yields the vega
risk, the risk to overall changes in volatility:

∂Vcall

∂α
= ∂BS

∂σB

· ∂σB(K, f ; α, β, ρ, ν)

∂α
. (24)

This risk is the change in value when α changes by a unit amount. It is traditional to scale vega
so that it represents the change in value when the ATM volatility changes by a unit amount.
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Since δσATM = (∂σATM /∂α)δα, the vega risk is:

vega ≡ ∂Vcall

∂α
= ∂BS

∂σB

·
∂σB(K, f ; α, β, ρ, ν)

∂α
∂σATM (f ; α, β, ρ, ν)

∂α

(25a)

where σATM (f ) = σB(f, f ) is given by (18). Note that to leading order, ∂σB/∂α ≈ σB/α and
∂σATM /∂α ≈ σATM /α, so the vega risk is roughly given by:

vega ≈ ∂BS

∂σB

· σB(K, f )

σATM (f )
= ∂BS

∂σB

· σB(K, f )

σB(f, f )
. (25b)

Qualitatively, then, vega risks at different strikes are calculated by bumping the implied volatility
at each strike K by an amount that is proportional to the implied volatility σB(K, f ) at that
strike. That is, in using equation (25a), we are essentially using proportional, and not parallel,
shifts of the volatility curve to calculate the total vega risk of a book of options.

Since ρ and ν are determined by fitting the implied volatility curve observed in the market-
place, the SABR model has risks to ρ and ν changing. Borrowing terminology from foreign
exchange desks, vanna is the risk to ρ changing and volga (vol gamma) is the risk to ν changing:

vanna = ∂Vcall

∂ρ
= ∂BS

∂σB

· ∂σB(K, f ; α, β, ρ, ν)

∂ρ
, (26a)

volga = ∂Vcall

∂ν
= ∂BS

∂σB

· ∂σB(K, f ; α, β, ρ, ν)

∂ν
. (26b)

Vanna basically expresses the risk to the skew increasing, and volga expresses the risk to the
smile becoming more pronounced. These risks are easily calculated by using finite differences
on the formula for σB in equations (17a–17c). If desired, these risks can be hedged by buying
or selling away-from-the-money options.

The delta risk expressed by the SABR model depends on whether one uses the parameter-
ization α, β, ρ, ν or σATM , β, ρ, ν. Suppose first we use the parameterization α, β, ρ, ν, so
that σB(K, f ) ≡ σB(K, f ; α, β, ρ, ν). Differentiating with respect to f yields the � risk:

� ≡ ∂Vcall

∂f
= ∂BS

∂f
+ ∂BS

∂σB

∂σB(K, f ; α, β, ρ, ν)

∂f
. (27)

The first term is the ordinary � risk one would calculate from Black’s model. The second term
is the SABR model’s correction to the � risk. It consists of the Black vega times the predicted
change in the implied volatility σB caused by the change in the forward f . As discussed above,
the predicted change consists of a sideways movement of the volatility curve in the same
direction (and by the same amount) as the change in the forward price f . In addition, if β < 1
the volatility curve rises and falls as the at-the-money point traverses up and down the backbone.
There may also be minor changes to the shape of the skew/smile due to changes in f .
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Now suppose we use the parameterization σAMT , β, ρ, ν. Then α is a function of σATM and
f defined implicitly by (18). Differentiating (23) now yields the � risk:

� ≡ ∂BS

∂f
+ ∂BS

∂σB

{
∂σB(K, f ; α, β, ρ, ν)

∂f
+ ∂σB(K, f ; α, β, ρ, ν)

∂α

∂α(σATM , f )

∂f

}
.

(28)
The delta risk is now the risk to changes in f with σATM held fixed. The last term is just the
change in α needed to keep σATM constant while f changes. Clearly this last term must just
cancel out the vertical component of the backbone, leaving only the sideways movement of the
implied volatility curve. Note that this term is zero for β = 1.

Theoretically one should use the � from equation (27) to risk manage option books. In many
markets, however, it may take several days for volatilities σB to change following significant
changes in the forward price f . In these markets, using � from (28) is a much more effective
hedge. For suppose one used � from equation (27). Then, when the volatility σATM did not
immediately change following a change in f , one would be forced to re-mark α to compensate,
and this re-marking would change the � hedges. As σATM equilibrated over the next few days,
one would mark α back to its original value, which would change the � hedges back to their
original value. This “hedging chatter” caused by market delays can prove to be costly.

Appendix A. Analysis of the SABR model
Here we use singular perturbation techniques to price European options under the SABR model.
Our analysis is based on a small volatility expansion, where we take both the volatility α̂ and
the “volvol” ν to be small. To carry out this analysis in a systematic fashion, we re-write
α̂ −→ εα̂, and ν −→ εν, and analyze:

dF̂ = εα̂C(F̂ ) dW1, (A.1a)

dα̂ = ενα̂ dW2, (A.1b)

with:

dW1 dW2 = ρ dt, (A.1c)

in the limit ε � 1. This is the distinguished limit (Cole, 1968; Kevorkian and Cole, 1985) in
the language of singular perturbation theory. After obtaining the results we replace εα̂ −→ α̂,
and εν −→ ν to get the answer in terms of the original variables. We first analyze the model
with a general C(F̂ ), and then specialize the results to the power law F̂ β . This is notationally
simpler than working with the power law throughout, and the more general result may prove
valuable in some future application.

We first use the forward Kolmogorov equation to simplify the option pricing problem.
Suppose the economy is in state F̂ (t) = f, α̂(t) = α at date t . Define the probability density
p(t, f, α; T , F,A) by:

p(t, f, α; T , F, A) dF dA = prob
{
F < F̂ (T ) < F + dF.A < α̂(T )

< A + dA|F̂ (t) = f, α̂(t) = α
}

.
(A.2)
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As a function of the forward variables T , F , A, the density p satisfies the forward Kolmogorov
equation (the Fǒkker–Planck equation):

pT = 1
2ε2A2[C2(F )p]FF

+ ε2ρν[A2C(F)p]FA + 1
2ε2ν2[A2p]AA for T > t

(A.3a)

with:

p = δ(F − f )δ(A − α) at T = t, (A.3b)

as is well-known (Karatzas and Shreve, 1988; Okdendal, 1998; Musiela and Rutkowski, 1998).
Here, and throughout, we use subscripts to denote partial derivatives.

Let V (t, f, α) be the value of a European call option at date t , when the economy is in state
F̂ (t) = f, α̂(t) = α. Let tex be the option’s exercise date, and let K be its strike. Omitting the
discount factor D(tset ), which factors out exactly, the value of the option is:

V (t, f, α) = E
{

[F̂ (tex ) − K]+|F̂ (t) = f, α̂(t) = α
}

=
∫ ∞

−∞

∫ ∞

K

(F − K)p(t, f, α; tex , F,A) dF dA.
(A.4)

See (1a). Since:

p(t, f, α; tex , F, A) = δ(F − f )δ(A − α) +
∫ tex

t

pT (t, f, α; T , F, A) dT (A.5)

we can re-write V (t, f, α) as:

V (t, f, α) = [f − K]+ +
∫ tex

t

∫ ∞

K

∫ ∞

−∞
(F − K)pT (t, f, α; T , F, A) dAdF dT (A.6)

We substitute (A.3a) for pT into (A.6). Integrating the A derivatives ε2ρν[A2C(F)p]FA and
1
2ε2ν2[A2p]AA over all A yields zero. Therefore our option price reduces to:

V (t, f, α) = [f − K]+ + 1

2
ε2

∫ tex

t

∫ ∞

−∞

∫ ∞

K

A2(F − K)[C2(F )p]FF dF dA dT (A.7)

where we have switched the order of integration. Integrating by parts twice with respect to F

now yields:

V (t, f, α) = [f − K]+ + 1

2
ε2C2(K)

∫ tex

t

∫ ∞

−∞
A2p(t, f, α; T , K,A) dA dT (A.8)

The problem can be simplified further by defining:

P(t, f, α; T , K) =
∫ ∞

−∞
A2p(t, f, α; T , K,A) dA (A.9)
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Then P satisfies the backward’s Kolmogorov equation (Karatzas and Shrene, 1988; Okdendal,
1998; Musiela and Rutkowski; 1998)

Pt + 1
2ε2α2C2(f )Pff + ε2ρνα2C(f )Pf α + 1

2ε2ν2α2Pαα = 0 for t < T (A.10a)

P = α2δ(f − K), for t = T (A.10b)

Since t does not appear explicitly in this equation, P depends only on the combination T − t ,
and not on t and T separately. So define:

τ = T − t, τex = tex − t (A.11)

Then our pricing formula becomes:

V (t, f, α) = [f − K]+ + 1

2
ε2C2(K)

∫ τex

0
P(τ, f, α; K)dτ (A.12)

where P(τ, f, α; K) is the solution of the problem:

Pτ = 1
2ε2α2C2(f )Pff + ε2ρνα2C(f )Pf α + 1

2ε2ν2α2Pαα, for τ > 0 (A.13a)

P = α2δ(f − K), for τ = 0 (A.13b)

In this Appendix we solve (A.13a), (A.13b) to obtain P(τ, f, α; K), and then substitute this
solution into (A.12) to obtain the option value V (t, f, α). This yields the option price under the
SABR model, but the resulting formulas are awkward and not very useful. To cast the results
in a more usable form, we re-compute the option price under the normal model:

dF̂ = σN dW, (A.14a)

and then equate the two prices to determine which normal volatility σN needs to be used to
reproduce the option’s price under the SABR model. That is, we find the “implied normal
volatility” of the option under the SABR model. By doing a second comparison between option
prices under the log normal model:

dF̂ = σBF̂ dW (A.14b)

and the normal model, we then convert the implied normal volatility to the usual implied log-
normal (Black–Scholes) volatility. That is, we quote the option price predicted by the SABR
model in terms of the option’s implied volatility.

Singular perturbation expansion
Using a straightforward perturbation expansion would yield a Gaussian density to leading order:

P = α√
2πε2C2(K)τ

e
− (f −K)2

2ε2α2C2(K)τ {1 + · · ·}. (A.15a)

Since the “+ · · ·” involves powers of (f − K)/εαC(K), this expansion would become inaccu-
rate as soon as (f − K)C′(K)/C(K) becomes a significant fraction of 1; i.e., as soon as C(f )
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and C(K) are significantly different. Stated differently, small changes in the exponent cause
much greater changes in the probability density. A better approach is to re-cast the series as:

P = α√
2πε2C2(K)τ

(f − K)2

e2ε2α2C2(K)τ
{1 + · · ·} (A.15b)

and expand the exponent, since one expects that only small changes to the exponent will be
needed to effect the much larger changes in the density. This expansion also describes the basic
physics better – P is essentially a Gaussian probability density which tails off faster or slower
depending on whether the “diffusion coefficient” C(f ) decreases or increases.

We can refine this approach by noting that the exponent is the integral:

(f − K)2

2ε2α2C2(K)τ
{1 + · · ·} = 1

2τ

(
1

εα

∫ f

K

df ′

C(f ′)

)2

{1 + · · ·} (A.16)

Suppose we define the new variable:

z = 1

εα

∫ f

K

df ′

C(f ′)
(A.17)

so that the solution P is essentially e−z2/2. To leading order, the density is Gaussian in the
variable z, which is determined by how “easy” or “hard” it is to diffuse from K to f , which
closely matches the underlying physics. The fact that the Gaussian changes by orders of magni-
tude as z2 increases should be largely irrelevant to the quality of the expansion. This approach
is directly related to the geometric optics technique that is so successful in wave propagation
and quantum electronics (Kevorkian and Cole, 1985; Whitham, 1974). To be more specific,
we shall use the near identity transform method to carry out the geometric optics expansion.
This method, pioneered in Neu (1978), transforms the problem order-by-order into a simple
canonical problem, which can then be solved trivially. Here we obtain the solution only through
O(ε2), truncating all higher order terms.

Let us change variables from f to:

z = 1

εα

∫ f

K

df ′

C(f ′)
(A.18a)

and to avoid confusion, we define:

B(εαz) = C(f ) (A.18b)

Then:
∂

∂f
−→ 1

εαC(f )

∂

∂z
= 1

εαB(εαz)

∂

∂z

∂

∂α
−→ ∂

∂α
− z

α

∂

∂z
(A.19a)

and:

∂2

∂f 2
−→ 1

ε2α2B2(εαz)

{
∂2

∂z2
− εα

B ′(εαz)

B(εαz)

∂

∂z

}
(A.19b)

∂2

∂f ∂α
−→ 1

εαB(εαz)

{
∂2

∂z∂α
− z

α

∂2

∂z2
− 1

α

∂

∂z

}
(A.19c)

∂2

∂α2
−→ ∂2

∂α2
− 2z

α

∂2

∂z∂α
+ z2

α2

∂2

∂z2
+ 2z

α2

∂

∂z
(A.19d)
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Also:

δ(f − K) = δ(εαzC(K)) = 1

εαC(K)
δ(z) (A.19e)

Therefore, (A.12) through (A.13b) become:

V (t, f, a) = [f − K]+ + 1

2
ε2C2(K)

∫ τex

0
P, (τ, z, α) dτ (A.20)

where P(τ, z, α) is the solution of:

Pτ = 1

2
(1 − 2ερνz + ε2ν2z2)Pzz − 1

2
εα

B ′

B
Pz + (ερν − ε2ν2z)(αPex − Pz)

+ 1

2
ε2ν2α2Pαa for τ > 0 (A.21a)

P = α

εC(K)
δ(z) at τ = 0 (A.21b)

Accordingly, let us define P̂ (τ, z, α) by:

P̂ = ε

α
C(K)P (A.22)

In terms of P̂ , we obtain:

V(t, f, a) = [f − K]+ + 1

2
εαC(K)

∫ τex

0
P̂ (τ, z, α) dτ (A.23)

where P̂ (τ, z, α) is the solution of:

P̂τ = 1

2
(1 − 2ερνz + ε2ν2z2)P̂zz − 1

2
εa

B ′

B
P̂z + (ερν − ε2ν2z)αP̂zα

(A.24a)

+ 1

2
ε2ν2(α2P̂αα + 2αP̂α) for τ > 0

P̂ = δ(z) at τ = 0. (A.24b)

To leading order P̂ is the solution of the standard diffusion problem P̂τ = 1

2
P̂zz with P̂ =

δ(z) at τ = 0. So it is a Gaussian to leading order. The next stage is to transform the problem
to the standard diffusion problem through O(ε), and then through O(ε2), . . .. This is the near
identify transform method which has proved so powerful in near-Hamiltonian systems (Neu,
1978).

Note that the variable α does not enter the problem for P̂ until O(ε), so:

P̂ (τ, z, α) = P̂0(τ, z) + P̂1(τ, z, α) + · · · (A.25)
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Consequently, the derivatives P̂zα , P̂αα , and P̂α are all O(ε). Recall that we are only solving
for P̂ through O(ε2). So, through this order, we can re-write our problem as:

P̂τ = 1

2
(1 − 2ερνz + ε2ν2z2)P̂zz − 1

2
εa

B ′

B
P̂z + ερναP̂zα for τ > 0 (A.26a)

P̂ ′′ =′′ δ(z) at τ = 0 (A.26b)

Let us now eliminate the 1
2εa(B ′/B)P̂z term. Define H(τ, z, α) by:

P̂ = √
C(f )/C(K)H ≡ √

B(εαz)/B(0)H. (A.27)

Then:

P̂z = √
B(εαz)/B(0)

{
Hz + 1

2
εα

B ′

B
H

}
; (A.28a)

P̂zz = √
B(εαz)/B(0)

{
Hzz + εα

B ′

B
Hz + ε2α2

[
B ′′

2B
− B

′2

4B2

]
H

}
(A.28b)

P̂zα = √
B(εαz)/B(0)

{
Hzα + 1

2
εz

B ′

B
Hz + 1

2
εα

B ′

B
Hα + 1

2
ε
B ′

B
H + O(ε2)

}
(A.28c)

The option price now becomes:

V (t, f, a) = [f − K]+ + 1

2
εα

√
B(0)B(εαz)

∫ τex

0
H(τ, z, α) dτ (A.29)

where:

Hτ = 1

2
(1 − 2ερνz + ε2ν2z2)Hzz − 1

2
ε2ρνα

B ′

B
(zHz − H)

+ ε2α2

(
1

4

B ′′

B
− 3

8

B
′2

B2

)
H + ερνα

(
Hzα + 1

2
εα

B ′

B
Hα

)
for τ > 0 (A.30a)

H = δ(z) at τ = 0 (A.30b)

Equations (A.30a), (A.30b) are independent of α to leading order, and at O(ε) they depend on α

only through the last term ερνα(Hzα + 1
2εα B ′

B
; Hα). As above, since (A.30a) is independent of

α to leading order, we can conclude that the α derivatives Hα and Hzα are no larger than O(ε),
and so the last term is actually no larger than O(ε2). Therefore, H is independent of α until
O(ε2) and the α derivatives are actually no larger than O(ε2). Thus, the last term is actually
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only O(ε3), and can be neglected since we are only working through O(ε2). So:

Hτ = 1

2
(1 − 2ερνz + ε2ν2z2)Hzz − 1

2
ε2ρνα

B ′

B
(zHz − H)

(A.31a)

+ ε2α2

(
1

4

B ′′

B
− 3

8

B
′2

B2

)
H for τ > 0

H = δ(z) at τ = 0 (A.31b)

There are no longer any α derivatives, so we can now treat α as a parameter instead of as an
independent variable. That is, we have succeeded in effectively reducing the problem to one
dimension.

Let us now remove the Hz term through O(ε2). To leading order, B ′(εαz)/B(εαz) and
B ′′(εαz)/B(εαz) are constant. We can replace these ratios by:

b1 = B ′(εαz0)/B(εαz0), b2 = B ′′(εαz0)/B(εαz0) (A.32)

committing only an O(ε) error, where the constant z0 will be chosen later. We now define
Ĥ by:

H = eε2ρναb1z
2/4Ĥ (A.33)

Then our option price becomes:

V (t, f, a) = [f − K]+ + 1
2εα

√
B(0)B(εαz)eε2ρναb1z

2/4
∫ τex

0
Ĥ (τ, z) dτ (A.34)

where Ĥ is the solution of:

Ĥτ = 1

2
(1 − 2ερνz + ε2ν2z2)Ĥzz + ε2α2

(
1

4
b2 − 3

8
b2

1

)
Ĥ

(A.35a)

+ 3

4
ε2ρναb1Ĥ for τ > 0

Ĥ = δ(z) at τ = 0 (A.35b)

We’ve almost beaten the equation into shape. We now define:

x = 1

εν

∫ ενz

0

dζ√
1 − 2ρζ + ζ 2

= 1

εν
log

(√
1 − 2ερνz + ε2ν2z2 − ρ + ενz

1 − ρ

)
,

(A.36a)

which can be written implicitly as:

ενz = sinh ενx − ρ(cosh ενx − 1). (A.36b)
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In terms of x, our problem is:

V (t, f, a) = [f − K]+ + 1

2
εα

√
B(0)B(εαz)eε2ρναb1z

2/4
∫ τex

0
Ĥ (τ, x) dτ (A.37)

with:

Ĥτ = 1

2
Ĥxx − 1

2
ενI ′(ενz)Ĥx + ε2α2

(
1

4
b2 − 3

8
b2

1

)
Ĥ

(A.38a)

+ 3

4
ε2ρναb1Ĥ for τ > 0

Ĥ = δ(x) at τ = 0 (A.38b)

Here:

I (ζ ) =
√

1 − 2ρζ + ζ 2 (A.39)

The final step is to define Q by:

Ĥ = I 1/2(ενz(x))Q = (1 − 2ερνz + ε2ν2z2)1/4Q (A.40)

Then:

Ĥx = I 1/2(ενz)

[
Qx + 1

2
ενI ′(ενz)Q

]
(A.41a)

Ĥxx = I 1/2(ενz)

[
Qxx + ενI ′Qx + ε2ν2

(
1

2
I ′′I + 1

4
I ′I ′

)
Q

]
(A.41b)

and so:

V (t, f, a) = [f − K]+ + 1

2
εα

√
B(0)B(εαz)I 1/2(ενz)e

1
4 ε2ρναb1z

2
∫ τex

0
Q, (τ, x) dτ (A.42)

where Q is the solution of:

Qτ = 1

2
Qxx + ε2ν2

(
1

4
I ′′I − 1

8
I ′I ′

)
Q + ε2α2

(
1

4
b2 − 3

8
b2

1

)
Q + 3

4
ε2ρναb1Q (A.43a)

for τ > 0, with:

Q = δ(x) at τ = 0 (A.43b)

As above, we can replace I (ενz), I ′(ενz), I ′′(ενz) by the constants I (ενz0), I ′(ενz0),
I ′′(ενz0), and commit only O(ε) errors. Define the constant κ by:

κ = ν2

(
1

4
I ′′(ενz0)I (ενz0) − 1

8
[I ′(ενz0)]

2

)

+ α2

(
1

4
b2 − 3

8
b2

1

)
+ 3

4
ρναb1

(A.44)
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where z0 will be chosen later. Then through O(ε2), we can simplify our equation to:

Qτ = 1

2
Qxx + ε2κQ for τ > 0 (A.45a)

Q = δ(x) at τ = 0 (A.45b)

The solution of (A.45a, A.45b) is clearly:

Q = 1√
2πτ

e−x2/2τ eε2κτ = 1√
2πτ

e−x2/2τ 1(
1 − 2

3
κε2τ + · · ·

)3/2 (A.46)

through O(ε2).
This solution yields the option price:

V (t, f, a) = [f − K]+ + 1

2
εα

√
B(0)B(εαz)I 1/2(ενz)e

1
4 ε2ρναb1z

2

·
∫ τex

0

1√
2πτ

e−x2/2τ eε2κτ dτ
(A.47)

Observe that this can be written as:

V (t, f, a) = [f − K]+ + 1

2

f − K

x

∫ τex

0

1√
2πτ

e−x2/2τ eε2θ eε2κτ dτ (A.48a)

where:

ε2θ = log

(
εαz

f − K

√
B(0)B(εαz)

)
+ log

(
xI 1/2(ενz)

z

)
+ 1

4
ε2ρναb1z

2 (A.48b)

Moreover, quite amazingly:

eε2κτ = 1(
1 − 2

3
κε2τ

)3/2 = 1(
1 − 2ε2τ

θ

x2

)3/2 + O(ε4) (A.48c)

through O(ε2). This can be shown by expanding ε2θ through O(ε2), and noting that ε2θ/x2

matches κ/3. Therefore our option price is:

V (t, f, a) = [f − K]+ + 1

2

f − K

x

∫ τex

0

1√
2πτ

e−x2/2τ eε2θ dτ(
1 − 2τ

x2
ε2θ

)3/2 (A.49)

and changing integration variables to:

q = x2

2τ
(A.50)
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reduces this to:

V (t, f, a) = [f − K]+ + |f − K|
4
√

π

∫ ∞
x2

2τex

e−q+ε2θ

(q − ε2θ)3/2
dq (A.51)

That is, the value of a European call option is given by:

V (t, f, a) = [f − K]+ + |f − K|
4
√

π

∫ ∞
x2

2τex
−ε2θ

e−q

q3/2
dq (A.52a)

with:

ε2θ = log

(
εαz

f − K

√
B(0)B(εαz)

)
+ log

(
xI 1/2(ενz)

z

)
+ 1

4
ε2ρναb1z

2 (A.52b)

through O(ε2).

Equivalent normal volatility
Equations (A.52a) and (A.52b) are a formula for the dollar price of the call option under the
SABR model. The utility and beauty of this formula is not overwhelmingly apparent. To obtain
a useful formula, we convert this dollar price into the equivalent implied volatilities. We first
obtain the implied normal volatility, and then the standard log normal (Black) volatility.

Suppose we repeated the above analysis for the ordinary normal model :

dF̂ = σN dW, F̂ (0) = f (A.53a)

where the normal volatility σN is constant, not stochastic. (This model is also called the absolute
or Gaussian model). We would find that the option value for the normal model is exactly:

V (t, f ) = [f − K]+ + |f − K|
4
√

π

∫ ∞
(f −K)2

2σ 2
N

τex

e−q

q3/2
dq (A.53b)

This can be seen by setting C(f ) to 1, setting εα to σN and setting ν to 0 in (A.52a, A.52b).
Working out this integral then yields the exact European option price:

V (t, f ) = (f − K)N
(

f − K

σN

√
τex

)
+ σN

√
τexG

(
f − K

σN

√
τex

)
(A.54a)

for the normal model, where N is the normal distribution and G is the Gaussian density:

G(q) = 1√
2π

e−q2/2 (A.54b)

From (A.53b) it is clear that the option price under the normal model matches the option price
under the SABR model (A.52a, A.52b) if and only if we choose the normal volatility σN to be

1

σ 2
N

= x2

(f − K)2

{
1 − 2ε2 θ

x2
τex

}
(A.55)
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Taking the square root now shows the option’s implied normal (absolute) volatility is given by:

σN = f − K

x

{
1 + ε2 θ

x2
τex + · · ·

}
(A.56)

through O(ε2).
Before continuing to the implied log normal volatility, let us seek the simplest possible way

to re-write this answer which is correct through O(ε2). Since x = z[1 + O(ε)], we can re-write
the answer as:

σN =
(

f − K

z

)(
z

x(z)

)
{1 + ε2 (φ1 + φ2 + φ3) τex + · · ·} (A.57a)

where

f − K

z
= εα(f − K)∫ f

K

df ′

C(f ′)

=
(

1

f − K

∫ f

K

df ′

εαC(f ′)

)−1

This factor represents the average difficulty in diffusing from today’s forward f to the strike
K , and would be present even if the volatility were not stochastic.

The next factor is:

z

x(z)
= ζ

log

(√
1 − 2ρζ + ζ 2 − ρ + ζ

1 − ρ

) (A.57b)

where

ζ = ενz = ν

α

∫ f

K

df ′

C(f ′)
= ν

α

f − K

C(faν)
{1 + O(ε2)} (A.57c)

Here fav = √
f K is the geometric average of f and K . (The arithmetic average could have

been used equally well at this order of accuracy). This factor represents the main effect of the
stochastic volatility.

The coefficients φ1, φ2, and φ3 provide relatively minor corrections. Through O(ε2) these
corrections are:

ε2φ1 = 1

z2
log

(
εαz

f − K

√
C(f ) C(K)

)

= 2γ2 − γ 2
1

24
ε2α2C2 (fav ) + · · ·

(A.57d)

ε2φ2 = 1

z2
log

(
x

z
[1 − 2ερνz + ε2ν2z2]1/4

)
= 2 − 3ρ2

24
ε2ν2 + · · · (A.57e)

ε2φ3 = 1

4
ε2ραν

B ′(ενz0)

B(ενz0)
= 1

4
ε2ρναγ1C(fav ) + · · · (A.57f)



280 THE BEST OF WILMOTT

where

γ1 = C′(fav )

C(fav )
, γ2 = C′′(fav )

C(fav )
(A.57g)

Let us briefly summarize before continuing. Under the normal model, the value of a European
call option with strike K and exercise date τex is given by (A.54a), (A.54b). For the SABR
model:

dF̂ = εα̂C(F̂ ) dW1 F̂ (0) = f (A.58a)

dα̂ = ενα̂ dW2 α̂(0) = α (A.58b)

dW1 dW2 = ρ dt (A.58c)

the value of the call option is given by the same formula, at least through O(ε2), provided we
use the implied normal volatility:

σN(K) = εα(f − K)∫ f

K

df ′

C(f ′)

·
(

ζ

x̂(ζ )

)
·
{

1 +
[

2γ2 − γ 2
1

24
α2C2(fav ) + 1

4
ρναγ1C(fav )

+2 − 3ρ2

24
ν2

]
ε2τex + · · ·

} (A.59a)

Here:

fav = √
f K, γ1 = C′(fav )

C(fav )
, γ2 = C′′(fav )

C(fav )
, (A.59b)

ζ = ν

α

f − K

C(fav )
, x̂(ζ ) = log

(√
1 − 2ρζ + ζ 2 − ρ + ζ

1 − ρ

)
. (A.59c)

The first two factors provide the dominant behavior, with the remaining factor 1 + [· · ·]ε2τex

usually providing corrections of around 1% or so.
One can repeat the analysis for a European put option, or simply use call/put parity. This

shows that the value of the put option under the SABR model is:

Vput(f, α, K) = (K − f )N
(

K − f

σN

√
τex

)
+ σN

√
τexG

(
K − f

σN

√
τex

)
(A.60)

where the implied normal volatility σN is given by the same formulas (A.59a–A.59c) as the call.
We can revert to the original units by replacing εα −→ α, εν −→ ν everywhere in the

above formulas; this is equivalent to setting ε to 1 everywhere.

Equivalent Black volatility
With the exception of JPY traders, most traders prefer to quote prices in terms of Black
(log normal) volatilities, rather than normal volatilities. To derive the implied Black volatility,
consider Black’s model:

dF̂ = εσBF̂ dW, F̂ (0) = f, (A.61)
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where we have written the volatility as εσB to stay consistent with the preceding analysis. For
Black’s model, the value of a European call with strike K and exercise date τex is:

Vcall = fN(d1) − KN(d2) (A.62a)

Vput = Vcall + D(tset )[K − f ] (A.62b)

with:

d1,2 = log f/K ± 1
2ε2σ 2

Bτex

εσB

√
τex

(A.62c)

where we are omitting the overall factor D(tset ) as before.
We can obtain the implied normal volatility for Black’s model by repeating the preced-

ing analysis for the SABR model with C(f ) = f and ν = 0. Setting C(f ) = f and ν = 0
in (A.59a–A.59c) shows that the normal volatility is:

σN(K) = εσB(f − K)

log f/K

{
1 − 1

24
ε2σ 2

Bτex + · · ·
}

(A.63)

through O(ε2). Indeed, in Hagan et al. (in preparation) it is shown that the implied normal
volatility for Black’s model is:

σN(K) = εσB

√
f K

1 + 1

24
log2 f/K + 1

1920
log4 f/K + · · ·

1 + 1

24

(
1 − 1

120
log2 f/K

)
ε2σ 2

Bτex + 1

5760
ε4σ 4

Bτ 2
ex + · · ·

(A.64)

through O(ε4). We can find the implied Black vol for the SABR model by setting σN

obtained from Black’s model in equation (A.63) equal to σN obtained from the SABR model
in (A.59a–B.59c). Through O(ε2) this yields:

σB(K) = α log f/K∫ f

K

df ′

C(f ′)

·
(

ζ

x̂(ζ )

) {
1 +

[
2γ2 − γ 2

1 + 1/f 2
av

24
α2C2(fav ) + 1

4
ρναγ1C(fav )

+2 − 3ρ2

24
ν2

]
ε2τex + · · ·

} (A.65)

This is the main result of this article. As before, the implied log normal volatility for puts is the
same as for calls, and this formula can be re-cast in terms of the original variables by simply
setting ε to 1.

Stochastic β model
As originally stated, the SABR model consists of the special case C(f ) = f β :

dF̂ = εα̂F̂ β dW1 F̂ (0) = f (A.66a)

dα̂ = ενα̂ dW2 α̂(0) = α (A.66b)

dW1 dW2 = ρ dt (A.66c)
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Making this substitution in (A.58a–A.58b) shows that the implied normal volatility for this
model is:

σN(K) = εα(1 − β)(f − K)

f 1−β − K1−β
·
(

ζ

x̂(ζ )

)

·
{

1 +
[

−β(2 − β)α2

24f
2−2β
av

+ ρανβ

4f
1−β
av

+ 2 − 3ρ2

24
ν2

]
ε2τex + · · ·

}
(A.67a)

through O(ε2), where fav = √
f K as before and:

ζ = ν

α

f − K

f
β
av

, x̂(ζ ) = log

(√
1 − 2ρζ + ζ 2 − ρ + ζ

1 − ρ

)
. (A.67b)

We can simplify this formula by expanding:

f − K = √
f K log f/K

{
1 + 1

24
log2 f/K + 1

1920
log4 f/K + · · · (A.68a)

f 1−β − K1−β = (1 − β)(f K(1−β)/2) log f/K

·
{

1 + (1 − β)2

24
log2 f/K + (1 − β)4

1920
log4 f/K + · · · (A.68b)

and neglecting terms higher than fourth order. This expansion reduces the implied normal
volatility to:

σN(K) = εα(f K)β/2
1 + 1

24
log2 f/K + 1

1920
log4 f/K + · · ·

1 + (1 − β)2

24
log2 f/K + (1 − β)4

1920
log4 f/K + · · ·

·
(

ζ

x̂(ζ )

)

·
{

1 +
[−β(2 − β)α2

24(f K)1−β
+ ρανβ

4(f K)(1−β)/2
+ 2 − 3ρ2

24
ν2

]
ε2τex + · · ·

}
(A.69a)

where:

ζ = ν

α
(f K)(1−β)/2 log f/K, x̂(ζ ) = log

(√
1 − 2ρζ + ζ 2 − ρ + ζ

1 − ρ

)
(A.69b)

This is the formula we use in pricing European calls and puts.
To obtain the implied Black volatility, we equate the implied normal volatility σN(K) for

the SABR model obtained in (A.69a–A.69b) to the implied normal volatility for Black’s model
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obtained in (A.63). This shows that the implied Black volatility for the SABR model is:

σB(K) = εα

(f K)(1−β)/2

1

1 + (1 − β)2

24
log2 f/K + (1 − β)4

1920
log4 f/K + · · ·

·
(

ζ

x̂(ζ )

)

·
{

1 +
[

(1 − β)2α2

24(f K)1−β
+ ρανβ

4(f K)(1−β)/2
+ 2 − 3ρ2

24
ν2

]
ε2τex + · · ·

}
(A.69c)

through O(ε2), where ζ and x̂(ζ ) are given by (A.69b) as before. Apart from setting ε to 1 to
recover the original units, this is the formula quoted in the Reprise section, and fitted to the
market in the section on Managing smile risk.

Special cases
Two special cases are worthy of special treatment: the stochastic normal model (β = 0) and the
stochastic log normal model (β = 1). Both these models are simple enough that the expansion
can be continued through O(ε4). For the stochastic normal model (β = 0) the implied volatilities
of European calls and puts are:

σN(K) = εα

(
ζ

x̂(ζ )

){
1 + 2 − 3ρ2

24
ε2ν2τex + · · ·

}
(A.70a)

σB(K) = εα
log f/K

f − K
·
(

ζ

x̂(ζ )

)
·
{

1 +
[

α2

24f K
+ 2 − 3ρ2

24
ν2

]
ε2τex + · · ·

}
(A.70b)

through O(ε4), where:

ζ = ν

α

√
f K log f/K, x̂(ζ ) = log

(√
1 − 2ρζ + ζ 2 − ρ + ζ

1 − ρ

)
(A.70c)

For the stochastic log normal model (β = 1) the implied volatilities are:

σN(K) = εα
f − K

log f/K
·
(

ζ

x̂(ζ )

)
·
{

1 +
[
− 1

24
α2 + 1

4
ραν

+ 1

24
(2 − 3ρ2)ν2

]
ε2τex + · · ·

}
(A.71a)

σB(K) = εα ·
(

ζ

x̂(ζ )

)
·
{

1 +
[

1

4
ραν + 1

24
(2 − 3ρ2)ν2

]
ε2τex + · · ·

}
(A.71b)

through O(ε4), where:

ζ = ν

α
log f/K, x̂(ζ ) = log

(√
1 − 2ρζ + ζ 2 − ρ + ζ

1 − ρ

)
(A.71c)
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Appendix B. Analysis of the dynamic
SABR model
We use effective medium theory (Clouet, 1998) to extend the preceding analysis to the dynamic
SABR model. As before, we take the volatility γ (t)α̂ and “volvol” ν(t) to be small, writing
γ (t) −→ εγ (t), and ν(t) −→ εν(t), and analyze:

dF̂ = εγ (t)α̂C(F̂ ) dW1 (B.1a)

dα̂ = εν(t)α̂ dW2 (B.1b)

with:

dW1 dW2 = ρ(t) dt (B.1c)

in the limit ε � 1. We obtain the prices of European options, and from these prices we obtain
the implied volatility of these options. After obtaining the results, we replace εγ (t) −→ γ (t)

and εν(t) −→ ν(t) to get the answer in terms of the original variables.
Suppose the economy is in state F̂ (t) = f , α̂(t) = α at date t . Let V (t, f, α) be the value of,

say, a European call option with strike K and exercise date tex . As before, define the transition
density p(t, f, α; T , F, A) by:

p(t, f, α; T , F,A) dF dA ≡ prob
{
F < F̂ (T ) < F + dF, A < α̂(T )

< A + dA|F̂ (t) = f, α̂(t) = α
}

(B.2a)

and define:

P(t, f, α; T , K) =
∫ ∞

−∞
A2p(t, f, α; T , K,A) dA (B.2b)

Repeating the analysis in Appendix B through equations (A.10a), (A.10b) now shows that the
option price is given by:

V (t, f, a) = [f − K]+ + 1

2
ε2C2(K)

∫ tex

t

γ 2(T )P (t, f, α; T ,K) dT (B.3)

where P(t, f, α; T , K) is the solution of the backwards problem:

Pt + 1
2ε2 {

γ 2α2C2(f )Pff + 2ργ να2C(f )Pf α + ν2α2Pαα

} = 0 for t < T (B.4a)

P = α2δ(f − K), for t = T (B.4b)

We eliminate γ (t) by defining the new time variable:

s =
∫ t

0
γ 2(t ′) dt ′, s ′ =

∫ T

0
γ 2(t ′) dt ′, sex =

∫ tex

0
γ 2(t ′) dt ′ (B.5)
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Then the option price becomes:

V (t, f, a) = [f − K]+ + 1

2
ε2C2(K)

∫ sex

s

P (s, f, α; s ′,K) ds ′ (B.6)

where P(s, f, α; s ′,K) solves the backward problem:

Ps + 1
2ε2 {

α2C2(f )Pff + 2η(s)α2C(f )Pf α + υ2(s)α2Pαα

} = 0 for s < s ′ (B.7a)

P = α2δ(f − K) for s = s ′ (B.7b)

Here:

η(s) = ρ(t)ν(t)/γ (t), υ(s) = ν(t)/γ (t) (B.8)

We solve this problem by using an effective media strategy (Clouet, 1998). In this strategy
our objective is to determine which constant values η and υ yield the same option price as the
time dependent coefficients η(s) and υ(s). If we could find these constant values, this would
reduce the problem to the non-dynamic SABR model solved in Appendix A.

We carry out this strategy by applying the same series of time-independent transformations
that was used to solve the non-dynamic SABR model in Appendix A, defining the transforma-
tions in terms of the (as yet unknown) constants η and υ. The resulting problem is relatively
complex, more complex than the canonical problem obtained in Appendix A. We use a regular
perturbation expansion to solve this problem, and once we have solved this problem, we choose
η and υ so that all terms arising from the time dependence of η(t) and υ(t) cancel out. As we
shall see, this simultaneously determines the “effective” parameters and allows us to use the
analysis in Appendix A to obtain the implied volatility of the option.

Transformation
As in Appendix A, we change independent variables to:

z = 1

εα

∫ f

K

df ′

C(f ′)
(B.9a)

and define:

B(εαz) = C(f ) (B.9b)

We then change dependent variables from P to P̂ , and then to H :

P̂ = ε

α
C(K)P (B.9c)

H = √
C(K)/C(f )P̂ ≡ √

B(0)/B(εαz)P̂ (B.9d)

Following the reasoning in Appendix A, we obtain:

V (t, f, a) = [f − K]+ + 1

2
εα

√
B(0)B(εαz)

∫ sex

s

H(s, z, α; s ′) ds ′, (B.10)
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where H(s, z, α; s ′) is the solution of:

Hs + 1

2
(1 − 2εηz + ε2υ2z2)Hzz − 1

2
ε2ηα

B ′

B
(zHz − H)

+ ε2α2

(
1

4

B ′′

B
− 3

8

B
′2

B2

)
H = 0 (B.11a)

for s < s ′, and:

H = δ(z) at s = s ′ (B.11b)

through O(ε2). See (A.29), (A.31a), and (A.31b). There are no α derivatives in
equations (B.11a), (B.11b), so we can treat α as a parameter instead of a variable. Through
O(ε2) we can also treat B ′/B and B ′′/B as constants:

b1 ≡ B ′(εαz0)

B(εαz0)
, b2 ≡ B ′′(εαz0)

B(εαz0)
(B.12)

where z0 will be chosen later. Thus we must solve:

Hs + 1

2
(1 − 2εηz + ε2υ2z2)Hzz − 1

2
ε2ηαb1(zHz − H)

+ ε2α2

(
1

4
b2 − 3

8
b2

1

)
H = 0 for s < s ′ (B.13a)

H = δ(z) at s = s ′ (B.13b)

At this point we would like to use a time-independent transformation to remove the zHz

term from equation (B.13a). It is not possible to cancel this term exactly, since the coefficient
η(s) is time dependent. Instead we use the transformation:

H = e
1
4 ε2αb1δz

2

Ĥ (B.14)

where the constant δ will be chosen later. This transformation yields:

Ĥs + 1

2
(1 − 2εηz + ε2υ2z2)Ĥzz − 1

2
ε2αb1(η − δ)zĤz

+ 1

4
ε2αb1(2η + δ)Ĥ + ε2α2

(
1

4
b2 − 3

8
b2

1

)
Ĥ = 0 for s < s ′

Ĥ = δ(z) at s = s′ (B.15a)

through O(ε2). Later the constant δ will be selected so that the change in the option price
caused by the term 1

2ε2αb1ηzĤz is exactly offset by the change in price due to 1
2ε2αb1δzĤz

term. In this way to the transformation cancels out the zHz term “on average”.
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In a similar vein we define:

I (ευz) =
√

1 − 2εηz + ε2υ2z2 (B.16a)

and:

x = 1

ευ

∫ ευz

0

dζ

I (ζ )
= 1

ευ
log

(√
1 − 2εηz + ε2υ2z2 − η/υ + ευz

1 − η/υ

)
(B.16b)

where the constants η and υ will be chosen later. This yields:

Ĥs + 1

2

(
1 − 2εηz + ε2υ2z2

1 − 2εηz + ε2υ2z2

) (
Ĥxx − ευI ′(ευz)Ĥx

)
− 1

2
ε2αb1(η − δ)xĤx

+ 1

4
ε2αb1(2η + δ)Ĥ + ε2α2

(
1

4
b2 − 3

8
b2

1

)
Ĥ = 0 for s < s ′ (B.17a)

Ĥ = δ(x) at s = s ′ (B.17b)

through O(ε2). Here we used z = x + · · · and zĤz = xĤx + · · · to leading order to simplify
the results. Finally, we define:

Ĥ = I 1/2(ευz)Q. (B.18)

Then the price of our call option is:

V (t, f, a) = [f − K]+ + 1

2
εα

√
B(0)B(εαz)I 1/2

· (ευz)e
1
4 ε2αb1δz

2
∫ sex

s

Q(s, x, s ′) ds ′ (B.19)

where Q(s, x; s ′) is the solution of:

Q + 1

2

(
1 − 2εηz + ε2υ2z2

1 − 2εηz + ε2υ2z2
Qxx − 1

2
ε2αb1(η − δ)xQx + 1

4
ε2αb1(2η + δ)Q

+ε2υ−2
) (

1

4
I ′′I − 1

8
I ′I ′

)
Q + ε2α2

(
1

4
b2 − 3

8
b2

1

)
Q = 0 for s < s ′ (B.20a)

Q = δ(x) at s = s ′ (B.20b)

Using:

z = x − 1
2εηx2 + · · · (B.21)

we can simplify this to:

Qs + 1

2
Qxx = ε(η − η)xQxx − 1

2
ε2[υ2 − υ2 − 3η(η − η)]x2Qxx

+ 1

2
ε2αb1(η − δ)(xQx − Q)
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− 3

4
ε2αb1δQ − ε2υ2

(
1

4
I ′′I − 1

8
I ′I ′

)
Q

− ε2α2

(
1

4
b2 − 3

8
b2

1

)
Q for s < s ′ (B.22a)

Q = δ(x) at s = s ′ (B.22b)

through O(ε2). Note that I, I ′, and I ′′ can be replaced by the constants I (ευz0), I ′(ευz0), and
I ′′(ευz0) through O(ε2).

Perturbation expansion
Suppose we were to expand Q(s, x; s ′) as a power series in ε:

Q(s, x; s ′) = Q(0)(s, x; s ′) + εQ(1)(s, x; s ′) + ε2Q(2)(s, x; s ′) + · · · (B.23)

Substituting this expansion into (B.22a), (B.22b) yields the following hierarchy of equations.
To leading order we have:

Q(0)
s + 1

2
Q(0)

xx = 0 for s < s ′ (B.24a)

Q(0) = δ(x) at s = s ′ (B.24a)

At O(ε) we have:

Q(1)
s + 1

2Q(1)
xx = (η − η)xQ(0)

xx for s < s ′ (B.25a)

Q(1) = 0 at s = s ′ (B.25b)

At O(ε2) we can break the solution into:

Q(2) = Q(2s) + Q(2d) + Q(2b) (B.26)

where:

Q(2s)
s + 1

2
Q(2s)

xx = −3

4
ab1δQ

(0) − υ2

(
1

4
I ′′I − 1

8
I ′I ′

)
Q(0)

− α2

(
1

4
b2 − 3

8
b2

1

)
Q(0) for s < s ′ (B.27a)

Q(2s) = 0 at s = s ′ (B.27b)

where:

Q(2a)
s + 1

2Q(2a)
xx = 1

2αb1 (η − δ)
(
xQ(0)

x

) − Q(0) for s < s ′ (B.28a)

Q(2a) = 0 at s = s ′ (B.28b)
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and where:

Q(2b)
s + 1

2Q(2b)
xx = (η − η)xQ(1)

xx − 1
2 [υ2 − υ2 (B.29a)

− 3η(η − η)]x2Q(0)
xx for s < s ′

Q(2b) = 0 at s = s ′ (B.29b)

Once we have solved these equations, then the option price is then given by:

V (t, f, a) = [f − K]+ + 1
2εα

√
B(0)B(εαz)I 1/2(εz)e

1
4 ε2ab1δs

2

J (B.30a)

where:

J =
∫ sex

s

Q(0)(s, x; s ′) ds ′ + ε

∫ sex

s

Q(1)(s, x; s ′) ds ′ + ε2
∫ sex

s

Q(2s)(s, x; s ′) ds ′

+ ε2
∫ sex

s

Q(2a)(s, x; s ′) ds ′ + ε2
∫ sex

s

Q(2b)(s, x; s ′) ds ′ + · · · (B.30b)

The terms Q(1),Q(2a), and Q(2b) arise from the time-dependence of the coefficients η(s) and
υ(s). Indeed, if η(s) and υ(s) were constant in time, we would have Q(1) ≡ Q(2a) ≡ Q(2b) ≡
0, and the solution would be just Q(s) ≡ Q(0) + ε2Q(2s). Therefore, we will first solve for
Q(1), Q(2a), and Q(2b), and then try to choose the constants δ, η, and υ so that the last three
integrals are zero for all x. In this case, the option price would be given by:

V (t, f, a) = [f − K]+ + 1

2
εα

√
B(0)B(εαz)I 1/2(εz)

· e 1
4 ε2ab1δz

2
∫ sex

s

Q(s)(s, x; s ′) ds ′ (B.31a)

and, through O(ε2), Q(s) would be the solution of the static problem:

Q(s)
s + 1

2
Q(s)

xx = −3

4
ε2ab1δQ

(s) − ε2υ2

(
1

4
I ′′I − 1

8
I ′I ′

)
Q(s) (B.31b)

− ε2α2

(
1

4
b2 − 3

8
b2

1

)
Q(s) for s < s ′

Q(s) = δ(x) at s = s ′ (B.31c)

This is exactly the time-independent problem solved in Appendix A. See equations (A.42),
(A.43a), and (A.43b). So if we can carry out this strategy, we can obtain option prices for the
dynamic SABR model by reducing them to the previously-obtained prices for the static model.

Leading order analysis The solution of (B.24a), (B.24b) is Gaussian:

Q(0) = G(x/
√

�) (B.32a)
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where:

G(x/
√

�) = 1√
2π�

e−x2/2�, � = s ′ − s (B.32b)

For future reference, note that:

Gx = − x

�
G; Gxx = x2 − �

�2
G; Gxxx = −x3 − 3�x

�3
G (B.33a)

Gxxxx = x4 − 6�x2 + 3�2

�4
G; Gxxxxx = −x5 − 10�x3 + 15�2x

�5
G (B.33b)

Gxxxxxx = x6 − 15�x4 + 45�2x2 − 15�3

�6
G (B.33c)

Order ε Substituting Q(0) into the equation for Q(1) and using (B.33a) yields:

Q(1)
s + 1

2
Q(1)

xx = (η − η)
x3 − �x

�2
G

= −(s ′ − s)(η − η) Gxxx − 2(η − η)Gx for s < s ′ (B.34)

with the “initial” condition Q(1) = 0 at s = s ′. The solution is:

Q(1) = A(s, s ′)Gxxx + 2As′(s, s ′)Gx (B.35a)

= ∂

∂s ′
{

2A(s, s ′)Gx(x/
√

s ′ − s
}

(B.35b)

where:

A(s, s ′) =
∫ s′

s

(s ′ − s̃)[η(s̃) − η] ds̃; As′(s, s ′) =
∫ s′

s

[η(s̃) − η] ds̃ (B.35c)

This term contributes:∫ sex

s

Q(1)(s, x; s ′) ds ′ = 2A(s, sex )Gx(x/
√

sex − s) (B.36)

to the option price. See equations (B.30a), (B.30b). To eliminate this contribution, we chose η

so that A(s, sex ) = 0:

η =

∫ sex

s

(sex − s̃)η(s̃) ds̃

1
2 (sex − s)2

(B.37)

The ε2 Q (2a) term From equation (B.28a) we obtain:

Q(2a)
s + 1

2
Q(2a)

xx = −1

2
αb1(η − δ)

x2 + �

�
G

= −1

2
αb1(η − δ)�Gxx − αb1(η − δ)G

(B.38)
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for s < s ′, with Q(2a) = 0 at s = s ′. Solving then yields:

Q(2a) = ∂

∂s ′

{
αb1

∫ s′

s

(s ′ − s̃)[η(s̃) − δ] ds̃G(x/
√

s ′ − s)

}
(B.39)

This term makes a contribution of:∫ sex

s

Q(2a)(s, x; s ′) ds ′ = αb1

(∫ sex

s

(sex − s̃)[η(s̃) − δ] ds̃

)
G(x/

√
sex − s) (B.40)

to the option price, so we choose:

δ = η =

∫ sex

s

(sex − s̃)[η(s̃) − δ] ds̃

1
2 (sex − s̃)2

(B.41)

to eliminate this contribution.

The ε2 Q (2b) term Substituting Q(1) and Q(0) into equation (B.29a), we obtain:

Q(2b)
s + 1

2Q(2b)
xx = (η − η)AxGxxxxx + 2(η − η)As′xGxxx − 1

2κx2Gxx (B.42a)

for s < s ′, where:

κ = υ2(s) − υ2 − 3η[η(s) − η] (B.42b)

This can be re-written as:

Q(2b)
s + 1

2Q(2b)
xx = −(η − η)A[�Gxxxxxx + 5Gxxxx] − 2(η − η)As′ [�Gxxxx

+ 3Gxx] − 1
2κ[�2Gxxxx + 5�Gxx + 2G] (B.43)

Solving this with the initial condition Q(2b) = 0 at s = s ′ yields:

Q(2b) = 1

2
A2(s, s ′)Gxxxxxx + 2A(s, s ′)As′(s, s ′)Gxxxx

+ 3
∫ s′

s

[η(s̃) − η]A(s̃, s ′)ds̃Gxxxx + 3A2
s′(s, s ′)Gxx

+ 1

2

∫ s′

s

[s ′ − s̃]2κ(s̃)ds̃Gxxxx + 5

2

∫ s′

s

[s ′ − s̃]κ(s̃)ds̃Gxx +
∫ s′

s

κ(s̃)ds̃G (B.44)

This can be written as:

Q(2b) = ∂

∂s ′

{
4A2(s, s ′)Gss − 12

∫ s′

s

[η(s̃) − η]A(s̃, s ′) ds̃Gs

− 2
∫ s′

s

(s ′ − s̃)2κ(s̃) ds̃Gs +
∫ s′

s

(s ′ − s̃)κ(s̃) ds̃G

} (B.45)
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Recall that η was chosen above so that A(s, sex) = 0. Therefore the contribution of Q(2b) to
the option price is:

∫ sex

s

Q(2b)(s, x; s ′) ds ′ = −
(

12
∫ sex

s

[η(s̃) − η]A(s̃, sex) ds̃

+2
∫ sex

s

(sex − s̃)2κ(s̃) ds̃

)
Gs(x/

√
sex − s) (B.46)

+
(∫ sex

s

(sex − s̃)κ(s̃) ds̃

)
G(x/

√
sex − s)

where κ = υ2(s) − υ2 − 3η[η(s) − η].
We can choose the remaining “effective media” parameter υ to set either the coefficient of

Gs(x/
√

sex − s) or the coefficient of G(x/
√

sex − s) to zero, but cannot set both to zero to
completely eliminate the contribution of the term Q(2b). We choose υ to set the coefficient of
Gs(x/

√
sex − s) to zero, for reasons that will become apparent in a moment:

υ2 = 1
1
3 (sex − s̃)3

{∫ sex

s

(sex − s̃)2υ2(s̃) ds̃ − 3η

∫ sex

s

(sex − s̃)2[η(s̃) − η] ds̃

− 6
∫ sex

s

∫ s1

s

s2[η(s1) − η][η(s2) − η] ds2 ds1 (B.47)

Then the remaining contribution to the option price is:

∫ sex

s

Q(2b)(s, x; s ′) ds ′ = 1

2
κ(sex − s)2 G(x/

√
sex − s)

= 1

2
κ(sex − s)2 Q(0)(s, x; sex)

(B.48a)

where:

κ = 1
1
2 (sex − s)2

∫ sex

s

(sex − s̃)[υ2(s̃) − υ2] ds̃ (B.48b)

Here we have used
∫ sex

s
(sex − s̃)(η(s̃) − η)ds̃ = 0 to simplify (B.48b).

Equivalent volatilities
We can now determine the implied volatility for the dynamic model by mapping the problem
back to the static model of Appendix A. Recall from (B.30a), (B.30b) that the value of the
option is:

V (t, f, a) = [f − K]+ + 1
2εα

√
B(0) B(εαz)I 1/2(εz) e

1
4 ε2ab1ηz2

J (B.49a)
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where:

J =
∫ sex

s

Q(0)(s, x; s ′) ds ′ + ε

∫ sex

s

Q(1)(s, x; s ′) ds ′

+ ε2
∫ sex

s

Q(2s)(s, x; s ′) ds ′ + ε2
∫ sex

s

Q(2a)(s, x; s ′) ds ′

+ ε2
∫ sex

s

Q(2b)(s, x; s ′) ds ′ + · · · (B.49b)

and where we have used δ = η. We chose the “effective parameters” η and υ so that the inte-
grals of Q(1), Q(2a) contribute nothing to J . The integral of Q(2b) then contributed 1

2ε2κ(sex −
s)2Q(0)(s, x; sex). The option price is:

J =
∫ sex

s

{Q(0)(s, x; s ′) + ε2Q(2s)(s, x; s ′)} ds ′

+ 1

2
ε2κ(sex − s)2 Q(0)(s, x; sex) + · · · (B.50a)

=
∫ ŝex

s

{Q(0)(s, x; s ′) + ε2Q(2s)(s, x; s ′)} ds ′ + · · ·

through O(ε2), where:

ŝex = sex + 1
2ε2κ(sex − s)2 + · · · (B.50b)

Through O(ε2) we can combine Q(s) = Q(0)(s, x; s ′) + ε2Q(2s)(s, x; s ′), where Q(s) solves the
static problem:

Q(s)
s + 1

2
Q(s)

xx = −3

4
ε2ab1δQ

(s) − ε2υ2

(
1

4
I ′′I − 1

8
I ′I ′

)

· Q(s) − ε2α2

(
1

4
b2 − 3

8
b2

1

)
Q(s) for s < s ′ (B51a)

Q(s) = δ(s − s ′) at s = s ′ (B.51b)

This problem is homogeneous in the time s, so its solution Q(s) depends only on the time
difference τ = s ′ − s. The option price is therefore:

V (t, f, a) = [f − K]+ + 1

2
εα

√
B(0) B(εαz)I 1/2

(εz)e
1
4 ε2ab1ηz2

∫ ŝex−s

0
Q(s)(τ, x) dτ, (B.52)
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where Qs(τ, x) is the solution of:

Q(s)
τ − 1

2
Q(s)

xx = 3

4
ε2ab1ηQ(s) + ε2υ2

(
1

4
I ′′I − 1

8
I ′I ′

)
Q(s)

+ ε2α2

(
1

4
b2 − 3

8
b2

1

)
Q(s) for τ > 0 (B.53a)

Qs = δ(x) at τ = 0 (B.53b)

The option price defined by (B.52), (B.53a), and (B.53b) is identical to the static model’s
option price defined by (A.42), (A.43a), and (A.43b), provided we make the identifications:

ν → υ ρ → η/υ (B.54)

τex → ŝex − s = sex − s + 1
2ε2κ(sex − s)2 (B.55)

in Appendix A for the original non-dynamic SABR model, provided we make the identifications:

τex = τ + ε2
∫ τ

0
τ̃ [υ2(τ̃ ) − υ2] dτ̃ (B.56a)

ν → η/υ ν → υ (B.56b)

See equations (A.42–A.43b). Following the reasoning in the preceding Appendix now shows
that the European call price is given by the formula:

V (t, f, K) = (f − K)N
(

f − K

σN

√
τex

)
+ σN

√
τexG

(
f − K

σN

√
τex

)
(B.57)

with the implied normal volatility:

σN(K) = εα(f − K)∫ f

K

df ′

C(f ′)

·
(

ζ

x̂(ζ )

)

·
{

1 +
[

2γ2 − γ 2
1

24
α2C2(fav) + 1

4ηαγ1C(fav) (B.58a)

+2υ2 − 3η2

24
+ 1

2
θ

]
ε2τex + · · ·

where:

ζ = υ

α

f − K

C(fav)
, x̂(ζ ) = log

(√
1 − 2ηζ/υ + ζ 2 − η/υ + ζ

1 − η/υ

)
(B.58b)

fav = √
f K, γ1 = C′(fav)

C(fav)
γ2 = C′′(fav)

C(fav)
(B.58c)

θ =
∫ τ

0 τ̃ [υ2(τ̃ ) − υ2]dτ̃

1
2τ 2

(B.58d)
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Equivalently, the option prices are given by Black’s formula with the effective Black volatil-
ity of:

σB(K) = α log f/K∫ f

K

df ′

C(f ′)

·
(

ζ

x̂(ζ )

)

·
{

1 +
[

2γ2 − γ 2
1 + 1/f 2

av

24
α2C2(fav) + 1

4
ηαγ1C(fav)

+ 2υ2 − 3η2

24
+ 1

2
θ

]
ε2τex + · · ·
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Adjusters: Turning Good
Prices into Great Prices
Patrick S. Hagan

Wilmott magazine, December 2002

I
’m sure we’ve all been there: We need to price and trade an exotic derivative, but
because of limitations in our pricing systems, we cannot calibrate on the “natural set”
of hedging instruments. Instead we have to calibrate on some other set of vanilla instru-
ments, which provide only a poor representation of the exotic. Consequently, our prices
are questionable, and if we are bold enough to trade on these prices, our hedges are

unstable, chewing up any profit as bid-ask spread. Here we discuss how to get out of these
jams by using “adjusters”, a technique for re-expressing the vega risks of an exotic deriva-
tive in terms of its “natural hedging instruments”. This helps prevent unstable hedges and
exotic deal mis-management, and, as a side benefit, leads to significantly better pricing of
the exotic.

1 Managing exotics
First let us briefly discuss how we get in these jams. During the normal course of business,
the pricing and management of fixed income derivatives depend on two key markets. First
is the swap market (delta market), which is encapsulated by the yield curve. Swap desks
maintain current yield curves by continually stripping and re-stripping a set of liquid swaps,
futures, and deposit rates throughout the day. This curve determines all current swap rates,
FRA rates, forward swap rates, etc. The yield curve also shows how to hedge all interest
rate risks by buying and selling the same swaps, futures, and deposit rates used in the strip-
ping process.

The second market is the vanilla option market (vega market) for European swaptions,
caps, and floors. Prices of these options are quoted in terms of the volatility σ , which is
inserted into Black’s 1976 formula to determine the dollar price of the option. European swap-
tions are defined by three numbers: the exercise date and the tenor (length) and strike (fixed

Contact address: Quantitative Research & Development, Bloomberg LP, 499 Park Avenue, New York, NY 10022,
USA.
E-mail: phagan1@bloomberg.net
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rate) of the swap received upon exercise. Keeping track of this market requires maintaining a
volatility cube, which contains the volatilities σ as a function of the three coordinates. How-
ever, the vast majority of swaptions are struck at-the-money, at strikes equaling the current
swap rate of the underlying forward swap, so desks normally track this market by main-
taining a volatility matrix containing the vols of at-the-money swaptions (see Table 1), and
a set of auxiliary “smile” matrices showing how much to add/subtract to the volatility for
strikes 50 bps, 100 bps, . . . above or below the swap rate. Alternatively, some swap desks
determine the adjustment by using a smile model, such as the SABR or Heston models. In
any case, desks are reasonably confident that they can trade the vanilla instruments at the
indicated prices.

TABLE 1: AT-THE-MONEY VOLATILITY MATRIX

European swaptions are defined by the time-to-exercise (row), and length (column) and fixed rate
(strike) of the swap received upon exercise. A volatility matrix (as opposed to a volatility cube)
contains the volatilities of at-the-money swaptions, swaptions whose fixed rates are equal to the
current forward swap rate of the underlying swap. Linear interpolation is used for the volatilities
in between grid points. The 3 m column is the caplet column.

σ (in %) 3 m 1 y 2 y 3 y . . . 10 y

1 m 5.25 12.25 13.50 14.125 . . . 14.25
3 m 7.55 13.00 14.125 14.375 . . . 14.50
6 m 11.44 14.25 14.875 15.00 . . . 14.75
1 y 16.20 16.75 16.375 16.125 . . . 15.50
2 y 19.25 17.75 17.125 17.00 . . . 15.75
...

...
...

...
...

...

10 y 14.00 13.50 13.00 12.50 . . . 11.00

Now consider the typical management of an exotic interest rate derivative, such as a
Bermudan swap or a callable range note. During the nightly mark-to-market, the deal will
be priced by:

• Selecting an interest rate model, such as Hull–White or Black–Karasinski;
• Selecting a set of vanilla swaptions and/or caplets as the calibration instruments;
• Calibrating the interest rate model so that the model reproduces the market prices of

these instruments, either exactly or in a least squares sense;
• Using the calibrated model to find the value of the exotic via finite difference methods,

trees, or Monte Carlo.

The exotic’s vega risks will then be obtained by:

• Bumping each volatility in the matrix (or cube) one at a time;
• Re-calibrating the model and re-pricing the exotic derivative for each bump; and
• Subtracting to obtain the difference in value for the bumped case versus the base (mar-

ket) case.
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This results in a matrix of vega risks. Each cell represents the deal’s dollar gain or loss
should the volatility of that particular swaption change. These vega risks are then hedged
by buying or selling enough of each underlying swaption so that the total vega risks are
zero. Of course the desk first adds up the vega exposure of all deals, and only hedges the
net exposure.

Calibration is the only step in this procedure which incorporates information about mar-
ket volatilities. Under the typical nightly procedure the exotic derivative will only have vega
risks to the set of vanilla swaptions and/or caplets used in calibration. So regardless of the
actual nature of the exotic derivative, the vega hedges will be trying to mimic the exotic
derivative as a linear combination of the calibration instruments. If the calibration instru-
ments are “natural hedging instruments” which are “similar” to the exotic, then the hedges
probably provide a faithful representation of the exotic. If the calibration instruments are
dissimilar to the exotic, having the wrong expiries, tenors, or strikes, then the vega hedges
will probably be a poor representation of the exotic. This often causes the hedges to be
unstable, which gets expensive as bid-ask spread is continually chewed up in re-hedging
the exotic.

For example, consider a cancellable 10 year receiver swap struck at 7.50%, where the first
call date is in 3 years (10NC3@7.50). Surely the natural hedging instruments for this Bermudan
are the diagonal swaptions: the 3 y into 7 y struck at 7.50%, the 4 y into 6 y struck at 7.50%,
. . . , and the 9 y into 1 y struck at 7.50%, since a dynamic combination of these instruments
should be capable of accurately replicating the exotic. Indeed, if we do not calibrate on these
swaptions, then our calibrated model would not get the correct market prices of these swaptions,
and if our prices for the 3 y into 7 y, the 4 y into 6 y (etc.) are incorrect, we don’t have a
prayer of pricing and hedging the callable swap correctly.

When feasible, best practice is to use autocalibration for managing exotic books. For each
exotic derivative on the books, autocalibration first selects the “natural hedging instruments” of
the exotic, usually based on some simple scheme of matching the expiries, tenors, and effective
strikes of the exotic. It then re-calibrates the model to match these instruments to their market
values, and then values the exotic. Autocalibration then picks the next deal out of the book,
selects a new set of natural hedging instruments, re-calibrates the model, and re-prices the
exotic, and so on.

There are a variety of reasons why autocalibration may not be feasible. If one’s interest
rate model is too complex, perhaps a several factor affair, one may not have the computational
resources to allow frequent calibration. Or if one’s calibration software is too “fractious”, one
may not have the patience to calibrate the model very often. In such cases one would generally
calibrate to all swaptions in the vol matrix in a least squares sense, and the calibration would
only include at-the-money swaptions. Alternatively, an interest rate model may be more easily
calibrated on some instruments than others. For example, a multi-factor BGM model is much
easier to calibrate to caplets than to swaptions.

Finally, one’s software may not be set up to calibrate on the “natural hedging instruments”.
A callable range note provides an example. Consider a regular (non-callable) 10 year range note
which pays a coupon of, say, $1 each day Libor sets between 2.50% and 6.00%. Apart from
minor date differences, the range note is equivalent to being long one digital call at 2.50% and
short a digital call at 6.00% for each day in the next 10 years. Since digital calls can be written
in terms of ordinary calls, a range note is very, very close to being a vanilla instrument, and
can be priced exactly from the swaption volatility matrix (or cube). To price a callable range
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note, one would like to calibrate on the underlying daily range notes, for if we don’t price the
underlying range notes correctly, how could we trust our price for the callable range note? Yet
many systems are not set up to calibrate on range notes.

2 Risk migration
We now describe a method for moving the vega risk, either all of it, or as much as possible, to the
natural hedging instruments. Suppose we have an exotic derivative v which has h1, h2, . . . , hm

as its natural hedging instruments. For example, for the 10NC3 Bermudan struck at 7.50%, the
natural hedging instruments are just the 3 y into 7 y swaption struck at 7.50%, the 4 y into 6 y at
7.50%, . . ., and the 9 y into 1 y at 7.50%. Suppose that for “operational reasons” one could not
calibrate on h1, h2, . . ., hm, but instead were forced to calibrate on the swaptions and/or caplets
S1, S2, . . ., Sn. Let these instruments have market volatities σ1, σ2, . . ., σn. Then after calibrating
the model, all prices obtained from the model are functions of these volatilities. So let:

V mod = V mod(σ1, σ2, . . . , σn) (1a)

be the value of the exotic derivative v obtained from the model. Suppose we use the model to
price the natural hedging instruments h1, h2, . . ., hm. Let:

H mod
k (σ1, σ2, . . . , σn) k = 1, 2, . . . , m (1b)

be the value of these instruments according to the calibrated model. Finally, let:

Hmar
k k = 1, 2, . . . , m (1c)

be the market price of the natural hedging instruments.
Let us create an imaginary portfolio consisting of the exotic derivative and its natural hedging

instruments:

π = v −
m∑

k=1

bkhk, (2)

where the amounts bk of the hedging instruments will be selected shortly. Using the calibrated
model to price this portfolio yields:

� = V mod(σ1, σ2, . . . , σn) −
m∑

k=1

bkH
mod
k (σ1, σ2, . . . , σn), (3a)

According to the calibrated model, this portfolio has the vega risks:

∂�

∂σj

= ∂V mod

∂σj

−
m∑

k=1

bk

∂H mod
k

∂σj

(3b)

to the calibration instruments.
Suppose we have chosen the portfolio weights bk . (In the next section we show how to

choose the amounts bk so as to eliminate the vega risks, either completely or as completely as
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possible). We add and subtract this portfolio of natural hedging instruments to write the exotic
derivative v as:

v =
{

v −
m∑

k=1

bkhk

}
+

{
m∑

k=1

bkhk

}
. (4)

We now use the calibrated model to value the instruments in the first set of braces, and use
the market prices to evaluate the instruments in the second set of braces. This yields the
adjusted price:

V adj =
{

V mod −
m∑

k=1

bkH
mod
k

}
+

m∑
k=1

bkH
mar
k (5a)

= V mod +
m∑

k=1

bk(H
mar
k − H mod

k ) (5b)

This procedure is generally known as “applying an adjuster”. In equation 5a, the terms in
braces are evaluated using the calibrated model, so they only have vega risk to the volatilities
of the calibration instruments σ1, σ2, . . ., σn. With the weights bk chosen to eliminate these
risks as nearly as possible, the adjusted price V adj has little or no vega risk to the calibration
instruments. Instead, the vega risks of the adjusted price come from the last term:

m∑
k=1

bkH
mar
k (6a)

which only contains the market prices of the natural hedging instruments. So, as claimed,
the adjuster has moved the vega risks from the calibration instruments to the natural hedging
instruments. In fact, to hedge these risks one must take the opposite position:

−
m∑

k=1

bkhk (6b)

in the natural hedging instruments of the exotic. For the 10NC3 Bermudan struck at 7.50%, for
example, the resulting hedge is a combination of the 3 y into 7 y, the 4 y into 6 y, . . ., and the
9 y into 1 y swaptions, all struck at 7.50%, regardless of which set of instruments were used
to originally calibrate the model.

Equation 5b gives a different view. It shows the adjusted price as being the model price
corrected for the difference between the market price and the model price of the natural hedging
instruments.

3 Choosing the portfolio weights
We wish to choose the amounts bk to minimize the model’s vega risks in 3b. This is an exercise
in linear algebra. Define the matrix M and vector U by:

Mjk = ∂H mod
k

∂σj

, Uj = ∂V

∂σj

, (7a)
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and let b be the vector of positions (b1, b2, . . . , bm)T so that the vega risks to the calibration
instruments are:

U − Mb (7b)

There are three cases to consider. First suppose that there are fewer hedging instruments than
model calibration instruments. One cannot expect to eliminate n risks with m < n hedging
instruments, so one cannot eliminate all the vega risks in 3b in this case. Instead one can
minimize the sum of squares of the vega risks:

min(U − Mb)T (U − Mb) (8a)

Solving this problem yields:

b = (MT M)−1MT (if m < n) (8b)

The matrix (MT M)−1MT is known as the pseudo-inverse of M . Of course one can use some
criterion other than least squares, such as choosing the portfolio b to eliminate the least liquid
calibration instruments first.

If there are exactly as many hedging instruments as calibration instruments, then we can
expect to completely eliminate the risk by choosing:

b = M−1U (if m = n) (9)

Finally, if there are more hedging instruments than model calibration instruments, then we
can select the smallest hedge which completely eliminates the vega risks to the calibration
instruments:

min bT b subject to Mb = U. (10a)

This yields:

b = MT (MMT )−1U (if m > n), (10b)

where the matrix MT (MMT )−1 is also known as the pseudo-inverse of M . As before, one may
use a criterion other than least squares for choosing b.

4 Examples
Consider once more the cancellable 10 year receiver swap struck at 7.50%, where the first
call date is in 3 years. This derivative is normally booked as a straight 10 year swap, with a
Bermudan option to enter into the opposite swap. Here we just price the Bermudan option, the
option to enter a payer swaption at 7.50% on any coupon date starting on the third anniversary
of the deal. For the purposes of this example, we assume a flat 5% yield curve, and use the
Hull–White model with the USD volatility matrix from March 1999.
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Clearly the natural hedging instruments are the 3 y into 7 y swaption struck at 7.50%, the 4 y
into 6 y swaption at 7.50%, . . ., and the 9 y into 1 y swaption at 7.50%. Suppose we calibrate
the Hull-White model to these “natural hedging instruments” and then use the calibrated model
to price the Bermudan. This leads to a price of:

V = 200.18 bps (11)

This represents the best price available within the one factor, Hull–White framework.
Suppose we calibrate to the same “diagonal” swaptions as before, but instead of calibrating

to swaptions struck at 7.50%, we calibrate to swaptions struck at-the-money, at 5.00%. This
yields a much lower price:

V mod = 163.31 bps (12a)

If we add in the adjustor, we obtain the price:

V mod +
m∑

k=1

bk(H
mar
k − H mod

k ) = 163.31 bps + 39.18 bps = 202.49 bps (12b)

a great improvement.
Alternatively, suppose we calibrate the Hull–White model to the caplets starting at 3 years,

at 3.25 years, at 3.5 years, . . ., and at 9.75 years, with all caplets struck at 7.50%. Now we
have the correct strike, but the wrong tenors. The calibrated model yields the price:

V mod = 196.82 bps (13a)

If we add in the adjustor, we obtain a price of:

V mod +
m∑

k=1

bk(H
mar
k − H mod

k ) = 196.82 bps + 3.12 bps = 199.94 bps (13b)

again a distinct improvement.

5 Nothing is free
At first glance, it appears that using an adjuster greatly increases the computational load. After
all, to determine the adjustment requires computing the exotic derivative’s vega risk ∂V mod/∂σj

to all calibration instruments. These risks are usually found via finite differences, so evaluating
these risks would seem to require model calibrations in n + 1 separate scenarios (base case, and
each σj bumped separately). However, these vega risks are needed for hedging purposes, and
are nearly always computed as part of the nightly batch, even if one is not applying an adjustor.
So computing the vega matrix is usually free. The computational load does increase modestly,
because for each natural hedging instrument, one has to calculate the model price H mod

k and its
vega derivatives ∂H mod

k /∂σj . This requires calculating the model price of m vanilla instruments
n + 1 times. This is the same load as calculating the calibration error in each of the n + 1
scenarios, clearly much much faster than actually calibrating the model in each of the n + 1
scenarios.
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I
’m sure we’ve all been there: We’re in hot competition with another bank over a deal.
As the deal evolves, our trading team starts getting pushed around the market, and it
dawns on us that the other bank’s pricing is better than ours, at least for this class of
deals. Here we focus on a single class of deals, the constant maturity swaps, caps, and
floors. We develop a framework that leads to the standard methodology for pricing these

deals, and then use this framework to systematically improve the pricing.
Let us start by agreeing on basic notation. In our notation, today is always t = 0. We use:

Z(t ; T ) = value at date t of a zero coupon bond with maturity T (1a)

D(T ) ≡ Z(0, T ) = today’s discount factor for maturity T (1b)

We distinguish between zero coupon bonds and discount factors to remind ourselves that dis-
count factors are not random, we can always obtain the current discount factors D(T ) by
stripping the yield curve, while zero coupon bonds Z(t, T ) remain random until the present
catches up to date t . We also use:

cvg(tst , tend , dcb) (2)

Contact address: Quantitative Research & Development, Bloomberg LP, 499 Park Avenue, New York, NY 10022,
USA.
E-mail: phagan1@bloomberg.net
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to denote the coverage (also called the year fraction or day count fraction) of the period tst

to tend , where dcb is the day count basis (Act360, 30360, . . .) specified by the contract. So
if interest accrues at rate R, then cvg(tst , tend , dcb)R is the interest accruing in the interval tst

to tend .

Deal definition
Consider a CMS swap leg paying, say, the N year swap rate plus a margin m. Let t0, t1, . . . , tm
be the dates of the CMS leg specified in the contract. (These dates are usually quarterly.) For
each period j , the CMS leg pays:

δj (Rj + m) paid at tj for j = 1, 2, . . . , m (3a)

where Rj is the N year swap rate and:

δj = cvg(tj−1, tj , dcbpay) (3b)

is the coverage of interval j . If the CMS leg is set-in-advance (this is standard), then Rj is
the rate for a standard swap that begins at tj−1 and ends N years later (Figure 1). This swap
rate is fixed on the date τj that is spot lag business days before the interval begins at tj−1,
and pertains throughout the interval, with the accrued interest δj (Rj + m) being paid on the
interval’s end date, tj . Although set-in-advance is the market standard, it is not uncommon for
contracts to specify CMS legs set-in-arrears. Then Rj is the N year swap rate for the swap
that begins on the end date tj of the interval, not the start date, and the fixing date τj for Rj is
spot lag business days before the interval ends at tj . As before, δj is the coverage for the j th

interval using the day count basis dcbpay specified in the contract. Standard practice is to use
the 30360 basis for USD CMS legs.

t j −1 t j

interval j

tj

dj

Figure 1: j th interval of a
“set-in-advance” CMS leg

CMS caps and floors are constructed in an almost identical fashion. For CMS caps and
floors on the N year swap rate, the payments are:

δj [Rj − K]+ paid at tj for j = 1, 2, . . . , m, (cap) (4a)

δj [K − Rj ]+ paid at tj for j = 1, 2, . . . , m, (floor) (4b)

where the N year swap rate is set-in-advance or set-in-arrears, as specified in the contract.
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Reference swap
The value of the CMS swap, cap, or floor is just the sum of the values of each payment. Any
margin payments m can also be valued easily. So all we need do is value a single payment of
the three types:

Rs paid at tp (5a)

[Rs − K]+ paid at tp (5b)

[K − Rs]
+ paid at tp (5c)

Here the reference rate Rs is the par rate for a standard swap that starts at date s0, and ends
N years later at sn. To express this rate mathematically, let s1, s2, . . . , sn be the swap’s (fixed
leg) pay dates. Then a swap with rate Rfix has the fixed leg payments:

αjRfix paid at sj for j = 1, 2, . . . , n (6a)

where:

αj = cvg(tj−1, tj , dcbsw ) (6b)

is the coverage (fraction of a year) for each period j , and dcbsw is the standard swap basis. In
return for making these payments, the payer receives the floating leg payments. Neglecting any
basis spread, the floating leg is worth 1 paid at the start date s0, minus 1 paid at the end date
sn. At any date t , then, the value of the swap to the payer is:

Vsw (t) = Z(t ; s0) − Z(t ; sn) − Rfix

n∑
j=1

αjZ(t ; sj ) (7)

The level of the swap (also called the annuity, PV01, DV01, or numerical duration) is defined as:

L(t) =
n∑

j=1

αjZ(t ; sj ) (8)

Crudely speaking, the level L(t) represents the value at time t of receiving $1 per year (paid
annually or semiannually, according to the swap’s frequency) for N years. With this definition,
the value of the swap is:

Vsw (t) = [Rs(t) − Rfix ]L(t) (9a)

where:

Rs(t) = Z(t ; s0) − Z(t ; sn)

L(t)
(9b)
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Clearly the swap is worth zero when Rfix equals Rs(t), so Rs(t) is the par swap rate at date t .
In particular, today’s level:

L0 = L(0) =
n∑

j=1

αjDj =
n∑

j=1

αjD(sj ) (10a)

and today’s (forward) swap rate:

R0
s = Rs(0) = D0 − Dn

L0
(10b)

are both determined by today’s discount factors.

Valuation
According to the theory of arbitrage free pricing, we can choose any freely tradeable instrument
as our numeraire. Examining (8) shows that the level L(t) is just the value of a collection of
zero coupon bonds, since the coverages αj are just fixed numbers. These are clearly freely
tradeable instruments, so we can choose the level L(t) as our numeraire.1 The usual theorems
then guarantee that there exists a probability measure such that the value V (t) of any freely
tradeable deal divided by the numeraire is a Martingale. So:

V (t) = L(t)E

{
V (T )

L(T )

∣∣∣∣Ft

}
for any T > t (11)

provided there are no cash flows between t and T .
It is helpful to examine the valuation of a plain vanilla swaption. Consider a standard

European option on the reference swap. The exercise date of such an option is the swap’s
fixing date τ , which is spot-lag business days before the start date s0. At this exercise date, the
payoff is the value of the swap, provided this value is positive, so:

Vopt(τ ) = [Rs(τ) − Rfix ]+L(τ) (12)

on date τ . Since the Martingale formula (11) holds for any T > t , we can evaluate it at
T = τ , obtaining:

Vopt(t) = L(t)E

{
Vopt(τ )

L(τ)

∣∣∣∣Ft

}
= L(t)E{[Rs(τ) − Rfix ]+|Ft} (13)

In particular, today’s value of the swaption is:

Vopt(t) = L0E{[Rs(τ) − Rfix ]+|F0}. (14a)

Moreover, (9b) shows that the par swap rate Rs(t) is the value of a freely tradable instru-
ment (two zero coupon bonds) divided by our numeraire. So the swap rate must also be a
Martingale, and:

E{Rs(τ)|F0} = Rs(0) ≡ R0
s (14b)
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To complete the pricing, one now has to invoke a mathematical model (Black’s model,
Heston’s model, the SABR model, . . .) for how Rs(τ) is distributed around its mean value R0

s .
In Black’s model, for example, the swap rate is distributed according to:

Rs(τ) = R0
s e

σx
√

τ− 1
2 σ 2τ (15)

where x is a normal variable with mean zero and unit variance. One completes the pricing by
integrating to calculate the expected value.

CMS caplets
The payoff of a CMS caplet is:

[Rs(τ) − K]+ paid at tp (16)

On the swap’s fixing date τ , the par swap rate Rs is set and the payoff is known to be
[Rs(τ) − K]+Z(τ ; tp), since the payment is made on tp. Evaluating (11) at T = τ yields:

V CMS
cap (t) = L(t)E

{
[Rs(τ) − K]+Z(τ ; tp)

L(τ)

∣∣∣∣Ft

}
(17a)

In particular, today’s value is:

V CMS
cap (0) = L0E

{
[Rs(τ) − K]+Z(τ ; tp)

L(τ)

∣∣∣∣F0

}
(17b)

The ratio Z(τ ; tp)/L(τ) is (yet another!) Martingale, so it’s average value is today’s value:

E{Z(τ ; tp)/L(τ)|F0} = D(tp)/L0 (18)

By dividing Z(τ ; tp)/L(τ) by its mean, we obtain:

V CMS
cap (0) = D(tp)E

{
[Rs(τ) − K]+

Z(τ ; tp)/L(τ)

D(tp)/L0

∣∣∣∣F0

}
(19)

which can be written more evocatively as:

V CMS
cap (0) = D(tp)E{[Rs(τ) − K]+|F0}

+ D(tp)E

{
[Rs(τ) − K]+

(
Z(τ ; tp)/L(τ)

D(tp)/L0
− 1

)∣∣∣∣F0

}
(20)

The first term is exactly the price of a European swaption with notional D(tp)/L0, regardless
of how the swap rate Rs(τ) is modeled. The last term is the “convexity correction”. Since Rs(τ)

is a Martingale and [Z(τ ; tp)/L(τ)]/[Z(t ; tp)/L(t)] − 1 is zero on average, this term goes to
zero linearly with the variance of the swap rate Rs(τ), and is much, much smaller than the
first term.
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There are two steps in evaluating the convexity correction. The first step is to model the
yield curve movements in a way that allows us to re-write the level L(τ) and the zero coupon
bond Z(τ ; tp) in terms of the swap rate Rs . (One obvious model is to allow only parallel shifts
of the yield curve.) Then we can write:

Z(τ ; tp)/L(τ) = G(Rs(τ)) (21a)

D(tp)/L0 = G(R0
s ) (21b)

for some function G(Rs). The convexity correction is then just the expected value:

cc = D(tp)E

{
[Rs(τ) − K]+

(
G(Rs(τ))

G(R0
s )

− 1

)∣∣∣∣F0

}
(22)

over the swap rate Rs(τ). The second step is to evaluate this expected value.
In the Appendix we start with the street-standard model for expressing L(τ) and Z(τ ; tp)

in terms of the swap rate Rs . This model uses bond math to obtain:

G(Rs) = Rs

(1 + Rs/q)�

1

1 − 1

(1 + Rs/q)n

(23a)

Here q is the number of periods per year (1 if the reference swap is annual, 2 if it is semi-
annual, . . .), and:

� = tp − s0

s1 − s0
(23b)

is the fraction of a period between the swap’s start date s0 and the pay date tp. For deals
“set-in-arrears” � = 0. For deals “set-in-advance”, if the CMS leg dates t0, t1, . . . are quarterly,
then tp is 3 months after the start date s0, so � = 1

2 if the swap is semiannual and � = 1
4 if it

is annual.
In the Appendix we also consider increasingly sophisticated models for expressing L(τ) and

Z(τ ; tp) in terms of the swap rate Rs , and obtain increasingly sophisticated functions G(Rs).
We can carry out the second step by replicating the payoff in (22) in terms of payer

swaptions. For any smooth function f (Rs) with f (K) = 0, we can write:

f ′(K)[Rs − K]+ +
∫ ∞

K

[Rs − x]+f ′′(x) dx =
{

f (Rs) for Rs > K

0 for Rs < K
(24)

Choosing:

f (x) ≡ [x − K]

(
G(x)

G(R0
s )

− 1

)
(25)

and substituting this into (22), we find that:

cc = D(tp)

{
f ′(K)E{[Rs(τ) − K]+|F0} +

∫ ∞

K

f ′′(x)E{[Rs(τ) − x]+|F0} dx

}
(26)
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Together with the first term, this yields:

V CMS
cap (0) = D(tp)

L0

{
[1 + f ′(K)]C(K) +

∫ ∞

K

C(x)f ′′(x) dx

}
(27a)

as the value of the CMS caplet, where:

C(x) = L0E{[Rs(τ) − x]+|F0} (27b)

is the value of an ordinary payer swaption with strike x.
This formula replicates the value of the CMS caplet in terms of European swaptions at

different strikes x. At this point some pricing systems break the integral up into 10bp or so
buckets, and re-write the convexity correction as the sum of European swaptions centered in
each bucket. These swaptions are then consolidated with the other European swaptions in the
vanilla book, and priced in the vanilla pricing system. This “replication method” is the most
accurate method of evaluating CMS legs. It also has the advantage of automatically making the
CMS pricing and hedging consistent with the desk’s handling of the rest of its vanilla book.
In particular, it incorporates the desk’s smile/skew corrections into the CMS pricing. However,
this method is opaque and compute intensive. After briefly considering CMS floorlets and
CMS swaplets, we develop simpler approximate formulas for the convexity correction, as an
alternative to the replication method.

CMS floorlets and swaplets
Repeating the above arguments shows that the value of a CMS floorlet is given by:

V CMS
floor (0) = D(tp)

L0

{
[1 + f ′(K)]P(K) −

∫ K

−∞
P(x)f ′′(x) dx

}
(28a)

where f (x) is the same function as before (see equation 25), and where:

P(x) = L0E{[x − Rs(τ)]+|F0} (28b)

is the value of the ordinary receiver swaption with strike x. Thus, the CMS floorlets can also
be priced through replication with vanilla receivers. Similarly, the value of a single CMS swap
payment is:

V CMS
swap (0) = D(tp)R0

s + D(tp)

L0

{∫ ∞

R0
s

C(x)f ′′
atm (x) dx +

∫ R0
s

−∞
P(x)f ′′

atm(x) dx

}
(29a)

where:

fatm(x) ≡ [x − R0
s ]

(
G(x)

G(R0
s )

− 1

)
(29b)

is the same as f (x) with the strike K replaced by the par swap rate R0
s . Here, the first term

in (29a) is the value if the payment were exactly equal to the forward swap rate R0
s as seen
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today. The other terms represent the convexity correction, written in terms of vanilla payer and
receiver swaptions. These too can be evaluated by replication.

It should be noted that CMS caplets and floorlets satisfy call-put parity. Since:

[Rs(τ) − K]+ − [K − Rs(τ)]+ = Rs(τ) − K paid at tp (30)

the payoff of a CMS caplet minus a CMS floorlet is equal to the payoff of a CMS swaplet
minus K . Therefore, the value of this combination must be equal at all earlier times as well:

V CMS
cap (t) − V CMS

floor (t) = V CMS
swap (t) − KZ (t ; tp) (31a)

In particular:

V CMS
cap (0) − V CMS

floor (0) = V CMS
swap (0) − KD(tp) (31b)

Accordingly, we can price an in-the-money caplet or floorlet as a swaplet plus an out-of-the-
money floorlet or caplet.

Analytical formulas
The function G(x) is smooth and slowly varying, regardless of the model used to obtain it.
Since the probable swap rates Rs(τ) are heavily concentrated around R0

s , it makes sense to
expand G(x) as:

G(x) ≈ G(R0
s ) + G′(R0

s )(x − R0
s ) + · · · (32a)

For the moment, let us limit the expansion to the linear term. This makes f (x) a quadratic
function:

f (x) ≈ G′(R0
s )

G(R0
s )

(x − R0
s )(x − K) (32b)

and f ′′(x) a constant. Substituting this into our formula for a CMS caplet (27a), we obtain:

V CMS
cap (0) = D(tp)

L0
C(K) + G′(R0

s )

{
(K − R0

s )C(K) + 2
∫ ∞

K

C(x) dx

}
(33)

where we have used G(R0
s ) = D(tp)/L0. Now, for any K the value of the payer swaption is:

C(K) = L0E{[Rs(τ) − K]+|F0} (34a)

so the integral can be re-written as:∫ ∞

K

C(x) dx = L0E

{∫ ∞

K

[Rs(τ) − x]+ dx

∣∣∣∣F0

}

= 1
2L0E{([Rs(τ) − K]+)2|F0}

(34b)
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Putting this together yields:

V CMS
cap (0) = D(tp)

L0
C(K) + G′(R0

s )L0E{[Rs(τ) − R0
s ][Rs(τ) − K]+|F0} (35a)

for the value of a CMS caplet, where the convexity correction is now the expected value of a
quadratic “payoff”. An identical arguments yields the formula:

V CMS
floor (0) = D(tp)

L0
P(K) − G′(R0

s )L0E{[R0
s − Rs(τ)][K − Rs(τ)]+|F0} (35b)

for the value of a CMS floorlet. Similarly, the value of a CMS swap payment works out to be:

V CMS
swap (0) = D(tp)R0

s + G′(R0
s )L0E{(Rs(τ ) − R0

s )
2|F0} (35c)

To finish the calculation, one needs an explicit model for the swap rate Rs(τ). The simplest
model is Black’s model, which assumes that the swap rate Rs(τ) is log normal with a volatility
σ . With this model, one obtains:

V CMS
swap (0) = D(tp)R0

s + G′(R0
s )L0(R

0
s )

2[eσ 2τ − 1] (36a)

for the CMS swaplets:

V CMS
cap (0) = D(tp)

L0
C(K) + G′(R0

s )L0[(R0
s )

2eσ 2τN(d3/2)

− R0
s (R

0
s + K)N(d1/2) + R0

s KN(d−1/2)]
(36b)

for CMS caplets, and:

V CMS
floor (0) = D(tp)

L0
P(K) − G′(R0

s )L0[(R0
s )

2eσ 2τN(−d3/2)

− R0
s (R

0
s + K)N(−d1/2) + R0

s KN(−d−1/2)]
(36c)

for CMS floorlets. Here:

dλ = ln R0
s /K + λσ 2τ

σ
√

τ
. (36d)

The key concern with Black’s model is that it does not address the smiles and/or skews
seen in the marketplace. This can be partially mitigated by using the correct volatilities. For
CMS swaps, the volatility σATM for at-the-money swaptions should be used, since the expected
value (35) includes high and low strike swaptions equally. For out-of-the-money caplets and
floorlets, the volatility σK for strike K should be used, since the swap rates Rs(τ) near K

provide the largest contribution to the expected value. For in-the-money options, the largest
contributions come from swap rates Rs(τ) near the mean value R0

s . Accordingly, call-put parity
should be used to evaluate in-the-money caplets and floorlets as a CMS swap payment plus an
out-of-the-money floorlet or caplet.
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Conclusions
The standard pricing for CMS legs is given by (36a–36d) with G(Rs) given by (23a). These
formulas are adequate for many purposes. When finer pricing is required, one can systematically
improve these formulas by using the more sophisticated models for G(Rs) developed in the
Appendix, and by adding the quadratic and higher order terms in the expansion (32a). In addi-
tion, (35a–35b) show that the convexity corrections are essentially swaptions with “quadratic”
payoffs. These payoffs emphasize away-from-the-money rates more than standard swaptions,
so the convexity corrections can be quite sensitive to the market’s skew and smile. CMS pric-
ing can be improved by replacing Black’s model with a model that matches the market smile,
such as Heston’s model or the SABR model. Alternatively, when the very highest accuracy is
needed, replication can be used to obtain near perfect results.

Appendix A. Models of the yield curve
Model 1: Standard model
The standard method for computing convexity corrections uses bond math approximations:
payments are discounted at a flat rate, and the coverage (day count fraction) for each period is
assumed to be 1/q, where q is the number of periods per year (1 for annual, 2 for semi-annual,
etc). At any date t , the level is approximated as:

L(t) = Z(t, s0)

n∑
j=1

αj

Z(t, sj )

Z(t, s0)
≈ Z(t, s0)

n∑
j=1

1/q

[1 + Rs(t)/q]j
(A.1)

which works out to:

L(t) = Z(t, s0)

Rs(t)

[
1 − 1

(1 + Rs(t)/q)n

]
(A.2a)

Here the par swap rate Rs(t) is used as the discount rate, since it represents the average rate
over the life of the reference swap. In a similar spirit, the zero coupon bond for the pay date
tp is approximated as:

Z(t ; tp) ≈ Z(t, s0)

(1 + Rs(t)/q)�
(A.2b)

where:

� = tp − s0

s1 − s0
(A.2c)

is the fraction of a period between the swap’s start date s0 and the pay date tp. Thus the standard
“bond math model” leads to:

G(Rs) = Z(t ; tp)

L(t)
≈ Rs

(1 + Rs/q)�

1

1 − 1

(1 + Rs/q)n

(A.3)
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This method (a) approximates the schedule and coverages for the reference swaption; (b)
assumes that the initial and final yield curves are flat, at least over the tenor of the reference
swaption; and (c) assumes a correlation of 100% between rates of differing maturities.

Model 2: “Exact yield” model
We can account for the reference swaption’s schedule and day count exactly by approximating:

Z(t ; sj ) ≈ Z(t ; s0)

j∏
k=1

1

1 + αkRs(t)
(A.4)

where αk is the coverage of the kth period of the reference swaption. At any date t , the level
is then:

L(t) =
n∑

j=1

αjZ(t ; sj ) = Z(t ; s0)

n∑
j=1

αj

(
j∏

k=1

1

1 + αkRs(t)

)
(A.5)

We can establish the following identity by induction:

L(t) = Z(t ; s0)

Rs(t)

(
1 −

n∏
k=1

1

[1 + αkRs(t)]

)
(A.6)

In the same spirit, we can approximate:

Z(t ; tp) = Z(t ; s0)
1

(1 + α1Rs(t))�
(A.7)

where � = (tp − s0)/(s1 − s0) as before. Then:

G(Rs) = Z(t ; tp)

L(t)
≈ Rs

(1 + α1Rs)�

1

1 −
n∏

k=1

1

(1 + αjRs)

(A.8)

This approximates the yield curve as flat and only allows parallel shifts, but has the sched-
ule right.

Model 3: Parallel shifts
This model takes into account the initial yield curve shape, which can be significant in steep
yield curve environments. We still only allow parallel yield curve shifts, so we approximate:

Z(t ; sj )

Z(t ; s0)
≈ D(sj )

D(s0)
e−(sj −s0)x for j = 1, 2, . . . , n (A.9)
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where x is the amount of the parallel shift. The level and swap rate Rs are given by:

L(t)

Z(t ; s0)
=

n∑
j=1

αj

D(sj )

D(s0)
e−(sj −s0)x (A.10a)

Rs(t) = D(s0) − D(sn)e
−(sn−s0)x

n∑
j=1

αjD(sj )e
−(sj −s0)x

(A.10b)

Turning this around:

Rs

n∑
j=1

αjD(sj )e
−(sj −s0)x + D(sn)e

−(sn−s0)x = D(s0) (A.11a)

determines the parallel shift x implicitly in terms of the swap rate Rs . With x determined by
Rs , the level is given by:

L(Rs)

Z(t ; s0)
= D(s0) − D(sn)e

−(sn−s0)x

D(s0)Rs

(A.11b)

in terms of the swap rate. Thus this model yields:

G(Rs) = Z(t ; tp)

L(t)
≈ Rse

−(tp−s0)x

1 − D(sn)

D(s0)
e−(sn−s0)x

(A.12a)

where x is determined implicitly in terms of Rs by:

Rs

n∑
j=1

αjD(sj )e
−(sj −s0)x + D(sn)e

−(sn−s0)x = D(s0) (A.12b)

This model’s limitations are that it allows only parallel shifts of the yield curve and it presumes
perfect correlation between long- and short-term rates.

Model 4: Non-parallel shifts
We can allow non-parallel shifts by approximating:

Z(t ; sj )

Z(t ; s0)
≈ D(sj )

D(s0)
e−[h(sj )−h(s0)]x (A.13)

where x is the amount of the shift, and h(s) is the effect of the shift on maturity s. As above,
the shift x is determined implicitly in terms of the swap rate Rs via:

Rs

n∑
j=1

αjD(sj )e
−[h(sj )−h(s0)]x + D(sn)e

−[h(sn)−h(s0)]x = D(s0) (A.14a)
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Then:

L(Rs)

Z(t ; s0)
= D(s0) − D(sn)e

−[h(sn)−h(s0)]x

D(s0)Rs

(A.14b)

determines the level in terms of the swap rate. This model then yields:

G(Rs) = Z(t ; tp)

L(t)
≈ Rse

−[h(tp)−h(s0)]x

1 − D(sn)

D(s0)
e−[h(sn)−h(s0)]x

(A.15a)

where x is determined implicitly in terms of Rs by:

Rs

n∑
j=1

αjD(sj )e
−[h(sj )−h(s0)]x + D(sn)e

−[h(sn)−h(s0)]x = D(s0) (A.15b)

To continue further requires selecting the function h(sj ) which determines the shape of the
non-parallel shift. This is often done by postulating a constant mean reversion:

h(s) − h(s0) = 1

κ
[1 − e−κ(s−s0)] (A.16)

Alternatively, one can choose h(sj ) by calibrating the vanilla swaptions which have the same
start date s0 and varying end dates as their market prices.

FOOTNOTE

1. We follow the standard (if bad) practice of referring to both the physical instrument and its
value as the ‘‘numeraire’’.
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Mind the Cap
Peter Jäckel
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F
ew of the readers will have missed the recent proliferation of articles on various
aspects of the increasingly popular market models of interest rates. The reasons for
this trend are easy to see: market models allow traders to design the risk-neutral
volatility functions and correlations for their exotic pricing models as close as they
wish to the real-world structure of uncertainty they can see in the market-observables.

Despite the fact that risk-neutral model parameters are, from a purely theoretical point of
view, not really required to be similar to the real world behaviour, it is intuitively clear that
the capturing of fundamental features of real-world dynamics in any given model process
will lead to more realistic and thus stable hedge ratios. A poignant example for this is the
characteristically unimodal evolution of both realised1 and implied volatility of any given caplet:
having undergone a long and slow rise, just before the caplet’s expiry those volatility figures
tend to decrease noticeably. Not surprisingly, any trader hedging some exposure to caplet
volatilities using the underlying futures contract would like his quants to design the modelling
framework to take this into account. Another reason for the plethora of work lately published
on market models is the progress made both by computer hardware manufacturers and by
practitioners’ Monte Carlo techniques. The framework for distributed calculations of simulations
using additional variance reduction techniques is more and more readily implemented in all the
major derivatives houses, and specifically for the Libor market model, fast drift approximations
that obviate the need for short-stepped Euler schemes are available (Hunter, Jäckel and Joshi,
2001; Pietersz, Pelsser and van Regenmortel, 2002). What’s more, with the recent developments
of algorithms that allow for the approximate pricing of products that depend on the exercise
strategy of the investor such as Bermudan swaptions (Longstaff and Schwartz, 1998; Andersen,
1999; Andersen and Andreasen, 2000; Jäckel, 2002), market models have now become the
method of choice for the pricing of complex interest rate derivatives.

All of these developments created an ever more urgent need for fast calibration proce-
dures for the Libor market model that are viable in a production environment. At the heart
of any fast calibration procedure is an analytical or semi-analytical pricing formula for the
given calibration instruments. Since the Libor market model reprices the canonical caplets by

Contact-address: ABN AMRO, 250 Bishopsgate, London ECZM 4AA, UK.
E-mail: p@jaeckel.org
1 Measured over a suitable window in time.
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construction, it is only natural that so far most of the attention for analytical approximations
of other market instruments has been on swaptions, and some very impressive formulae have
been found (Rebonato, 1999; Jäckel and Rebonato, 2000; Hull and White, 2000; Schoenmakers,
2000). However, in practice it is also important to be able to calculate (semi-)analytical prices
for all the possible caplets, not just those that coincide in expiry and payment date as well as
accrual period with the abstract discretisation of the yield curve used within the model’s own
discretised framework. For instance, a given Libor market model implementation may be based
on 1-monthly discrete forward rates, but we may wish to calibrate to caplet prices for contracts
on 3-month Libor rates. All of the existing swaption approximations work well whenever there
is a significant averaging effect due to the swap rate being effectively a weighted sum of all
of the discrete forward rates. In contrast, when a non-canonical rate depends only on a small
number of the discrete forward rates, or when the payment frequency of the fixed side of a swap
does not match the floating side exactly, the known low-order approximations start to break
down, and higher order corrections are required. A 3-month caplet that is to be composed from
1-monthly forward rates is such an example. Another, and probably more important case is the
value of a caplet on a 6-month forward Libor rate in a model framework of 3-monthly discrete
forward rates, or even an option on a 12-month rate. These situations require some kind of
basket approximation, and, ideally, the method should allow for some sort of implied volatility
skew to be embedded in the model, and it should take into account the possible funding spread
difference between 3-monthly and 6-monthly (or 12-monthly, respectively) Libor rates a firm
may be subject to. The obvious application of the latter two features is the Japanese interest
rate market where not only the caplet skew is far too pronounced to be ignored, but where in
addition to all other complications the fact that most US and European investment houses fund
at a rate that is lower than Yen-Libor leads to significant pricing implications.

1 A simple Libor market model with a skew
There are many methods to incorporate a skew in a Libor market model. Examples include
the constant elasticity of variance model (Andersen and Andreasen, 2000), quadratic volatility
specifications (Zühlsdorff, 2002), and jump-diffusion processes (Glassermann and Merener,
2003). For reasons of simplicity, I choose the displaced diffusion setup (Rubinstein, 1983)
which is also known as affine volatility (Zühlsdorff, 2002). In this framework, the discrete
forward rates evolve according to the stochastic differential equation:

d(fi + si)

fi + si

= µi(f , s, t) dt + σi(t) dWi (1)

with some constant shift si associated with the forward rate fi . Equation (1) describes the
stochastic evolution of geometric Brownian motion for the quantity (fi + si) with instantaneous
deterministic volatility σi(t) and instantaneous indirectly stochastic drift µi(f (t), s, t). This
feature will be important later when we approximate the drift as a constant and thus render the
expression (fi + si) as a lognormal variate.

1.1 The skew parametrisation
Any given forward rate is drift-free in its own natural measure, i.e:

d(f + s) = df = σ(t)(f + s) dW (2)
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Since it has become more and more common practice to express the volatility-rate dependence
as some equivalent constant elasticity-of-variance parameter (Karasinski, 2002; Hagan, Kumar
and Lesniewski, 2002), it is desirable to find a scaling for the skew that allows us to specify the
proximity to the lognormal or normal volatility setting directly in a similar fashion, albeit in a
somewhat approximate way. One such possible parametrisation is to replace the term (f + s)

on the right hand side of equation (2) by (f · q + f (0)(1 − q)) for some constant q, i.e:

df = σq · [q · f + (1 − q) · f (0)] · dW (3)

This approach allows the continuous transition from the lognormal framework for q = 1 to the
normal model first introduced by Bachelier (1900) at q = 0. However, this kind of parametri-
sation has two practical drawbacks. Firstly, the end-users of any model tend to explore the
available parameter scales in a rather indiscriminate fashion in order to achieve the skew they
desire to model. For q < 0, the above parametrisation unfortunately results in a shifted lognor-
mal distribution with inverted asymmetry stretching from −∞ to fmax = f (0) · ( q−1

q
). In other

words, it predicts that the forward rate will at expiry not exceed a certain positive threshold
fmax > f (0), but may take on any negative value with potentially quite considerable proba-
bility. One of the shortcomings of the extended Vasicek model, in comparison, that the Libor
market model is frequently used to remedy for, is that it allows for negative forward rates with
an approximately normal distribution. It therefore seems natural to impose a skew limitation at
the point where the q parametrisation meets the Bachelier model, or possibly even before. This
leads to an alternative parametrisation in a new skew parameter Q that gently approaches the
normal model as Q → 0 but requires Q ∈ (0, 2) by virtue of the following definition:

Q := 2
− s

f (0) (4)

or, equivalently:

s := −f (0) log2 Q (5)

which leads to:

df = σQ · [f − log2 Q · f (0)] · dW (6)

The transformation from the (q, σq) to the (Q, σQ) parametrisation is given by:

Q = 2
q−1
q

σQ = q · σq

(7)

It is easy to see that this parametrisation is equivalent to the former at the three most important
points: the lognormal model is in both cases given by q = Q = 1, the approximation for
the square root model is given at q = Q = 1

2 , and the normal (Bachelier) model is given by
q = 0 and approximated in the limit of Q → 0 but never quite reached. The feature of the Q

parametrisation only being able to approach the Bachelier model in the limit of Q → in a very
explicit fashion is, rather subtly, shared by but somewhat disguised in the q parametrisation. In
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fact, for the q parametrisation and the Q encoding of the skew alike, analytical formulæ as well
as Monte Carlo schemes based on approximations to the transfer densities need a distinctive
switch to the Bachelier framework as q, or Q, for that matter, vanish, since the transition from
displaced lognormal to normal distributions undergoes a singular change at q = Q = 0 in a
similar fashion as

∫
xq−1 dx switches structurally from xq

q
to ln x at q ≡ 0.

It should be pointed out that the discussion in the following sections equally holds regardless
of whether one prefers the q or the Q parametrisations outlined above since both of them result
in volatility specifications of affine nature and are thus equivalent to the displaced diffusion
equation (1). The choice of parametrisation does, in practice, though make a difference to the
user-friendliness of a given model, and, in my experience, the limitation of a control parameter
such as the skew coefficient Q, or q, respectively, to a finite interval tends to be more intuitive.
The constraints of the skew control coefficient are directly related to the range of the skew that
we want to allow for, and this is elaborated in the next section.

1.2 The skew range

In order to establish whether the restriction Q > 0 poses in practice any noticeable limitation,
let us define the skew χ as the change in implied volatility incurred at the money as the strike
is varied by one 1

10 -th of the forward, i.e:

χ := dσ̂ (K)

dK

∣∣∣∣
K=f

· f

10
(8)

Since the implied volatility σ̂ relates to the price given in the limit of Q → 0 via the Black
and the Bachelier pricing formulæ, respectively, we have:

VBlack(f, K, σ̂ , T ) = VBachelier(f, K, σ̂Bachelier, T ) (9)

and thus:

∂VBlack(f, K, σ̂ , T )

∂K

∣∣∣∣
K=f

+ ∂VBlack(f, K, σ̂ , T )

∂σ̂

∣∣∣∣
K=f

· dσ̂ (K)

dK

∣∣∣∣
K=f

= ∂VBachelier(f, K, σ̂Bachelier, T )

∂K

∣∣∣∣
K=f

.

(10)

Since the right hand side of equation (10) is exactly given by −1
2 times the discount factor to

the payment date, this leads to:

dσ̂ (K)

dK

∣∣∣∣
K=f

=
N

(
−σ̂

√
T

2

)
− 1

2

f
√

T ϕ

(
σ̂
√

T

2

) (11)
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with ϕ(x) = dN(x) /dx = e− 1
2 x2
/√

2π . A first-order expansion of the numerator and

denominator in σ̂
√

T gives us the approximate rule:

χBachelier � − σ̂

20
(12)

In other words, for implied volatilities around 20%, the maximum (negative) attainable skew
of the displaced diffusion model is approximately 1% which is usually more than sufficient for
caplets. What’s more, the markets that require a stronger skew calibration such as Japan tend
to have significantly higher volatilities and this means that the displaced diffusion approach can
be calibrated to the skew prevailing there, too.

Of course, it is arguable whether one should allow for negative interest rates at all in any
Libor market model. In this context it is helpful to note that the at-the-money-forward skew
required in most major interest rate markets for most maturities is considerably less strong
than predicted by the normal, or equivalently, extended Vasicek model (Vasicek, 1977; Hull
and White, 1990). The probabilities of negative interest rates are thus even smaller than in the
Hull–White or extended Vasicek model, and should therefore in practice be of no concern. The
negativity of rates would be completely suppressed in a CEV modelling framework as suggested
in Andersen and Andreasen (2000). However, the CEV framework suffers from one major
drawback: for most market-calibrated parameters especially long-dated forward rates incur a
rather too large probability of absorption at zero. This may seem innocuous in comparison
to the possibility of stochastic paths to spend some time in the negative domain. However,
the absorption feature makes the whole concept of pricing in a risk-neutral measure rather
questionable since it jeopardises the existence of an equivalent martingale measure (Platen,
2002). On the other hand, some people might argue that effective Libor rates should actually
be allowed to become temporarily slightly negative, although this line of reasoning almost
inevitably leads to a debate based on economic grounds that is of no particular relevance here.

Nevertheless, should one desire to adjust the displaced diffusion framework not to allow for
negative rates at the expense of an absorbing boundary at zero, it is indeed possible to include
such a boundary condition for the affine volatility specification of the displaced diffusion model,
and still obtain a very simple closed form solution for options on canonical caplets (Zühlsdorff,
2002). Also, the incorporation of an absorbing boundary at zero poses no problem to any
Monte Carlo simulation whatsoever. However, as shown in Zühlsdorff (2002), unless we are
concerned with calibration to extremely far out-of-the-money floorlets, the distinction between
the displaced diffusion setup with and without absorbing barrier at zero makes no practical
difference for implied volatilities whence I neglect this issue in the following.

One of the attractive features of the stochastic differential equation (1) is that it not only
allows for a negative skew, but also for a positive dependence of implied volatilities on the
strike. In particular for calibration at high strikes, the positive skew observed in the market
poses frequently a severe problem for HJM models based on a quasi-Gaussian evolution of
the forward rates such as the extended Vasicek or Hull-White model. Whilst it is usually still
possible to calibrate those models at any given strike, the implied risk-neutral distribution as
given by a quasi-Gaussian forward rate evolution differs significantly from the distribution
as implied by the market’s smile (Breeden and Litzenberger, 1978) which can give rise to
substantial pricing differences if, for instance, an exotic contract is valued that contains any
form of forward rate related digital features.



324 THE BEST OF WILMOTT

In analogy to the analysis and expansion that led to the expression for the skew in the
Bachelier model given by equation (12), we arrive at the following approximation for the
Q skew:

χQ � σ̂

20
· log2 Q

1 − log2 Q
� σ̂

20
· (q − 1) (13)

This formula requires that the parameter Q must be in the interval (0, 2). In fact, for Q → 2,
the skew expression diverges. This effect can be understood better if we have a look at the
risk-neutral densities shown in Figure 1. As we can see, for Q � 3/2, the density becomes more
and more peaked. In fact, in the limit of Q → 2, the density approaches a Dirac distribution.
This feature of the displaced diffusion equations for Q > 1 bears consequences for any Monte
Carlo simulation: when the density is strongly peaked and has a very long but thin tail, the
simulation converges rather poorly since most variates are drawn in the area of the peak, and
only very few fall in the tail. In this case, it may be advisable to employ importance sampling
or sampler density (Jäckel, 2002) techniques that lay much more emphasis on the long tail and
thus improve convergence considerably. In practice, I would recommend not to use values of
Q greater than 3
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Figure 1: The forward rate density for different levels of the skew coefficient Q with
T = 1, σQ = 30%/(1 − log2 Q), and f0 = 1

1.3 The drift conditions in the displaced diffusion framework
Following the convention that the canonical discrete forward rate fi with associated accrual
factor τi fixes at time ti , and that the chosen numéraire is given by a zero coupon maturing at
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tN , the drift conditions for the forward rates subject to the stochastic differential equation (1)
are:

µi(f (t), t) = −σi

N−1∑
k=i+1

(fk(t) + sk)τk

1 + fk(t)τk

σkρik︸ ︷︷ ︸
non−zero for i<N−1

+σi

i∑
k=N

(fk(t) + sk)τk

1 + fk(t)τk

σkρik︸ ︷︷ ︸
non−zero for i≥N

. (14)

1.4 Interpolating Libors from canonical discrete forward rates
It is common to highlight the fundamental features of Libor market models using the example
of interest rate products that depend only on cashflows occurring precisely on dates coincid-
ing with the model’s yield curve discretisation. In practice, however, a Libor market model
implementation has to cope with many intermediate cashflows, with settlement delays, fixing
conventions, and many other idiosyncracies of the fixed income market. This means that it may
be necessary to compute discount factors that span several canonical periods, potentially with a
stub discount factor covering only part of the associated discrete forward rate’s accrual period.
An example for this is given in Figure 2. It is difficult to construct non-canonical discount fac-
tors from a given set of discrete forward rates in a completely arbitrage-free manner. However,
in practice, it is usually sufficient to choose an approximate interpolation rule such that the
residual error is well below the levels where arbitrage could be enforced. It is also important
to remember that the numerical evaluation of any complex deal with a Libor market model is
ultimately still subject to inevitable errors resulting from the calculation scheme: Monte Carlo
simulations, non-recombining trees, or recombining trees with their own drift approximation
problems. In this context it may not be surprising that the following discount factor interpolation
approach is highly accurate for practical purposes.

τ′1 τ′2 τ′3 τ′4

f1 f2 f3 f4

t1 t2 t3 t4 t5
tstart tend

non–canonical discount factor

Figure 2: A non-canonical discount factor and its
decomposition into canonical forward rates

Given any forward discount factor P(t ; tstart, tend) at time t ≤ tstart < tend that represents
the forward funding cost of borrowing one currency unit at time tstart and paying back
1/P (t ; tstart, tend) at time tend, we compute P(t ; tstart, tend) from the discrete forward rates
according to:

P(t ; tstart, tend) =
∏

i

(1 + fi(t)τ
′
i )

−1 (15)

The product on the right hand side of equation (15) is hereby over all the forward rates that
are partly or completely spanned by the discount factor period (tstart, tend). The modified accrual
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factors τ ′
i reflect the potentially partial coverage at either end of the period as depicted in

Figure 2 where both τ ′
1 and τ ′

4 are smaller than τ1 and τ4, respectively. When a firm’s funding
cost happens to be given directly by (forward) Libor rates for a given period τ as they are
observed in the market, the relationship between the Libor rate L(t ; tstart, tstart + τ) and the
discount factor over the associated accrual period is:

L(t ; tstart, tstart + τ) =
(

1

P(0; tstart, tstart + τ)
− 1

)/
τ (16)

In other words, using the decomposition (15) into canonical forward rates, we have:

1 + Lτ · τ =
∏

i

(1 + fi(t)τ
′
i ) (17)

where I have dropped the explicit mentioning of the dependence on t and tstart. In the following,
I shall assume that the yield curve is sufficiently smooth in between canonical forward rate dates
to justify the simple accrual factor adjustment of the stub periods at either end of the Libor rate
accrual interval akin to discrete rate interpolations customary in the short dated money markets.
However, it is straightforward to add an additional Libor rate correction factor γτ by setting:

Lτ · τ = γτ ·
[∏

i

(1 + fi(t)τ
′
i ) − 1

]
(18)

with:

γτ = Lτ (0) · τ∏
i (1 + fi(0)τ ′

i ) − 1
(19)

which would correct the Libor rate exactly in the limit of vanishing volatilities. Equation (17)
will form the basis of the analytical valuation of non-canonical caplets. First, however, let us
have a look at yet another interesting feature of the fixed income market: the spread between
funding and interbank offered rates.

1.5 Spread differentials
Most of the major investment houses fund their cash requirements in the Euro, Dollar, and
Sterling markets at rates that are very close to the official interbank offered rates. After all, it
is precisely this interbank borrowing and lending for funding purposes that originally gave rise
to the introduction of the Interbank Offered Rates (IBOR) quotation averages. Some financial
institutions, however, have the privilege of higher-than-average credit ratings, and fund them-
selves accordingly somewhat more cheaply, and others can only borrow at less advantageous
rates. In the Yen market, for instance, this phenomenon is particularly pronounced where most
of the Western investment banks fund significantly more cheaply than IBOR. There are several
ways to incorporate such a spread between funding and IBOR rates into a market model. In
the following, I present a simple procedure based on adjustment factors that are structurally
similar to discount factors.

Let us assume that we are building a Libor market model that is based on a 3-monthly
canonical forward rate discretisation of the yield curve. In this framework, it may be desirable
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to be able to price options on forward rate agreements that happen to fall precisely on the
canonical dates by a straightforward application of Black’s formula and a multiplication by
a funding discount factor. In other words, for all forward rates’ displacement coefficients Qi

being exactly unity, we may wish to see no skew for such canonical caplet prices struck at
different levels. In order to accomplish a setup that allows for spreads, and indeed for spread
differentials since the spread between funding rates and 3 month Libor rates may be different
than the spread between funding and 6 month rates, I define the (forward) Libor equivalent
discount factor :

P̃ (t ; tstart, tstart + τ) = 1

1 + Lτ (t ; tstart) · τ (20)

Funding discount factors P and Libor equivalent discount factors P̃ are related by virtue of a
deterministic spread factor, i.e:

P̃ (t ; tstart, tstart + τ) = P(t ; tstart, tstart + τ) · ζτ (tstart, tstart + τ) (21)

The spread factor ζτ (tstart, tstart + τ) is less than unity whenever funding can be done at a more
favourable rate than Libor. Since the spread factor is effectively a credit spread discount factor
that represents a simplified amalgamation of default hazard rates into a single number, it is
decreasing in the accrual period τ . The decomposition of (forward) funding discount factors
now becomes:

ζτ ∗(tstart, tend) · P(t ; tstart, tend) =
∏

i

(1 + fi(t)τ
′
i )

−1 (22)

where τ ∗ stands for the model’s canonical discretisation period. All Libor rates that are not for
a period that is equal to τ ∗ can then be computed indirectly via the funding discount factors.
This yields:

Lτ · τ = ζτ ∗

ζτ

·
∏

i

(1 + fi(t)τ
′
i ) − 1 (23)

wherein both ζτ ∗ and ζτ are of course to be taken over the accrual period of the Libor rate
Lτ . For τ �= τ ∗, i.e. when we are interested in a Libor rate that is based on an accrual period
different from the model’s intrinsic discretisation period, in the presence of a spread differential
of the spread between funding and τ -Libor versus the spread between funding and τ ∗-Libor,
the multiplicative spread ratio term ζτ∗

ζτ
on the right hand side of equation (23) gives rise to a

spread differential induced skew , as we will see in the following.

2 Analytical caplet valuation
The analytical valuation of a caplet2 is based on the evaluation of the expectation:

E[(L · τ − K · τ)+] (24)

2 I restrict the discussion to caplets. The translation to floorlets is, naturally, straightforward, and should not pose a
problem to the reader if I succeed in my attempt to make the exposition of the case of a caplet sufficiently clear.
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2.1 First order approximation ignoring the drift
For τ ∗ not too large, and for moderate interest rates, a Taylor expansion of the product on the
right hand side of equation (23) is an obvious approach:

L · τ = (δ − 1) + δ ·
∑

i

fiτ
′
i + O ((fiτ

′
i )

2) with δ := ζτ ∗

ζτ

(25)

The right hand side of expansion (25) is (δ − 1) plus a sum of displaced lognormals. In other
words, we have a constant term plus a sum of correlated lognormal variates. Now, taking into
account the displacements si , let us define:

γ := L(0) · τ + 1 − δ

δ ·∑i fi(0) · τ ′
i

(26)

xi := γ · δ · (fi + si) · τ ′
i (27)

κ := K · τ + 1 − δ + γ · δ ·
∑

i

si · τ ′
i (28)

This enables us to write the first order approximation for (24) as:

E

[(∑
i

xi − κ

)
+

]
(29)

Note that the scaling factor γ was introduced to ensure that the (undiscounted) forward contract
E[(
∑

i xi − κ)] is priced exactly.
Ignoring the fact that most of the involved forward rates are not drift-free in the terminal

payment measure of the caplet, we can evaluate (29) as a basket option on a linear combination
of lognormal variates xi with individual expectations xi(0) struck at κ . This means we have now
reduced the first order caplet approximation to the calculation of the expectation (29) where
the xi are lognormal variates with expectations:

E[xi] = xi(0) = γ · δ · (fi(0) + si) · τ ′
i (30)

and log-covariances:

E[ln xi · ln xj ] − E[ln xi] · E[ln xj ] = cij =
Texpiry∫
0

σi(t)σj (t)ρij (t) dt (31)

There are many methods for the approximation of basket options such as Mike Curran’s
excellent geometric conditioning approach (Curran, 1994), the matching of two moments to a
lognormal distribution (Levy, 1992), the matching of three moments to a Johnson distribution
(which, incidentally, is the distribution resulting from a displaced diffusion), the method by
Turnbull and Wakeman (1991), or Taylor expansion approaches (Ju, 2001; Reiner, Davidov
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and Kumanduri, 2001). For the specific case here, however, the particularly fast rank reduction
method lends itself readily since we can take advantage of the fact that all of the involved for-
ward rates are typically very strongly positively correlated. This method is based on an analysis
of the pricing of options on baskets of perfectly correlated lognormally distributed coupons that
arises in a single factor extended Vasicek modelling environment (Jamshidian, 1989) and is
detailed in the Appendix. The rank reduction method works extremely well when correlations
are moderate to high, volatilities are at similar levels, and the expectations of the constituents
of the basket are also of comparative magnitude. All of these criteria are satisfied by the basket
option problem at hand in equation (29). In addition, the rank reduction method is very fast
indeed and particularly easy to implement, and all of this is why it is the designated method
of choice for the caplet approximation.

2.2 Second order approximation with drift estimate
Let us denote the number of forward rates that contribute to the value of the caplet based on
the non-canonical Libor rate L as m. Extending the expansion of the Libor decomposition (23)
to second order, we obtain:

L · τ = (δ − 1) + δ ·
m∑

i=1

fiτ
′
i + δ ·

m∑
i=1

i=1∑
j=1

fiτ
′
i fj τ

′
j + O ((fiτ

′
i )

3) (32)

This time, it is not immediately obvious how we can substitute the expansion (32) into the
caplet pricing formula (24) and treat the resulting expectation as a basket option on a sum of
correlated lognormal variates. However, rewriting the second order expansion (32) as:

L · τ � (δ − 1) + δ ·
m∑

i=1

η(fi + si)τ
′
i − δ ·

m∑
i=1

ηsiτ
′
i + δ ·

m∑
i=1

i−1∑
j=1

η(fi + si)τ
′
i

× η(fj + sj )τ
′
j − δ ·

m∑
i=1

i−1∑
j=1

ηfiτ
′
i ηsj τ

′
j − δ ·

m∑
i=1

i−1∑
j=1

ηsiτ
′
i ηfj τ

′
j (33)

− δ ·
m∑

i=1

i−1∑
j=1

ηsiτ
′
i ηsj τ

′
j

= (δ − 1) − δ ·
m∑

i=1

ηSiτ
′
i + δ ·

m∑
i=1

i−1∑
j=1

ηSiτ
′
i ηSj τ

′
j

+ δ ·
m∑

i=1


1 + ηSiτ

′
i −

m∑
j=1

ηSjτ
′
j


 η(fi + Si)τ

′
i (34)

+ δ ·
m∑

i=1

i−1∑
j=1

η(fi + Si)τ
′
i η(fj + Sj )τ

′
j
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with some constant scaling coefficient η (that is to be determined later) provides some insight.
The terms on the right hand side of equation (34) form three groups. The first group consists
of all the constant terms on the first line of the right hand side. If we approximate the drift
conditions (14) for the forward rates by a constant expression, we can treat the second group
as a sum of lognormal variates as it comprises only terms of the form constant · (fi + si).
The last group is then a sum of bilinear combinations of lognormal variates, and this is where
we can take advantage of a feature of the lognormal distribution: products of lognormals are
again lognormally distributed, and we can compute their expectations and covariances with the
original set of lognormals analytically!

Before we proceed to the calculation of the covariances of all the linear and bilinear terms,
though, we ought to remember that particularly for caplets on accrual periods that are sig-
nificantly longer than the model’s intrinsic discretisation period, the risk-neutral drift of the
involved discrete forward rates is no longer entirely negligible. Choosing the numéraire given
by a zero coupon bond that pays one currency unit at the end of the (potentially truncated)
accrual period of the last involved discrete forward rate, i.e. at tm + τ ′

m in our previous notation,
we arrive at the following constant drift approximation:

ETexpiry [(fi + si)] ≈ (fi(0) + si) ·
m∏

j=i+1

e
−

(fj (0)+sj )τ
′
j

1+fj (0)τ ′
j

cij

(35)

There are, of course, a whole series of rather ad-hoc assumptions in equation (35). As we
know, the drift of the discrete forward rates is neither constant nor deterministic3 due to its
instantaneous dependence on the forward rates that bridge the gap between the payment time
of any one forward rate and the numéraire asset. This means wherever we have used the initial
values for the forward rates in equation (35) we are both using the wrong value to represent
the path-average for the evolution of the forward rates (since we are using the initial value),
and we are ignoring the indirect stochasticity of the drift since we are using a constant value
for each and every forward rate. In my experience, the suppression of the variance of the drift
term due to the stochasticity of the forward rates is typically the dominant error in the constant
drift expression. As the drift term is in the exponent, it is Jensen’s inequality that is raising

its head here. Ignoring the variability of the forward rates in the expression
(fj (0)+sj )τ

′
j

1+fj (0)τ ′
j

leads

to a much bigger discrepancy than the fact that we are ignoring the drift or path-average for
fj when we replace it by a constant value. This phenomenon is reasonably well understood
and has led to the development of highly accurate stepwise drift approximations that enable
us to construct Monte Carlo schemes that do not need short time steps as we would with the
Euler method (Hunter, Jäckel and Joshi, 2001; Pietersz, Pelsser and van Regenmortel, 2002).
For our caplet calculations, however, this effect is fortunately quite small. Still, we can try to
correct for it to some extent by the approximation that each of the terms (fj + sj ) is almost
lognormally distributed, i.e:

(fj + sj ) ≈ (fj (0) + sj )e
− 1

2 cjj+√
cjj ·zj with zj ∼ N(0, 1) (36)

In this way, we can expand each of the terms in the product of the right hand side of
equation (35) individually in cjj and integrate over an independent normal standard normal

3 The only exception is, of course, the one forward rate that pays at the same time as the numéraire.
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distribution for zj , i.e:

−(fj + sj )e
− 1

2 cjj +√
cjj ·zj

e1+(fj +sj )e− 1
2 cjj +√

cjj ·zj −sj

cij

≈ e
−(fj +sj )

1+fj
cij ·
(

1 + (fj + sj )
2(1 − sj )((1 − sj )cij + 2(1 + fj ))cij

2(1 + fj )4
cjj

)
+ O(c2

jj )

(37)

where I have suppressed the modified accrual factors and dropped all initial value ·(0) notation
for clarity. Let us now define the approximate expectation for the displaced forward rate using
the above expansions as:

ETexpiry [(fi + si)] ≈ ei (38)

with:

ei := (fi(0) + si) ·
m∏

j=i+1

e
−

(fj (0)+sj )τ
′
j

1+fj (0)τ ′
j

cij

·
(

1 + (fj τ
′
j + sj τ

′
j )

2(1 − sj τ
′
j )((1 − sj τ

′
j )cij + 2(1 + fjτ

′
j ))cij

2(1 + fjτ
′
j )

4
cjj

) (39)

I now turn the attention to the earlier introduced scaling coefficient η. In analogy to the scaling
coefficient γ that we used in the lower order approximation, η is supposed to ensure that our
analytical approximation will return the correct expectation of forward rate agreements exactly.
To compute η, we need the expectation of all the terms on the right hand side of equation (34).
Rearranging the resulting terms as coefficients of a quadratic expression in η, we obtain:

E[L · τ ] = (δ − 1) + α1 · η + α2 · η2 (40)

with

α1 = δ ·
m∑

i=1

(eiτ
′
i − siτ

′
i ) (41)

α2 = δ ·
m∑

i=1

i−1∑
j=1

(siτ
′
i sj τ

′
j + eiτ

′
i ej τ

′
j e

cij ) + δ ·
m∑

i=1

eiτ
′
i


siτ

′
i −

ms∑
j=1

sj τ
′
j


 (42)

Naturally, the solution for η that will ensure the correct value for forward rate agreements
within our analytical approximations is:

η =




α1

2α2

(√
1 + 4α2

α2
1

[L(0) · τ + 1 − δ] − 1

)
for α2 �= 0

1

α1
[L(0) · τ + 1 − δ] for α2 = 0

(43)
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We now have almost all the components that we need to put together an approximate caplet
valuation formula based on the rank reduction method applied to an option on the basket of
lognormal variates. Since we have a second order expansion of equation (23), the vector of
lognormal variates with expectation ξ will in total have:

N := m(m + 1)

2
(44)

elements of which the first m account for the first order terms, and the remaining m(m−1)

2 result
from the bilinear combinations. The individual expectations are given by:

ξk =




δηekτ
′
k

(
1 −

m∑
j=1,j �=k

ηsj τ
′
j

)
for k ≤ m

δη2eiτ
′
i ej τ

′
j · ecij with k = m + (i − 1)(i − 2)

2
+ j, for k > m

i = 2..m, j = 1..(i − 1)

(45)

The extended log-covariance matrix C′ has N2 entries. Its elements c′
kl can be expressed as

sums of elements of the original matrix C ∈ R
m×m. They are:

c′
kl =




ckl for k ≤ m and l ≤ m

cil + cjl with k = m + (i − 1)(i − 2)

2
+ j,

i = 2..m, j = 1..(i − 1)

for k > m and l ≤ m

ckp + ckq with l = m + (p − 1)(p − 2)

2
+ q,

p = 2..m, q = 1..(p − 1)

for k ≤ m and l > m

cip + ciq + cjp + cjq with




k = m + (i − 1)(i − 2)

2
+ j,

i = 2..m, j = 1..(i − 1)

and

l = m + (p − 1)(p − 2)

2
+ q,

p = 2..m, q = 1..(p − 1)




for k > m and l > m
(46)

Finally, we need to know the effective strike that is to be used in the basket formula. It is
given by:

λ := K · τ + 1 − δ +
m∑

i=1

siτ
′
i −

m∑
i=1

i−1∑
j=1

siτ
′
i sj τ

′
j (47)
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Using all of the above definitions, the non-canonical caplet approximation is finally given by
the expectation:

E


( N∑

k=1

xk − λ

)
+


 (48)

for lognormal variates xk with expectations:

E[xk] = ξk (49)

and log-covariances:

E[ln xk · ln xl] − E[ln xk] · E[ln xl] = c′
kl (50)

which can be computed with any basket approximation such as the rank reduction method given
in the Appendix.

3 Analysis of the skew resulting
from the approximation formulæ
There are various effects that contribute to the skew that we can observe in the implied volatilies
of caplets as given by the prices we obtain from Monte Carlo simulations with a Libor market
model. First of all there is, of course, the skew that was deliberately put into the model by
virtue of, for instance, a displaced diffusion evolution of the canonical forward rates. In addition
to that, though, non-canonical caplets incur other effects leading to a skew just by themselves,
even if the underlying canonical forward rates were designed to be as lognormally distributed
as possible (for instance, by setting q = Q = 1).

3.1 The basket effect
The first effect, albeit that it is the smaller out of the two addressed in this article, is due to the
fact that a non-canonical caplet bears some similarity to an option on a basket. To analyse this
feature, I shall assume that a caplet can indeed be priced very accurately using an expansion of
the Libor calculation formula (17) in conjunction with the rank reduction method. To simplify
matters, I will also assume that an expansion as presented in Sections 2.1 and 2.2 is sufficiently
precise not to taint the results significantly. Let the basket pricing formula given by the rank
reduction method be denoted by:

v(x , K,R, C) (51)

where x stands for a vector of expectations of displaced forward rates (or products thereof), K is
the strike, R is a strike displacement, and C is the effective log-covariance matrix of lognormally
distributed variates whose sum comprises the basket. All mentioning of the modified accrual
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factors τ ′
i has been suppressed since they can be absorbed into the entries of the vector x, the

strike K , the strike displacement R, and the Libor rate L, respectively. The skew as defined in
equation (8) is then implicitly given by the equation:

∂VBlack(L, K, σ̂ , T ) · τ
∂K

∣∣∣∣
K=L

+ ∂VBlack(L, K, σ̂ , T ) · τ
∂σ̂

∣∣∣∣
K=L

· dσ̂ (K)

dK

∣∣∣∣
K=L

= ∂v(x , K, R,C)

∂K

∣∣∣∣
K=L

(52)

The rank reduction approximation involves a modification of the covariance matrix such that
its rank is reduced to one, and the calculation of the expectation:

v(x , K, R,C) = E


( n∑

i=1

xie
− 1

2 σ̃ 2
i
T +σ̃i

√
T y − (K + R)

)
+


 (53)

where the σ̃i stand for the square root of the diagonal elements of the modified and rank reduced
time-to-expiry-averaged covariance matrix, i.e. σ̃i = ai/

√
T with ai defined in equations (83)

and (84) in the Appendix. By virtue of the condition Q > 0, all of the elements of the vector x
are positive, and since we assume positive correlation between all forward rates, the expectation
in equation (53) can be expressed as:

v(x , K, R,C) =
n∑

i=1

xi · N(σ̃i

√
T − y∗) − (K + R) · N(−y∗) (54)

with y∗ = y∗(K) being the solution of:

n∑
i=1

xie
− 1

2 σ̃ 2
i
T +σ̃i

√
T y∗ = (K + R), (55)

as shown in the Appendix. Equations (54) and (55) can be used to compute the unknown
quantity on the right hand side of equation (52). This yields:

∂v

∂K
=
[
(K + R) · ϕ(y∗(K)) −

n∑
i=1

xi · ϕ(σ̃i

√
T − y∗(K))

]
· ∂y∗(K)

∂K

− N(−y∗(K))

(56)

Thanks to the fact that equation (55) can be rewritten as:

(K + R) =
n∑

i=1

xi

ϕ(σ̃
√

T − y∗(K))

ϕ(y∗(K))
(57)

equation (56) can be simplified to:

∂v

∂K
= −N(−y∗(K)) (58)
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As a consequence, for K = L, the skew is governed by:

dσ̂ (K)

dK

∣∣∣∣
K=L

= N(− 1
2 σ̂

√
T ) − N(−y∗(L))

ϕ( 1
2 σ̂

√
T )L

√
T

(59)

where σ̂ stands for the implied Black volatility consistent with the caplet price.
At this point, in order to make some more progress on our understanding of the skew

resulting from the basket effect on the skew, I resort to Taylor expansions. First, let us remember
that for small ε, we have:

N(ε) � 1

2
+ ε√

2π
− ε3

√
2π

+ O(ε5) (60)

Also, let us recall that at-the-money means that the unconditional expectation of the basket is
equal to the displaced Libor rate:

(L + R) =
n∑

i=1

xi (61)

Combining equations (61) and (55), and expanding the exponentials in equation (55) to first
order, we can approximate y∗ as:

y∗ � 1

2
·
∑

i xi σ̃
2
i T∑

i xi σ̃i

√
T

(62)

Equally, expanding the at-the-money Black formula:

VBlack(L, L, σ̂ , T ) = L · [N( 1
2 σ̂

√
T ) − N(− 1

2 σ̂
√

T )] (63)

and the rank reduction basket pricing formula (54) at the money for small T using (60), we
arrive at:

Lσ̂
√

T√
2π

�
∑

i xi σ̃i

√
T√

2π
i.e. Lσ̂ �

∑
i

xi σ̃i (64)

Now, substituting (64) and (62) into (59), expanding according to (60), and using (61), we
obtain:

dσ̂ (K)

dK

∣∣∣∣
K=L

= 1

2
e

1
2 σ̂ 2T 1

L

[∑
i xi σ̃

2
i∑

i xi σ̃i

− σ̂

]

= 1

2
e

1
2 σ̂ 2T 1

Lσ̂


∑

i

νi σ̃
2
i −

(∑
i

νi σ̃i

)2

 (65)
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where I have used the definition:

νi := xi∑
i xi − R

� xi

L
(66)

A closer look at the terms in the square brackets on the right hand side of equation (65) reveals
that, within the scope of the used approximations, the equation can be rewritten as:

dσ̂ (K)

dK

∣∣∣∣
K=L

= 1

e
e

1
2 σ̂ 2T 1

Lσ̂

[∑
i

νi(σ̃i − σ̂ )2 − R

L
σ̂ 2

]
(67)

Obviously, equation (67) implies that the skew is positive for R ≤ 0, i.e. for Q ≥ 1. What
is interesting about this equation is that it predicts that even for R = 0, i.e. for instance for
Q = 1 (which means that all the canonical forward rates are lognormally distributed in their
own natural measure) and in the absence of any spread differential, a non-canonical caplet
would display a very small, but positive skew, unless all the involved forward rates have
identical modified average volatility σ̃i . This means, even when we keep the effective at-the-
money volatility of a non-canonical caplet fixed, and even when we keep the effective implied
volatility of all canonical caplets fixed or virtually unchanged, it is possible to increase the skew
of the given non-canonical caplet ever so slightly by a simple change to the term structure of the
instantaneous volatility of the canonical forward rates. This is because, out of all the discrete
forward rates that contribute to the value of the non-canonical caplet, at most one of them
expires naturally on the same date as the caplet. The values of all the remaining canonical
discrete forward rates that eventually contribute to the fixing value of the non-canonical rate
that determines the payoff of the caplet are taken as a snapshot before their natural expiry.
This means that the root-mean-square volatility they realise until the fixing date of the non-
canonical caplet is not given by their canonical implied volatility, but misses out on the last
part of instantaneous volatility between expiry of the non-canonical caplet and the natural
fixing date of the individual contributing discrete forward rates. Since we are free to tailor term
structures of instantaneous volatilities of canonical forward rates at will in the Libor market
model framework, we can change the shape of the volatility curve, and thus the value of
the partially averaged root-mean-square volatility to expiry of the non-canonical caplet, whilst
keeping the implied volatility of each canonical caplet unchanged.

Fortunately, the basket effect for non-canonical caplets is very small as long as the non-
canonical accrual period doesn’t span too many canonical periods and thus proves to be of no
practical importance. It is, however, from a theoretical point of view astounding to observe a
noticeable effect of the shape of term structure of the canonical forward rates on the skew of
non-canonical caplets. It remains to be seen if this kind of effect is also observable in other
financial modelling environments, and to what extent it can be detected in the skew of the
implied volatilities associated with European swaptions.

As a side note, it may be worth mentioning that the positive sign of the skew effect resulting
from the summation of lognormally distributed assets is fairly well known for Asian and
basket options when they are approximated by a Johnson distribution. The Johnson distribution
is identical to a displaced lognormal distribution. For Asian and basket options, it is fairly
straightforward to write down the equations for the matching of the first three moments, and
to show that the displacement is negative, thus giving rise to a positive skew when all the
underlying constituents are strongly positively correlated.
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3.2 The spread differential induced skew
The spread induced displacement is negative if the spread incurred by any one Libor rate is
larger than the spread of the Libor that determines the dynamics of the model. For example,
if we build the model from a 3 m Libor rate with a spread of 10 bp (i.e. our funding is 10 bp
cheaper than 3 m Libor), and we have a 20 bp Libor spread, then we will end up with a negative
spread induced displacement resulting in a positive skew for options on the 6 m-Libor rate.

Since I am at this point at serious risk of stretching the readers’ patience beyond redemption,
I shall only outline the analysis of the spread differential induced skew. As a starting point,
we can approximate the non-canonical Libor rate as a single lognormal variate with relative
volatility σ subject to a spread differential induced skew as given in equation (25). We assume
δ � 1 since we place ourselves in the position of a financial institution that funds approximately
at the 3 m Libor cost but writes a caplet on a longer accrual period for which the equivalent
Libor rates are higher than the simple compounding effect for the longer period could justify.
The equivalent Black volatility at the money is implicitly (approximately) specified by the
leading terms in equation (25), i.e.:

VBlack(L, K, σ̂ , T )|K=L = VBlack((1 + hτ) · L∗, K − h, σ, T )|K=L (68)

where I have used the abbreviation h := (δ − 1)/τ and assumed that we can model the basket of
canonical forward rates as a single lognormally distributed L∗ with volatility σ̂ ∗. Straightforward
expansions of equation (68) lead to:

σ̂ = σ̂ ∗ ·
(

1 − h

L
+ 1

2
hτ

)
+ O(h2) (69)

The next step is then to differentiate (68) with respect to K , and carry out some further Taylor
expansions and simplifications. We finally arrive at a dependence of the spread differential
induced skew as defined in equation (8) on the at-the-money implied volatility of the non-
canonical Libor rate, the spread differential h, and the non-canonical forward rate L itself
given by:

χ ≈ σ̂ ∗

20
· h

L
+ O(h2) (70)

The interesting fact here is that the spread differential induced skew diverges as Libor rates
approach zero, and that it grows linearly with h (as long as implied volatilities or times to
maturity are small since I used first order expansions in σ̂

√
T and σ̂ ∗√T ). For small values of

the actual spread and the assumption that spread discount factors are given by:

ζτ (tstart, tstart + τ) = e−ετ ·τ (71)

with ετ representing the cumulatively compounded spread rate for τ -period Libor rates, we
obtain:

h · τ = (ετ − ετ ∗) · τ + O(((ετ − ετ ∗) · τ)2) (72)
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which means that the skew is approximately linear in the spread differential h = (ετ − ετ ∗).
If we recall that spread differentials are currently noticeably pronounced in Japan, where rates
are low and volatilities high, we may expect the spread differential induced skew to be of
non-negligible size in that market.

4 Numerical examples
The first example I give to demonstrate the accuracy of the presented approximations is an
option on a 12 m Libor rate, expiring in 12 months from inception. All the discrete forward
rates that contribute to this caplet are initially set to values near 4%, and are assumed to be
perfectly lognormal in their natural measure, i.e. Q = 1. I used the same instantaneous term
structure of volatility for all of the canonical forward rates given by:

σi(t) = [a + b(Ti − t)] · e−c·(Ti−t) + d (73)

with a = 0.1, b = 1, c = 2, d = 0.1, and a time-constant correlation structure given by:

ρij = e−β·(Ti−Tj ) (74)

with β = 0.1. In Figure 3, I show the results from numerical simulations using 220 Sobol’ vector
draws and analytical expansions for the given term structure (labelled as “peaked volatility”)
in comparison with the numbers we would obtain if we had set the volatility of all canonical
forward rates to 26.05% (denoted as “flat volatility”). The description “first order” refers to
the expansion outlined in Section 2.1, whereas “second order” is the implied volatility curve
resulting from the method explained in Section 2.2. The skew as defined in equation (8) asso-
ciated with the curves is given in Table 1. As we can see, the agreement of the first order
expansion with the numerical results is for practical purposes just about at the edge of being
useful, whereas the agreement of the second order expansion with the numerical data is rather
excellent indeed.

TABLE 1: THE SKEW NUMBERS ASSOCIATED WITH THE
CURVES IN FIGURE 3

volatility type first order
expansion χ

second order
expansion χ

numerically χ

peaked 0.017% 0.035% 0.037%
flat 0 0.018% 0.020%

The figure and table highlight several features that we had already identified in the ana-
lytical discussion in Section 2. First, there is clear evidence of the small but positive skew
as a consequence of the basket effect explained in Section 3.1. In accordance with the anal-
ysis given in that section, the skew increases as we switch from equal and flat volatility of
the forward rates to a peaked term structure of volatility. The term structure of instantaneous
volatility gives rise to the effective variances of all the contributing discrete forward rates
to differ, and as we can tell from equation (67), this in turn causes the skew to increase.
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Figure 3: The implied volatilities of a 12 m caplet on a 12 m Libor rate

The fact that there is still some residual skew even for flat volatilities can also be explained
if we compare the first and second order expansion results. Since the second order expan-
sion takes into account the effect of the (nearly) lognormally distributed products of forward
rates which have a larger variance than the first order terms, it effectively values a bas-
ket of differing constituents, and that in turn causes a slight skew, as discussed at great
length by now.

The next example I give is to show the effect of the spread differential for a caplet on a
6 m Libor rate with 12 months to expiry, as analysed in Section 3.2, using lower levels of
interest rates and somewhat higher volatilities than before, albeit not quite as extreme as those
prevailing in the Japanese market. Again, I set Q = 1 for all the canonical forward rates, and
I choose the parametrisation a = 0.2, b = 1, c = 1, d = 0.2, and β = 0.1 for the correlation
coefficient. A total of 12 curves are displayed in Figure 4, representing the implied volatilities
computed numerically and analytically (using the second order expansion) from different rate
and spread differential settings. In the legend of the figure, the level of the canonical forward
rates is indicated by either L = 60 bp or L = 30 bp, which is to mean that the Libor rates are
just slightly lower than the given numbers. The spread differential between the 3 m canonical
rates and the 6 m Libor rate is given by h = 0 bp, h = 10 bp or h = 20 bp. In all four cases,
the analytical approximation matches the numerically computed results extremely well. This
good agreement between numerical and analytical figures for a 12 m × 6 m caplet is not that
surprising if we consider that the 6 m rate in question is composed of two canonical 3 m Libor
rates which in turn means that there are no third order terms in equation (3.2) that would be
neglected by the approximation given in Section 2.2. What’s more, just as one would expect
from the relationship (70), the implied volatilities for L ≈ 60 bp and the spread differential at
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20 bp coincide with the values for L ≈ 30 bp and around 10 bp spread differential. I should
also explain why the point at f/K = 0.7 is missing for L ≈ 30 bp and around 20 bp spread
differential. The reason is that this is where the effective negative displacement of the Libor
rate results in a floorlet struck at 0.7 · L being perfectly worthless, which is why no equivalent
Black volatility can be implied.

To summarise the results on the skew, I give in Table 2 the skew figures that were com-
puted from the results shown in Figure 4. Clearly, the significant magnitude of the skew that
is induced by spread differentials emphasises how important it is that the forward rates that
are evolved in a Libor market model are directly linked to interbank offered rates, and not
immediately to funding rates, since this would cause an unintended skew to be built into the
model. This is to say that even when we correct the volatility levels such that the effec-
tive implied volatilities at the money are calibrated to the market, we still have to bear in
mind that there may be a significant skew for non-canonical caplets when spread differentials
are present.

TABLE 2: THE SKEW NUMBERS ASSOCIATED WITH THE CURVES IN
FIGURE 3

L h χ (numerically) χ (from
analytical

prices)

χ from
approximation (70)

60 bp 0 bp 0.0044% 0.0047% 0
30 bp 0 bp 0.0029% 0.0034% 0
60 bp 10 bp 0.5357% 0.5361% 0.51%
60 bp 20 bp 1.0709% 1.0714% 1.01%
30 bp 10 bp 1.0690% 1.0693% 1.01%
30 bp 20 bp 2.2158% 2.2160% 2.03%

Finally, I present an example of the accuracy of the approximations for a user-controlled
skew. In order to show how strong the given higher order approximations are, I have chosen
the scenario of a non-canonical 3 m caplet with 49 months and 2 weeks to expiry in a 3 m
Libor market model. This means that the non-canonical rate is almost exactly split between two
canonical discrete forward rates which makes it a particularly hard test. The volatility parameters
are a = 0.1, b = 1, c = 2, d = 0.1, and this time I use a term structure of instantaneous volatility
given by:

ρij (t) == e−β||Ti−t |κ−|Tj −t|κ | (75)

with β = 0.8 and κ = 0.2. This term structure of instantaneous volatility and correlation allows
for quite a considerable decorrelation of the forward rates. In addition to that, I used forward
rates near 9%. As you can see in Figure 5, the numerical and analytical results agree very well
for different levels of the skew, even for options on the Libor rate that are considerably far
away from the money.

In summary, I would like to say that I was surprised how complicated it turned out to
find a sufficiently accurate caplet approximation in the framework of a Libor market model
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Figure 4: The implied volatility (σ̂ ) of a caplet on a 6 m Libor rate expiring in 12 months for
different levels of the non-canonical forward rate L and different spread differentials h
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Figure 5: The implied volatility (σ̂ ) of a non-canonical caplet on a 3 m Libor rate expiring in
49 months and two weeks for different values of the skew parameter Q

with a simple user-controlled skew such as given by the stochastic differential equation (1).
After all, we are talking here about an interest rate model that is designed to meet the mar-
ket features of options on Libor rates by design, and the pricing of caplets is rarely what the
model is originally implemented for. However, since the trading of exotic derivatives valued
with a Libor market model requires the model to be reasonably calibrated to market instru-
ments (which sometimes includes options on 6 m Libor rates where they are sufficiently liquid,
and always includes many non-canonical caplets), and since the handling of many different
instruments in a consistent framework requires not only the ability to value all exotics using
Monte Carlo simulations, but also the much larger numbers of simpler derivatives such as
caps and floors (that are typically in any interest rate option book) in a timely fashion, ana-
lytical approximations for caplets and floorlets for the given model may be a very desirable
thing to have.

Appendix. The rank reduction method for options
on baskets of positively correlated lognormals
The problem at hand is the pricing of a call or put option on a weighted average of correlated
lognormal variates with expectation fi . In general, there is no requirement for the fixing of the
associated correlated assets to occur simultaneously, which means we could also allow for the
pricing of Asian and Asian basket options. All we need for the pricing of the basket option is
the covariance matrix C of the logarithmic returns and the weights wi . When the fixing of all
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of the involved assets is to be simultaneous at time T , we would have:

cii = σ 2
i T (76)

and:

cij = σiσjρijT for i �= j (77)

using the usual notation for implied volatility and correlation. The basket, or weighted average,
of the involved n lognormal variates is given by:

B =
n∑

i=1

ωie
− 1

2 cii+zi (78)

with the modified weights:

ωi = wifi (79)

and the normal variates zi satisfying the covariance conditions:

E[zi] = 0 and E[zizj ] = cij (80)

The pricing of an option on the geometric average of lognormal variates can be done
without any difficulty since the geometric average is itself lognormally distributed. However,
for an arithmetic average, this can only be done if the covariance matrix is of rank 1, subject
to an additional criterion that is elaborated in the following.

The key idea of the rank reduction method is to substitute the original covariance matrix C

with a matrix C′ of rank one such that the log-variance of a geometric basket with the same
modified weighting coefficients as B is preserved. In other words, we need to find a covariance
matrix C′ such that:

n∑
i,j=1

ωiωjcij =
n∑

i,j=1

ωiωj c
′
ij (81)

Any symmetric positive semi-definite matrix C′ of rank one can be written as the dyadic product
of a vector a with itself:

C′ = a · aT (82)

In order to retain the ratios of the standard deviations of all of the constituents, we set:

ai := s · √cii (83)
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with some common scaling factor s. This factor can be determined from the geometric basket
log-variance preserving condition (81):

s :=

√√√√√√√√
n∑

i,j=1
ωiωj cij

n∑
i,j=1

ωiωj
√

ciicjj

(84)

Once we have computed the coefficients ai , the approximate (undiscounted) price of a call
option on the arithmetically weighted basket struck at K is given by:

E


( n∑

i=1

ωie
− 1

2 a2
i
+aiy − K

)
+


 (85)

where y is a standard normal variate. As long as the function:

g(y) =
n∑

i=1

ωie
− 1

2 a2
i
+aiy (86)

is monotonic in y, we can compute expectation (85) comparatively easily. A sufficient condition
for the monotonicity of the function g(y) is given if all of the weighting coefficients ωi are
positive. For general basket options such as the option on a bond that not only pays coupons
but also demands repayments (which would involve negative weights), this requirement may
be too strict. Even when there are some slightly negative weighting coefficients, the function
g(y) may still remain monotonic in y. However, for simplicity, we demand at this point that:

ωi · ai ≥ 0. (87)

In practice, this restriction rarely poses a problem. Given (87), we can price the call option on
the basket by first identifying the critical value y∗ where:

g(y∗) − K = 0 (88)

The value y∗ can be found by the use of the standard Newton method, and converges very
rapidly due to the smoothness of the function g. A good initial guess is usually given by the
second order expansion of g(y) in y around zero. Given the definitions:

b :=
n∑

i=1

1

2
a2

i ωie
− 1

2 a2
i

c :=
n∑

i=1

aiωie
− 1

2 a2
i

d :=
n∑

i=1

ωie
− 1

2 a2
i − K
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calculate the discriminant δ := c2 − 4bd . Then, if the discriminant δ is positive, use:

yinitial guess from second order expansion :=
√

δ − c

2b
(89)

as your initial guess; else use:

yinitial guess from first order expansion := −d

c
(90)

The second order expansion is usually already within a relative accuracy of 10−5 and may
thus be a sufficiently precise approximation for y∗ for certain applications. Nonetheless, due to
the availability of an extremely good initial guess, any subsequent Newton iterations typically
converge to sufficient precision within a single step. Having established the critical value y∗,
the approximate value of the call option is given by:

E


( n∑

i=1

ωie
− 1

2 cii+zi − K

)
+


 �

(
n∑

i=1

ωiN(−y∗ + ai) − KN(−y∗)

)
(91)

wherein N(·) is the cumulative normal distribution function. Equally, the approximation for the
value of a put option can be computed as:

E


(K −

n∑
i=1

ωie
− 1

2 cii+zi

)
+


 �

(
KN(y∗) −

n∑
i=1

ωiN(y∗ − ai)

)
(92)
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of Curve Building
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A
t first glance, the mechanics of building a discount factor curve would appear
to be a fairly mundane subject. At the very least, one would expect that it must
be trivial, completely understood and there must be a market standard way of
doing it. After all, a good interest rate curve is the most basic requirement for
pricing and hedging interest rate derivatives. If the input curve is bad, no matter

the model, it is guaranteed that the prices and hedging parameters it returns will be bad. As the
saying goes: garbage in, garbage out. In fact, it turns out, that there is quite a bit of subtlety
and flexibility in the curve building process. There is room for some (well thought-out) artistic
license. Moreover, the subject is certainly not as well understood as it should be.

To illustrate, we will focus on the swap market. In this market, generally, the discount factor
curve is built based on a combination of quoted money market and par swap rates. For the
purposes of our discussion, the money market rates are not important. Our example is based
on the following swap rate data:

The swaps pay annually and accrue 30/360. This means that a 4.5% swap pays a fixed coupon
of 4.5 each year. For the sake of simplicity, we have further assumed that the swaps are
spot settled.

Contact address: VP Analytics, FinancialCAD Corp., 7455 132nd Street, Suite 100, Survey, BC, Canada V3W 1J8.
E-mail: walsh@fincad.com Telephone: 604 507 2763 www.financialCAD.com
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Consistency is not enough
The process of building a discount factor curve from market quotes is known as bootstrapping.
The basic requirement of the discount factor curve is that it be consistent with all input market
rates. Consistent means that after we have built the curve, if we perform a round-trip calculation
of, for example, the 10Y par swap rate, we indeed obtain 4.6% and similarly for all other rates.

It turns out that the consistency requirement is not enough. The bootstrapping process is
(usually) an under-determined problem and we have a fair amount of flexibility in determining
how the bootstrapping proceeds. We can take advantage of this flexibility to build better interest
rate curves, and we will use the structure of implied forward rates to guide our intuition on
how to do it. Before we get ahead of ourselves, let’s first understand some basic concepts.

Back to basics
For a given date, a discount factor, also known as a zero coupon price, is the present value of
one unit paid on that date. In our notation, Df1Y is the present value of one unit paid one year
from today. A discount factor curve is a set of dates and discount factors. Given a discount
factor curve, we can present value any future cash flow. A discount factor curve also contains
other implied information, like the structure of forward rates. Given the one and two year
discount factors, the one year implied forward rate, F , effective one year from today can be
calculated from the formula, F = Df1Y /Df2Y − 1.

Let’s now look at the bootstrapping process and, to illustrate, we will focus on the 10Y
par swap rate in our example. As we add (or bootstrap) this rate to the curve, it follows, by
definition, that:

4.6
i=10∑
i=1

DfiY + 100Df10Y = 100

Now the first five of these discount factors are known because we have already built a curve
that includes the 5Y rate. Hence:

4.6
i=10∑
i=6

DfiY + 100Df10Y = 100 − 4.6
i=5∑
i=1

DfiY

The right-hand side is known and, in this case, we have an under-determined system with
one equation and five unknowns. At this point, in order to obtain a unique solution, con-
straints are added to the structure of the DfiY . Different constraints correspond to different
bootstrapping methods.

Bootstrapping method 1: linear swap rates (LSR)
The first bootstrapping method we consider, Linear Swap Rates (LSR), assumes that the par
swap rate at each intermediate coupon date lies on a straight line between the 5 and 10Y rates. In
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our example 6Y = 3.8%, 7Y = 4.0%, 8Y = 4.2% and the 9Y = 4.4%. With these constraints,
we now solve for the discount factors. First, we solve for Df6Y :

103.8Df6Y = 100 − 3.8
i=5∑
i=1

DfiY

Continue in the obvious way to calculate the 7, 8, 9 and 10-years discount factors. The results
are shown in Graph 1 and labeled LSR.

LFR - Linear Forward Rates
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Graph 1: 1-year implied forward rates

Bootstrapping method 2: constant forward
rates (CFR)
The second method, Constant Forward Rates (CFR), constrains the problem by enforcing that
all one year forward rates, effective at 5, 6, 7, 8 and 9 years, be equal. Let F be this rate. This
implies Df6Y = Df5Y /(1 + F),Df7Y = Df5Y /(1 + F)2 and so on. In our example:

4.6
i=4∑
i=1

(1 + F)−i + 104.6(1 + F)−5 = Df −1
5Y

(
100 − 4.6

i=5∑
i=1

DfiY

)

and it is straightforward to solve for F . The results are labeled CFR in Graph 1.
These two bootstrapping methods are fairly standard and we will go out on a limb and say

they are “market standard” methodologies (whether they both should be is another question).
For a reference on the LSR method, see, for example, Miron and Swannell (1991).

Let’s take a step back and analyze the two methods. In Graph 1, we have plotted the one
year implied forward rates. Let’s focus on the LSR curve. At the short-end of the curve, the
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forward rate profile looks fairly good. After 10 years we see a disturbing pattern of “overshoots”
where high rates are followed by much lower rates. It is a fact that the LSR methodology can
often lead to this type of nasty behavior. On the other hand, the CFR curve does not have
any of these overshoots. We see a pleasant looking step function, which in our cleverly chosen
example, happens to be increasing. If we only had the choice between these two methods, we
would certainly choose to use the CFR. On the other hand, the resulting CFR curve is not
completely satisfying. In this case, it seems reasonable to expect that the actual forward rates
would be a little smoother (at the very least our artistic side says so).

Bootstrapping method 3: linear forward
rates (LFR)
We now consider another bootstrapping methodology that we have developed. We call it Linear
Forward Rates (LFR). The first step in the LFR method is to calculate the CFR curve. The
next step involves another bootstrapping pass to “smooth-out” the forward rates. During this
step, as we splice each point to the curve, rather than looking for a constant forward rate
F , we look for linear forward rates that lie on a line of the form F0 + KT , where K is the
slope and F0 is chosen so as to best “fit” the current, previous and next forward rates. It
turns out that the discount factors are best described in the following recursive way where
Dfi+1 = Dfi/(1 + F0 + KTi) where Ti is the time in years of the ith coupon period. In our
example, Ti = 1 and if we again consider the 10Y point, it follows that:

4.6
i=9∑
i=6

DfiY + 104.6Df10Y = Df −1
5Y

(
100 − 4.6

i=5∑
i=1

DfiY

)
,

and we can solve for the slope K . Though this example does not demonstrate it, when we are
in a situation where the curve increases and then decreases (or vice versa), we do not modify
the forward rates at these points. It turns out, that in this case, the best solution is to leave the
forward rates in this region constant. The results for our example are labeled LFR in Graph 1.

Is interpolation good enough?
Combining this LFR discount factor with some sort of interpolation method is probably good
enough for most applications. But, is it good enough for all applications? And, for that matter,
what interpolation should we use?

Suppose, for example, we wanted to value a strip of three-month caps. Clearly, this derivative
is extremely sensitive to the value of the underlying forward rates. We choose to use the LFR
curve in combination with one of the following three interpolation methods; for more details
see, for example, Mathews (1987) and Press et al (1996).

1. Linear-discount factors between points are assumed to lie on a straight line.
2. Cubic Spline – The whole curve of discount factors lie on a “smooth” cubic spline

(piecewise cubic, continuous and differentiable).
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3. Exponential – discount factors between two points lie on an exponential curve of the
form CeRT , where C and R are constants.

Looking at 3-month forward rates we see that linear interpolation has regions where a disturb-
ing “saw-toothed” pattern appears where one would expect fairly constant forward rates. Not
surprisingly, exponential interpolation returns a “step-function” pattern of forward rates. In this
particular example, the results obtained using the cubic spline looks fairly good, though there is
a slightly disturbing “bulge” at around 5.5 years. It turns out that in some situations, when the
underlying curve has jumps, the cubic spline, because it needs to be smooth and differentiable
(while passing through all of the points), will bulge in regions leading to undesirable results
like bad forward rates. The unfortunate conclusion is that none of these interpolation methods
is perfect.

What is required is a method that combines the smoothness of cubic spline interpolation
with the stability of exponential interpolation (in regions where the splines bulge). We know of
no generic interpolation method that offers this. The good news is that we don’t need a generic
interpolation method, what we need is a method that is specific to discount factor curves. The
method we have developed depends on applying a post-smoothing process to the curve. In this
process, we enhance the discount factor curve (e.g. LFR) by adding points at 3-month intervals
(actually at any user desired frequency). We do this in such a way as to obtain smooth forward
rates, in regions where the curve is smooth, while avoiding bulges in regions where the curve
has “jumps”. We stress that none of the original discount factors are altered and the enhanced
curve remains consistent with the original input rates. We then use this enhanced discount factor
curve as the basic input to our pricing models and likely choose exponential interpolation (or
even linear interpolation with this enhanced curve would be fine). The results of this curve are
labeled “enhanced” in Graph 2.

Linear
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Enhanced

3
3.50%

4.50%

5.50%
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Graph 2: 3-month implied forward rates
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To view an article on how you could use Fincad XL and other Fincad products to build
better curves, go to www.fincad.com/curves.html. Or, if you have any questions or feedback on
this article please email Owen at o.walsh@fincad.com.

About FinancialCAD
FinancialCAD provides software and online services for financial risk measurement and analy-
sis. Our industry standard financial analytics cover all asset classes and are already used in 60
countries by over 25,000 business users. For more info, visit our website at www.fincad.com,
or download a free trial version of our software at www.fincad.com/innovate.asp.

FOOTNOTES
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T
here are many models for the uncertainty in future instantaneous volatility. When it
comes to an actual implementation of a stochastic volatility model for the purpose of
the management of exotic derivatives, the choice of model is rarely made to capture
the particular dynamical features relevant for the specific contract structure at hand.
Instead, more often than not, the model is chosen that provides the greatest ease with

respect to market calibration by virtue of (semi-)closed form solutions for the prices of plain
vanilla options. In this article, the further implications of various stochastic volatility models
are reviewed with particular emphasis on both the dynamic replication of exotic derivatives and
on the implementation of the model. Also, a new class of models is suggested that not only
allows for the level of volatility, but also for the observed skew to vary stochastically over time.

1 Why stochastic volatility?

• Realised volatility of traded assets displays significant variability. It would only seem
natural that any model used for the hedging of derivative contracts on such assets should
take into account that volatility is subject to fluctuations.

• More and more derivatives are explicitly sensitive to future (both implied and instan-
taneous) volatility levels. Examples are globally floored and/or capped cliquets, and
many more.

• Some (apparently) comparatively straightforward exotic derivatives such as double bar-
rier options are being re-examined for their sensitivity to uncertainty in volatility.

Contact address: ABN AMRO, 250 Bishopsgate, London EC2M 4AA, UK.
E-mail: p@jaeckel.org
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Figure 1: FTSE 100 performance and realised volatility between June 2000 and
February 2003

• New trading ideas such as exotic volatility options and skew swaps, however, give rise
to the need for a new kind of stochastic volatility model: the stochastic skew model.

2 What stochastic volatility?
The concept of stochastic volatility, or rather the idea of a second source of risk affecting
the level of instantaneous volatility, should not be seen in isolation from the nature of the
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underlying asset or deliverable contract. In particular, for the three most developed modelling
domains of equity, FX, and interest rate derivatives, different effects are considered to be at
least partially responsible for the smile or skew observed in the associated option markets.

Economic effects giving rise to an equity skew

• Leverage effects (Geske, 1977; Geske and Johnson, 1984; Rubenstein, 1983). A firm’s
value of equity can be seen as the net present value of all its future income plus its
assets minus its debt. These constituents have very different relative volatilities which
gives rise to a leverage related skew.

• Supply and demand. Equivalently, downwards risk insurance is more desired due to the
intrinsic asymmetry of positions in equity: by their financial purpose it is more natural for
equity to be held long than short, which makes downwards protection more important.

• Declining stock prices are more likely to give rise to massive portfolio rebalancing (and
thus volatility) than increasing stock prices. This asymmetry arises naturally from the
existence of thresholds below which positions must be cut unconditionally for regula-
tory reasons.

Economic effects giving rise to an FX skew and smile

• Anticipated government intervention to stabilise FX rates.
• Government changes that are expected to change policy on trade deficits, interest rates,

and other economic factors that would give rise to a market bias.
• Foreign investor FX rate protection.

Economic effects giving rise to an interest rate skew and smile

• Elasticity of variance and/or mean reversion. In other words, interest rates are for eco-
nomic reasons linked to a certain band. Unlike equity or FX, interest rates cannot be
split, bought back or re-valued and it is this intrinsic difference that connects volatilities
to absolute levels of interest rates.

• Anticipated central bank action.

None of these effects are well described by strong correlation between the asset’s own
driving factor and a second factor governing the uncertainty in volatility since they are all
based on deterministic relationships.

Still, most stochastic volatility models incorporate a skew by virtue of strong correlation
of volatility and stock. The strong correlation is usually needed to match the pronounced
skew of short-dated plain vanilla options.

In this context, one might wonder if it wouldn’t be more appropriate to let the
stochasticity of volatility explain the market-observed features related to or associated
with uncertainty in volatility, and use other mechanisms to account for the skew.

3 One model to rule them all?
An important question that must be asked when a stochastic volatility model is considered is:
what is it to be used for?
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• Single underlying moderate exotics with strong dependence on forward volatility? For-
ward fixing options such as cliquets with global floor and/or cap?

• Single underlying exotics with strong dependence on forward skew or smile? Options
on variance or skew?

• Single underlying exotics with strong path dependence? Barriers of all natures (single,
double, layered, range accruals).

• Pseudo-single underlying options with exposure to forward volatility of different traded
contracts? Captions? Capped/floored volatility bonds? Total redemption notes with exotic
coupons?

• Multiple underlying moderate exotics with strong dependence on forward volatility?
Options on baskets. Cliquets on baskets.

• Multiple underlying moderate exotics with strong dependence on forward skew? Moun-
tain range or rainbow options.

• Multiple underlying moderate exotics with strong dependence on correlation? Mountain
range options.

Not all of these applications would necessarily suggest the use of the same model. In fact, a
stochastic volatility model that can be perfectly adequate to capture the risk in one of the above
categories may completely miss the exposures in other products. As an example, consider the
use of a conventional stochastic volatility model for the management of options on variance
swaps versus the use of the same model for options on future market skew in the plain vanilla
option market.

4 Mathematical features of stochastic volatility
models

Heston [Hes93]: V[σ 2
S ] ∼ O(σ 2

S ) (mean reverting)

dS = µS dt + √
vS dWS (1)

dv = κ(θ − v) dt + α
√

v dWv (2)

E[dWS · dWv] = ρ dt (3)

In order to achieve calibration to the market given skew, almost always one needs to have:

• 0.7 < |�| � 1 is required.
• κ must be very small (kappa kills the skew).
• α must be sizeable.
• θ is by order of magnitude not too far away from the implied volatility of the longest

dated option calibrated to.

The volatility process can reach zero unless [Fel51, RW00]:

κθ > 1
2α2 (4)
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which is hardly ever given in a set of parameters calibrated to market! This means the Heston
model achieves calibration to today’s observed plain vanilla option prices by balancing the
probabilities of very high volatility scenarios against those where future instantaneous volatil-
ity drops to very low levels. The average time volatility stays at high or low levels and is
measured by the mean reversion scale 1/κ . Even when κθ > 1

2α2, the long-term distribution of∫ t+τ

t
σ (t)2dt is sharply peaked at low values of volatility as a result of calibration.1

The dynamics of the calibrated Heston model predict that volatility can reach zero, stay
at zero for some time, or stay extremely low or very high for long periods of time.

Stein and Stein/Schöbl and Zhu [SS91, SZ99]: V[σS ] ∼ O(1) (mean
reverting)

dS = µS dt + σS dWS (5)

dσ = κ(θ − σ) dt + α dWσ (6)

E[dWS · dWσ ] = ρ dt (7)

The distribution of volatility converges to a Gaussian distribution with mean θ and variance
α2

2κ
. Since the sign of σ bears meaning only as a sign modifier of the correlation, we have the

following two consequences:

• The sign of correlation between movements of the underlying and volatility can sud-
denly switch.

• The level of volatility has its most likely value at zero.
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Figure 2: Stationary Stein and Stein volatility distribution for α = 0.3,
κ = 0.3, and θ = 0.25

1 See http://www.dbconvertibles.com/dbquant/Presentations/LondonDec2002RiskTraining Volatility.pdf, slides 33–35,
for diagrams on this feature.
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The dynamics of the Stein and Stein/Schöbl and Zhu model predict that volatility is
very likely to be near zero and that the sign of correlation with the spot movement driver
can switch.

Hull–White [HW87]: V[σ 2
S ] ∼ O(σ 4

S ) (zero reverting for µv < 0)

dS = µSS dt + √
vS dWS (8)

dv = µvv dt + ξv dWσ (9)

E[dWS · dWσ ] = ρ dt (10)

Since v is lognormally distributed in this model, and since σ = √
v, we have:

E[σ(t)] = σ(0) · e
1
2 µvt− 1

8 ξ 2t (11)

V[σ(t)] = σ(0)2 · eµvt · (1 − e− 1
4 ξ 2t

) (12)

M[σ(T )] = σ(0) · e
1
2 (µv−ξ 2)t (13)

where M[·] is defined as the most likely value. This means, for µv < 1
4ξ 2, the expectation

of volatility converges to the mean-reversion level at zero. For µv > 1
4ξ 2, the expectation

diverges. Further, unless µv < 0, the variance of volatility grows unbounded. In contrast to
that, if µv < 0, the variance of variance diminishes over time. And finally, the most likely
value for volatility converges to zero unless µv > ξ 2. For the particular case of µv = 0, we
have the special combination of features that the expectation and most likely value of volatility
converges to zero, whilst the variance of volatility converges to σ 2.

Any choice of parameters that provides a reasonable match of market given implied volatil-
ities is extremely likely to lead to µv < 0 in which case we have:

The dynamics of the Hull–White stochastic volatility model predict that both expectation
and most likely value of instantaneous volatility converge to zero.

Hagan [HKL02]: V[σS ] ∼ O(σ 2
S ) (not mean reverting)

dS = µS dt + σS dWS (14)

dσ = ασ dWσ (15)

E[dWS · dWσ ] = ρ dt (16)

This model is equivalent to the Hull–White stochastic volatility model for the special case of
µv = α2 and ξ = 2α. In this model, instantaneous volatility is a martingale but the variance
of volatility grows unbounded. At the same time, the most likely value for volatility converges
to zero.
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The dynamics of the Hagan model predict that the expectation of volatility is constant
over time, that variance of instantaneous volatility grows without limit and that the most
likely value of instantaneous volatility converges to zero.

Scott and Scott–Chesney [Sco87, CS89]: V[σS ] ∼ O(σ 2
S ) (mean reverting)

dS = µS dt + eyS dWS (17)

dy = κ(θ − y)dt + α dWy (18)

E[dWS · dWy] = ρ dt (19)

Volatility cannot reach zero, nor does its most likely value converge there. The market-
observable skew of implied volatilities would require a strong negative correlation for this
model to be calibrated.
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Figure 3: Sample path for Scott–Chesney model with S0 = 6216, r = 5%, d = 1%, σ0 = 30%,
θ = ln 30%, κ = 0.1, α = 40%, α2

2κ
= 0.8, ρ = 0. Euler integration with �t = 1/365

However, the required strong correlation between volatility and spot is not supported by any
econometric analysis. Nonetheless, it is possible to reproduce the burstiness of real volatility
returns by increasing the mean reversion. Fouquet et al. (2000) compare strong mean reversion
dynamics with real data and find that it captures the apparent burstiness of realised volatilities
very well [FPS00]:

• The larger κ , the more rapidly the volatility distribution converges to its stationary
state.

• 1/κ is the time scale for volatility auto-decorrelation.
• The right measure for uncertainty in volatility is:

α2

2κ

not α on its own.
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Figure 4: Sample path for Scott–Chesney model with S0 = 6216, r = 5%, d = 1%, σ0 = 30%,
θ = ln 30%, κ = 0.1, α = 40%, α2
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Figure 5: Sample path for Scott–Chesney model with S0 = 6216, r = 5%, d = 1%, σ0 = 30%,
θ = ln 30%, κ = 6, α = 1.5, α2
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= 0.1875, ρ = 0. Euler integration with �t = 1/2920

Large mean reversion causes volatility to approach its stationary distribution quickly. The
problem with future volatility being likely to hover near zero for models such as the Heston and
the Stein and Stein model goes away when mean reversion is strong. However, if mean reversion
is large, correlation between volatility and spot does not suffice to generate a significant skew.
To achieve market calibration, a different mechanism is needed. This could be independent
jumps of the stock itself, or a stock-dependent volatility scaling function.
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The main drawback of the Scott–Chesney model is that it requires very high correlation
between the spot and the volatility process to calibrate to a pronounced skew, and
that the skew is fully deterministic. These features are also shared by all of the above-
discussed models.

5 A stochastic skew model

dS = µS dt + σf (S; γ )S dWS (20)

d ln σ = κσ (ln σ∞ − ln σ) dt + ασ dWσ (21)

dγ = κγ (γ∞ − γ ) dt + αγ dWγ (22)

with:

f (S; γ ) = eγ ·( S
H

−1) (23)

and:

E[dWσ dWγ ] = E[dWσ dWS] = E[dWγ dWS] = 0 (24)

This scaling ensures that:

• For negative γ , the local volatility scaling factor decays from e−γ for S → 0 to 0
for S → ∞.

• The local volatility scaling factor f at spot level H is exactly 1.
• The local volatility scaling factor f change for a spot move of δ · H near H is given by:

�f = ∂f

∂S

∣∣∣∣
S=H

· δ · H = γ

H
· δ · H = δ · γ (25)

In other words, γ is a measure for the local volatility skew at H .

Maintenance of correlation matrices is greatly simplified by the assumption of independence
of the individual factors. The associated partial differential equation governing the boundary
value problem of derivatives prices is:

Vt + (
µ − 1

2 e2yf 2(ex ; γ )
)︸ ︷︷ ︸

µ̂x

Vx + κσ (ln σ∞ − y)︸ ︷︷ ︸
µ̂y

Vy + κγ (γ∞ − γ )︸ ︷︷ ︸
µ̂γ

Vγ (26)

+ 1
2 e2yf 2(ex ; γ )Vxx + 1

2α2
σ Vyy + 1

2α2
γ Vγγ = r · V

with

x = ln S and y = ln σ (27)
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Figure 6: Implied volatility surface for stochastic exponential skew model with

S0 = H = 6216, r = 5%, d = 1%, σ0 = σ∞ = 30%, κσ = 12, ασ = 2,
√
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2κσ
= 41%,

γ0 = γ∞ = −0.5, κγ = 4, αγ = 0.5,

√
α2

γ
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= 0.18

Jumps without jumps
The exponential dependence of the volatility scaling function f on the spot level S can lead
to jump-like upward (for γ > 0) or downward (for γ < 0) rallies when |γ | is of significant
size. A sample path showing this behaviour is given in Figure 7. This can happen due to the
exponential nature of the scaling function f , especially during periods of increased |γ |. These
events only occur when the skew is very pronounced as shown, for example, in Figure 8.

A hyperbolic alternative
The shown implosions of the spot are caused by the exponential form of the scaling function f

and are technically akin to process explosions seen also for the short rate in a lognormal HJM
setting and other equations involving a locally exponential scaling of volatility. Naturally, it is
straightforward to use other scaling functions that avoid the spot implosions, should they be
undesirable.
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An alternative to the exponential scaling is the hyperbolic function:

f = γ

(
S

H
− 1

)
+
√

γ 2

(
S

H
− 1

)2

+ (1 − η)2 + η (28)

This model also allows for a wide variety of shapes of the implied volatility surface.
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6 Monte Carlo methods and stochastic volatility
models

The Heston model is often used to parametrise the observed market volatilities since there
are semi-analytical solutions for plain vanilla options under this model. However, when multi-
asset derivatives are priced, we often need to resort to numerical integration of the governing
stochastic differential equations.
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The Euler discretisation of the Heston variance process is given by:

�v = κ(θ − v)�t + α
√

v
√

�t · z (29)

with z ∼ N(0, 1). This means for z < z∗ with:

z∗ = −v + κ(θ − v)�t

α
√

v�t
(30)

the Euler step causes variance to cross over to the negative domain!
A popular method of choice to avoid this artifact of Euler integration is to use Itô’s lemma to

transform to coordinates where the Euler step remains in the domain of validity for all possibly
drawn Gaussian variates. For the Heston variance process, the coordinate we have to transform
to is volatility itself:

dσ = κ

2

[
1

σ

(
θ − α2

4κ

)
− σ

]
dt + 1

2
α dW (31)

Alas, it seems we have transformed ourselves from the pan into the fire: whilst equation (2), for
v → 0, would always show a positive drift term for all θ > 0 no matter how close v came to
zero, and only the diffusion component could make it reach zero, the drift term in equation (31)
diverges to negative infinity if θ < α2

4κ
irrespective of the path taken by the diffusion component.

This means that the transformed equation shows strong (drift-dominated) absorption into zero
near zero, whilst the original stochastic differential equation for the variance only exhibits zero
as an attainable boundary due to the diffusion component being able to overcome the mean
reversion effect (i.e. the positive drift) for 2θκ < α2.

The apparently contradictory behaviour near zero has a simple explanation:

In an infinitesimal neighbourhood of zero, Itô’s lemma cannot be applied to the variance
process (2). The transformation of the variance process to a volatility formulation results
in a structurally different process!

Naturally, this feature raises its ugly head in any numerical implementation where we may
prefer to use a transformed version of the original equations!

An alternative, when suitable transformations are not available, is to use implicit or mixed
Euler schemes [KP99] in order to ensure that the stepping algorithm does not cause the state
variable to leave the domain of the governing equations, possibly in conjunction with Doss’s
method2 of constructing pathwise solutions.

An example for such an approach is as follows. First, let us assume that we have discretised
the evolution of time into a sequence of time intervals [tn, tn+1], and that we have drawn an
independent Wiener path over those points in time, i.e. that we know W(tn) for all n for one
specific path. Then, approximate W(t) as a piecewise linear function in between the known
values at tn and tn+1, i.e.:

W(t) � γn + δnt for t ∈ [tn, tn+1] (32)

2 See [Dos77] or [KS91] (pages 295–296).
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with

γn = W(tn) − δntn and δn = W(tn) − W(tn+1)

tn − tn+1

Using the resulting dependency dW = δndt , this gives us the approximate ordinary differen-
tial equation:

dv

dt
� �(θ − v) + αδn

√
v (33)

which has the implicit solution:

t − tn = T (v(t)) − T (v(tn)) (34)

with:

T (v) = 2αδn

κ
√

α2δ2
n + 4θκ2

atanh

(
2κ

√
v − αδn√

α2δ2
n + 4θκ2

)
− 1

κ
ln(κ(v − θ) − αδn

√
v) (35)

The above equation can be solved numerically comparatively readily since we know that, given
δn, over the time step from tn to tn+1, v will move monotonically, and that in the limit of
�tn := (tn+1 − tn) → ∞, for fixed δn, we have:

lim
�tn→∞ vn+1 =

αδ

2κ
+
√(

αδ

2κ

)2

+ θ

2

(36)

which can be computed by setting the argument of the logarithm in the right hand side of
equation (35) to zero. An example for the paths of

√
v over a single unit time step for different

draws of δ is shown in Figure 11. Putting all of the above together enables us to construct
paths for the stochastic variance without the need for very small time steps.

The explicit knowledge of the functional form of the volatility, or variance, path has another
advantage. Fouquet et alii [FPS00] explain how we can directly draw the logarithm of the spot
level at the end of a large time step (tn+1 − tn) if we can explicitly compute, for the given
volatility or variance path, the quantities:

�v̂n :=
tn+1∫
tn

σ 2(t) dt (37)

�ω̂n :=
tn+1∫
tn

σ (t) dW(t) (38)

The first term poses no difficulty since the primitive of T (v) can be computed analytically and:

tn+1∫
tn

σ 2(t) dt = v(tn+1) · [T (v(tn)) + �tn] − v(tn) · T (v(tn)) −
vn+1∫
vn

T (v) dv (39)
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The second term requires another approximate numerical scheme which will also be no major
obstacle since:

tn+1∫
tn

σ (t) dW(t) � δn ·
tn+1∫
tn

σ (t) dt

= δn ·
σ(tn+1) · [T (v(tn)) + �tn] − σ(tn) · T (v(tn)) −

vn+1∫
vn

T (v)/(2
√

v) dv

 (40)

The numerical approximation is needed for the calculation of the integral on the right hand
side of equation (40). A simple Simpson scheme or Legendre quadrature is likely to produce
excellent results given that the function is guaranteed to be monotonic and smooth. Using all
of the above quantities, the draw for the logarithm of the spot level can be constructed as:

ln Sn+1 = ln Sn + µ�tn − 1
2�v̂n + ρ�ω̂n +

√
1 − ρ2 ·

√
�v̂n · z (41)

where z is a standard normal variate that is independent from the variate used to construct the
variance step vn → vn+1. The above scheme is essentially an extension of the root-mean-square
volatility lemma given in [HW87] beyond the case of ρ = 0.

In comparison, the Stein and Stein/Schöbl and Zhu, Hull–White, Hagan and Scott/Scott–
Chesney model can be simulated much more easily since the stochastic differential equation
for the volatility component has simple analytical solutions. Naturally, similar techniques to
the one elaborated above for the Heston model can be used to obviate the need for very small
time steps.
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7 Finite differencing methods and stochastic
volatility models
Whenever we have non-zero correlation between the different factors, we cannot use Alternating
Direction Implicit methods (unless we transform away the correlation term which is usually
very bad for the handling of boundary conditions, or we combine it with an explicit method
for the cross terms which makes the scheme effectively explicit). Explicit methods, however,
require rather small time steps in order to avoid explosions due to numerical instabilities.

The multi-dimensional equivalent of the Crank–Nicolson method3 can be implemented
efficiently using iterative solver algorithms such as the stabilised biconjugate gradient method
[GL96] that don’t require the explicit specification of the discretised differential operator matrix
at all. Making the need for an explicit representation of the matrix redundant, sparsely encoded
or otherwise, is a major advantage since the main part of the solving algorithm does thus not
depend on the explicit form of the matrix. For the use of iterative methods, all that is needed
is a function that carries out the same calculations that would be done in an explicit method.
A useful collection of utilities for this purpose is the Iterative Template Library [LLS].

However, when there are no correlation terms, such as in the case of the stochastic skew
model, the independence of the three factors makes it possible to use an operator split algo-
rithm. The simplest versions of operator-splitting algorithms in two diffusion dimensions are
also known as alternating direction implicit methods. The use of these methods allows us to
propagate over large time steps in a very fast finite differencing scheme. The main reason for
operator splitting schemes to be still slower in more than one dimension is simply the fact
that, typically, the total number of nodes in any time-(hyper)slice grows like the product of
spatial levels in each of the diffusion factors. For the stochastic skew model, since we have zero
correlation, the number of discretisation layers in both the volatility and the skew factor can
be kept small (∼ 20–30). Also, boundary conditions can be kept simple in all directions and
in the corners: Vii = 0 for i = x, y, γ . All in all, the speed of a three factor operator-splitting
implementation when two diffusion dimensions can be discretised rather coarsely, i.e. with few
numbers of spatial levels, is actually well compatible with that of any safe implementation
involving numerical contour integrals or Fourier inversions of characteristic functions etc.

The generalisation of alternating direction implicit (or alternating direction Crank–Nicolson)
to multiple spatial dimensions is based on the idea of an operator split [PR55, DR56, Mar89].
Take the equation:

Vt +
∑

i

µ̂i(t, x)Vxi
+ 1

2

∑
i

σ 2
i (t, x)Vxixi

= r · V (42)

transform away the source term by setting u := V e−rt (which may change your boundary
conditions):

ut +
∑

i

(
µ̂i∂xi

+ 1
2σ 2

i ∂2
xi

)︸ ︷︷ ︸
Li

·u = 0 (43)

3 Also denoted as Peaceman–Rachford–Douglas method [PR55, DR56].
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i.e.
(∂t + L) · u = 0 with L =

∑
i

Li (44)

Finite differencing of accuracy order O(�t2) and O(�t2) amounts to:

∂t · u → 1

�t
[u(t, x) − u(t − �t, x)] (45)

∂xi
· u → 1

2�xi

[u(t, . . . , xi + �xi, . . .) − u(t, . . . , xi − �xi, . . .)] (46)

∂2
xi

· u → 1

�x2
i

[u(t, . . . , xi + �xi, . . .) − 2u(t, . . . , xi, . . .) + u(t, . . . , xi − �xi, . . .)] (47)

Discretisation of the differential operators yields Li → Di with:

Di · u(t, x) = µ̂i(t, x)
1

2�xi

[u(t, . . . , xi + �xi, . . .) − u(t, . . . , xi − �xi, . . .)]

+ 1

2
σ 2

i (t, x)
1

�x2
i

[u(t, . . . , xi + �xi, . . .)

− 2u(t, x) + u(t, . . . , xi − �xi, . . .)] (48)

Di · u(x) = 1

2�x2
i

[(σ 2
i (t, x) + µ̂i(t, x)�xi)u(. . . , xi + �xi, . . .) − 2σ 2

i (t, x)u(x)

+ (σ 2
i (t, x) − µ̂i(t, x)�xi)u(. . . , xi + �xi, . . .)] (49)

The Crank–Nicolson algorithm means:

(∂t + L) · u(t, x) = 0 (50)

is to be approximated by:

1

�t
[u(t, x) − u(t − �t, x)] + 1

2
D · [u(t, x) + u(t − �t, x)] = 0 (51)

This means that a single step in the Crank–Nicolson scheme is given by solving

(1 − 1
2�tD) · u(t − �t, x) = (1 + 1

2�tD) · u(t, x) (52)

for u(t − �t, x ).
The operator split of the discretised operator D = ∑

i Di is to split D into its commuting
components {Di}, and to solve (52) for each of the Di individually in sequence. A single time
step in the n-dimensional operator-split finite differencing scheme is thus given by a sequence
of n one-dimensional finite differencing steps. Solve:

(1 − 1
2�tD1) · ũ(1)(x) = (1 + 1

2�tD1) · u(t, x)

(1 − 1
2�tD2) · ũ(2)(x) = (1 + 1

2�tD2) · ũ(1)(x)

...
...

...

(1 − 1
2�tDn) · ũ(n)(x) = (1 + 1

2�tDn) · ũ(n−1)(x)
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and set:

u(t − �t, x) := ũ(n)(x).

For commuting Di and Dj , i.e. DiDj = DjDi , this scheme is, like the one-dimensional
Crank–Nicolson method, of convergence order O(�t2):

ũ(j)(x) = (1 − 1
2�tDi)

−1 · (1 + 1
2�tDi) · ũ(j−1)(x)

= (1 + 1
2�tDi + 1

4�t2D2
i ) · (1 + 1

2�tDi) · ũ(j−1)(x) + O(�t3)

= (1 + �tDi + 1
2�t2D2

i ) · ũ(j−1)(x) + O(�t3) (53)

�⇒
u(t − �t) =

[∏
i

(
1 + �tDi + 1

2
�t2D2

i

)]
· u(t) + O(�t3)

=
1 + �t

∑
i

Di + 1

2
�t2

∑
i,j

DiDj

 · u(t) + O(�t3) (54)

Equation (54) is of precisely the same form as the one we obtain for u in t from the continuous
equation (∂t + L) · u = 0:

u(t − �t) =
1 + �t

∑
i

Li + 1

2
�t2

∑
i,j

LiLj

 · u(t) + O(�t3) (55)

In order to avoid a building up of lower order error terms due to the fact that Di and Dj

don’t always commute perfectly (primarily due to the boundary conditions, but also due to
round-off), the ordering of the scheme can be permuted. For a three-factor model, this means
there are 3! = 6 permutations that we can cycle through, as shown in the Appendix.

Appendix

Code schematic for alternating permutation operator split method
for three-dimensional diffusions with zero correlation

//

// Schematic sample code for the control block and main loop of a three-dimensional operator split

// Crank-Nicolson method.

//

// This code does not contain examples for the implementation of the actual Crank-Nicolson steps

// that need to be carried out for each of the three components, nor the incorporation of the

// lateral boundary conditions.

//

const unsigned long n1 = 200, n2 = 30, n3 = 30; // Sample values for the number of spatial levels

// in each direction.

//
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// There are 6 possible permutations of a sequence of three elements. We therefore adjust the number

// of steps to be a multiple of 6. When product related event dates are to be considered, this ought

// to be done for each time interval.

//

const unsigned long numberOfSteps = 200, adjustedNumberOfSteps = ((numberOfSteps+5)/6)*6;

//

// Each scheme consists of three steps. The set of all possible schemes is given by all possible

// permutations. We sort them such that the last step of any one scheme is different from the first

// step of the next scheme in the sequence.

//

const unsigned long schemes[6][3] = {

{ 0, 1, 2 }, // D1, D2, D3

{ 0, 2, 1 }, // D1, D3, D2

{ 2, 0, 1 }, // D3, D1, D2

{ 2, 1, 0 }, // D3, D2, D1

{ 1, 2, 0 }, // D2, D3, D1

{ 1, 0, 2 }, // D2, D1, D3

};

//

// The class ThreeDimensionalContainer is a user-written container for the solution values at the

// grid nodes. Keep it simple and fast.

//

ThreeDimensionalContainer terminalBoundaryCondition(n1,n2,n3), workspace;

//

// Here, the terminal boundary conditions should be evaluated to populate the known lattice values

// at the final point in time which is the starting point for the backwards induction algorithm.

// The evaluation of the terminal boundary conditions will normally involve the layout of the grid

// in all three coordinates taking into account potential discontinuities of the terminal boundary

// condition (effectively the initial values) or its derivative (you should always have a grid

// level at the strike of plain vanilla options), the precomputation of any coefficient

// combinations that will be constant for each spatial node through time, etc.

//

ThreeDimensionalContainer * threeDimensionalContainers[2] = { &terminalBoundaryCondition, &workspace };

ThreeDimensionalContainer * knownValues = &terminalBoundaryCondition, * unknownValues;

unsigned long i, j, k, schemeindex=5, stepInSchemeIndex, containerIndicator=0;

/////////////////////////////////////////////////////////////////////////////////

// //

// The main loop of backward induction. //

// //

for (i=0;i<adjustedNumberOfSteps;++i){ //

++schemeindex %= 6; //

for (stepInSchemeIndex=0;stepInSchemeIndex<3;++stepInSchemeIndex){ //

++containerIndicator %= 2; //

unknownValues = threeDimensionalContainers[containerIndicator]; //

switch (schemes[schemeindex][stepInSchemeIndex]){ //

case 0 : // //

// Crank-Nicolson step in D1 to be placed here. //

// //

break; //

case 1 : // //

// Crank-Nicolson step in D2 to be placed here. //

// //

break; //

case 2 : // //

// Crank-Nicolson step in D3 to be placed here. //

// //

break; //

} //

knownValues = threeDimensionalContainers[containerIndicator]; //

} //

} //

////////////////////////////////////////////////////////////////////////////////

//
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// Assuming that the grid levels are stored in the three one-dimensional vectors x1Values[],
// x2Values[], and x3Values[], and that the spot coordinates are given by x1, x2, and x3,

// and that we have already asserted that (x1,x2,x3) is inside the grid, we interpolate the

// solution at (x1,x2,x3) from the grid values.

//

//

// Find the right coordinate indices i, j, and k.
//

for (i=0;x1Values[i]<x1;++i);

for (j=0;x2Values[j]<x2;++j);

for (k=0;x3Values[k]<x3;++k);

//

// Compute weights.

//

const double p1 = (x1-x1Values[i-1])/(x1Values[i]-x1Values[i-1]), q1 = 1 - p1;

const double p2 = (x2-x2Values[j-1])/(x2Values[j]-x2Values[j-1]), q2 = 1 - p2;

const double p3 = (x3-x3Values[k-1])/(x3Values[k]-x3Values[k-1]), q3 = 1 - p3;

//

// Below, we assume that an object v of class ThreeDimensionalContainer allows you to retrieve

// the value at the (i,j,k) grid coordinates by the use of the notation v(i,j,k).

//

const ThreeDimensionalContainer &v = *knownValues;

//

// Trilinear interpolation (consistent with the original operator discretisation).

//

const double solution = p1*p2*p3*v(i,j,k) + p2*q1*p3*v(i-1,j,k)

+ p1*q2*p3*v(i,j-1,k) + q1*q2*p3*v(i-1,j-1,k)

+ p1*p2*q3*v(i,j,k-1) + p2*q1*q3*v(i-1,j,k-1)

+ p1*q2*q3*v(i,j-1,k-1) + q1*q2*q3*v(i-1,j-1,k-1);
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Cliquet Options and
Volatility Models
Paul Wilmott
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C
liquet options are at present the height of fashion in the world of equity derivatives.
These contracts, illustrated by the term sheet below, are appealing to the investor
because of their protection against downside risk, yet with significant upside poten-
tial. Capping the maximum, as in this globally floored, locally capped example,
ensures that the payoff is never too extreme and therefore that the value of the

contract is not too outrageous.

Five-year Minimum Coupon Cliquet on ABC Index

Option Buyer XXXX
Option Seller YYYY
Notional Amount EUR 25MM
Start Date dd/mm/yyyy
Maturity Date Start Date + Five years

Option Seller Pays at Maturity Notional * max
5

i = 1
maxΣ 0, min Cap,

Si − Si − 1

Si − 1
, Floor

Index ABC Index
Cap 8%
Floor 16%
Option Premium ???
Index Levels Si = Closing Level of Index on Start Date + i years

This indicative term sheet is neither an offer to buy or sell securities nor an OTC derivative product which 
includes options, swaps, forwards and structured notes having similar features to OTC derivative transactions, nor  
a solicitation to buy or sell securities or an OTC derivative product. The proposal contained in the foregoing is not
a complete description of the terms of a particular transaction and is subject to change without limitation.

E-mail: paul@wilmott.com
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From the point of view of the sell side, aiming to minimize market risk by delta hedging,
their main exposure is to volatility risk. However, the contract is very subtle in its dependence
on the assumed model for volatility.

In this brief note, I will show how the contract value depends on the treatment of volatility.
In particular, I shall show results for constant volatility and volatility ranges.

The subtle nature of the cliquet option
Traditionally one measures sensitivity to volatility via the vega. This is defined as the derivative
of the option value with respect to a (usually constant) volatility. This number is then used
to determine how accurate a price might be should volatility change. As part of one’s risk
management, perhaps one will vega hedge to reduce such sensitivity.

This is entirely reasonable when the contract in question is an exchange-traded vanilla
contract and one is measuring sensitivity to the market’s (implied) volatility.

However, when it comes to the risk management of exotic options the sensitivity to a
constant volatility is at best irrelevant and at worst totally misleading. By now this is common
knowledge and I don’t need to dwell on the details. It suffices to say that whenever a contract
has a Gamma which changes sign (as does any ‘interesting’ exotic) vega may be small at
precisely those places where sensitivity to actual volatility is very large.

Confused? As a rule of thumb if you increase volatility when Gamma is positive you will
increase a contract’s value. At points of inflection in the option value (where Gamma is zero)
the option value may hardly move. But this is sensitivity to a parameter that takes the same
value everywhere. What if you increase volatility when Gamma is positive and decrease it
when Gamma is negative? The net effect is an increase in option value even at points of
inflection.

Skews and smiles can make matters even worse, unless you are fortunate enough that your
skew/smile model forecasts actual volatility behavior accurately.

The classical references to this phenomenon are Avellaneda, Levy and Parás (1995) and
Lyons (1995) but also see Wilmott (2000).

And the relevance to cliquet options? To see this you just need to plot the formula:

max

[
0, min

(
Cap,

Si − Si−1

Si−1

)]

against S to see the non convex nature of the option price; Gamma changes sign.
Now comes the subtle part. The point at which Gamma changes sign depends on the relative

move in S from one fixing to the next. The point of inflection is not near any particular value
of S. The conclusion has to be that any deterministic, volatility surface model fitted to vanilla
prices is not going to be able to model the risk associated with changing volatility. This is true
even if you allow the local volatility surface to move up and down and to rotate.

For this reason we are going to focus on using the uncertain volatility model described in
the above-mentioned references. In this model the actual volatility is chosen to vary with the
variables in such a way as to give the option value its worst (or best) possible value. The
actual volatility is assumed to lie in the range σ− to σ+. The worst option value is when actual
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volatility is highest for negative Gamma and lowest for positive Gamma:

σ(�) =
{

σ+ if � < 0
σ− if � > 0.

Now let us look at the pricing of the cliquet option.

Path dependency, constant volatility
We will be working in the classical lognormal framework for the underlying:

dS = µS dt + σS dX

Assuming for the moment that volatility is constant, or at most a deterministic function of
stock price S and time t , we can approach the pricing from the two most common directions,
Monte Carlo simulation and partial differential equations. A brief glance at the term sheet
shows that there are none of the nasties such as early exercise, convertibility or other decision
processes that make Monte Carlo difficult to implement.

Monte Carlo
Monte Carlo pricing requires a simulation of the risk-neutral random walk for S, the calculation
of the payoff for many, tens of thousands, say, of paths, and the present valuing of the resulting
average payoff. This can be speeded up by many of the now common techniques. Calculation
of the greeks is slightly more time consuming but still straightforward.

PDE
To derive a partial differential equation which one then solves via, for example, finite-difference
methods, requires one to work out the amount of path dependency in the option and to count
the number of dimensions. This is not difficult, see Wilmott (2000).

In all non-trivial problems we always have the two given dimensions, S and t . In order to
be able to keep track, before expiry, of the progress of the possible option payoff we also need
the following two new ‘state variables’:

S ′ and Q.

where:

S ′ = the value of S at the previous fixing = Si

and:

Q = the sum to date of the bit inside the max function

=
i∑

j=1

max

[
0, min

(
Cap,

Sj − Sj−1

Sj−1

)]
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Here I am using the index i to denote the fixing just prior to the current time, t . This is all
made clear in the figure.

Since S ′ and Q are only updated discretely, at each fixing date, the pricing problem for
V (S, t, S ′, Q) becomes:

∂V

∂t
+ 1

2σ 2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0

where r is the risk-free interest rate. In other words, the vanilla Black–Scholes equation. The
twist is that V is a function of four variables, and must further satisfy the jump condition across
the fixing date:

V (S, t−i , S′, Q) = V

{
S, t+i , S, Q + max

[
0, min

(
E1,

S − S ′

S ′

)]}

and the final condition:

V (S, T , S ′, Q) = max(Q, E2).

Here E1 is the local cap and E2 the global floor. (More general payoff structures can readily
be imagined.)

Being a four-dimensional problem, it is a toss up as to whether a Monte Carlo or a finite-
difference solution is going to be the faster. However, the structure of the payoff, and the
assumption of lognormality, mean that a similarity reduction is possible, taking the problem
down to only three dimensions and thus comfortably within the domain of usefulness of finite-
difference methods. The similarity variable is:

ξ = S

S ′ .

The option value is now a function of ξ , t and Q. The governing equation for V (ξ, t, Q) (loose
notation, but the most clear) is:

∂V

∂t
+ 1

2σ 2ξ 2 ∂2V

∂ξ 2
+ rξ

∂V

∂ξ
− rV = 0.

The jump condition becomes:

V (ξ, t−i , Q) = V (1, t+i , Q + max(0, min(E1, ξ − 1)))

and the final condition is:

V (ξ, T ,Q) = max(Q, E2).

All of the results that I present are based on the finite-difference solution of the partial
differential equation. The reason for this is that I want to focus on the volatility dependence,
in particular I need to be able to implement the uncertain volatility model described above
and this is not so simple to do in the Monte Carlo framework (the reason being that volatility
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Figure 1: Stock price path and data points used in calculating the
cliquet payoff

depends on Gamma in this model and Gamma is not calculated in the standard Monte Carlo
implementation).

Results
The following results are based on the cliquet option described in the term sheet. In particular,
it is a five-year contract with annual fixings, a global floor of 16% and local caps of 8%. The
interest rate is 3% and there are no dividends on the underlying.

To understand the following you must remember that the cliquet value is a function of three
independent variables, ξ , Q and t . I will be showing plots of value against various variables at
certain times before expiry. These will assume a constant volatility. Then we will look at the
effect of varying volatility on the prices.

Constant volatility
In the following five plots volatility is everywhere 25%. Figure 2 shows the cliquet value against
Q and ξ at 4.5 years before expiry. The contract has thus been in existence for six months. At
this stage there have been no fixings yet and the state variable Q only takes the value 0. The
non-convex contract value can be clearly seen.

At 3.5 years before expiry, and therefore 1.5 years into the contract’s life, the value is shown
in Figure 3. The state variable Q now ranges from zero to 8%.

One year later (see Figure 4) the contract is exactly half way through its life. The state
variable Q lies in the range zero to 16%. For small values of Q the option value is very close
to being the present value of the 16% floor. This represents the small probability of getting a
payoff in excess of the floor at expiry.
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Figure 2: 4.5 years before expiration
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After being in existence for 3.5 years, and having only 1.5 years left to run, the cliquet
value is as shown in Figure 5. Now Q ranges from zero to 24%. When Q is zero there is no
chance of the global floor being exceeded and so the contract value there is exactly the present
value of 16%.
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Six months before expiry the option value is as shown in Figure 6. Q ranges from zero to
32% and for any values below 8% the contract is again only worth the present value of 16%.

Uncertain volatility
The above shows the evolution of the option value for constant volatility. There is diffusion in
the ξ direction and a ‘jump condition’ to be applied at every fixing. The amount of the diffusion
is constant. (Or rather, is constant on a logarithmic scale.)
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Figure 7: Cliquet values for different volatility models

To price the contract when volatility is uncertain we must use a volatility that depends on
(the sign of) Gamma. Some results are shown below.

Figure 7 plots the contract value against ξ at five years before expiry with Q = 0. Five
calculations have been performed.
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1. The first line to examine is the middle line in Figure 7. This corresponds to a constant
volatility of 25%. This is the base case with which we compare other prices.

2. The second line to examine is close to the middle line. This is the cliquet value with a
constant volatility of just 20%.

3. The third case has a constant volatility of 30%.
4. The fourth line represents the cliquet value when the volatility is allowed to range

between 20 and 30%, taking a value locally that maximizes the cliquet value overall.
5. The fifth and final curve is the one for which volatility has again been allowed to range

from 20 to 30%, but now such that it gives the option its lowest possible value.

The first observation to make is how close the constant volatility curves are, i.e. curves 1–3.
As stated above, a good rule of thumb is that high volatility and positive Gamma give a high
option value. Because Gamma changes sign in this contract a result of this is that there is a ξ

value at which the contract value does not appear to be sensitive to the volatility. In this case
the value is around 0.95, close to the point of inflection.

Now ask yourself the following question. “Do I believe that volatility is a constant, and
this constant is somewhere between 20% and 30%? Or do I believe that volatility is highly
uncertain, but is most likely to stay within the range 20% to 30%?”

If you believe the former, then the calculation we have just done, in curves 1–3, is relevant.
If, on the other hand, you think that the latter is more likely (and who wouldn’t?) then you
must discard the calculations in curves 1–3 and consider the whole spectrum of possible option
values by looking at the best and worst cases, curves 4 and 5.

Such calculations show that the real sensitivity to volatility is much, much larger than a
naive vega calculation would suggest.

Table 1 shows how the cliquet value (five years before expiry at Q = 0 and ξ = 1) varies
with the allowed range for volatility. The table is to be read as follows. When volatility takes
one value only, read along the diagonal, the dark tinted cells, to see the contract values. For
example, when the volatility is 22% the contract value is 0.1739. And when the volatility is
27% the contract value is 0.1726.

TABLE 1: RANGE OF VOLATILITY AND RESULTING RANGE OF CLIQUET PRICES

Vmax

0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3

0.2 0.1743 0.1720 0.1700 0.1680 0.1662 0.1645 0.1629 0.1615 0.1601 0.1588 0.1576
0.21 0.1763 0.1741 0.1719 0.1699 0.1680 0.1663 0.1646 0.1631 0.1617 0.1603 0.1591

V
m

in

0.22 0.1784 0.1761 0.1739 0.1718 0.1698 0.1680 0.1663 0.1647 0.1632 0.1618 0.1605
0.23 0.1804 0.1780 0.1757 0.1736 0.1716 0.1698 0.1680 0.1663 0.1648 0.1633 0.1620
0.24 0.1824 0.1799 0.1776 0.1754 0.1734 0.1715 0.1696 0.1679 0.1663 0.1648 0.1634
0.25 0.1843 0.1818 0.1794 0.1772 0.1751 0.1731 0.1713 0.1695 0.1679 0.1663 0.1648
0.26 0.1863 0.1837 0.1812 0.1789 0.1768 0.1748 0.1729 0.1711 0.1694 0.1678 0.1662
0.27 0.1881 0.1855 0.1830 0.1807 0.1785 0.1764 0.1744 0.1726 0.1708 0.1692 0.1676
0.28 0.1900 0.1873 0.1847 0.1824 0.1801 0.1780 0.1760 0.1741 0.1723 0.1706 0.1690
0.29 0.1918 0.1890 0.1865 0.1840 0.1817 0.1796 0.1775 0.1756 0.1738 0.1720 0.1704
0.3 0.1935 0.1908 0.1881 0.1857 0.1833 0.1811 0.1790 0.1770 0.1752 0.1734 0.1717
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Now consider a range of possible volatilities. Suppose you believe volatility will not stray
from the range 22% to 27%. The worst case is in the light tinted cells, in this case 0.1647.
The best case is to be found in the untinted cells, 0.1830. So, when volatility ranges from 22
to 27% the correct range for the contract value is 0.1647 to 0.1830.

When volatility is a constant, but a constant between 22% and 27%, the contract value
range is 0.1739–0.1726 = 0.0013 or 0.75% relative (to mid-price) range. When volatility is
allowed to varying over the 22–27% range we find that the contract value itself has a value
range of 0.1830–0.1647 = 0.0183 or 10.5% relative (to mid-price) range. The true sensitivity
to volatility is 14 times greater than that estimated by vega.

Code sample: Cliquet with uncertain volatility,
in similarity variables
Below is some Visual Basic code that can be used for pricing these cliquet options in the
uncertain volatility framework.

The range for volatility is VolMin to VolMax, the dividend yield is Div, risk-free interest
rate IntRate, the local cap is Strike2 and the global floor Strike1. Expiry is Expiry. The
numerical parameter is NumAssetSteps, the number of steps in the S and Q directions.

This program clearly leaves much to be desired, for example in the discretization, the
treatment of the jump condition, etc. But it does have the benefit of transparency.

A. The timestep is set so that the explicit finite difference method is stable. If the timestep
is any smaller than this the method will not converge.

B. Here the payoff is set up, the dependent variable as a function of the independent
variables.

C. The timestepping engine. Delta and Gamma are discretized versions of the first- and
second-order derivatives with respect to S. This part of the code also treats the uncertain
volatility. See how the volatility depends on the sign of Gamma.

D. The boundary conditions, for ξ = 0 and large ξ .
E. Updating the next step back in the grid.
F. Here the code tests for a fixing date.
G. Across fixing dates the updating rule is applied. This is really the only point in the

code that knows we are pricing a cliquet option.

Option Explicit
Function cliquet (VolMin, VolMax, Div, IntRate, Strike1, Strike2, NumFixes,

Fixing, Expiry, NumAssetSteps)
ReDim xi (-NumAssetSteps To NumAssetSteps)
Dim Vmax, AssetStep, TStep, QStep, Delta, Gamma, Theta, Tim, Vol, qafter, frac,

V1, V2 As Double
Dim i, j, k, M, iafter, kafter, N, NumSoFar, NumQSteps As Integer
ReDim jtest (1 To NumFixes) As Integer

Vmax = Application.Max(VolMin, VolMax)
AssetStep = 1 / NumAssetSteps
TStep = 0.95 * AssetStep ^ 2 / Vmax ^ 2 / 2 ^ 2 ’ This ensures stability of the

explicit method
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M = Int(Expiry / TStep) + 1 A
TStep = Expiry / M
QStep = AssetStep
NumQSteps = Int (Strike2 / QStep) * NumFixes

ReDim Q (0 To NumQSteps)
ReDim Vold (-NumAssetSteps To NumAssetSteps, 0 To NumQSteps) ’ First dimension

centred on xi = 1
ReDim VNew (-NumAssetSteps To NumAssetSteps, 0 To NumQSteps)

NumSoFar = 1
For j = 1 To NumFixes - 1
jtest(j) = Int (j * Fixing / TStep) ’ Used in testing whether fixing date has

been passed
Next j

For k = 0 To NumQSteps
Q(k) = k * QStep
For i = -NumAssetSteps To NumAssetSteps B
xi(i) = 1 + AssetStep * i ’ i = 0 corresponds to xi = 1
Vold(i, k) = Application.Max(Strike1, Q(k) +

Application.Max(0, Application.Min(Strike2, xi(i) - 1))) ’
Payoff

Next i
Next k

For j = 1 To M

For k = 0 To NumQSteps
For i = -NumAssetSteps + 1 To NumAssetSteps - 1
Delta = (Vold(i + 1, k) - Vold(i - 1, k)) / 2 / AssetStep ’ Central difference
Gamma = (Vold(i + 1, k) - 2 * Vold(i, k) + Vold(i - 1, k)) / AssetStep

/ AssetStep C
Vol = VolMax
If Gamma > 0 Then Vol = VolMin ’ Volatility depends on Gamma in the uncertain

volatility model
Theta = IntRate * Vold(i, k) - 0.5 * Vol * Vol * xi(i) * xi(i) * Gamma

- (IntRate - Div) * xi(i) * Delta ’ The
Black-Scholes equation

VNew(i, k) = Vold(i, k) - TStep * Theta
Next i

VNew(-NumAssetSteps, k) = Vold(-NumAssetSteps, k) * (1 - IntRate * TStep) ’
Boundary condition at xi = 0

VNew(NumAssetSteps, k) = VNew(NumAssetSteps - 1, k) ’ Boundary condition at xi =
infinity. Delta = 0

For i = -NumAssetSteps To NumAssetSteps D
Vold(i, k) = VNew(i, k)
Next i E
Next k

If jtest (NumSoFar) = j Then ’ Test for a fixing date

For i = -NumAssetSteps To NumAssetSteps F
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For k = 0 To NumQSteps
qafter = Q(k) + Application.Max(0, Application.Min(Strike2, xi(i) - 1)) ’

The updating rule
kafter = Int(qafter / QStep)
frac = (qafter - QStep * kafter) / QStep

V1 = 0
V2 = 0
If kafter < NumQSteps Then
V1 = VNew(0, kafter)
V2 = VNew(0, kafter + 1)
End If

Vold(i, k) = (1 - frac) * V1 + frac * V2 ’ The jump condition. Linear
interpolation

Next k
Next i
NumSoFar = NumSoFar + 1 G

End If

Next j

cliquet = Vold ’ Output the whole array

End Function
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T
he conditional distribution of asset volatility has been the subject of extensive empir-
ical research in the last decade. The overwhelming preponderance of evidence points
to the existence of pronounced long-term dependence in volatility, characterized by
slow decay rates in autocorrelations and significant correlations at long lags (e.g.
Crato and de Lima, 1993, and Ding, Granger and Engle, 1993). Andersen et al,

1999, find similar patterns for autocorrelations in the realized volatility processes for the Dow 30
stocks – autocorrelations remain systematically above the conventional Bartlett 95% confidence
band as far out as 120 days. Comparable results are seen when autocorrelations are examined
for daily log range volatility, as Figure 1 illustrates. Here we see significant autocorrelations in
some stocks as far back as two years.

Long memory detection and estimation
Among the first to consider the possibility of persistent statistical dependence in financial time
series was Mandelbrot (1971), who focused on asset returns. Subsequent empirical studies,
for example by Greene and Fielitz (1977), Fama and French (1988), Porteba and Summers
(1988) and Jegadeesh (1990), appeared to lend support for his findings of anomalous behav-
ior in long-horizon stock returns. Tests for long-range dependence were initially developed by
Mandelbrot using a refined version of a test statistic, the Rescaled Range, initially devel-
oped by English hydrologist Harold Hurst (1951). The classical rescaled range statistic is
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defined as:

R/S(n) = 1

sn


 Max

k∑
j=1

(Xj − X̃n) − Min
k∑

j=1
(Xj − X̃n)

1 ≤ k ≤ n




where sn is the sample standard deviation:

sn =

1

n

∑
j

(Xj − X̃n)
2




1/2

The first term is the maximum of the partial sums of the first k deviations of Xj from the
sample mean. Since the sum of all n deviations of the Xj ’s from their mean is zero, this term
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is always non-negative. Correspondingly, the second term is always nonpositive and hence
the difference between the two terms, known as the range for obvious reasons, is always
nonnegative.

Mandelbrot and Wallis (1969) use the R/S statistic to detect long-range dependence in the
following way. For a random process there is scaling relationship between the rescaled range
and the number of observations n of the form:

R/S(n) ∼ nH

where H is known as the Hurst exponent. For a white noise process H = 0.5, whereas for a
persistent, long memory process H > 0. The difference d = (H − 0.5) represents the degree
of fractional integration in the process.

Mandelbrot and Wallis suggest estimating the Hurst coefficient by plotting the logarithm of
R/S(n) against log(n). For large n, the slope of such a plot should provide an estimate of H .
The researchers demonstrate the robustness of the test by showing by Monte Carlo simulation
that the R/S statistic can detect long-range dependence in highly non-Gaussian processes with
large skewness and kurtosis. Mandelbrot (1972) also argues that, unlike spectral analysis which
detects periodic cycles, R/S analysis is capable of detecting nonperiodic cycles with periods
equal to or greater than the sample period.

The technique is illustrated below for the volatility process of General Electric Corporation,
a DOW Industrial Index component. The estimated Hurst exponent given by the slop of the
regression, approximately 0.8, indicates the presence of a substantial degree of long-run persis-
tence in the volatility process. Analysis of the volatility processes of other DOW components
yield comparable Hurst exponent estimates in the region of 0.76–0.96.

A major shortcoming of the rescaled range is its sensitivity to short-range dependence. Any
departure from the predicted behavior of the R/S statistic under the null hypothesis need not be
the result of long-range dependence, but may merely be a symptom of short-term memory. Lo
(1991) shows that this results from the limiting distribution of the rescaled range:

1√
n
R/S(n) ⇒ V

where V is the range of a Brownian bridge on the unit interval.
Suppose now that the underlying process {Xj } is short range-dependent, in the form of a

stationary AR(1), i.e.:

rt = ρrt−1 + εt , εt ∼ N(0, σ 2), |ρ| ∈ (0, 1)

The limiting distribution of R/S(n)/
√

n is V [(1 + ρ)/(1 − ρ)]1/2. As Lo points out, for some
common stocks the estimated autoregressive coefficient is as large at 0.5, implying that the
mean of R/S(n)/

√
n may be biased upward by as much as 73%. In empirical tests, Davies

and Harte (1987) show that even though the Hurst coefficient of a stationary Gaussian AR(1)
is precisely 0.5, the 5% Mandelbrot regression test rejects this null hypothesis 47% of the time
for an autoregressive parameter of 0.3

To distinguish between long-range and short-term dependence, Lo proposes a modification
of the R/S statistic to ensure that its statistical behavior is invariant over a general class of
short memory processes, but deviates for long memory processes. His version of the R/S test
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statistic differs only in the denominator. Rather than using the sample standard deviation, Lo’s
formula applies the standard deviation of the partial sum, which includes not only the sums of
squares of deviations for Xj , but also the weighted autocovariances (up to lag q):

σ̂ 2
n (q) = 1

n

n∑
j=1

(Xj − X̃n)
2 + 2

q∑
j=1

ωj (q)γ̂j , ωj (q) = 1 − j

q + 1
, q < n

where the γj are the usual autocovariance estimators.
While in principle this adjustment to the R/S statistic ensures its robustness in the presence

of short-term dependency, the problem remains of selecting an appropriate lag order q. Lo and
MacKinlay (1989) have shown that when q becomes relatively large to the sample size n, the
finite-sample distribution of the estimator can be radically different from its asymptotic limit.
On the other hand, q cannot be taken too small as the omitted autocovariances beyond lag
q may be substantial. Andrews (1991) provides some guidance on the choice of q, but since
criteria are based on asymptotic behavior little is known about the optimal choice of lag in
finite samples.

Another method used to measure long-range dependence is the detrended fluctuation analysis
(DFA) approach of Peng et al (1994) and further developed by Viswanathan et al (1997). Its
advantage over the rescaled range methodology is that it avoids the spurious detection of
apparent long-run correlation due to non-stationarities. In the DFA approach the integrate time
series y(t ′) is obtained:

y(t ′) =
t ′∑

T =1

x(t).

The series y(t ′) is divided into non-overlapping intervals, each containing m data points, and a
least squares line is fitted to the data. Next, the root mean square fluctuation of the detrended
time series is calculated for all intervals:

F(m) =
√√√√ 1

T

T∑
t ′=1

[y(t ′) − ym(t ′)]2

A log–log plot of F(m) vs the interval size m indicates the existence of a power-scaling
law. If there is no correlation, or only short-term correlation, then F(m)∞m1/2, but if there
is long-term correlation then F(m) will scale at rates greater than 1

2 .
A third approach is a semi-parametric procedure to obtain an estimate of the fractional

differencing parameter d . This technique, due to Geweke and Porter-Hudak (1983), is based on
the slope of the spectral density around the angular frequency w = 0. The spectral regression
is defined by:

ln{I (ωλ} = a + b ln
{

4 sin2 ωλ

2

}
+ nλ, λ = 1, . . . , v

where I (Wλ) is the periodogram of the time series at frequencies wλ = 2πλ/T with l =
1, . . . , (T − 1)/2. T is the number of observations and v is the number of Fourier frequencies
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included in the spectral regression. The least squares estimate of the slope of the regression
line provides an estimate of d . The error variance is π2/6 and allows for the calculation of
the t-statistics for the fractional differencing parameter d . An issue with this procedure is the
choice of v, which is typically set to T 1/2, with Sowell (1992) arguing that u should be based
on the shortest cycle associated with long-run correlation.

The final method we consider is due to Sowell (1992) and is a procedure for estimating
stationary ARFIMA models of the form:

�(L)(1 − L)d(yt − µ) = 	(L)εt

where � and 	 are lag polynomials, d is the fractional differencing parameter, µ is the mean
of the process yt ∼ N(µ, 
) and εt is an error process with zero mean and constant variance
σ 2

e . We can use any set of exogenous regressors to explain the mean: z = y − µ, µ = f (X, β).
The spectral density function is written in terms of the model parameter d , from which

Sowell derives the autocovariance function at lag k in the form:

γ (k) = 1

2π

2π∫

0

f (W)etwk dw

The parameters of the model are then estimated by exact maximum likelihood, with log likelihood:

log L(d, φ, θ, β, σ 2
e ) = −T

2
log(2π) − 1

2
log |
| − 1

2
z′
−1z

Structural breaks
Granger and Hyung (1999) take a different approach to the analysis of long term serial auto-
correlation effects. Their starting point is the standard I (d) representation of an fractionally
integrated process yt of the form:

(1 − L)dyt = εt

where d is the fractional integration parameter and, from its Maclaurin expansion:

(1 − L)d =
∞∑

j=0

πjL
j , πj = j − 1 − d

j
πj−1, π0 = 1

The researchers examine the evidence for structural change in the series of absolute returns
for the SP500 Index by applying the sequential break point estimation methodology of Bai
(1997) and Bai and Perron (1998) and Iterative Cumulative Sums of Squares (ICSS) technique
of Aggarwal, Inclan and Leal, 1999. Bai’s procedure works as follows. When the break point
is found at period k, the whole sample is divided into two subsamples with the first subsample
consisting of k observations and the second containing the remaining (T − k) observations. A
break point is then estimated for the subsample where a hypothesis test of parameter consis-
tency is rejected. The corresponding subsample is then divided into further subsamples at the
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estimated break point and a parameter constancy test performed for the hierarchical subsamples.
The procedure is repeated until the parameter constancy test is not rejected for all subsamples.
The number of break points is equal to the number of subsamples minus 1. Bai shows how
the sequential procedure coupled with hypothesis testing can yield a consistent estimate for the
true number of breaks.

Aggarwal, Inclan and Leal’s (1999) approach uses the Iterative Cumulative Sums of Squares
(ICSS) as follows. We let {εt} denote a series of independent observations from a normal
distribution with zero mean and unconditional variance σ 2

t . The variance within each interval
is denoted by τ 2

j , j = 0, 1, . . . , Nt , where Nt is the total number of variance changes in T

observations and 1 < k1 < k2 < · · · < kNT < T are the set of change points.

So σt = τj kj < t < kj+1

To estimate the number of changes in variance and the point in time of the shift a cumulative
sum of squares is used.

Let Cλ = ∑k
t=1 ε2

t , k = 1, . . . , T be the cumulative sum of the squared observations from
the start of the series until the kth point in time. Then define Dk = (Ck/CT ) − k/T .

If there are no changes in variance over the sample period, the Dk oscillate around zero.
Critical values based on the distribution of Dk under the null hypothesis of no change in
variance provide upper and lower bounds to detect a significant change in variance with a
known level of probability. Specifically, if maxk

√
(T /2)|Dk| exceeds 1:36, the 95th percentile

of the asymptotic distribution, then we take k*, the value of k at which the maximum value is
attained as an estimate of the change point.

Figure 3 illustrates the procedure for a simulated GBM process with initial volatility of 20%,
which changes to 30% after 190 periods, and then reverts to 20% once again in period 350. The
test statistic

√
(T /2)|Dk| reaches local maxima at t = 189(2.313) and t = 349(1.155), clearly

and accurately identifying the two break points in the series.
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Figure 3: Testing for structural breaks in simulated GBM
process using iterative cumulative sums of squares

A similar analysis (Figure 4) is carried out for the series of weekly returns in the SP500
index from April 1985 to April 2002. Several structural shifts in the volatility process are
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Figure 4: Testing for structural breaks in SP500 index returns using
iterative cumulative sums of squares

apparent, including the week of 19 Oct 1987, 20 July 1990 (GulfWar), the market tops around
Aug 1997, Aug 1998 and Oct 2000.

In their comprehensive analysis of several emerging and developed markets, Aggarwal et al
identify numerous structural shifts relating to market crashes, currency crises, hyperinflation
and government intervention, including, to take one example, as many as seven significant
volatility shifts in Argentina over the period from 1985–1995.

It is common for structural breaks to result in ill-conditioning in the volatility processes dis-
tribution, often in the form of excess kurtosis. This kind of problem can sometimes be resolved
by modeling the different regime segments individually. Less commonly, regime shifts can pro-
duce spurious long memory effects. For example, Granger and Hyung (1999) estimate the degree
of fractional integration d in daily SP500 returns for 10 subperiods from 1928–1991 using the
standard Geweke and Porter Hudak approach. All of the subperiods have strong evidence of
long memory in the absolute stock return. They find clear evidence of a positive relationship
between the time-varying property of d and the number of breaks, and conclude that the SP500
Index absolute returns series is more likely to show the “long memory” property because of
the presence of a number of structural breaks in the series rather than being an I (d) process.

Stocks in Asian-Pacific markets typically exhibit volatility regime shifts at around the time of
the regional financial crisis in the latter half of 1997. The case of the ASX200 Index component
stock AMC is typical (see Figure 5). Rescaled range analysis of the entire volatility process
history leads to estimates of fractional integration of the order of 0.2. But there is no evidence
of volatility persistence is the series post-1997. The conclusion is that, in this case, apparent
long memory effects are probably the result of a fundamental shift in the volatility process.

Conclusion
Long memory effects that are consistently found to be present in the volatility processes in
financial assets of all classes may be the result of structural breaks in the processes themselves,
rather than signifying long-term volatility persistence.
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ICSS: AMC
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Figure 5: Structural breaks in the Asian crisis period for ASX
component stock AMC

Reliable techniques for detecting regime shifts are now available and these can be used to
segment the data in a way that reduces the risk of model misspecification.

However, one would be mistaken to conclude that all long memory effects must be the
result of regime shifts of one kind or another. Many US stocks, for example, show compelling
evidence for volatility persistence both pre- and post-regime shifts. Finally, long memory effects
can also result from the interaction of a small number of short-term correlated factors.
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T
he paper discusses theoretical properties, shows the performance and presents some
extensions of Heston’s (1993) stochastic volatility model. The model proposed by
Heston extends the Black and Scholes (1973) model and includes it as a special case.
Heston’s setting takes into account non-lognormal distribution of the assets returns,
leverage effect, important mean-reverting property of volatility and it remains ana-

lytically tractable. The Black–Scholes volatility surfaces generated by Heston’s model look like
empirical implied volatility surfaces. The complication is related to the risk-neutral valuation
concept. It is not possible to build a riskless portfolio if we formulate the statement that the
volatility of the asset varies stochastically. This is principally because the volatility is not a
tradable security.

Heston’s stochastic volatility model
In this section we specify Heston’s stochastic volatility model and provide some details of how
to compute options prices. We use the following notation:
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S(t) Equity spot price, financial index.
V (t) Variance.
C European call option price.
K Strike price.
W1,2 Standard Brownian movements.
r Interest rate.
q Dividend yield.
κ Mean reversion rate.
θ Long run variance.
V0 Initial variance.
σ Volatility of variance.
ρ Correlation parameter.
t0 Current date.
T Maturity date.

Heston’s stochastic volatility model (1993) is specified as follows:

dS(t)

S(t)
= µdt + √

V (t) dW1 (1)

dV (t) = κ(θ − V (t)) dt + σ
√

V (t) dW2 (2)

To take into account leverage effect, Wiener stochastic processes W1, W2 should be correlated
dW1 · dW2 = ρ dt . The stochastic model (2) for the variance is related to the square-root process
of Feller (1951) and Cox, Ingersoll and Ross (1985). For the square-root process (2) the variance
is always positive and if 2κθ > σ 2 then it cannot reach zero. Note that the deterministic part
of process (2) is asymptotically stable if κ > 0. Clearly, that equilibrium point is Vt = θ .

Applying the Ito lemma and standard arbitrage arguments we arrive at Garman’s partial
differential equation:

∂C

∂t
+ S2V

2

∂2C

∂S2
+ (r − q)S

∂C

∂S
− (r − q)C + [κ(θ − V ) − λV ]

∂C

∂V

+ σ 2V

2

∂2C

∂V 2
+ ρσSV

∂2C

∂S∂V
= 0 (3)

where λ is the market price of volatility risk.
Heston builds the solution of the partial differential equation (3) not in the direct way but

using the method of characteristic functions. He is looking for the solution in the form of the
corresponding Black and Scholes model:

C(S0, K, V0, t, T ) = SP1 − Ke−(r−q)(T −t)P2 (4)

where P1 is the delta of the European call option and P2 is the conditional risk neutral probability
that the asset price will be greater than K at the maturity. Both probabilities P1, P2 also satisfy
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PDE (3). Provided that characteristic functions ϕ1, ϕ2 are known the terms P1, P2 are defined
via the inverse Fourier transformation:

Pj = 1

2
+ 1

π

∫ ∞

0
Re

[
e−iu ln Kϕj (S0, V0, t, T , u)

iu

]
du, j = 1, 2 (5)

Heston assumes the characteristic functions ϕ1, ϕ2 having the form:

ϕj (S0, V0, τ ; φ) = exp{Cj(τ ; φ) + Dj(τ ; φ)V0 + iφS0}, τ = T − t (6)

After substitution of ϕ1, ϕ2 in the Garman equation (3) we get the following ordinary differential
equations for unknown functions Cj(τ ; φ) and Dj(τ ; φ):

dCj (τ ; φ)

dτ
− κθDj(τ ; φ) − (r − q)φi = 0 (7)

dDj (τ ; φ)

dτ
− σ 2D2

j (τ ; φ)

2
+ (bj − ρσφi)Dj (τ ; φ) − ujφi + φ2

2
= 0 (8)

with zero initial conditions:

Cj (0, φ) = Dj(0, φ) = 0 (9)

The solution of the system (7) (9) is given by:

C(τ, φ) = (r − q)φiτ + κθ

σ 2

{
(bj − ρσφi + d)τ − 2 ln

[
1 − gedτ

1 − g

]}

D(τ ; φ) = bj − ρσφi + d

σ 2

[
1 − edτ

1 − gedτ

] (10)

where:

g = bj − ρσφi + d

bj − ρσφi − d
, d =

√
(ρσφi − bj )2 − σ 2(2ujφi − φ2).

u1 = 0.5, u2 = −0.5, a = κθ, b1 = κ + λ − ρσ, (11)

b2 = κ + λ.

Realization of Heston’s stochastic volatility model
How to use the model
Implementing such a model consists of different parts that can be divided under a lot of people:

• The first thing is to implement the closed-form solutions for a standard call for the Heston
model and the Heston model with jump diffusion, trying to optimize the numerics for
speed, such that the calibration can be done as fast as possible.

• The closed-form solution should be verified with a Monte-Carlo (MC) simulation and
by directly solving the resulting PDEs using the Finite Difference Method (FDM).
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• With the closed-form solutions a suitable set-up should be established to calibrate the
models to traded standard calls.

• With the now calibrated model we finally should be able to calculate the price and
the greeks of volatility sensitive products such as cliquets using again Monte-Carlo
simulation and the Finite Difference Method.

Everything should be done in C++ and be usable as a DLL in Microsoft Excel.

Implementing the Fourier integral
Inverse Fourier transformation (5) is the main point in numerical implementation of the option
valuation algorithm provided that characteristic function is known.

The complex numbers can be conveniently implemented by using the complex <> class
from the C++ Standard Library. Because the integral should be computed with a high precision
for a wide range of parameters (parameters of the stochastic vol process, different strikes and
maturities) we decided to use an adaptive quadrature for the first try. Then the algorithm can
adjust to changes in the integrand on its own, saving us from the need to do so. We use an
adaptive Simpson and an adaptive Gauss–Lobatto quadrature which both give good results,
where the Gauss–Lobatto one uses less computation time for the same precision. But after
some experience with the model, we ended up with a special optimized fixed stepwidth Gauss
quadrature for faster computation.

The pitfalls of the complex logarithm
Due to the fact that the complex logarithm is multiple valued (see Figure 1):

log z = log |z| + i(arg(z) + 2πn) (12)
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Figure 1: Shows the real part and principle branch of imaginary part of
complex logarithm
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with n being an integer, one usually restricts the logarithm to its principle branch by restricting
arg(z) ∈ [−π, π] and setting n = 0. This choice is used by the standard C++ log-function
and it is necessarily discontinuous at the cut along the negative real axis. At first we had
problems with numerical implementation of complex logarithm. Fortunately, we found help at
www.wilmott.com in the thread on stochastic volatility models. After implementing the code
with a complex logarithm function that maintains continuous over the cut (thanks Roger for
the instruction), the results of our three different numerical approaches (Monte-Carlo simula-
tions, Finite Difference method and closed-form solution) agreed nicely and this gave us the
confidence to continue our work.

Calibration of Heston’s model to market data
With the now stable implementation of the closed-form solution we are able to calibrate the
models to some traded plain vanilla calls.

Calibration scheme
We decide to do a least squared error fit in the following way.

Let τ1, τ2, . . . , τM be some times to maturities with fwd1, fwd2, . . . , fwdM being the
corresponding forwards and dfs1, dfs2, . . . , dfsM the corresponding discount factors. Let
X1, X2, . . . , XN be a set of strikes and σ

imp
ij the corresponding market implied volatility. The

aim of the calibration is to minimize the least squared error:

SqErr(θ) =
N∑

i=1

M∑
j=1

wij [CMP (Xi, τj ) − CSV (S(t), Xi, fwdj , dfsj , τj , θ)]α

+ Penalty(�, �0)

(13)

where CMP (Xi, τj ) denotes the market price for a call with strike Xi and maturity τj . CSV

is the price calculated with the stochastic volatility model which depends on the vector of
model parameters � = (κ, θ, σ, ρ, V0, λ) for the Heston model. Further, typically α = 2n, n =
1, 2, . . . . The penalty function may be e.g. the distance to the initial parameter vector Penalty
(�, �0) = ||� − �0||2 and may be used to give the calibration some additional stability.

As it turns out, the suitable choice of the weight factors wij is crucial for good calibra-
tion results.

Local vs. global optimization
Minimizing the objective function (13) is clearly a nonlinear programming (NLP) problem with
the nonlinear constrain 2κθ − σ 2 > 0. This condition ensures that the volatility process cannot
reach zero. Unfortunately the objective function is far from being convex and it turned out that
usually there exist many local extrema. As a consequence we decided to try both local and
global optimizers:

• Local (deterministic) algorithms. Within these types of algorithms one has to choose
an initial guess (hopefully a good one) for the parameter vector �0 ∈ Rd . The algorithm
then determines the optimal direction and the stepsize and is moving downhill on the
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parameter manifold to the minimum of the objective function. There are a lot of algo-
rithms available both for unconstrained and constrained problems and they are usually
based on simplex or some kind of gradient method. Most of these algorithms work rea-
sonably fast, but one always has the risk to end up in a local minimum. As a consequence
a good initial guess is crucial.

• Stochastic algorithms. In contrast to the local optimizers the initial guess is (hopefully)
irrelevant in the concept of stochastic optimization. The simulated annealing algorithm
chooses the direction and stepsize randomly, it “searches everywhere”. It moves always
downhill but may accept an uphill move with a certain probability pT which depends
on the annealing parameter T . This parameter is called “the temperature” for historical
reasons. During the optimization process the temperature is gradually reduced. There
exist some convergence theorems, which state that the algorithm always ends up in
the global minimum if the annealing process is sufficiently slow. There are different
variants (e.g. FA, VFSRA, ASA) available which differ from the original simulated
annealing (SA) in the annealing scheme, but in general these stochastic algorithms are
computationally more burdensome than the local optimizers.

Results
We tested different local optimizers and surprisingly the built-in Excel solver, which comes
with Excel for free, turned out to be very robust and reliable. It is based on the Generalized
Reduced Gradient (GRG) method (www.solver.com for details) and is our favored optimizer
when we have some “good” initial guess for our parameter vector, e.g. if one has to recalibrate
the model every day and the volatility surface has not changed much. We were able to calibrate
the Heston model to the S&P 500 index with an maximum error of less than 0.15% for ATM
calls (Figures 2 and 3). The Excel solver may however sometimes end up in a local minimum
instead of reaching the global minimum. In such cases or when there is no good initial guess
available, we use the adaptive simulated annealing (ASA) algorithm (www.ingberg.com), which
allows a faster annealing scheme than the standard SA. It further turned out that adding jump-
diffusion to the Heston model often does not improve the quality of the calibration any more.
This may be due to the fact that the market now frequently shows an inverted yield curve and
the model is simply overtaxed with this situation.

Stochastic volatility model with time-dependent
parameters
Why are more complex stochastic models required? The answer is simple – because the prices
from stochastic engines are not supported by market prices. As a result financial engineers
have to recalibrate model parameters every day to new market data. It is not consistent with an
accurate description of the dynamics. The next (but not the last) step in the stochastic volatility
models history is to models with time-dependent parameters. Since the Riccati differential
equation (8) is non-linear, the generalization of Heston model for variable parameters is not
straightforward.
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Analytical solutions to the Riccati equation
We rewrite the Riccati equation (8) in the standard form:

dx(t)

dt
+ a(t)x2(t) + b(t)x(t) + c(t) = 0. (14)

Recall, that the general solution of a Riccati equation (14) cannot be expressed by means of
quadratures except in some particular cases.

The simplest case is a(t) ≡ 0. In this case we have a linear differential equation with variable
parameters that has an analytical solution.

After change of variable y(t) = −1/x(t) we arrive again at Riccati equation:

dy(t)

dt
+ c(t)y2(t) + b(t)y(t) + a(t) = 0. (15)

Therefore if c(t) ≡ 0 in the original Riccati equation then after transformation we obtain again
the linear equation with analytical solution.

The general solution of the Riccati equation can be written by means of two quadratures if
one particular solution of a Riccati equation is known.

For the Heston stochastic volatility model the ordinary extension for the time-dependent
coefficients is long run variance θ . Since this parameter does not appear in the Riccati
equation (8) the analytical solution for arbitrary θ(t) can be constructed. For the other
Heston models coefficients κ , ρ, σ the generalization to the time-dependent model is not
so straightforward. Some analytical solutions are possible. For example if κ(t) = at + b, or
κ(t) = ae−αt . In this case the Riccati equation (8) has closed form solutions expressed by means
of hypegeometric function. The drawback – numerical implementation of this analytical solution
might be more time consuming than direct numerical integration of equations (7) and (8).

Asymptotic solution to Riccati equation
As finding the general solution of the Riccati equation with time-variable coefficient is not
possible, the natural approach is to apply asymptotic methods. Let, for simplicity, all Heston
model parameters except the correlation coefficient be constant. The approximate solution to
the Riccati equation can be found in the form of the asymptotic expansion:

ρ(t) = ρ0 + ερ1(t) + ε2ρ2(t) + · · · ,
D(t) = D0(t) + εD1(t) + ε2D2(t) + · · · , ε � 1.

(16)

In the first approximation we arrive at a linear equation with time-variable coefficients. To
obtain the solution of this ODE is straightforward:

D1(t) = −σui

∫ t

0
ρ1(τ )D0(τ ) exp

{∫ τ

0
D0(ξ) dξ − (−ρ0σui + bj )τ

}
dτ

× exp

(
−

∫ t

0
D0(τ ) dτ + (−ρ0σui + bj )t

)
(17)
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The alternative to the above-discussed approach is asymptotic analysis of the systems with slow
varying parameters.

Analytical solution to Riccati with piece-wise constant parameters
The second extension of the standard Heston stochastic volatility model to time-dependent
coefficients is the setting with piecewise-constant parameters. We can define the solution of
the Riccati equation (8) with piecewise-constant coefficients by means of adjusting of ini-
tial conditions.

At first we need a solution of the equations (7) and (8) with arbitrary initial conditions:

Cj (0, φ) = C0
j , Dj (0, φ) = D0

j . (18)

The solution was build by means of computer-algebra system Maple.

Cj(τ, φ) = (r − q)φτ + κθ

σ 2

×
(

(bj − ρσφi + d)τ − 2 ln

(
1 − geτd

1 − g

))
(19)

Dj(τ, φ) = bj − ρσφi + d − (bj − ρσφi − d)geτd

(1 − geτd)σ 2
(20)

where:

g = bj − ρσφi + d − D0
j σ

2

bj − ρσφi − d − D0
j σ

2
, d =

√
(ρσφi − bj )2 − σ 2(2ujφi − φ2). (21)

The solution is close to the Heston one (10), (11). The time interval to maturity [t, T ] is divided
into n subintervals [t, t1], . . . , [ti , tj ], . . . , [tn−1, T ] where tk, k = 1, . . . , n − 1 is the time of
model parameters jumps. Model parameters are constant during [ti , tj ] but different for each
subinterval. Further on it is convenient to use the inverse time τ = T − t . The initial condition
for the first subinterval from the end [0, τ1] where τk = T − tn−k, k = 1, . . . n − 1 is zero.
Therefore we can use Heston’s solution (10), (11). For the second subinterval [τ1, τ2] we employ
the general solution (19)–(21) with arbitrary initial conditions (18). Provided that functions
Cj(τ, φ), Dj (τ, φ) are continuous in the time of parameters jump τ1 the initial conditions for
the second subinterval can be found from the following condition:

Cj (0, φ) = C0
j = CH

j (τ1, φ), Dj (0, φ) = D0
j = DH

j (τ1, φ) (22)

where CH
j (τ1, φ), DH

j (τ1, φ) are Heston’s solutions with zero initial conditions, Solving the
above equations relative to C0

j ,D
0
j we obtain the initial values for the second time interval. The

same procedure is repeated at each time moment τk, k = 2, . . . , n − 1 of the parameters jumps.
Thus the calculation of the option price for the model with piecewise-constant parameters

consists of two phases:

1. Determine the initial conditions for each time interval in accordance with formulas (22).
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2. Calculate the functions Cj(τ, φ), Dj (τ, φ) using the solution (19)–(21) with initial con-
ditions (21).

For the numerical realization this solution is close to the Heston one. Additionally we have to
calculate initial conditions for the second time interval.

Numerical verification of the model with
time-dependent parameters
Here we compare options prices calculated according to techniques described in the previous
section and options prices from a Monte Carlo engine. The algorithm was implemented in
C/C++ code. We assume that mean reversion parameter κ is time-dependent and all other
model parameters are constant. Opening price S0 of the underlying asset is 1, the maturity of
the option considered is 5 years, interest rate is 0, start value for volatility V0 is 0.1, the long
run variance θ is 0.1, volatility of variance σ is 0.2, correlation coefficient ρ is −0.3, market
price of volatility risk λ is 0. The results of the numerical simulations for various strikes K are
presented in Table 1.

TABLE 1: COMPARISON OF ANALYTIC SOLUTION WITH MONTE
CARLO SIMULATIONS

k = {4, 2, 1}, T = 5

Monte-Carlo Analytical
solution

N = 150000, n b = 150

K Value StdDev Value Abs Err Rel Err

0.5 0.545298 0.001 0.543017 0.002281 0.004201
0.75 0.387548 0.001048 0.385109 0.002439 0.006333
1 0.275695 0.001021 0.273303 0.002392 0.008752
1.25 0.197629 0.000949 0.195434 0.002195 0.011231
1.5 0.143341 0.00086 0.14121 0.002131 0.015091

Conclusions
The attractive features of the Heston stochastic volatility model are:

• Its volatility updating structure permits analytical solutions to be generated for standard
plain vanilla European options and thus the model allows a fast calibration to given
market data.

• The form of the Heston stochastic process used to model price dynamics allows for
non-lognormal probability distributions.

• Heston stochastic model takes into account the leverage effect.
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• The Heston and the HJD model are able to nicely reproduce a wide range of the volatility
surfaces implied from option prices in the market.

On the other hand, there remain some disadvantages and open questions:

• The integrals needed for the computation of the option prices do not always con-
verge nicely.

• To perform well across a large time interval of maturities further extensions of the model
are necessary (such as time-dependent parameters).

• Heston’s model implicitly takes systematic volatility risk into account by means of a
linear specification for the volatility risk premium.

• The standard Heston model usually fails to create a short term skew as strong as the
one given by the market; the HJD model is often unable to fit an inverse yield curve.
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T
his article presents a treatment of forward-start options in stochastic volatility models
via change of numeraire. By choosing the asset price stopped at the strike setting as
the numeraire, the original problem is transformed into valuing a vanilla call option
on a hypothetical asset that becomes “alive” only between the strike setting and
the expiry of the option. In the particular case of the Heston model, this enables

straightforward extension of the closed-form formula of Heston (1993) to forward-start options.

Change of numeraire for forward-start options
Forward-start option is one of the simplest exotics, with the terminal payoff

[ST − KS T0 ]+ (1)

where T is the expiry, T0 < T is the strike set date, and K is the (percentage) strike. Another
common version of this contract, which primarily serves as a building block for cliquet options,
has the payoff:

[
ST

ST0

− K

]+
(2)
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Valuing these options in the Black–Scholes framework is standard (see Wilmott (1998)). To
examine the problem in a more general setting, suppose that dynamics of the asset price and
variance process are given on (�,F, {Ft }) under the equivalent martingale measure Q by:

dSt = rtSt dt + σt (vt , St )St dW
(1)
t (3a)

dvt = αt(vt ) dt + βt(vt )(ρ dW
(1)
t +

√
1 − ρ2 dW

(2)
t ), S0, v0 ∈ R

+ (3b)

where αt (·), βt (·) ≥ 0, and σt (·) ≥ 0 are deterministic and sufficiently regular to ensure exis-
tence and strong uniqueness for (3), as well as the martingale property of the discounted asset
price St exp(− ∫ t

0 rs ds). Within this framework we can study a number of named stochastic
volatility models (Heston, Hull–White, Scott, Stein–Stein), together with the local volatility
model of Dupire.

Put P(s, t) := exp(− ∫ t

s
ruI{s≤u} du), and let S

T0
t be the price process stopped at T0, S

T0
t :=

St∧T0 . We can write the payoff in (1) as:

[
ST − KS T0

T

]+

so the value of this option at time t ≥ 0 is:

V
(1)
t = P(t, T )EQ

[[
ST − KS T0

T

]+∣∣∣∣Ft

]

Fix t ∈ [0, T0], and for notational simplicity drop the functional dependence of the parame-
ters. Since:

Su = S0 exp

(∫ u

0

(
rs − 1

2
σ 2

s

)
ds +

∫ u

0
σs dW(1)

s

)
, u ∈ [0, T ] (4)

changing the numeraire to Nu := ST0
u /P (T0, u) yields:

V
(1)
t = NtEQ̂

[[
ST

S
T0
T /P (T0, T )

− KP(T0, T )

]+∣∣∣∣∣Ft

]

= StP (T0, T )EQ̂

[[
exp

(∫ T

T0

(
rs − 1

2
σ 2

s

)
ds +

∫ T

T0

σs dW(1)
s

)
− K

]+∣∣∣∣∣Ft

]
(5)

where Q̂ is the measure corresponding to Nu as the numeraire:

dQ̂

dQ
= NT P (0, T )

N0
= exp

(
−1

2

∫ T

0
I{s≤T0}σ

2
s ds +

∫ T

0
I{s≤T0}σs dW(1)

s

)
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From (3a), (3b), and (5) we have:

dSu = (ru + σ 2
u I{u≤T0})Su du + σuSu dŴ (1)

u (6a)

dvu = (αu + ρβuσuI{u≤T0}) du + βu(ρ dŴ (1)
u +

√
1 − ρ2 dŴ (2)

u ) (6b)

V
(1)
t = StP (T0, T )EQ̂

[[
exp

(∫ T

T0

(
rs − 1

2
σ 2

s

)
ds +

∫ T

T0

σs dŴ (1)
s

)
− K

]+∣∣∣∣∣Ft

]
(6c)

where, by the Girsanov theorem, Ŵ (1)
u := W(1)

u − ∫ u

0 I{s≤T0}σs ds and Ŵ (2)
u := W(2)

u are inde-
pendent Wiener processes under Q̂. The expression for V

(1)
t in (6c) involves only one Itô

exponential, so V
(1)
t /St can be viewed as the value of a vanilla call option on an asset whose

risk-neutral dynamics are:

dŜu = r̂uŜu du + σ̂uŜu dŴ (1)
u , Ŝ0 = 1

where r̂u := ruI{T0≤u}, σ̂u := σu(vu, Su)I{T0≤u}. As a result of the measure change, the asset Ŝt

is “frozen” in time until the strike set date, which is a probabilistic analogue of the similarity
reduction commonly used for pricing these options in the Black–Scholes setting (see Wilmott
(1998)).

The analogous formula for the payout in (2) is obtained more easily, since in that case the
change of numeraire is not needed. Denoting by V

(2)
t the value of this option, from (4) we get:

V
(2)
t = P(t, T )EQ

[[
exp

(∫ T

T0

(
rs − 1

2
σ 2

s

)
ds +

∫ T

T0

σs dW(1)
s

)
− K

]+∣∣∣∣∣Ft

]
(7)

Similarly as before, V
(2)
t /P (t, T0) can be interpreted as the value of the vanilla call option

written on an asset that follows:

dŜu = r̂uŜu du + σ̂uŜu dW(1)
u , Ŝ0 = 1

where r̂u := ruI{T0≤u}, σ̂u := σu(vu, Su)I{T0≤u}.
In this manner we have related pricing forward-start call options to pricing vanilla call

options. The obvious drawback is that now the asset has more complicated dynamics, with
the local volatility depending exogenously on Su. This additional complexity, however, is not
present in the important class of two-factor models in which σu = σu(vu). This fact will be
further explored in the next section when we examine the Heston stochastic volatility model in
more detail.

From (6) and (7) it also follows that the only difference between V
(1)
t /St and V

(2)
t (apart

from discounting) comes from the Girsanov change of drift in (6a) and (6b). Since βt and σt are
nonnegative, the drift in (6b) dominates the drift in (3b) iff ρ ≥ 0, resulting, by the comparison
theorem for diffusions,1 in a.s. uniformly higher level of the corresponding volatility paths.
Therefore, if σu = σu(vu), then V

(1)
t ≥ V

(2)
t St /P (t, T0) iff ρ ≥ 0.
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Forward-start options in the Heston model

The Heston model is under risk-neutral measure given by the following pair of SDEs:

dSt = rtSt dt + √
vtSt dW

(1)
t (8a)

dvt = λ(v − vt ) dt + η
√

vt (ρ dW
(1)
t +

√
1 − ρ2 dW

(2)
t ) (8b)

This is evidently a special case of (3), so the calculations of the previous section apply, provided
we can show that Mt := StP (0, t) is a true martingale. Establishing this property turns out to
be a quite involved technical task, which is therefore relegated to the Appendix.

Examining (6) and (7) we conclude that V (m), m = 1, 2 can be obtained via the premiums
of vanilla call options written on assets that under Q follow:

dŜ
(m)
t = I{T0≤t}rt Ŝ

(m)
t dt + I{T0≤t}

√
v

(m)
t Ŝ

(m)
t dW

(1)
t (9a)

dv
(m)
t =

(
λv − (λ − ρη (2 − m)I{t≤T0})v

(m)
t

)
dt + η

√
v

(m)
t (ρ dW

(1)
t +

√
1 − ρ2 dW

(2)
t )

(9b)
The above dynamics differ from (8) only by having piecewise constant (in time) coefficients.
As a consequence, the original Heston procedure can still be applied successively over the
intervals of parameters constancy, yielding an extension of the Heston closed-form formula.
We carry out this procedure in the rest of this section, closely following the derivation of the
Heston formula from Gatheral’s (2002) notes.

Put V̂
(m)
t := V

(m)
t /S2−m

t and note that, after ignoring discounting, we get:

V̂
(m)
t = EQ

[
Ŝ

(m)
T I{Ŝ(m)

T
>K}

∣∣∣Ft

]
− KEQ

[
I{Ŝ(m)

T
>K}

∣∣∣Ft

]
m = 1, 2

This can be written as:

V̂ (m)
τ (x, v) = K

(
exP

(m)

1 (x, v, τ ) − P
(m)

0 (x, v, τ )
)

(10)

where x := ln(Ŝ
(m)
t P (t, T0)/P (t, T )/K), τ := T − t , and P

(m)

0 , P
(m)

1 stand for probabilities of
exercise under the risk-neutral measure and the measure corresponding to Ŝ

(m)
t as numeraire.

Since the summands on the right-hand side are values at time t of tradable assets they satisfy
the valuation PDE, which in turn implies:

− ∂P
(m)
j

∂τ
+ θτ

(
1

2
v
∂2P

(m)
j

∂x2
+ ρηv

∂2P
(m)
j

∂x∂v
− vuj

∂P
(m)
j

∂x

)
+ 1

2
η2v

∂2P
(m)
j

∂v2

+ (λv − b
(m)
j v)

∂P
(m)
j

∂v
= 0,
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where:

uj = 1/2 − j, b
(m)
j = λ + ρη[m − 2 + θτ (2 − m − j)], θτ = I[0,T −T0](τ ).

Switching to Fourier transforms:

P̃
(m)
j (k, v, τ ) =

∫ ∞

−∞
exp(−ikx)P

(m)
j (x, v, τ ) dx

yields:

− ∂P̃
(m)
j

∂τ
+ θτ

(
−1

2
k2vP̃

(m)
j + ikρηv

∂P̃
(m)
j

∂v
− ikvuj P̃

(m)
j

)
+ 1

2
η2v

∂2P̃
(m)
j

∂v2

+ (λv − b
(m)
j v)

∂P̃
(m)
j

∂v
= 0,

so with the Heston’s ansatz:

P̃
(m)
j (k, v, τ ) = 1

ik
exp{C(m, k, τ )v + D(m, k, τ)v}, (11)

we get at the following pair of ODEs for C and D:

∂C

∂τ
= λD, C(0) = 0, (12a)

∂D

∂τ
= ατ − β(m)

τ D + η2D2/2, D(0) = 0, (12b)

where:

ατ = θτ (−k2/2 − ik/2 + ijk ),

β(m)
τ = b

(m)
j − iρηkθτ = λ + ρη[m − 2 + θτ (2 − m − j − ik)].

At this point we have reduced the original problem to integration of (12) over [0, τ ], which is
completed considering two separate cases.

First suppose τ ∈ [0, T − T0], which is the case of a vanilla call option. The parameters in
(12) are constant over the region of integration, so according to Heston (1993) we have:

D(m, k, τ) = r
(m)
−

1 − exp(−d(m)τ )

1 − g(m) exp(−d(m)τ )
, (13)

C(m, k, τ ) = λ

{
r

(m)
− τ − 2

η2
ln

(
1 − g(m) exp(−d(m)τ )

1 − g(m)

)}
, (14)

where:

d(m) =
√(

β
(m)

0

)2 − 2α0η2,
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r
(m)
± = β

(m)

0 ± d(m)

η2
,

g(m) = r
(m)
−

r
(m)
+

.

Next suppose τ > T − T0, which is the case of a genuine forward-start option. Using
C(m, k, T − T0) and D(m, k, T − T0) as the initial conditions, and integrating over [T −
T0, τ ] yields:

D(m, k, τ) = 2β
(m)
T

η2(1 + c exp(β
(m)
T (τ − T + T0)))

,

C(m, k, τ ) = C(m, k, T − T0) + 2β
(m)
T λ(τ − T + T0)

η2

− 2λ

η2
ln

(
1 + c exp(β

(m)
T (τ − T + T0))

1 + c

)
,

c = 2β
(m)
T

η2D(m, k, T − T0)
− 1.

According to (11) this completes the calculation of the Fourier transform of the option price.
As noted previously, the fact that (8) and (9) have the same form (modulo time-dependence

of the parameters) was crucial in extending the original Heston procedure. This property is
shared by the Stein–Stein model:

d ln(St ) = (rt − 1/2v2
t ) dt + vt dW

(1)
t

dvt = k(θ − vt ) dt + σ(ρ dW
(1)
t +

√
1 − ρ2 dW

(2)
t )

so the same approach can potentially be applied to this model as well. (The general closed-form
formula for vanilla options in Stein–Stein model is due to Schöbel and Zhu (1999)).

Future work
In view of the increasing importance of models incorporating jumps in asset and/or volatility
dynamics (Duffie et al. (2000) Overhaus et al. (2002)), generalising the present result to that
class of models would be a natural extension of this work. Another potential area of application
is the perturbation analysis of the forward skew along the lines of Fouque et al. (2000).

Appendix: Asset as numeraire
in the Heston model
Ensuring that the exponential local martingale Mt = StP (0, t) is a true martingale is instrumen-
tal in the application of the Girsanov theorem at the beginning of this chapter. Unlike the
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classical Black–Scholes case, this condition need not hold in stochastic volatility models, poten-
tially creating problems with numeraire change (see Sin (1998), Lewis (2000) for examples of
such models and related consequences for option pricing). The first comprehensive study of
conditions under which this property holds in the Heston model was carried out in Wong and
Heyde (2002), who present several sufficient conditions. These authors also study the conditions
under which equivalent martingale measure exists in the Heston model, a problem that we do
not address in this work.

In the rest of this section we establish that Mt is a martingale if λ ≥ 0, which is the case in
virtually all practical applications. This result relies on techniques different from those used in
Wong and Heyde (2002), and extends the corresponding result of that paper. The main tool for
ensuring that Mt is a martingale is the Novikov-type condition of Exercise VIII.1.40 of Revuz
and Yor (1999), requiring existence of two constants a > 0, c > 0 such that:

EQ[eav t ] ≤ c, ∀t ∈ [0, T ] (15)

Starting with the formula from Pitman and Yor (1982) (see also Wong and Heyde (2002)),
for an extension) we get for �(p) ≥ 0

EQ[exp(−pv t )] = A(p, t) exp(−B(p, t)v0), (16)

A(p, t) =
(

2λ exp(λt)

η2p(exp(λt) − 1) + 2λ exp(λt)

)2λv/η2

B(p, t) = 2pλ

η2p(exp(λt) − 1) + 2λ exp(λt)

Fix t ∈ [0, T ], and let F(p, t) denote the expression on the right-hand side in (16). Since F(p, t)

is analytic on �(p) >
2λ exp(λT )

η2(1−exp(λT ))
=: α0 (the singularity occurring for λ = 0 is removable),

from Lemma A.3 of Filipović et al (2003) it follows that (16) holds for p = α0/2. Thus, since
the function g(t) := F(α0/2, t) is continuous on [0, T ], with c := maxt∈[0,T ] g(t) ∈ (0, ∞),
α := −α0/2 > 0 we have

EQ[eαvt ] ≤ c, ∀t ∈ [0, T ]

Therefore, the version of the Novikov condition (15) holds, and Mt is a martingale.
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S
tochastic volatility models usually lead to a linear option pricing equation containing
a market price of risk term. This term is the source of endless problems and argument.

The main reason for the argument is that this quantity is not directly observable.
At best it can be deduced from the prices of derivatives, so called ‘fitting.’ But this is
far from adequate, the fitting will only work if those who set the prices of derivatives

are using the same model and they are consistent in that the fitted market price of risk does
not change when the model is refitted a few days later.

In practice, refitted parameters are always significantly different from the original fit. This is
why practitioners use static hedging, to minimize model error. However, static hedging may be
considered to be an afterthought, since it is, in the classical framework, no more than a patch
for mending a far-from-perfect model.

Whether we have a deterministic volatility surface or a stochastic volatility model with
prescribed or fitted market price of risk, we will always be faced with how to interpret refitting.
Was the market wrong before but is now right, or was the market correct initially and now
there are arbitrage opportunities? We won’t be faced with awkward questions like this if we
don’t expect our model, whatever it may be, to give unique values. In this paper we’ll see how
to estimate probabilities for prices being correct. We do this by only delta hedging and not
dynamically vega hedging. Instead we look at means and variances for option values.

What’s wrong
In the mark-to-market accounting framework, the price of a security should be marked at the
prevailing market price. Thus, we do not need a theoretical model to price vanilla products in
this framework. A model plays a significant role for determining the price of custom products
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† E-mail: paul@wilmott.com
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as well as for risk management. A typical approach in practice is to select a suitable model and
to calibrate its parameter to match the model price of a vanilla product with the market quote:

model::price(product(α), quote(product(·), t), parameter, t) = quote(product(α), t)

whenever a quote is available. Thus, by the implicit function theorem, the model parameter is
a function of market prices and time:

parameter = θ(quote(product(·), t), t)

This function is supposed to be invariant under the change of time and quote, but there is no
physical constraint that it has to be invariant. A model uses its parameter to describe the random
behavior of the market prices. Therefore, if the model parameter changes, the prices before and
after the change are not consistent any more. This will generate P&L that is unexplained by
the model.

In the stochastic volatility framework, it looks as if the model allows its parameter to change.
However, the volatility in this context is not a parameter any more. It is just an index which
is assumed observable or estimable. The parameter is one that describes the dynamics of the
volatility. The obvious merit of a stochastic volatility model is that it has more parameters to
fit the market quotes better (for example, the smile). Nevertheless, its parameter is not immune
from changing randomly in time. This is simply because the market itself has a higher order
of complexity than that of a stochastic volatility model.

Suppose that a stochastic volatility model has its parameters invariant under the change
of time and quote. Does this mean that this model leads us to a risk-free land? Here’s an
extreme example. The market is pricing all the vanilla options with a flat volatility at 50%. One
calibrates the Black–Scholes model perfectly, always. What happens if the realized volatility
of the underlying price won’t agree with 50%? Thus, a perfect and stable calibration does not
necessarily immunize the portfolio. Market prices are subject to supply and demand. Since
the buy-side and sell-side may have different rules (such as a short selling constraint) and
asymmetric information, there is a possibility of price elevation, also known as a bubble. The
typical approach, where model parameters are fitted to match the market prices, will not help
you to manage the risk better in such a case.

There are other problems. A significant one in practice is that the meaning of vega hedging
is ambiguous. One interpretation is that it is a hedge against the change of the portfolio value
with respect to the change of implied volatilities (i.e. market prices of vanilla products). In this
case, one has to re-calibrate the model by bumping the market prices to obtain the sensitivity.
Another interpretation is that it is a hedge against the change of the portfolio value with respect
to the change of volatility index, that is assumed observable but never is. In this case, the
sensitivity is obtained from the model without necessarily bumping the market prices. The first
one complies with the motivation of the mark-to-market framework. The second is more faithful
to theory. Neither one is perfect. When these two are different, we are in serious trouble, as a
wrong choice will give a mishedge.

The model for the asset and its volatility
We are going to work with a general stochastic volatility model:

dS(t) = µ(S(t), Z(t), t)S(t) dt + σ(S(t), Z(t), t)S(t) dX1(t)
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and:

dZ(t) = p(S(t), Z(t), t) dt + q(S(t), Z(t), t) dX2(t)

where X1 and X2 are standard Brownian motions under physical measure with an instanta-
neous correlation d[X1, X2](t) = ρ(S(t), Z(t), t) dt . If the coefficient function σ(s, z, t) = z,
the above specification agrees with the classical setting. We’ll only consider a non-dividend-
paying asset; the modifications needed to allow for dividends are the usual. In what follows we
will drop the time index (t) and function arguments (S(t), Z(t), t) as long as the expressions
are clear.

We are going to examine the statistical properties of a portfolio that tries to replicate as
closely as possible the original option position. We will not hedge the portfolio dynamically
with other options so our portfolio will not be risk free. Instead we will examine the mean and
variance of the value of our portfolio as it varies through time.

With � representing the discounted cash-flow of maintaining −� in the asset dynamically:

�(t, T ) =
n∑

i=1

e−r(τi−t)P (S(τi), τi) −
∫ T

t

e−r(τ−t)�(dS(t) − rS(t) dt)

where P denotes a payoff of a contingent claim at τi ∈ [t, T ], which can be a stopping time,
and where r denotes a funding cost rate. One can make r time dependent, but we’ll keep things
simple here. Except those times when a claim is settled, the change in this cash-flow in time
is continuous:

�(t, T ) = (1 − r dt)�(t + dt, T ) − �(dS(t) − rS(t) dt) (1)

We are going to vary � dynamically so as to replicate as closely as possible the option payoff.
At expiration we will hold stock, and have a cash account containing the results of our trading.
We are going to analyze the mean and the variance of our total position and interpret this in
terms of option prices and probabilities.

Analysis of the mean
Naturally we are to determine the trading strategy � in a Markovian way. In fact, the stochastic
control problem is reduced to a Markov control problem under a mild regularity condition, and
therefore we will simply start from this for now. Define the mean (or the expected future cash
flow) m at any time by:

m(S(t), Z(t), t) = Et [�(t, T )]

where the expectation Et is a shorthand notation for the conditional expectation given the state
of the world at time t . Using the equation (1), we obtain:

m = Et [(1 − r dt)(m + dm) − �(dS(t) − rS(t) dt)]
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Thus, using Itô’s formula we obtain the following partial differential equation (PDE):

∂m

∂t
+ 1

2
σ 2S2 ∂2m

∂S2
+ ρσSq

∂2m

∂S∂Z
+ 1

2
q2 ∂2m

∂Z2
+ µS

∂m

∂S
+ p

∂m

∂Z
− rm

= (µ − r)S�

Once again, we emphasize that all the drift coefficients are from the physical dynamic of the
spot process not from risk-adjusted dynamic. For simplicity, we will write:

L = 1

2
σ 2S2 ∂2

∂S2
+ ρσSq

∂2

∂S∂Z
+ 1

2
q2 ∂2

∂Z2
+ µS

∂

∂S
+ p

∂

∂Z

and the equation for the mean becomes:

∂m

∂t
+ Lm − rm = (µ − r)S� (2)

We still have to decide on �. We will choose it to minimize the variance locally, so we
can’t choose it until we’ve analyzed the variance in the next section. Note also that the final
condition for (2) will be the payoff for our original option that we are trying to replicate.

This equation for m was easy to derive, the equation for the variance is a bit harder.

Analysis of the variance
The variance v(S(t), Z(t), t) is defined by:

v(S(t), Z(t), t) = Et [(�(t, T ) − m(S(t), Z(t), t))2]

We may write:

�(t, T ) − m(S(t), Z(t), t) = (1 − r dt)A1 + A2 + O(dt)

where:

A1 = �(t + dt, T ) − (m + dm)

A2 = dm − �dS

Also note that A1 and A2 are uncorrelated. Therefore:

v = Et [(1 − r dt)2(v + dv) + (dm − �dS)2] + o(dt)

which further reduces to:

o(dt) = Et [dv] − 2rv dt + Et

[(
−σS� dX1 + ∂m

∂Z
q dX2 + ∂m

∂S
σS dX1

)2
]
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The end result, for an arbitrary �, is:

0 = ∂v

∂t
+ Lv − 2rv + σ 2S2

(
∂m

∂S

)2

+ 2ρσSq
∂m

∂S

∂m

∂Z
+ q2

(
∂m

∂Z

)2

+ σ 2S2�2 − 2�

(
σ 2S2 ∂m

∂S
+ ρσSq

∂m

∂Z

)
(3)

Choosing � to minimize the variance
Only the last two terms in (3) contain �. We therefore choose � to minimize this quantity, to
ensure that the variance in our portfolio is as small as possible. This gives:

� = ∂m

∂S
+ ρq

σS

∂m

∂Z
(4)

The mean and variance equations
Define a risk-adjusted differential operator:

L∗ = 1

2
σ 2S2 ∂2

∂S2
+ ρσSq

∂2

∂S∂Z
+ 1

2
q2 ∂2

∂Z2
+ rS

∂

∂S
+ p

∂

∂Z

Substituting (4) into (2) and (3) we get:

∂m

∂t
+ L∗m − rm = µ − r

σ
ρq

∂m

∂Z
(5)

and:

∂v

∂t
+ Lv − 2rv + q2(1 − ρ2)

(
∂m

∂Z

)2

= 0 (6)

The final conditions for these are obviously the payoff, for m(S, Z, T ), and zero for
v(S, Z, T ). If the portfolio contains options with different maturities, the equations must satisfy
the corresponding jump conditions as well.

Since the final condition for v is zero and the only ‘forcing term’ in (6) is

(
∂m

∂Z

)2

,

equation (6) shows that the only way we can have a perfect hedge is for either q to be zero, i.e.
deterministic volatility, or to have ρ = ±1. In the latter case the asset and volatility (changes)
are perfectly correlated. The solution of (5) is then different from the Black–Scholes solution.

Equation (5) is very much like the pricing equation for stochastic volatility in a risk-neutral
setting. It’s rather like having a market price of volatility risk of (µ − r)ρ/σ . But, of course,
the reasoning and model are completely different in our case.

The system of equations is nonlinear (actually two linear equations, coupled by a nonlinear
forcing term). We are going to exploit this fact shortly.
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How to interpret and use the mean and variance
Take an option position in a world with stochastic volatility, and delta hedge as proposed above.
Because we cannot eliminate all the risk we cannot be certain how accurate our hedging will
be. Think of the final value of the portfolio together with accumulated hedging as being the
‘outcome.’ The distribution of the outcome will generally not be Normal. The shape will depend
very much on the option position we are hedging. But we have calculated both the mean and
the variance of the hedged portfolio.

If the distribution of profit/loss were Normal then we could interpret the mean and the
variance as in Figure 1.
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Figure 1: Distribution of profit/loss

Since this is likely to be one of very many trades, the Central Limit Theorem tells us that
only the mean and the variance matter as far as our long-term profitability is concerned.

It is therefore natural to price the contract so as to ensure that it has a specified probability
of being profitable. If we made the assumption that the distribution was not too far from Normal
then the mean and the variance are sufficient to describe the probabilities of any outcome. If
we wanted to be 95% certain that we would make money then we would have to sell the
option for:

m + 1.644853v1/2

or buy it for

m − 1.644853v1/2

The 1.644853 comes from the position of the 95th percentile, assuming a Normal distribution.
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More generally we would price at:

m ± ξ v1/2

where the ξ is a personal choice.
Clearly the larger ξ the greater the potential for profit from a single trade, see Figure 2.

0.1

0

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ξ

Expected
profit

Figure 2: Expected profit from a single trade versus ξ

However, the larger ξ , the fewer trades, see Figure 3.
The net result is that the total profit potential, being a product of the number of trades and the

profit from each trade, is of the form shown in Figure 4. Don’t be too greedy or too generous.
We’ll use this idea in the example below, but we will insist that we are within one standard

deviation of the mean so that ξ = 1. This is simply so that we have fewer parameters to
carry around.

Static hedging and portfolio optimization
If we use as our option (portfolio) ‘price’ the following:

mean − (variance)1/2 = m − v1/2

then we have a non-linear model.
Whenever we have a non linear model we have the potential for improving the price by

static hedging (see Avellaneda and Parás, 1995, and Wilmott, 2000). This static hedging is,
unlike the static hedging of linear problems, completely internally consistent. We will see how
this works in the example.
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Figure 3: Number of trades versus ξ
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Figure 4: Total profit potential versus ξ

Example: valuing and hedging an up-and-out call
In this section, we consider the pricing and hedging of a short up-and-out call. Furthermore. we
will consider a special case when the stochastic volatility is parameterized in a classical way:



STOCHASTIC VOLATILITY AND MEAN-VARIANCE ANALYSIS 429

σ(S, Z, t) = Z. Throughout this section, our choice of mean-variance combination is:

m − v1/2 (7)

First consider a single up-and-out call with barrier located at Su. In this case, we solve the
equations (5) and (6) subject to:

(a) m(Su, σ, t) = v(Su, σ, t) = 0 for each (σ, t) ∈ (0, ∞) × [0, T ) where T is maturity;
(b) m(S, σ, T ) = − max(S − E, 0) for each (S, σ ) ∈ (0, X) × (0, ∞) where E is the strike;
(c) v(S, σ, T ) = 0 for each (S, σ ).

The discontinuity of the payoff at the knock-out barrier makes this position particularly difficult
to hedge. In fact this can be easily seen from our equations. Figure 5 and Figure 6 are the
pictures of calculated mean and variance respectively with strike at 100, barrier at 110, and
expiry in 30 days. We have chosen the model:

p(σ) = 0.8(σ−1 − 0.2), q(σ ) = 0.5 with ρ = 0.
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Figure 5: Mean for a single up-and-out call

Near the barrier,

(
∂m

∂σ

)2

is huge (see Figure 5) and this feeds the variance, being the source

term in (6). If the spot S is 100, and the current spot volatility σ is 20% per annum, the mean
is −1.1101 and the variance is 0.3290. Thus if there is no other instrument available in the
market, one would price this option at $1.6836 to match with Equation (7).

These results are shown in the table:

Mean (m) Var. (v) Value

Unhedged −1.1101 0.329 1.6836
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Figure 6: Variance for a single up-and-out call

Static hedging
Suppose that there are six 30-day vanilla call options available in the market with the following
specifications:

Option 1 2 3 4 5 6

Strike 96.62 100.00 104.17 108.70 112.36 116.96

Bid Price 4.6186 2.6774 1.1895 0.4302 0.1770 0.0557

Ask Price 4.6650 2.7043 1.2014 0.4345 0.1788 0.0562

(Aside: These hypothetical market prices were generated by computing the mean of each
call option, with:

dσ =
(

1

σ
− 0.2

)
dt + 0.5 dX2 (8)

where X is a Brownian motion with respect to the risk-neutral measure. Then 0.5% bid-ask
spread was added.)

Now we employ the optimal static vega hedge. Suppose we trade (q1, . . . , q6) of the above
instruments and let Ei be the strikes among the payoffs. Furthermore, let (m(0), v(0)) be the mean
variance pair after knock out and (m(1), v(1)) be that before knock out. Then (m(i), v(i)), i = 0,
1, satisfy the equations (5) and (6) subject to:

(a) m(1)(110, σ, t) = m(0)(110, σ, t) and v(1)(110, σ, t) = v(0)(110, σ, t) for each (σ, t) in
(0, ∞) × [0, T );
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(b) m(0)(S, σ, t) =
6∑

i=1
qi max(S − Ei, 0) for each (S, σ ) ∈ (0, ∞) × (0, ∞);

(c) m(1)(S, σ, T ) =
6∑

i=1
qi max(S − Ei, 0) − max(S − 100, 0) for each (S, σ ) in (0, 110) ×

(0, ∞);
(d) v(1)(S, σ, T ) = v(0)(S, σ, T ) = 0 for each (S, σ ) in (0, ∞) × (0, ∞).

Thus m(1)(S, σ, 0) stands for the mean of the cashflows excluding the up-front premium. We
find a (q1, . . . , q6) that maximizes:

m(1)(S, σ, 0) −
√

v(1)(S, σ, 0) −
6∑

i=1

p(qi)

where p(qi) is the market price of trading qi shares of strike Ei . In the case of S = 100 and
σ = 0.2, our optimal choice for vega hedge is given by:

Option 1 2 3 4 5 6

Strike 96.62 100.00 104.17 108.70 112.36 116.96

Quantity 0.0000 −1.1688 1.0207 3.1674 −3.6186 0.8035

The cost of this hedge position is $1.1863. Figure 7 and Figure 8 are the pictures of m(1)

and v(1) after the optimal static vega hedge. After the optimal static vega hedge, the mean
is 0.0398 and the variance is reduced to 0.0522. Thus the price for the up-and-out call that
matches with our mean-variance combination (7) is $1.3752(1.1863 − 0.0398 + √

0.0522). In
the risk-neutral set-up (8), the price for this up-and-out call is $1.1256. The difference mainly
comes from the standard deviation term (variance1/2) in (7) which is

√
0.0522 = 0.2286.

These results are shown in the table:

Mean (m) Var. (v) Hedge Value

Unhedged −1.1101 0.329 1.6836

Hedged 0.0398 0.0522 1.1863 1.3752

By statically hedging we have reduced the price at which we can safely sell the option,
from 1.6836 to 1.3752, while still making money 84% of the time. Alternatively, we can still
sell the option for 1.6836 and make even more profit.

At the same time the variance has been dramatically reduced so that we are less exposed to
volatility risk than if we had not statically hedged the position.
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Figure 7: Mean of portfolio after optimal static vega hedging
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Figure 8: Variance of portfolio after optimal static vega hedging

Other definitions of ‘value’
In the above example we have statically hedged so as to find the best value according to our
definition of value. This is by no means the only static hedging strategy. One can readily
imagine different players having different criteria.
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Obvious strategies that spring to mind are as follows:

• Minimize variance, that is minimize the function v. This has the effect of reducing model
risk as much as possible using all available instruments (the underlying and all traded
options). This may be a strategy adopted by the sell side.

• Maximize the returns risk ratio. This is perhaps more of a buy-side strategy, for maxi-
mizing Sharpe ratio, for example.

Summary
Constructing a risk-neutral model to fit the market prices of exchange traded options consistently
over a reasonable time period is a difficult task. Putting aside the fundamental question of
whether the axiomatic risk-neutral model for stochastic volatility is legitimate or not, we must
face potential financial losses due to re-calibration. In this paper we have taken another approach.
We first evaluate the mean and variance of the discounted future cashflow and then find market
instruments that reduce the volatility risk optimally.

We’ve set this problem up in a mean-variance framework but it could easily be extended to
a more general utility theory approach.
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